

# **FCC Test Report**

| FCC ID               | : | ACQ-VIP2502W                                                                                                                       |
|----------------------|---|------------------------------------------------------------------------------------------------------------------------------------|
| Equipment            | : | VIP Matrix                                                                                                                         |
| Model No.            | : | VIP2502W                                                                                                                           |
| Brand Name           | : | ARRIS                                                                                                                              |
| Applicant            | : | ARRIS Group, Inc.                                                                                                                  |
| Address              | : | 101 Tournament Drive, Horsham,<br>Pennsylvania, United States,19044,U.S.A.                                                         |
| Manufacturer         | : | AMPAK TECHNOLOGY (SUZHOU) INC.                                                                                                     |
| Address              | : | NO.1, Zheng Wen Road. New & High Tech<br>Industrial Park, Changshu Economic<br>Development Zone, JiangSuProvince, 215500,<br>P.R.C |
| Standard             | : | 47 CFR FCC Part 15.407                                                                                                             |
| <b>Received Date</b> | : | Jul. 23, 2013                                                                                                                      |
| Tested Date          | : | Jul. 24 ~ Aug. 08, 2013                                                                                                            |

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager





# Table of Contents

| 1   | GENERAL DESCRIPTION                          | 5    |
|-----|----------------------------------------------|------|
| 1.1 | Information                                  | 5    |
| 1.2 | Local Support Equipment List                 | 9    |
| 1.3 | Test Setup Chart                             | 9    |
| 1.4 | The Equipment List                           | . 10 |
| 1.5 | Testing Applied Standards                    | . 12 |
| 1.6 | Measurement Uncertainty                      | . 12 |
| 2   | TEST CONFIGURATION                           | . 13 |
| 2.1 | Testing Condition                            | 13   |
| 2.2 | The Worst Test Modes and Channel Details     | . 13 |
| 3   | TRANSMITTER TEST RESULTS                     | . 14 |
| 3.1 | Conducted Emissions                          | 14   |
| 3.2 | Emission Bandwidth                           | . 17 |
| 3.3 | RF Output Power                              | . 20 |
| 3.4 | Peak Power Spectral Density                  | . 22 |
| 3.5 | Peak Excursion                               | . 25 |
| 3.6 | Transmitter Radiated and Band Edge Emissions | . 28 |
| 3.7 | Frequency Stability                          | . 83 |



# **Release Record**

| Report No. | Version | Description  | Issued Date   |
|------------|---------|--------------|---------------|
| FR372301AN | Rev. 01 | Initialissue | Sep. 13, 2013 |



# **Summary of Test Results**

| FCC Rules | Test Items                  | Measured                                                                          | Result |
|-----------|-----------------------------|-----------------------------------------------------------------------------------|--------|
| 15.207    | Conducted Emissions         | [dBuV]: 0.172MHz<br>50.51 (Margin -4.35dB) - AV                                   | Pass   |
| 15.407(b) | Radiated Emissions          | [dBuV/m at 3m]: 5350MHz ,5725MHz                                                  | Pass   |
| 15.209    |                             | 53.00 (Margin -1.00dB) - AV                                                       |        |
| 15.407(a) | Emission Bandwidth          | Meet the requirement of limit                                                     | Pass   |
| 15.407(a) | RF Output Power             | Power [dBm]:<br>5150~5250MHz: 16.62<br>5250~5350MHz: 23.44<br>5470~5725MHz: 23.56 | Pass   |
| 15.407(a) | Peak Power Spectral Density | Meet the requirement of limit                                                     | Pass   |
| 15.407(a) | Peak Excursion              | Meet the requirement of limit                                                     | Pass   |
| 15.407(g) | Frequency Stability         | Meet the requirement of limit                                                     | Pass   |
| 15.203    | Antenna Requirement         | Meet the requirement of limit                                                     | Pass   |



# **1** General Description

### 1.1 Information

#### 1.1.1 Specification of the Equipment under Test (EUT)

| RF General Information              |                     |                                     |                                       |                    |           |  |  |
|-------------------------------------|---------------------|-------------------------------------|---------------------------------------|--------------------|-----------|--|--|
| Frequency<br>Range (MHz)            | IEEE Std.<br>802.11 | Ch. Freq. (MHz)                     | Transmit<br>Chains (Ν <sub>τx</sub> ) | Data Rate /<br>MCS |           |  |  |
| 5150-5250<br>5250-5350<br>5470-5725 | а                   | 5180-5240<br>5260-5320<br>5500-5700 | 36-48 [4]<br>52-64 [4]<br>100-140 [8] | 4                  | 6-54 Mbps |  |  |
| 5150-5250<br>5250-5350<br>5470-5725 | n (HT20)            | 5180-5240<br>5260-5320<br>5500-5700 | 36-48 [4]<br>52-64 [4]<br>100-140 [8] | 4                  | MCS 0-31  |  |  |
| 5150-5250<br>5250-5350<br>5470-5725 | n (HT40)            | 5190-5230<br>5270-5310<br>5510-5670 | 38-46 [2]<br>54-62 [2]<br>102-134 [3] | 4                  | MCS 0-31  |  |  |
| Note 1: RF output                   | tpowerspecifies     | that Maximum Co                     | nducted Output I                      | Power.             |           |  |  |

Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation. Note 3: HW version: V02, SW version: V01.03.09.

#### 1.1.2 Antenna Details

| Ant No   | Turne | Ope       | Connector |           |           |           |
|----------|-------|-----------|-----------|-----------|-----------|-----------|
| Ant. No. | Туре  | 5150~5250 | 5250~5350 | 5470~5725 | 5725~5850 | Connector |
| 1        | PCB   | 0.4       | 0.4       | 0.5       | 0.4       |           |
| 2        | PCB   | 0.4       | 0.4       | 0.5       | 0.4       |           |
| 3        | PCB   | 0.4       | 0.4       | 0.5       | 0.4       |           |
| 4        | PCB   | 0.4       | 0.4       | 0.5       | 0.4       |           |

Note : Above antenna gain value is for single TX antenna. Correlated antenna gain is 6.42 dBi for 5150~5350 and 5725~5850 MHz and 6.52dBi for 5470~5725 MHz

#### 1.1.3 EUT Operational Condition

| Supply Voltage    | ⊠ | AC mains           | DC                              |  |
|-------------------|---|--------------------|---------------------------------|--|
| Type of DC Source |   | Internal DC supply | External DC adapter 🛛 From Host |  |



#### 1.1.4 Accessories

|     | Accessories      |                                                                                                                                                                     |  |  |  |  |
|-----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| No. | Equipment        | Description                                                                                                                                                         |  |  |  |  |
| 1   | Adapter 1        | Brand Name: LITEON<br>Model Name: PB-1180-1M01<br>Power Rating:<br>I/P: 100-132Vac, 60Hz, 0.6A<br>O/P: 12Vdc, 1.5A<br>Power Line: 1.5m non-shielded cable w/o core  |  |  |  |  |
| 2   | Adapter 2        | Brand Name: APD<br>Model Name: WB-18F12FU<br>Power Rating:<br>I/P: 120Vac, 60Hz, 0.6A<br>O/P: 12Vdc, 1.5A<br>Power Line: 1.5m non-shielded cable w/o core           |  |  |  |  |
| 3   | Adapter 3        | Brand Name: LEI<br>Model Name: ML18-V120150-A1<br>Power Rating:<br>I/P: 120Vac, 60Hz, 0.5A<br>O/P: 12Vdc, 1.5A<br>Power Line: 1.5m non-shielded cable w/o core      |  |  |  |  |
| 4   | Adapter 4        | Brand Name: DELTA<br>Model Name: ADP-18AR-AA<br>Power Rating:<br>I/P: 110-120Vac, 57-63Hz, 0.8A<br>O/P: 12Vdc, 1.5A<br>Power Line: 1.5m non-shielded cable w/o core |  |  |  |  |
| 5   | Remote control 1 | Brand: UEI, Model: 6250BC0-0001-R                                                                                                                                   |  |  |  |  |
| 6   | Remote control 2 | Brand: Ruwido, Model: 16685506                                                                                                                                      |  |  |  |  |
| 7   | HDMI cable 1     | Brand: Webb Wells, Model: HF1213, 1.8m shielded cable w/o core                                                                                                      |  |  |  |  |
| 8   | HDMI cable 2     | Brand: Webb Wells, Model: HF1257, 1.8m shielded cable w/o core                                                                                                      |  |  |  |  |
| 9   | HDMI cable 3     | Brand: Wieson, Model: G9856HT 490-094, 1.8m shielded cable with 2 cores                                                                                             |  |  |  |  |
| 10  | HDMI cable 4     | Brand: Interconnect, Model: 18-94H1CS-054, 1.8m shielded cable w/o core                                                                                             |  |  |  |  |
| 11  | Ethernet         | Model: 2CB-3703P043L, 3m non-shielded cable w/o core                                                                                                                |  |  |  |  |

NOTE: HDMI cable 1 & HDMI cable 2 are the same, different model names are for marketing purpose.



#### 1.1.5 Channel List

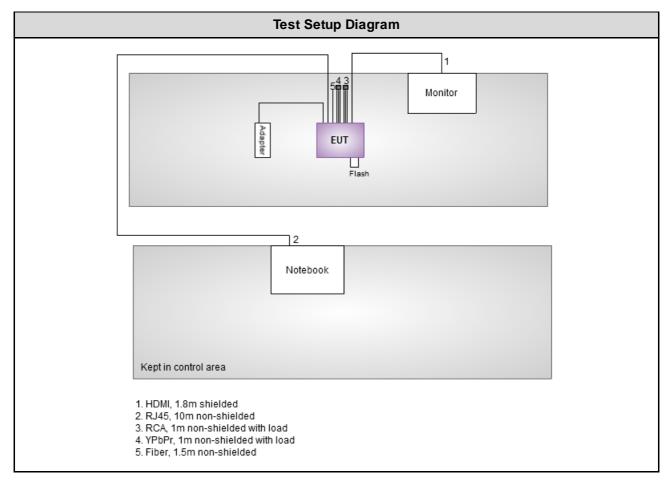
| Frequency | band (MHz)     | 5150         | ~5725          |  |
|-----------|----------------|--------------|----------------|--|
| 802.11 a  | / n HT20       | 802.11n HT40 |                |  |
| Channel   | Frequency(MHz) | Channel      | Frequency(MHz) |  |
| 36        | 5180           | 38           | 5190           |  |
| 40        | 5200           | 46           | 5230           |  |
| 44        | 5220           | 54           | 5270           |  |
| 48        | 5240           | 62           | 5310           |  |
| 52        | 5260           | 102          | 5510           |  |
| 56        | 5280           | 110          | 5550           |  |
| 60        | 5300           | 134          | 5670           |  |
| 64        | 5320           |              |                |  |
| 100       | 5500           |              |                |  |
| 104       | 5520           |              |                |  |
| 108       | 5540           |              |                |  |
| 112       | 5560           |              |                |  |
| 116       | 5580           |              |                |  |
| 132       | 5660           |              |                |  |
| 136       | 5680           |              |                |  |
| 140       | 5700           |              |                |  |

### 1.1.6 Test Tool and Duty Cycle

| Test Tool Hyperterminal V5.1  |                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------|
| Duty Cycle Of Test Signal (%) | 99.20% - IEEE 802.11a<br>99.14% - IEEE 802.11n (HT20)<br>98.59% - IEEE 802.11n (HT40) |
| Duty Factor                   | 0.03 - IEEE 802.11a<br>0.04 - IEEE 802.11n (HT20)<br>0.06 - IEEE 802.11n (HT40)       |



## 1.1.7 Power Setting


| Channel |                | Modulation Mode |      |      |  |  |  |
|---------|----------------|-----------------|------|------|--|--|--|
| Channel | Frequency(MHz) | 11a             | HT20 | HT40 |  |  |  |
| CH 36   | 5180           | 10              | 10   |      |  |  |  |
| CH 40   | 5200           | 10              | 10   |      |  |  |  |
| CH 48   | 5240           | 10              | 10   |      |  |  |  |
| CH 52   | 5260           | 17              | 17   |      |  |  |  |
| CH 60   | 5300           | 17              | 17   |      |  |  |  |
| CH 64   | 5320           | 16              | 16   |      |  |  |  |
| CH 100  | 5500           | 16              | 16   |      |  |  |  |
| CH 116  | 5580           | 17              | 17   |      |  |  |  |
| CH 140  | 40 5700 16 16  |                 | 16   |      |  |  |  |
| CH 38   | 5190           |                 |      | 11   |  |  |  |
| CH 46   | 5230           |                 |      | 10   |  |  |  |
| CH 54   | 5270           |                 |      | 17   |  |  |  |
| CH 62   | 5310           |                 |      | 14   |  |  |  |
| CH 102  | 5510           |                 |      | 11   |  |  |  |
| CH 110  | 5550           |                 |      | 17   |  |  |  |
| CH 134  | 5670           |                 |      | 17   |  |  |  |



# 1.2 Local Support Equipment List

|     | Support Equipment List |           |                 |     |        |                           |  |  |
|-----|------------------------|-----------|-----------------|-----|--------|---------------------------|--|--|
| No. | Equipment              | Brand     | Model           | S/N | FCC ID | Signal cable / Length (m) |  |  |
| 1   | Notebook               | DELL      | E6430           |     | DoC    | HDMI, 1.8m shielded       |  |  |
| 2   | Monitor                | DELL      | U2410f          |     | DoC    | RJ45,10m non-shielded     |  |  |
| 3   | Dongle                 | Transcend | JetFlash<br>V85 |     |        |                           |  |  |

# 1.3 Test Setup Chart





# 1.4 The Equipment List

| Test Item                            | Conducted Emission             |                               |               |                  |                   |  |  |  |  |  |  |
|--------------------------------------|--------------------------------|-------------------------------|---------------|------------------|-------------------|--|--|--|--|--|--|
| Test Site                            | Conduction room 1 / (C         | Conduction room 1 / (CO01-WS) |               |                  |                   |  |  |  |  |  |  |
| Instrument                           | Manufacturer                   | Model No.                     | Serial No.    | Calibration Date | Calibration Until |  |  |  |  |  |  |
| EMC Receiver                         | R&S                            | ESCS 30                       | 100169        | Oct. 02, 2012    | Oct. 01, 2013     |  |  |  |  |  |  |
| LISN                                 | SCHWARZBECK<br>MESS-ELEKTRONIK | Schwarzbeck 8127              | 8127-667      | Dec. 04, 2012    | Dec. 03, 2013     |  |  |  |  |  |  |
| LISN<br>(Support Unit)               | SCHWARZBECK<br>MESS-ELEKTRONIK | Schwarzbeck 8127              | 8127-666      | Dec. 04, 2012    | Dec. 03, 2013     |  |  |  |  |  |  |
| ISN                                  | TESEQ                          | ISN T800                      | 34406         | Apr. 08, 2013    | Apr. 07, 2014     |  |  |  |  |  |  |
| ISN                                  | TESEQ                          | ISN T200A                     | 30494         | Apr. 09, 2013    | Apr. 08, 2014     |  |  |  |  |  |  |
| ISN                                  | TESEQ                          | ISN T8-Cat6                   | 27262         | Sep. 17, 2012    | Sep. 16, 2013     |  |  |  |  |  |  |
| ISN                                  | TESEQ                          | ISN ST08                      | 22589         | Jan. 24, 2013    | Jan. 23, 2014     |  |  |  |  |  |  |
| RF Current Probe                     | FCC                            | F-33-4                        | 121630        | Dec. 04, 2012    | Dec. 03, 2013     |  |  |  |  |  |  |
| RF Cable-CON                         | Woken                          | CFD200-NL                     | CFD200-NL-001 | Dec. 25, 2012    | Dec. 24, 2013     |  |  |  |  |  |  |
| ESH3-Z6 V-Network(+)                 | R&S                            | ESH3-Z6                       | 100920        | Nov. 21, 2012    | Nov. 20, 2013     |  |  |  |  |  |  |
| ESH3-Z6 V-Network(-)                 | R&S                            | ESH3-Z6                       | 100951        | Jan. 30, 2013    | Jan. 29, 2014     |  |  |  |  |  |  |
| Two-Line V-Network                   | R&S                            | ENV216                        | 101579        | Jan. 07, 2013    | Jan. 06, 2014     |  |  |  |  |  |  |
| 50 ohm terminal                      | NA                             | 50                            | 01            | Apr. 22, 2013    | Apr. 21, 2014     |  |  |  |  |  |  |
| 50 ohm terminal                      | NA                             | 50                            | 02            | Apr. 22, 2013    | Apr. 21, 2014     |  |  |  |  |  |  |
| 50 ohm terminal                      | NA                             | 50                            | 03            | Apr. 22, 2013    | Apr. 21, 2014     |  |  |  |  |  |  |
| 50 ohm terminal<br>(Support Unit) NA |                                | 50                            | 04            | Apr. 22, 2013    | Apr. 21, 2014     |  |  |  |  |  |  |

| Test Item                   | Radiated Emission above 1GHz |             |                  |                  |                   |  |  |  |
|-----------------------------|------------------------------|-------------|------------------|------------------|-------------------|--|--|--|
| Test Site                   | 966 chamber1 / (03CH01-WS)   |             |                  |                  |                   |  |  |  |
| Instrument                  | Manufacturer                 | Model No.   | Serial No.       | Calibration Date | Calibration Until |  |  |  |
| 3m semi-anechoic<br>chamber | CHAMPRO                      | SAC-03      | 03CH01-WS        | Jan. 04, 2013    | Jan. 03, 2014     |  |  |  |
| Spectrum Analyzer           | R&S                          | FSV40       | 101498           | Jan. 24, 2013    | Jan. 23, 2014     |  |  |  |
| Receiver                    | ROHDE&SCHWAR<br>Z            | ESR3        | 101658           | Jan. 28, 2013    | Jan. 27, 2014     |  |  |  |
| Bilog Antenna               | SCHWARZBECK                  | VULB9168    | VULB9168-522     | Jan. 11, 2013    | Jan. 10, 2014     |  |  |  |
| Horn Antenna<br>1G-18G      | SCHWARZBECK                  | BBHA 9120 D | BBHA 9120 D 1096 | Feb. 18, 2013    | Feb. 17, 2014     |  |  |  |
| Horn Antenna<br>18G-40G     | SCHWARZBECK                  | BBHA 9170   | BBHA 9170517     | Jan. 14, 2013    | Jan. 13, 2014     |  |  |  |
| Amplifier                   | Burgeon                      | BPA-530     | 100219           | Nov 28, 2012     | Nov. 27, 2013     |  |  |  |
| Amplifier                   | Agilent                      | 83017A      | MY39501308       | Dec. 18, 2012    | Dec. 17, 2013     |  |  |  |
| RF Cable                    | HUBER+SUHNER                 | SUCOFLEX104 | MY16014/4        | Dec. 25, 2012    | Dec. 24, 2013     |  |  |  |
| RF Cable                    | HUBER+SUHNER                 | SUCOFLEX104 | MY16019/4        | Dec. 25, 2012    | Dec. 24, 2013     |  |  |  |
| RF Cable                    | HUBER+SUHNER                 | SUCOFLEX104 | MY16139/4        | Dec. 25, 2012    | Dec. 24, 2013     |  |  |  |



International Certification Corp.No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.Tel: 886-3-271-8666Fax: 886-3-318-0155

| Test Item                                                           | Radiated Emission ab                                                                  | Radiated Emission above 1GHz |            |                  |                   |  |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|------------|------------------|-------------------|--|--|--|--|--|
| Test Site                                                           | 966 chamber1 / (03Cl                                                                  | 966 chamber1 / (03CH01-WS)   |            |                  |                   |  |  |  |  |  |
| Instrument                                                          | Manufacturer                                                                          | Model No.                    | Serial No. | Calibration Date | Calibration Until |  |  |  |  |  |
| RF Cable-R03m                                                       | Woken                                                                                 | Dec. 24, 2013                |            |                  |                   |  |  |  |  |  |
| RF Cable-R10m                                                       | Woken         CFD400NL-LW         CFD400NL-002         Dec. 25, 2012         Dec. 24, |                              |            |                  |                   |  |  |  |  |  |
| control                                                             | EM Electronics EM1000 60612 N/A N/A                                                   |                              |            |                  |                   |  |  |  |  |  |
| Note: Calibration Interval of instruments listed above is one year. |                                                                                       |                              |            |                  |                   |  |  |  |  |  |

| Loop Antenna                                                        | R&S   | HFH2-Z2       | 100330  | Nov 15, 2012  | Nov. 14, 2014 |  |  |  |
|---------------------------------------------------------------------|-------|---------------|---------|---------------|---------------|--|--|--|
| Amplifier                                                           | MITEQ | AMF-6F-260400 | 9121372 | Apr. 19, 2013 | Apr. 18, 2015 |  |  |  |
| Note: Calibration Interval of instruments listed above is two year. |       |               |         |               |               |  |  |  |

| Test Item                                                           | RF Conducted                                   |                  |             |                  |                   |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------|------------------|-------------|------------------|-------------------|--|--|--|--|--|
| Test Site                                                           | (TH01-WS)                                      | TH01-WS)         |             |                  |                   |  |  |  |  |  |
| Instrument                                                          | Manufacturer                                   | Model No.        | Serial No.  | Calibration Date | Calibration Until |  |  |  |  |  |
| Spectrum Analyzer                                                   | R&S                                            | FSV 40           | 101063      | Feb. 18, 2013    | Feb. 17, 2014     |  |  |  |  |  |
| TEMP&HUMIDITY<br>CHAMBER                                            | GIANT FORCE                                    | GCT-225-40-SP-SD | MAF1212-002 | Nov 29, 2012     | Nov 28, 2013      |  |  |  |  |  |
| Power Meter                                                         | Anritsu                                        | ML2495A          | 1241002     | Oct. 15, 2012    | Oct. 14, 2013     |  |  |  |  |  |
| Power Sensor                                                        | Anritsu                                        | MA2411B          | 1027366     | Oct. 24, 2012    | Oct. 23, 2013     |  |  |  |  |  |
| Signal Generator                                                    | R&S SMB100A 175727 Jan. 14, 2013 Jan. 13, 2014 |                  |             |                  |                   |  |  |  |  |  |
| Note: Calibration Interval of instruments listed above is one year. |                                                |                  |             |                  |                   |  |  |  |  |  |



# 1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407 ANSI C63.10-2009 FCC KDB 412172 FCC KDB 789033 D01 General UNII Test procedures v01r03 FCC KDB 662911 D01 Multiple Transmitter Output v02

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

#### **1.6 Measurement Uncertainty**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Measurement Uncertainty |                     |  |  |  |  |
|-------------------------|---------------------|--|--|--|--|
| Parameters              | Uncertainty         |  |  |  |  |
| Bandwidth               | ±74.147 Hz          |  |  |  |  |
| Conducted power         | ±0.717 dB           |  |  |  |  |
| Powerdensity            | ±2.687 dB           |  |  |  |  |
| Frequency error         | ±74.147 Hz          |  |  |  |  |
| Temperature             | ±0.3 <sup>°</sup> C |  |  |  |  |
| AC conducted emission   | ±2.43 dB            |  |  |  |  |
| Radiated emission       | ±2.49 dB            |  |  |  |  |



# 2 Test Configuration

# 2.1 Testing Condition

| Test Item          | Test Site | Ambient Condition | Tested By               |
|--------------------|-----------|-------------------|-------------------------|
| AC Conduction      | CO01-WS   | 23°C / 69%        | Skys Huang              |
| Radiated Emissions | 03CH01-WS | 24°C / 66%        | Haru Yang<br>Aska Huang |
| RF Conducted       | TH01-WS   | 22°C / 65%        | Felix Sung              |

➢ FCC site registration No.: 657002

➢ IC site registration No.: 10807A-1

# 2.2 The Worst Test Modes and Channel Details

| Test item                             | Modulation<br>Mode | Test Frequency<br>(MHz)                                       | Data rate<br>(Mbps) | Test<br>Configuration |
|---------------------------------------|--------------------|---------------------------------------------------------------|---------------------|-----------------------|
| Conducted Emissions                   | HT20               | 5580                                                          | MCS 0               |                       |
| Radiated Emissions (below 1GHz)       | HT20               | 5580                                                          | MCS 0               |                       |
| Radiated Emissions >1GHz              | 11a                | 5180 / 5200 / 5240 / 5260 / 5300<br>5320 / 5500 / 5580 / 5700 | 6                   |                       |
| RF Output Power<br>Emission Bandwidth | HT20               | 5180 / 5200 / 5240 / 5260 / 5300<br>5320 / 5500 / 5580 / 5700 | MCS 0               |                       |
| Peak Power Spectral Density           | HT40               | 5190 / 5230/ 5270 / 5310 / 5510<br>5550 / 5670                | MCS 0               |                       |
|                                       | 11a                | 5240 / 5300 / 5580                                            | 6                   |                       |
| Peak Excursion                        | HT20               | 5180 / 5260 / 5580                                            | MCS 0               |                       |
|                                       | HT40               | 5190 / 5270 / 5550                                            | MCS 0               |                       |
| Frequency Stability                   | Un-modulation      | 5320                                                          |                     |                       |

#### NOTE:

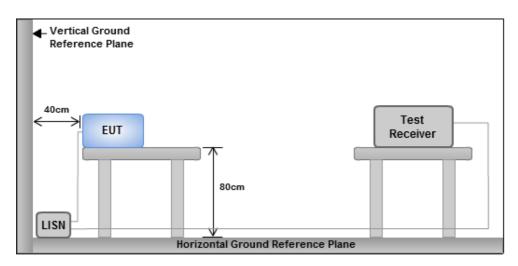
1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.

2. Adapter 1, 2, 3, 4 and HDMI cable 1, 3, 4 had been cov ered during the pretest. The worst cases were found at adapter 4 and HDMI cable 1. Therefore, only the data was recorded in this report.



# 3 Transmitter Test Results

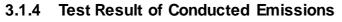
## 3.1 Conducted Emissions

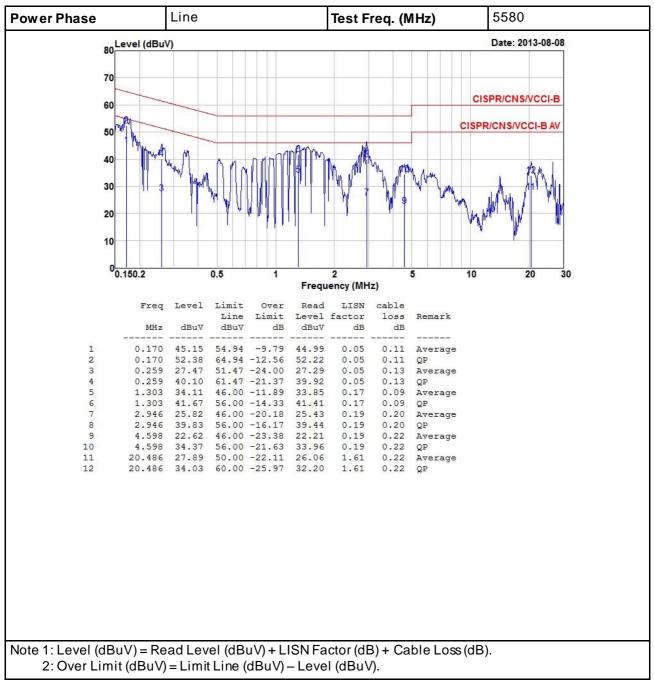

#### 3.1.1 Limit of Conducted Emissions

| Conducted Emissions Limit                                |    |    |  |  |  |  |
|----------------------------------------------------------|----|----|--|--|--|--|
| Frequency Emission (MHz) Quasi-Peak Average              |    |    |  |  |  |  |
| 0.15-0.5 66 - 56 * 56 - 46 *                             |    |    |  |  |  |  |
| 0.5-5                                                    | 56 | 46 |  |  |  |  |
| 5-30 60 50                                               |    |    |  |  |  |  |
| Note 1: * Decreases with the logarithm of the frequency. |    |    |  |  |  |  |

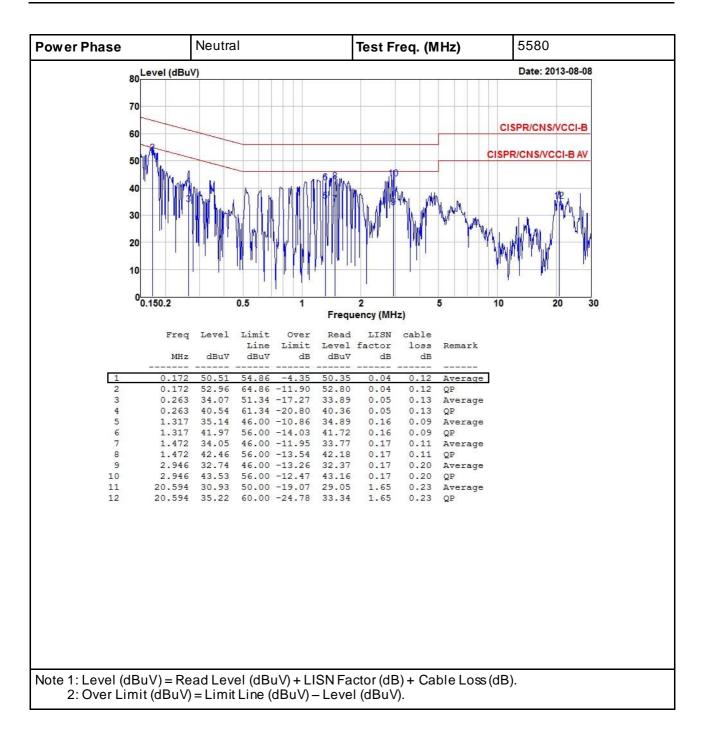
#### 3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50  $\Omega$  LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.


#### 3.1.3 Test Setup




Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

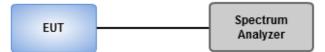













# 3.2 Emission Bandwidth

#### 3.2.1 Test Procedures

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

#### 3.2.2 Test Setup





#### 3.2.3 Test Result of Emission Bandwidth

| Modulation |                 | Freq. | 26dE    | B Band  | width ( | MHz)    | 99%     | Bandv   | vidth (N | MHz)    | Limit      | (dBm)     |
|------------|-----------------|-------|---------|---------|---------|---------|---------|---------|----------|---------|------------|-----------|
| Mode       | N <sub>TX</sub> | (MHz) | Chain 0 | Chain 1 | Chain 2 | Chain 3 | Chain 0 | Chain 1 | Chain 2  | Chain 3 | 26dB<br>BW | 99%<br>BW |
| 11a        | 4               | 5180  | 26.49   | 25.04   | 25.68   | 24.99   | 17.42   | 17.25   | 17.37    | 17.13   | 17.00      | 16.34     |
| 11a        | 4               | 5200  | 27.13   | 24.70   | 26.61   | 25.45   | 17.60   | 17.19   | 17.48    | 17.19   | 17.00      | 16.35     |
| 11a        | 4               | 5240  | 26.32   | 24.99   | 26.09   | 25.86   | 17.42   | 17.25   | 17.42    | 17.19   | 17.00      | 16.35     |
| 11a        | 4               | 5260  | 26.32   | 25.45   | 25.91   | 25.39   | 17.37   | 17.25   | 17.42    | 17.19   | 24.00      | 23.35     |
| 11a        | 4               | 5300  | 26.38   | 25.39   | 26.09   | 25.51   | 17.37   | 17.25   | 17.37    | 17.19   | 24.00      | 23.35     |
| 11a        | 4               | 5320  | 26.49   | 25.57   | 25.91   | 25.28   | 17.31   | 17.19   | 17.37    | 17.19   | 24.00      | 23.35     |
| 11a        | 4               | 5500  | 26.09   | 24.87   | 26.67   | 25.57   | 17.31   | 17.25   | 17.37    | 17.19   | 24.00      | 23.35     |
| 11a        | 4               | 5580  | 26.03   | 25.16   | 25.39   | 25.28   | 17.31   | 17.19   | 17.25    | 17.19   | 24.00      | 23.35     |
| 11a        | 4               | 5700  | 25.45   | 24.64   | 25.86   | 25.57   | 17.31   | 17.02   | 17.37    | 17.19   | 24.00      | 23.31     |
| HT20       | 4               | 5180  | 26.96   | 27.83   | 26.14   | 26.32   | 18.41   | 18.64   | 18.29    | 18.18   | 17.00      | 16.60     |
| HT20       | 4               | 5200  | 27.48   | 28.06   | 25.86   | 26.38   | 18.29   | 18.52   | 18.29    | 18.18   | 17.00      | 16.60     |
| HT20       | 4               | 5240  | 27.13   | 28.00   | 25.86   | 26.14   | 18.29   | 18.58   | 18.35    | 18.18   | 17.00      | 16.60     |
| HT20       | 4               | 5260  | 27.54   | 28.64   | 25.80   | 26.38   | 18.29   | 18.58   | 18.23    | 18.18   | 24.00      | 23.60     |
| HT20       | 4               | 5300  | 27.19   | 28.81   | 25.74   | 25.68   | 18.35   | 18.58   | 18.12    | 18.18   | 24.00      | 23.58     |
| HT20       | 4               | 5320  | 27.30   | 28.00   | 25.22   | 26.49   | 18.23   | 18.58   | 18.18    | 18.18   | 24.00      | 23.60     |
| HT20       | 4               | 5500  | 26.61   | 27.19   | 25.57   | 26.32   | 18.23   | 18.58   | 18.18    | 18.23   | 24.00      | 23.60     |
| HT20       | 4               | 5580  | 26.90   | 27.30   | 25.57   | 26.09   | 18.23   | 18.58   | 18.12    | 18.18   | 24.00      | 23.58     |
| HT20       | 4               | 5700  | 26.90   | 27.07   | 25.80   | 26.26   | 18.23   | 18.41   | 18.18    | 18.18   | 24.00      | 23.60     |
| HT40       | 4               | 5190  | 44.06   | 44.29   | 43.83   | 43.83   | 36.93   | 37.28   | 36.93    | 36.70   | 17.00      | 17.00     |
| HT40       | 4               | 5230  | 43.83   | 44.29   | 43.71   | 44.06   | 36.93   | 37.28   | 36.82    | 36.70   | 17.00      | 17.00     |
| HT40       | 4               | 5270  | 44.64   | 44.87   | 43.71   | 44.64   | 36.82   | 37.16   | 37.28    | 36.58   | 24.00      | 24.00     |
| HT40       | 4               | 5310  | 43.94   | 44.17   | 43.83   | 44.06   | 36.82   | 37.16   | 37.28    | 36.58   | 24.00      | 24.00     |
| HT40       | 4               | 5510  | 43.94   | 44.41   | 43.94   | 44.06   | 36.82   | 37.28   | 37.16    | 36.70   | 24.00      | 24.00     |
| HT40       | 4               | 5550  | 44.87   | 44.99   | 44.87   | 44.87   | 36.93   | 37.40   | 37.16    | 36.82   | 24.00      | 24.00     |
| HT40       | 4               | 5670  | 45.57   | 45.91   | 44.64   | 45.33   | 37.05   | 37.40   | 37.28    | 36.82   | 24.00      | 24.00     |



| Spectrum                                                                                                                |                                                                  |                                         |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|
| Ref Level         20.00         dBm         Offset         11.50                Att         30 dB         SWT         1 | dB <b>e RBW</b> 1 MHz<br>ms <b>e VBW</b> 3 MHz <b>Mode</b> Sweep |                                         |
| e 1Pk View                                                                                                              | M1[1]                                                            | -14.32 dE                               |
| 10 dBmD1 11.363 dBm                                                                                                     |                                                                  | 5.647275 G                              |
|                                                                                                                         | D1[1]                                                            | 37.395079595 MH<br>-0.30 c<br>45.913 MH |
| 0 dBm                                                                                                                   |                                                                  |                                         |
| -10 dBm                                                                                                                 | \                                                                | Mai                                     |
| -20,08m                                                                                                                 |                                                                  | many                                    |
| -30 dBm                                                                                                                 |                                                                  |                                         |
| -40 dBm                                                                                                                 |                                                                  |                                         |
| HO UBIN                                                                                                                 |                                                                  |                                         |
| -50 dBm                                                                                                                 |                                                                  |                                         |
| -60 dBm                                                                                                                 |                                                                  |                                         |
| -70 dBm                                                                                                                 |                                                                  | F2                                      |
| F1                                                                                                                      |                                                                  |                                         |
| CF 5.67 GHz                                                                                                             | 691 pts                                                          | Span 80.0 MHz                           |



# 3.3 **RF Output Power**

#### 3.3.1 Limit of RF Output Power

|     | Frequency Band (GHz)                                 | Limit                   |  |  |  |  |
|-----|------------------------------------------------------|-------------------------|--|--|--|--|
| ⊠   | 5.15~5.25                                            | 50mWor4dBm+10 log B     |  |  |  |  |
| ⊠   | 5.25~5.35                                            | 250mW or 11dBm+10 log B |  |  |  |  |
| ⊠   | ☑         5.47~5.725         250mW or 11dBm+10 log B |                         |  |  |  |  |
| Not | Note: "B" is the 26dB emission bandwidth in MHz.     |                         |  |  |  |  |

#### 3.3.2 Test Procedures

#### Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

#### 3.3.3 Test Setup





# 3.3.4 Test Result of Maximum Conducted Output Power Modulation Freq. Average Power (dBm) Tota

| Modulation |                 | Freq. | A       | verage P | ower (dBr | n)      | Total         | Total          | Limit |
|------------|-----------------|-------|---------|----------|-----------|---------|---------------|----------------|-------|
| Mode       | N <sub>TX</sub> | (MHz) | Chain 0 | Chain 1  | Chain 2   | Chain 3 | Power<br>(mW) | Power<br>(dBm) | (dBm) |
| 11a        | 4               | 5180  | 10.24   | 10.68    | 9.58      | 9.93    | 41.181        | 16.15          | 17    |
| 11a        | 4               | 5200  | 10.38   | 10.79    | 9.49      | 10.09   | 42.011        | 16.23          | 17    |
| 11a        | 4               | 5240  | 10.62   | 10.91    | 9.29      | 10.02   | 42.404        | 16.27          | 17    |
| 11a        | 4               | 5260  | 17.39   | 17.56    | 16.74     | 17.44   | 214.513       | 23.31          | 24    |
| 11a        | 4               | 5300  | 17.36   | 17.54    | 17.09     | 17.66   | 220.717       | 23.44          | 24    |
| 11a        | 4               | 5320  | 16.15   | 16.94    | 16.04     | 16.32   | 173.675       | 22.40          | 24    |
| 11a        | 4               | 5500  | 16.16   | 16.79    | 16.36     | 16.76   | 179.733       | 22.55          | 24    |
| 11a        | 4               | 5580  | 17.35   | 17.93    | 17.01     | 17.71   | 225.666       | 23.53          | 24    |
| 11a        | 4               | 5700  | 16.12   | 16.82    | 16.51     | 16.44   | 177.837       | 22.50          | 24    |
| HT20       | 4               | 5180  | 10.18   | 10.97    | 9.55      | 10.12   | 42.222        | 16.26          | 17    |
| HT20       | 4               | 5200  | 10.29   | 10.95    | 9.51      | 10.18   | 42.492        | 16.28          | 17    |
| HT20       | 4               | 5240  | 10.68   | 10.93    | 9.74      | 10.28   | 44.168        | 16.45          | 17    |
| HT20       | 4               | 5260  | 17.02   | 17.82    | 16.78     | 17.34   | 212.727       | 23.28          | 24    |
| HT20       | 4               | 5300  | 16.89   | 17.62    | 17.02     | 17.45   | 212.615       | 23.28          | 24    |
| HT20       | 4               | 5320  | 16.48   | 17.11    | 16.01     | 16.28   | 178.232       | 22.51          | 24    |
| HT20       | 4               | 5500  | 16.18   | 16.81    | 16.24     | 16.53   | 176.519       | 22.47          | 24    |
| HT20       | 4               | 5580  | 17.36   | 17.86    | 17.15     | 17.75   | 226.991       | 23.56          | 24    |
| HT20       | 4               | 5700  | 15.95   | 16.73    | 16.34     | 16.51   | 174.277       | 22.41          | 24    |
| HT40       | 4               | 5190  | 10.71   | 10.99    | 10.12     | 10.52   | 45.888        | 16.62          | 17    |
| HT40       | 4               | 5230  | 10.35   | 10.98    | 9.13      | 10.04   | 41.648        | 16.20          | 17    |
| HT40       | 4               | 5270  | 17.09   | 17.61    | 16.57     | 17.10   | 205.525       | 23.13          | 24    |
| HT40       | 4               | 5310  | 13.86   | 14.18    | 13.22     | 14.23   | 97.978        | 19.91          | 24    |
| HT40       | 4               | 5510  | 10.86   | 11.66    | 10.96     | 11.11   | 52.231        | 17.18          | 24    |
| HT40       | 4               | 5550  | 17.01   | 17.39    | 17.04     | 17.22   | 208.367       | 23.19          | 24    |
| HT40       | 4               | 5670  | 16.94   | 17.38    | 17.06     | 17.26   | 208.159       | 23.18          | 24    |

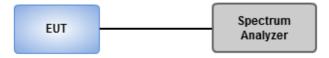


# 3.4 Peak Power Spectral Density

#### 3.4.1 Limit of Peak Power Spectral Density

|   | Frequency Band (GHz) | Limit (dBm) |
|---|----------------------|-------------|
| ⊠ | 5.15~5.25            | 4           |
|   | 5.25~5.35            | 11          |
| ⊠ | 5.47~5.725           | 11          |

#### 3.4.2 Test Procedures


#### Method SA-1

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

#### □ Method SA-2

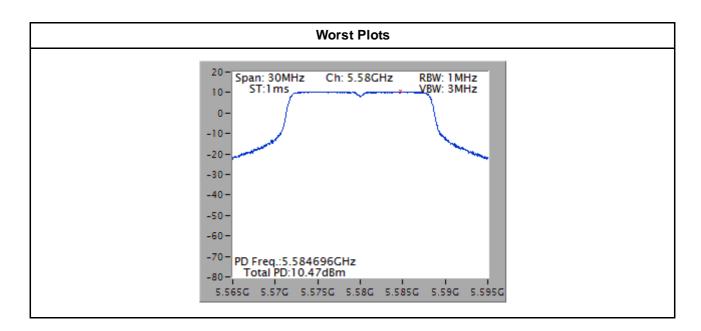
- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average at 100 traces
- 3. Use the peak marker function to determine the maximum amplitude level.
- 4. Add  $10 \log(1/x)$ , where x is the duty cycle
- Method SA-2 Alternative
  - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
  - 2. Set sweep time  $\geq 10^{*}$  (number of points in sweep)\* (total on/off period of the transmitted signal).
  - 3. Perform a single sweep.
  - 4. Use the peak marker function to determine the maximum amplitude level.
  - 5. Add  $10 \log(1/x)$ , where x is the duty cycle.

#### 3.4.3 Test Setup





#### 3.4.4 Test Result of Peak Power Spectral Density


| Modulation<br>Mode | N <sub>TX</sub> | Freq.<br>(MHz) | PSD<br>(dBm) | Duty Factor<br>(dB) | Total PSD<br>(dBm) | Limit (dBm) |
|--------------------|-----------------|----------------|--------------|---------------------|--------------------|-------------|
| 11a                | 4               | 5180           | 3.18         | 0                   | 3.18               | 3.58        |
| 11a                | 4               | 5200           | 3.31         | 0                   | 3.31               | 3.58        |
| 11a                | 4               | 5240           | 3.37         | 0                   | 3.37               | 3.58        |
| 11a                | 4               | 5260           | 10.08        | 0                   | 10.08              | 10.58       |
| 11a                | 4               | 5300           | 10.38        | 0                   | 10.38              | 10.58       |
| 11a                | 4               | 5320           | 9.59         | 0                   | 9.59               | 10.58       |
| 11a                | 4               | 5500           | 9.67         | 0                   | 9.67               | 10.48       |
| 11a                | 4               | 5580           | 10.47        | 0                   | 10.47              | 10.48       |
| 11a                | 4               | 5700           | 9.58         | 0                   | 9.58               | 10.48       |
| HT20               | 4               | 5180           | 3.08         | 0                   | 3.08               | 3.58        |
| HT20               | 4               | 5200           | 3.16         | 0                   | 3.16               | 3.58        |
| HT20               | 4               | 5240           | 3.20         | 0                   | 3.20               | 3.58        |
| HT20               | 4               | 5260           | 9.96         | 0                   | 9.96               | 10.58       |
| HT20               | 4               | 5300           | 10.29        | 0                   | 10.29              | 10.58       |
| HT20               | 4               | 5320           | 9.38         | 0                   | 9.38               | 10.58       |
| HT20               | 4               | 5500           | 9.27         | 0                   | 9.27               | 10.48       |
| HT20               | 4               | 5580           | 10.40        | 0                   | 10.40              | 10.48       |
| HT20               | 4               | 5700           | 9.31         | 0                   | 9.31               | 10.48       |
| HT40               | 4               | 5190           | 0.43         | 0                   | 0.43               | 3.58        |
| HT40               | 4               | 5230           | -0.45        | 0                   | -0.45              | 3.58        |
| HT40               | 4               | 5270           | 6.62         | 0                   | 6.62               | 10.58       |
| HT40               | 4               | 5310           | 3.68         | 0                   | 3.68               | 10.58       |
| HT40               | 4               | 5510           | 0.83         | 0                   | 0.83               | 10.48       |
| HT40               | 4               | 5550           | 6.99         | 0                   | 6.99               | 10.48       |
| HT40               | 4               | 5670           | 7.33         | 0                   | 7.33               | 10.48       |

Note:

 Test result is bin-by-bin summing measured value of each TX port.
 Directional gain of 5150~5250 MHz band is 0.4dBi + 10\*log(4/1) dB =6.42dBi > 6dBi Limit shall be reduced to 4dBm - (6.42-6) dB = 3.58dBm

- 3. Directional gain of 5250~5350 MHz band is 0.4dBi + 10\*log(4/1) dB = 6.42dBi > 6dBi Limit shall be reduced to 11dBm - (6.42-6) dB = 10.58dBm
- 4. Directional gain of 5470~5725 MHz band is 0.5dBi + 10\*log(4/1) dB = 6.52dBi > 6dBi Limit shall be reduced to 11dBm - (6.52-6) dB = 10.48 dBm







# 3.5 Peak Excursion

#### 3.5.1 Peak Excursion Limit

Peak excursion of the modulation envelope shall not exceed 13 dB across any 1 MHz bandwidth.

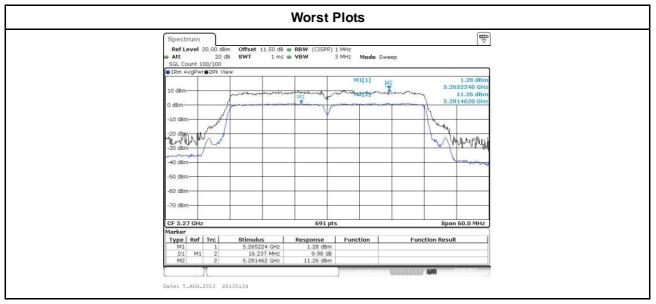
#### 3.5.2 Test Procedures

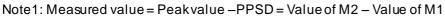
- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = peak.
- 2. Trace mode = max-hold. Allow the sweeps to continue until the trace stabilizes.
- 3. Use the peaksearch function to find the peak of the spectrum.
- 4. Use the procedure of section 3.4.2 to measure the PPSD.
- 5. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD

#### 3.5.3 Test Setup






#### 3.5.4 Test Result of Peak Excursion


| Mode | Modulation<br>Mode | N <sub>TX</sub> | Freq.<br>(MHz) | Measured<br>value(dB) | Duty factor<br>(dB) | Peak Excursion<br>(dB) | Limit |
|------|--------------------|-----------------|----------------|-----------------------|---------------------|------------------------|-------|
| 11a  | BPSK               | 4               | 5240           | 7.43                  | 0.00                | 7.43                   | 13    |
| 11a  | QPSK               | 4               | 5240           | 8.63                  | 0.00                | 8.63                   | 13    |
| 11a  | 16QAM              | 4               | 5240           | 7.39                  | 0.12                | 7.27                   | 13    |
| 11a  | 64QAM              | 4               | 5240           | 8.8                   | 0.22                | 8.58                   | 13    |
| HT20 | BPSK               | 4               | 5180           | 7.7                   | 0.00                | 7.70                   | 13    |
| HT20 | QPSK               | 4               | 5180           | 7.98                  | 0.00                | 7.98                   | 13    |
| HT20 | 16QAM              | 4               | 5180           | 7.85                  | 0.18                | 7.67                   | 13    |
| HT20 | 64QAM              | 4               | 5180           | 9.78                  | 0.34                | 9.44                   | 13    |
| HT40 | BPSK               | 4               | 5190           | 7.26                  | 0.00                | 7.26                   | 13    |
| HT40 | QPSK               | 4               | 5190           | 7.59                  | 0.14                | 7.45                   | 13    |
| HT40 | 16QAM              | 4               | 5190           | 8.4                   | 0.34                | 8.06                   | 13    |
| HT40 | 64QAM              | 4               | 5190           | 9.65                  | 0.47                | 9.18                   | 13    |
| 11a  | BPSK               | 4               | 5300           | 7.28                  | 0.00                | 7.28                   | 13    |
| 11a  | QPSK               | 4               | 5300           | 8.77                  | 0.00                | 8.77                   | 13    |
| 11a  | 16QAM              | 4               | 5300           | 7.69                  | 0.12                | 7.57                   | 13    |
| 11a  | 64QAM              | 4               | 5300           | 8.27                  | 0.22                | 8.05                   | 13    |
| HT20 | BPSK               | 4               | 5260           | 6.84                  | 0.00                | 6.84                   | 13    |
| HT20 | QPSK               | 4               | 5260           | 7.84                  | 0.00                | 7.84                   | 13    |
| HT20 | 16QAM              | 4               | 5260           | 7.86                  | 0.18                | 7.68                   | 13    |
| HT20 | 64QAM              | 4               | 5260           | 9.26                  | 0.34                | 8.92                   | 13    |
| HT40 | BPSK               | 4               | 5270           | 7.08                  | 0.00                | 7.08                   | 13    |
| HT40 | QPSK               | 4               | 5270           | 7.77                  | 0.14                | 7.63                   | 13    |
| HT40 | 16QAM              | 4               | 5270           | 8.52                  | 0.34                | 8.18                   | 13    |
| HT40 | 64QAM              | 4               | 5270           | 9.98                  | 0.47                | 9.51                   | 13    |



| Mode | Modulation<br>Mode | N <sub>TX</sub> | Freq.<br>(MHz) | Measured<br>value(dB) | Duty factor<br>(dB) | Peak Excursion<br>(dB) | Limit |
|------|--------------------|-----------------|----------------|-----------------------|---------------------|------------------------|-------|
| 11a  | BPSK               | 4               | 5580           | 6.23                  | 0.00                | 6.23                   | 13    |
| 11a  | QPSK               | 4               | 5580           | 8.71                  | 0.00                | 8.71                   | 13    |
| 11a  | 16QAM              | 4               | 5580           | 7.86                  | 0.12                | 7.74                   | 13    |
| 11a  | 64QAM              | 4               | 5580           | 8.53                  | 0.22                | 8.31                   | 13    |
| HT20 | BPSK               | 4               | 5580           | 8.18                  | 0.00                | 8.18                   | 13    |
| HT20 | QPSK               | 4               | 5580           | 8.28                  | 0.00                | 8.28                   | 13    |
| HT20 | 16QAM              | 4               | 5580           | 8.24                  | 0.18                | 8.06                   | 13    |
| HT20 | 64QAM              | 4               | 5580           | 9.16                  | 0.34                | 8.82                   | 13    |
| HT40 | BPSK               | 4               | 5550           | 7                     | 0.00                | 7.00                   | 13    |
| HT40 | QPSK               | 4               | 5550           | 8.09                  | 0.14                | 7.95                   | 13    |
| HT40 | 16QAM              | 4               | 5550           | 8.37                  | 0.34                | 8.03                   | 13    |
| HT40 | 64QAM              | 4               | 5550           | 9.83                  | 0.47                | 9.36                   | 13    |

Note: Measured value = Peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission. Since the duty cycle is < 98 %, duty factor is required to average spectrum Peak exclusion = Measured value – duty factor







# 3.6 Transmitter Radiated and Band Edge Emissions

#### 3.6.1 Limit of Transmitter Radiated and Band Edge Emissions

| Restricted Band Emissions Limit |                       |                         |                      |  |  |  |
|---------------------------------|-----------------------|-------------------------|----------------------|--|--|--|
| Frequency Range (MHz)           | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) |  |  |  |
| 0.009~0.490                     | 2400/F(kHz)           | 48.5 - 13.8             | 300                  |  |  |  |
| 0.490~1.705                     | 24000/F(kHz)          | 33.8 - 23               | 30                   |  |  |  |
| 1.705~30.0                      | 30                    | 29                      | 30                   |  |  |  |
| 30~88                           | 100                   | 40                      | 3                    |  |  |  |
| 88~216                          | 150                   | 43.5                    | 3                    |  |  |  |
| 216~960                         | 200                   | 46                      | 3                    |  |  |  |
| Above 960                       | 500                   | 54                      | 3                    |  |  |  |

#### Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and av erage value are measured for frequency above 1GHz. The limit on av erage radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

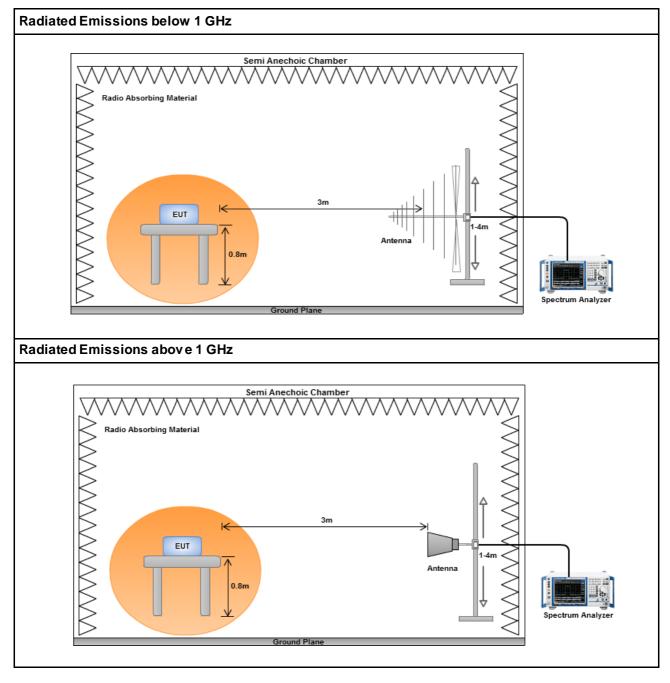
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

| Un-restricted band emissions above 1GHz Limit |                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>Operating Band</b>                         | Limit                                                                                                                                                          |  |  |  |  |
| 5.15 - 5.25 GHz                               | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |
| 5.25 - 5.35 GHz                               | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |
| 5.47 - 5.725 GHz                              | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |
| 5.725 - 5.825 GHz                             | 5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m] |  |  |  |  |
| Note 1: Measurements ma                       | ay be performed at a distance other than the limit distance provided they are not                                                                              |  |  |  |  |

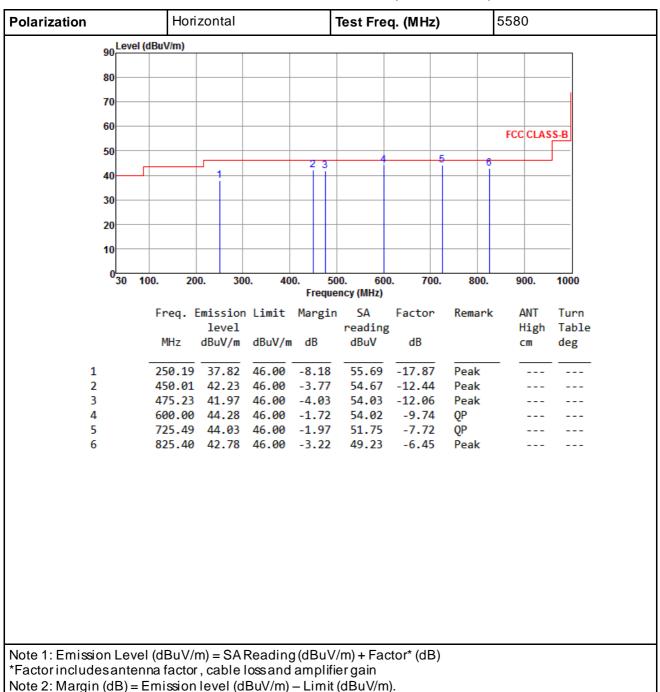
Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance -squared for power-density measurements).



#### 3.6.2 Test Procedures

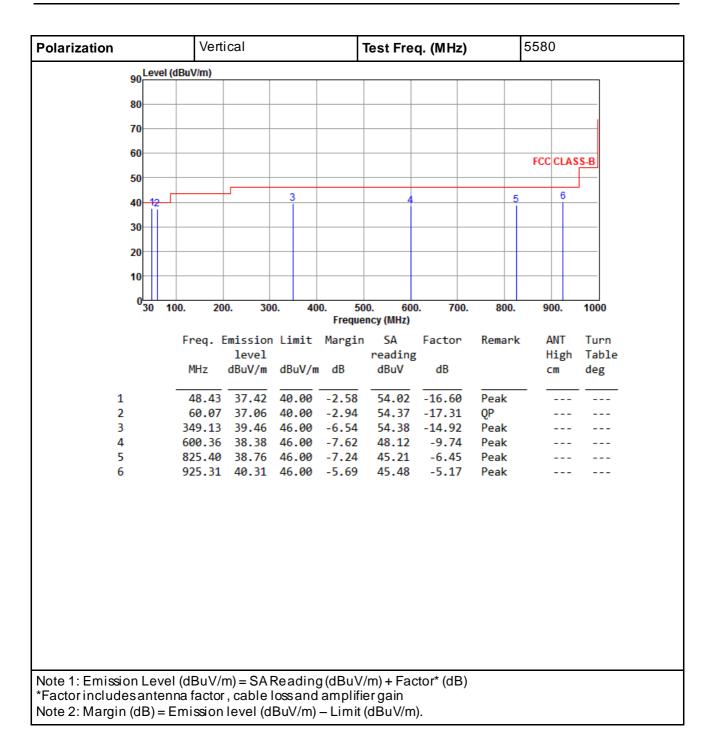

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.



#### 3.6.3 Test Setup

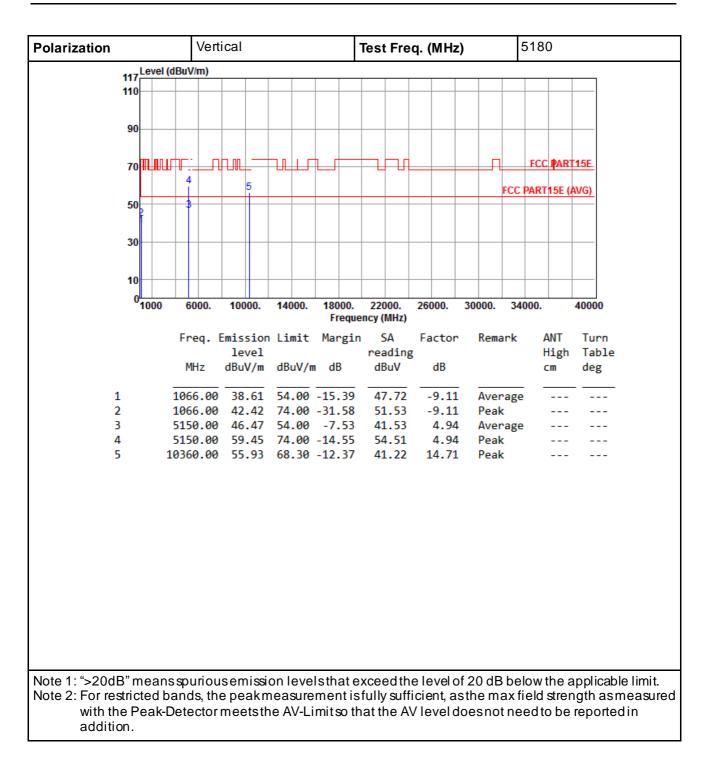




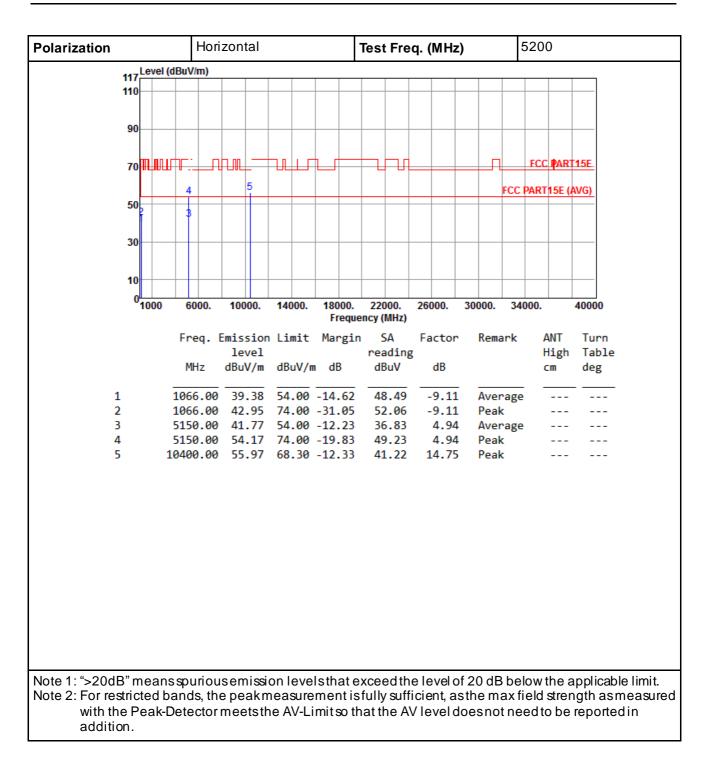



#### 3.6.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

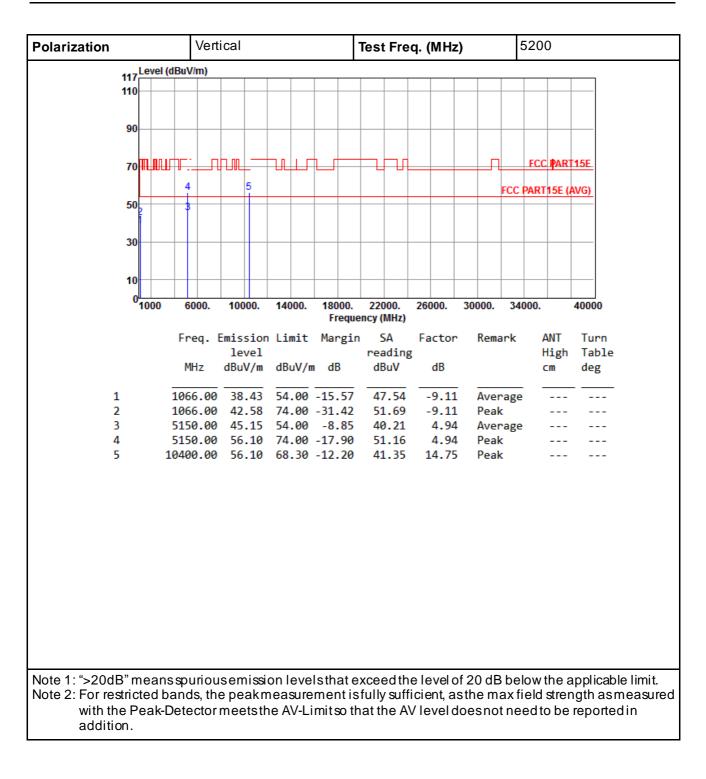




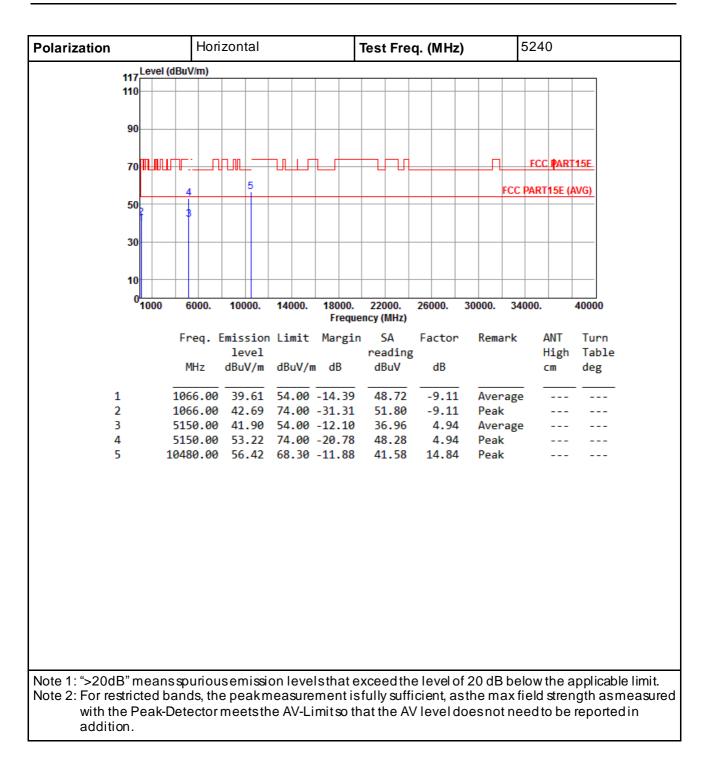


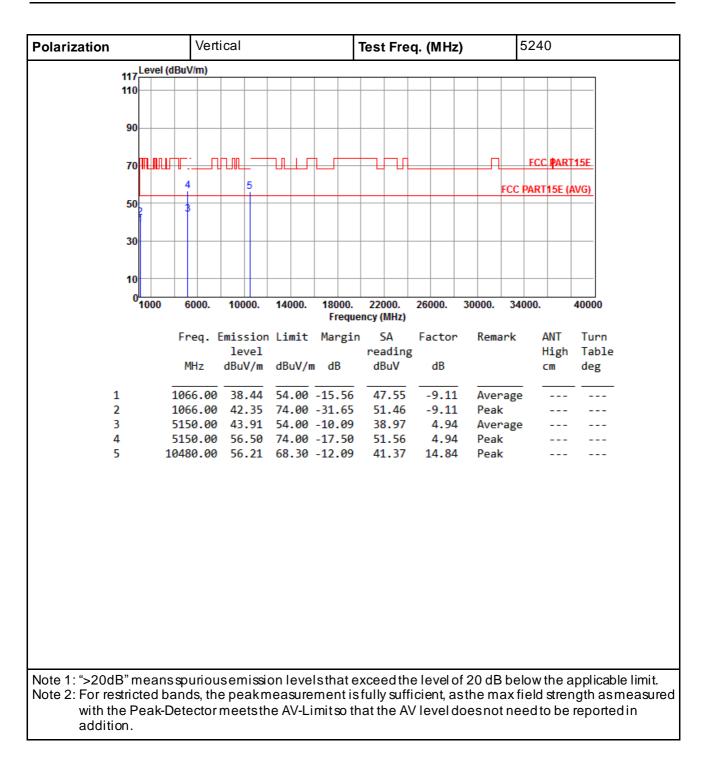

| Polarization                                  | Horizo       | ontal                          | Т         | est Fred        | ą. (MHz)      |                | 5180        |              |
|-----------------------------------------------|--------------|--------------------------------|-----------|-----------------|---------------|----------------|-------------|--------------|
| 117                                           | el (dBuV/m)  |                                |           |                 |               |                |             |              |
| 110                                           |              |                                |           |                 |               |                |             |              |
|                                               |              |                                |           |                 |               |                |             |              |
| 90                                            |              |                                |           |                 |               |                |             |              |
|                                               |              |                                |           |                 |               |                |             |              |
| 70                                            |              | ╨┼──┼╹┖┼┶┚┦                    |           | ╶╻╌╜┞           |               | Ω              | FCC PAR     | T15E         |
|                                               | 4            | 5                              |           |                 |               | FCC            | C PART15E ( | AVG)         |
| 50                                            | 3            |                                |           |                 |               |                |             |              |
|                                               | Ĭ            |                                |           |                 |               |                |             |              |
| 30                                            |              |                                |           |                 |               |                |             |              |
|                                               |              |                                |           |                 |               |                |             |              |
| 10                                            |              |                                |           |                 |               |                |             |              |
| 0 <mark>1000</mark>                           | 0 6000.      | 10000. 14000.                  | 18000.    | 22000.          | 26000.        | 30000. 3       | 4000.       | 40000        |
|                                               |              |                                |           | icy (MHz)       |               |                |             |              |
|                                               |              | ission Limit                   |           |                 | Factor        | Remark         |             | Turn         |
|                                               |              | level<br>BuV/m dBuV/m          |           | reading<br>dBuV | dB            |                | High<br>cm  | Table<br>deg |
|                                               |              |                                |           |                 |               |                |             |              |
| 1                                             |              | 39.56 54.00                    |           | 48.67           | -9.11         | Averag         | e           |              |
| 2<br>3                                        |              | 42.74 74.00 ·<br>42.43 54.00 · |           | 51.85<br>37.49  | -9.11<br>4.94 | Peak<br>Averag | e           |              |
| 4                                             |              | 55.40 74.00                    |           |                 | 4.94          | _              |             |              |
| 5                                             | 10360.00     | 54.96 68.30                    | -13.34    | 40.25           | 14.71         | Peak           |             |              |
|                                               |              |                                |           |                 |               |                |             |              |
| Note 1: ">20dB" mea<br>Note 2: For restricted | bands, the   | peakmeasurer                   | mentisf   | ully suffic     | cient, as     | the max        | field strei | ngth asmeas  |
| with the Peal addition.                       | k-Detector m | eetsthe AV-Lir                 | mitso tha | at the AV       | leveldo       | pesnotno       | eed to be   | reported in  |



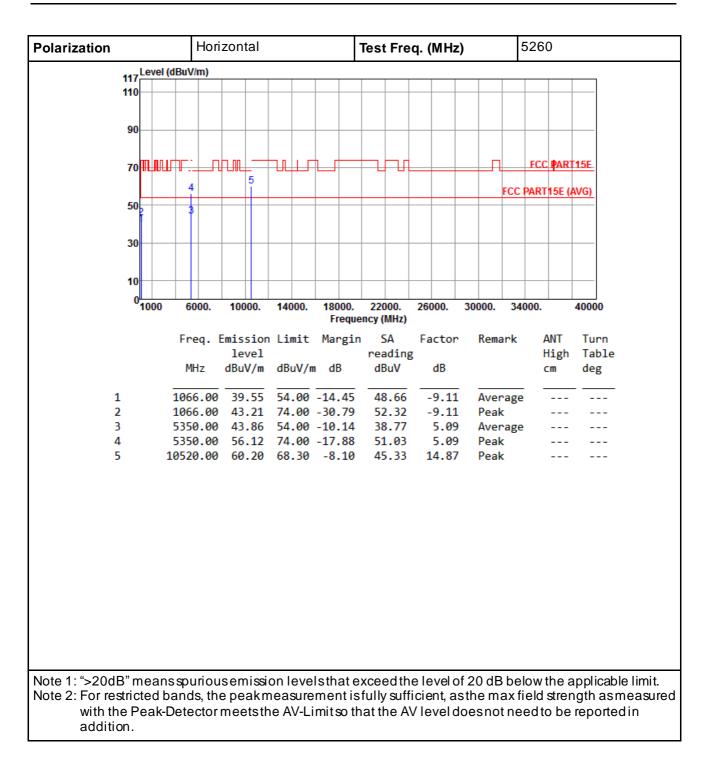


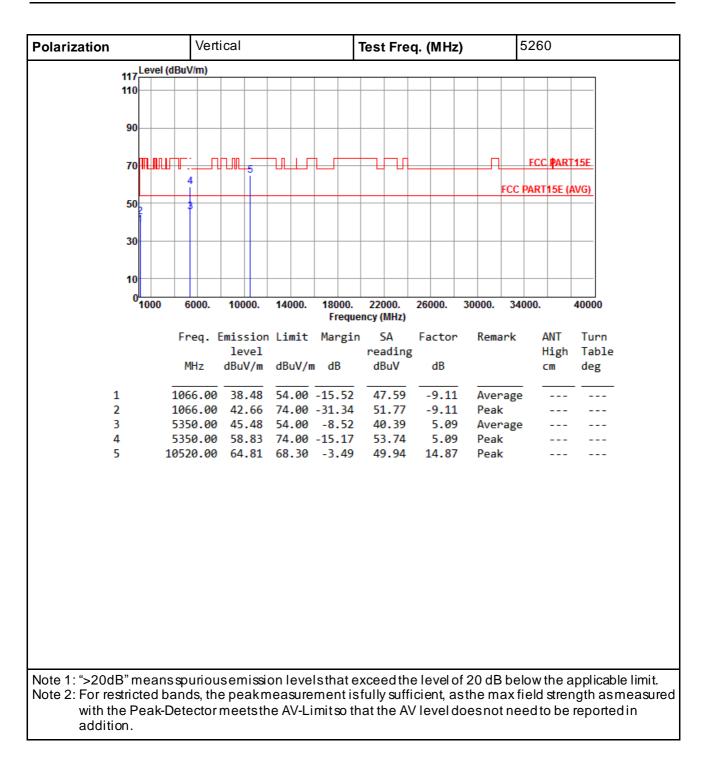


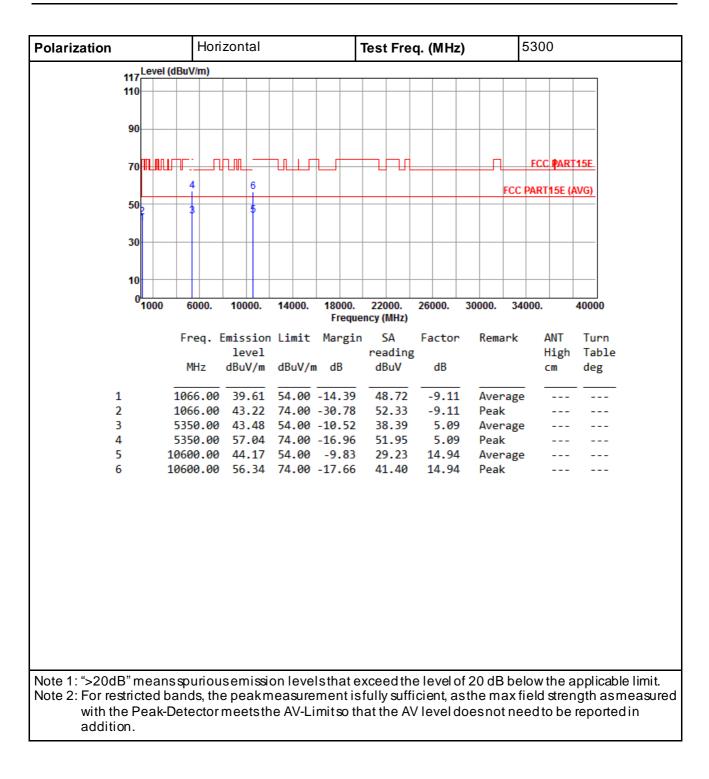


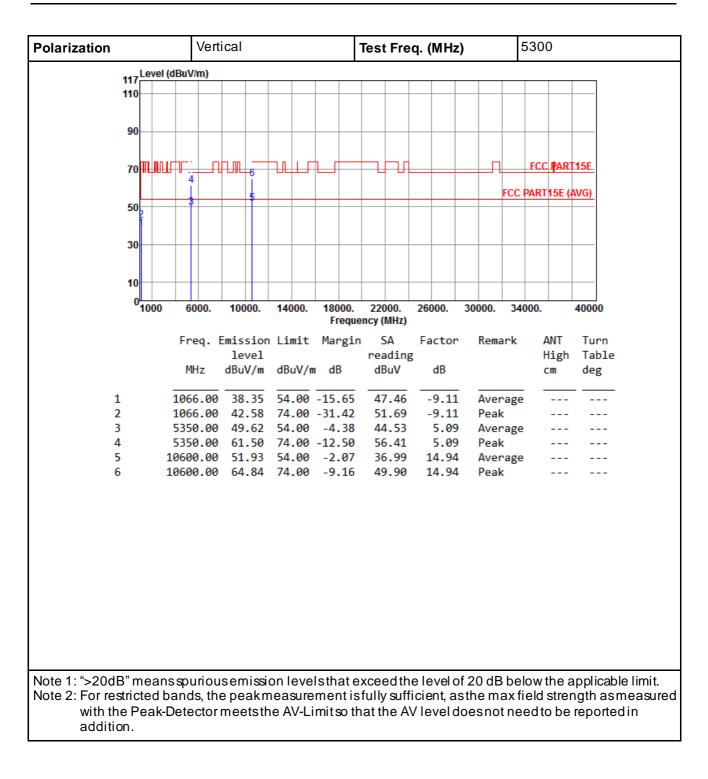


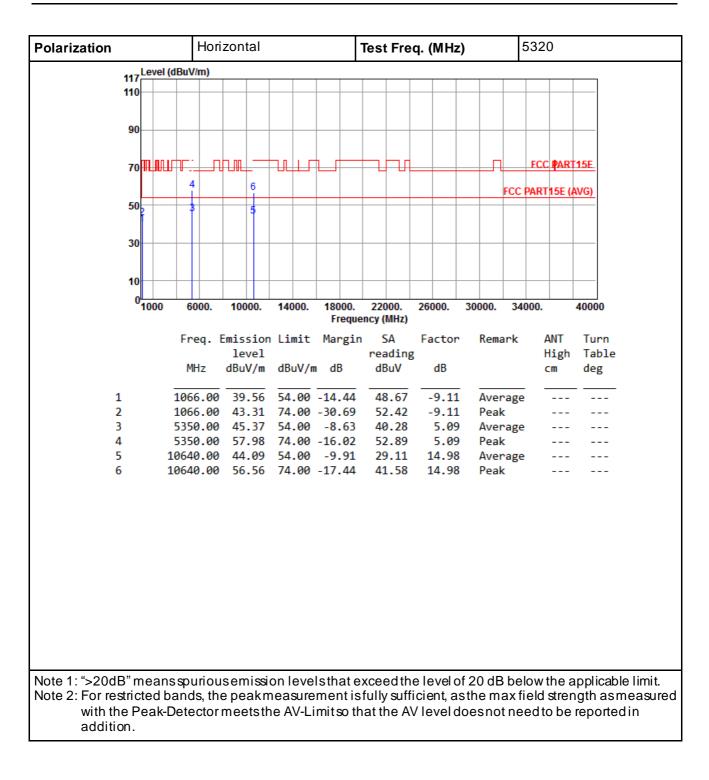


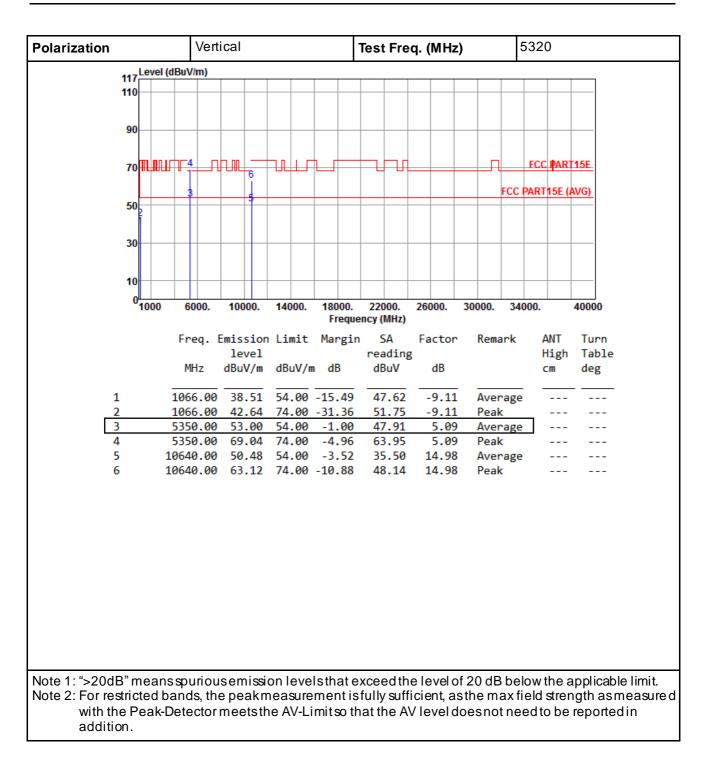


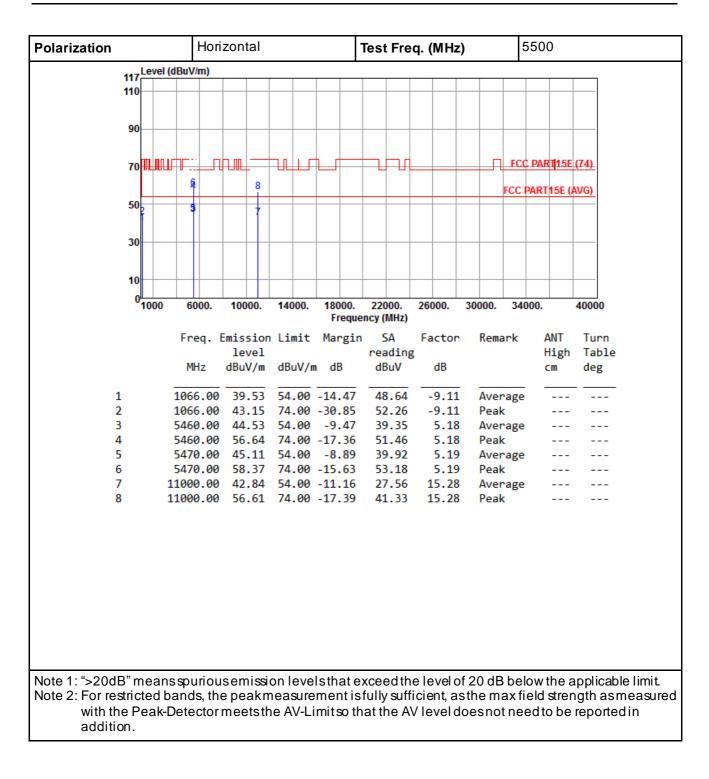


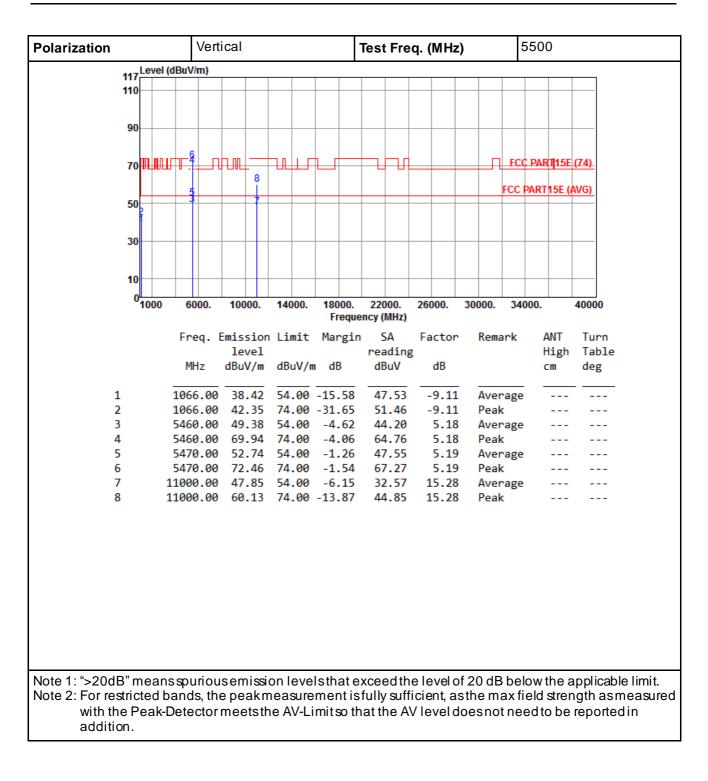


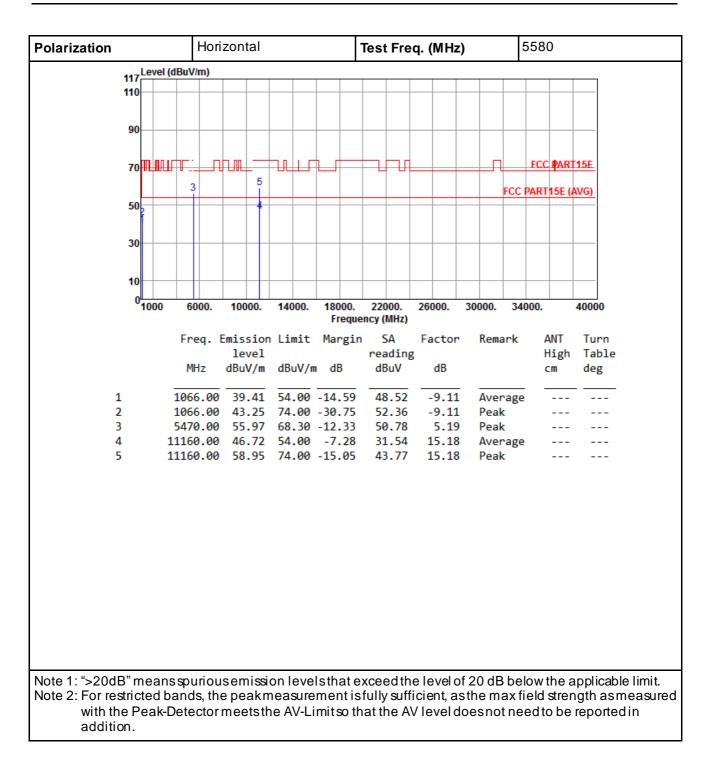


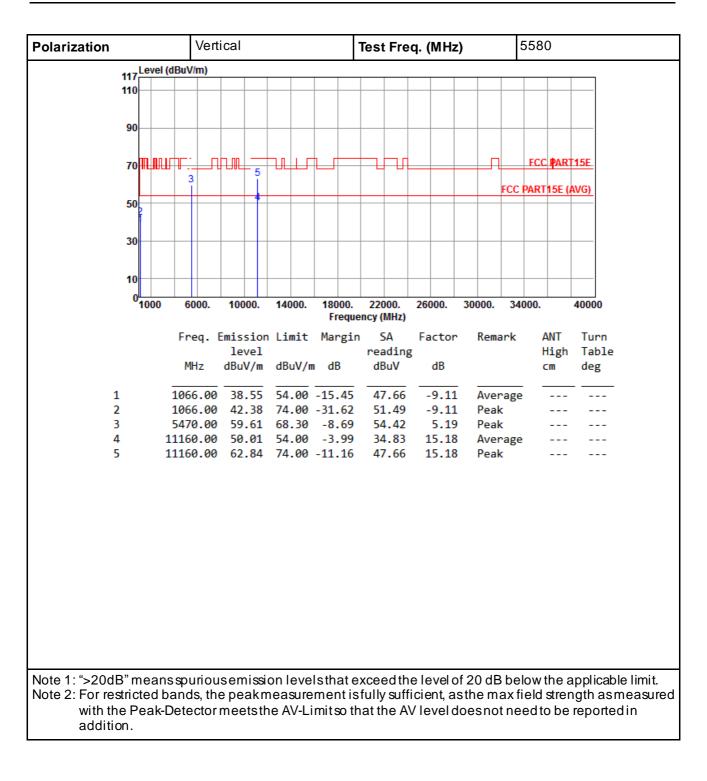


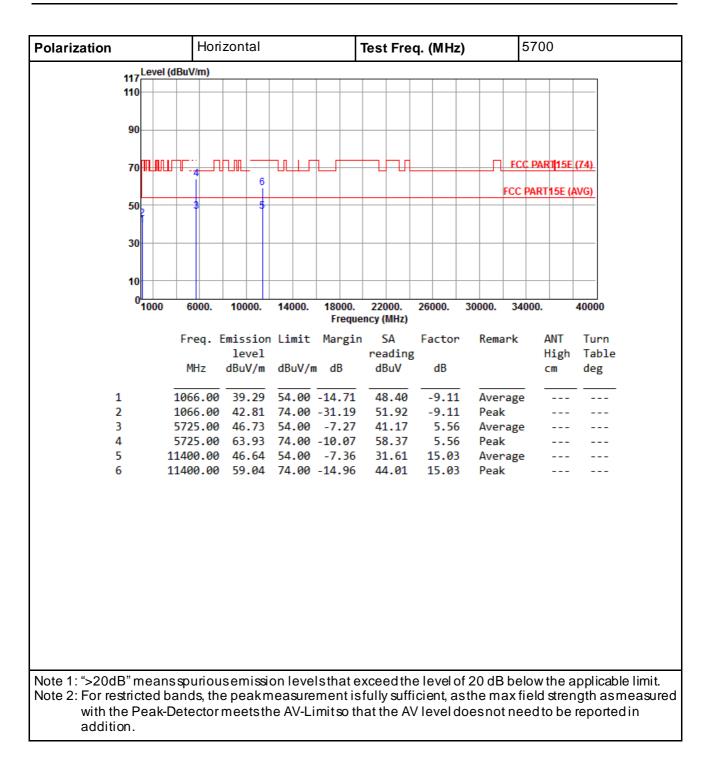


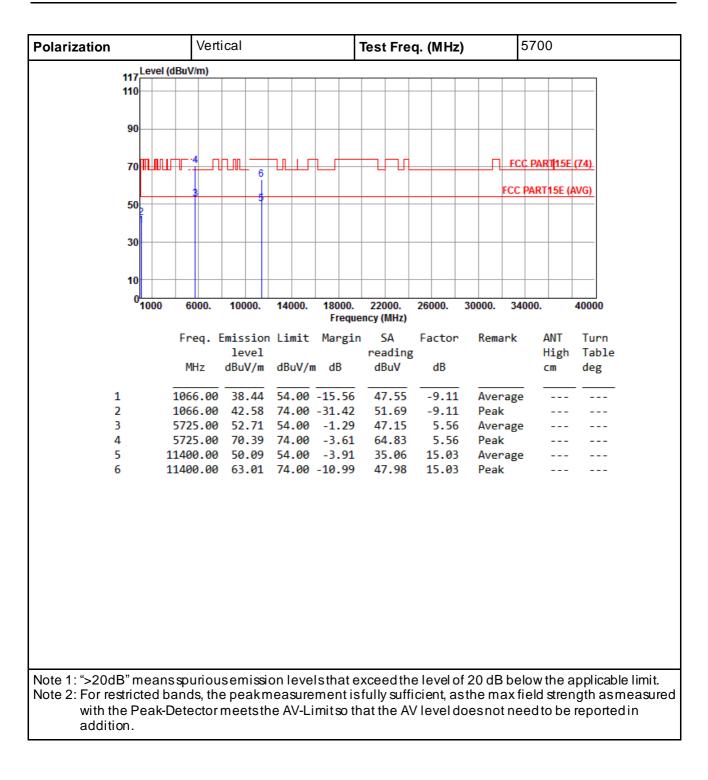






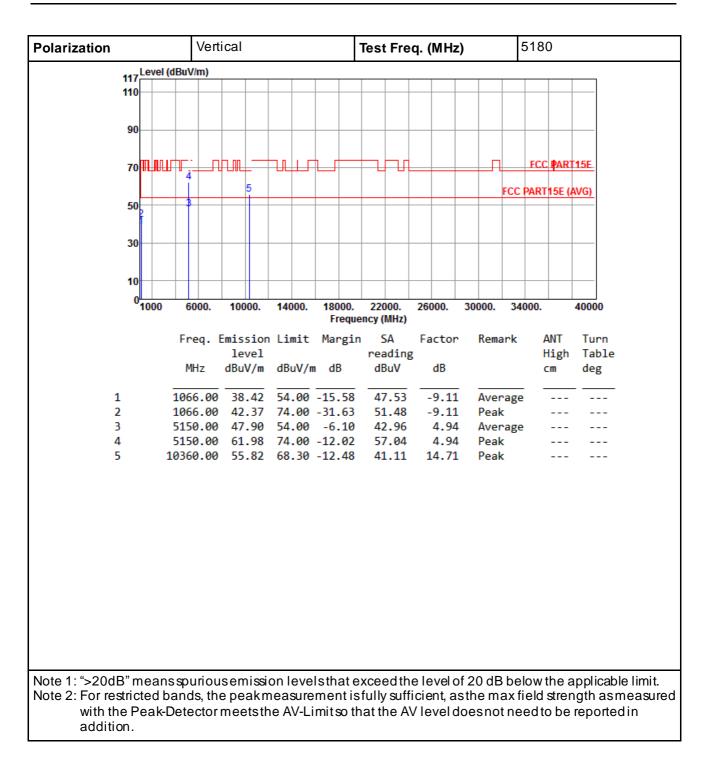





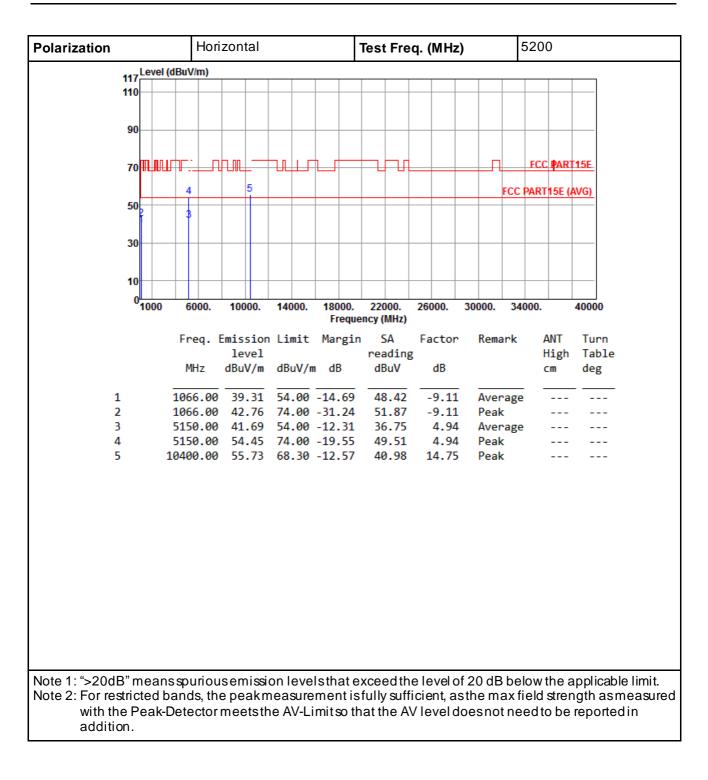




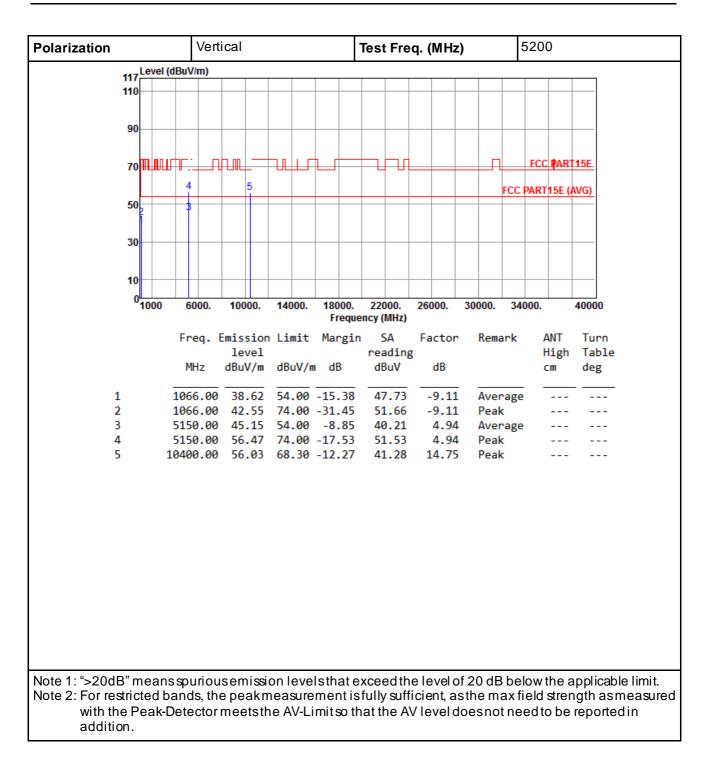


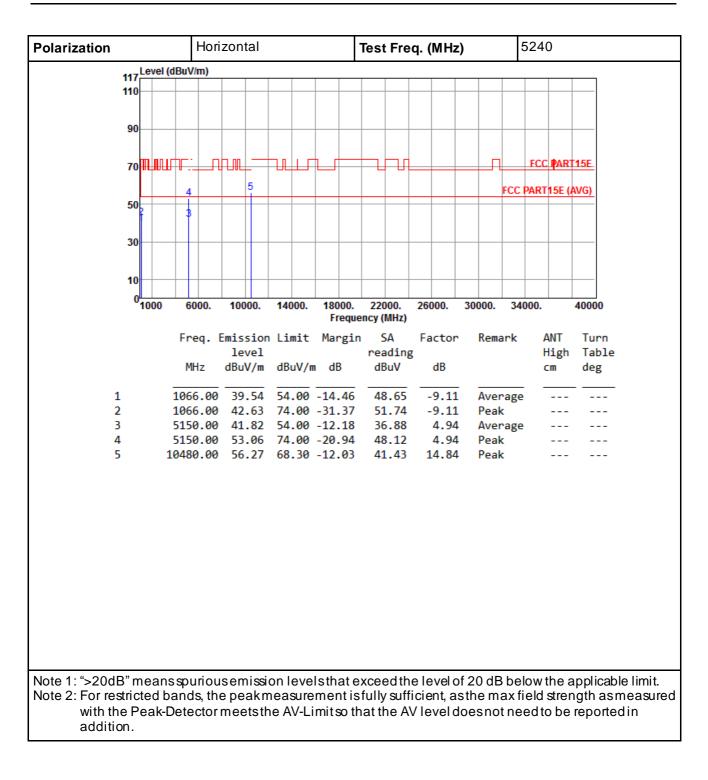




## 3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

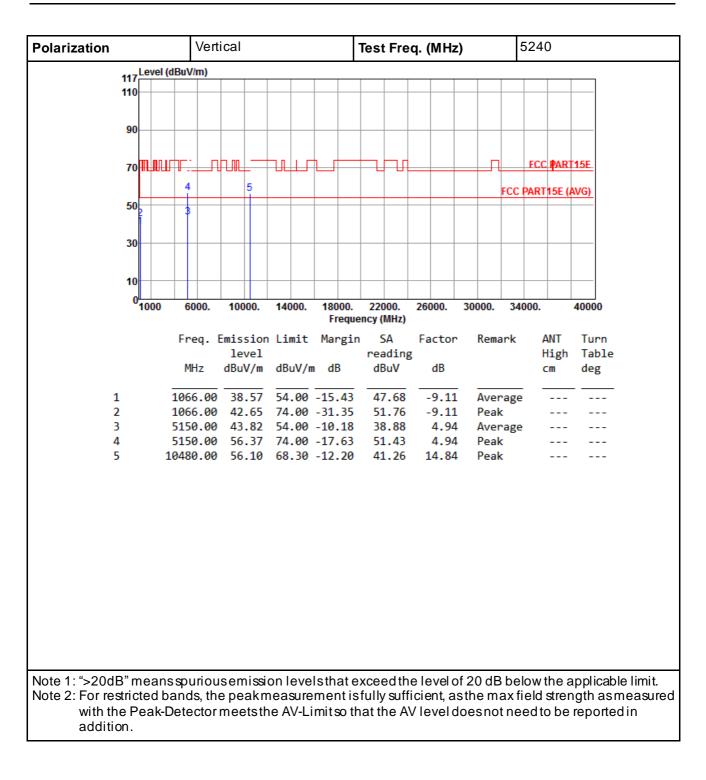
| Polarization        |           |        |      | zont | al   |      |      |       | Т    | est    | Fre        | q. (l | MHz          | )    |              | Ę   | 518  | 0     |      |              |
|---------------------|-----------|--------|------|------|------|------|------|-------|------|--------|------------|-------|--------------|------|--------------|-----|------|-------|------|--------------|
| 117                 | Level (d  | lBuV/ı | m)   |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      | 1            |
| 110                 |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| 90                  |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| 70                  | ╔╗╝       | T.,    |      |      | -    | ᇺ    |      |       |      |        | ᆩ          | _     |              |      |              |     | FCC  | PAR   | T15E |              |
|                     |           | 4      |      |      | 5    |      |      |       |      |        |            |       |              |      |              | FCC | PART | 15E ( | AVG) |              |
| 50                  | ) <u></u> | 3      |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| 30                  | )         |        |      |      |      |      |      |       | _    |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| 10                  | )         |        |      |      |      |      |      |       | _    |        |            | _     |              |      |              |     |      |       |      |              |
| (                   | 1000      | 60     | 00.  | 100  | 00.  | 140  | 000. | 1800  | )0.  | 220    | 00.        | 260   | 00.          | 300  | 00.          | 340 | DOO. |       | 4000 | ]<br>00      |
|                     |           |        |      |      |      |      |      |       |      | ncy (I |            |       |              |      |              |     |      |       |      |              |
|                     |           | Fre    | q. E |      |      | Lir  | nit  | Mar   | gin  |        |            |       | ctor         | R    | lema         | rk  |      | ANT   |      | rn           |
|                     |           |        | _    |      | /el  | 40.  |      |       |      |        | ding       |       | - D          |      |              |     |      | ligh  |      | ble          |
|                     |           | МН     | Z    | aBu  | //m  | aBI  | uv/m | ı dB  |      | dB     | uv         |       | dB           |      |              |     | (    | cm    | de   | g            |
| 1                   |           | 1066   | .00  | 39.  | .43  | 54   | .00  | -14.  | 57   | 48     | .54        | -9    | 9.11         | A    | ver          | age | -    |       |      |              |
| 2                   |           |        |      |      |      |      |      | -31.  |      |        | .78        |       | 9.11         |      | Peak         |     |      |       | -    |              |
| 3                   |           |        |      |      |      |      |      | -11.  |      |        | .51<br>.68 |       | 4.94<br>4.94 |      | lver<br>Peak | age |      |       | -    |              |
| 5                   |           |        |      |      |      |      |      | -13.0 |      |        | .55        |       | 4.94<br>4.71 |      | eak<br>Peak  |     |      |       | -    |              |
| -                   | _         |        |      |      |      |      |      |       |      |        |            | _     |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
|                     |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| Note 1: ">20dB" r   | neans     | SOU    | riou | sem  | issi | on L | eve  | Istha | Itev | (Cee   | dth        | ele   | velo         | f 20 | dB           | hel | 0.W  | the   | annl | icable limit |
| Note 2: For restric |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| with the F          |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       |      |              |
| addition.           |           |        |      |      |      |      |      |       |      |        |            |       |              |      |              |     |      |       | -    |              |



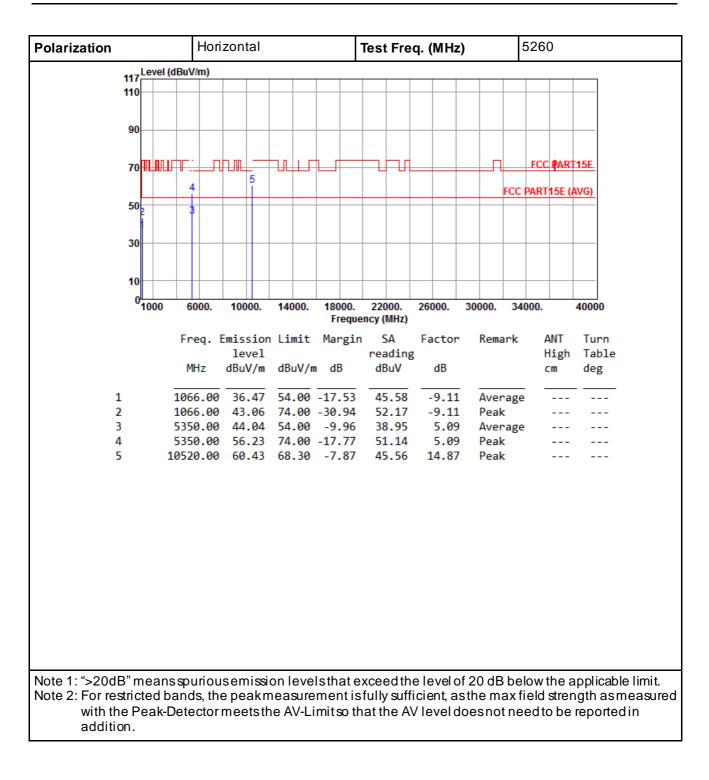


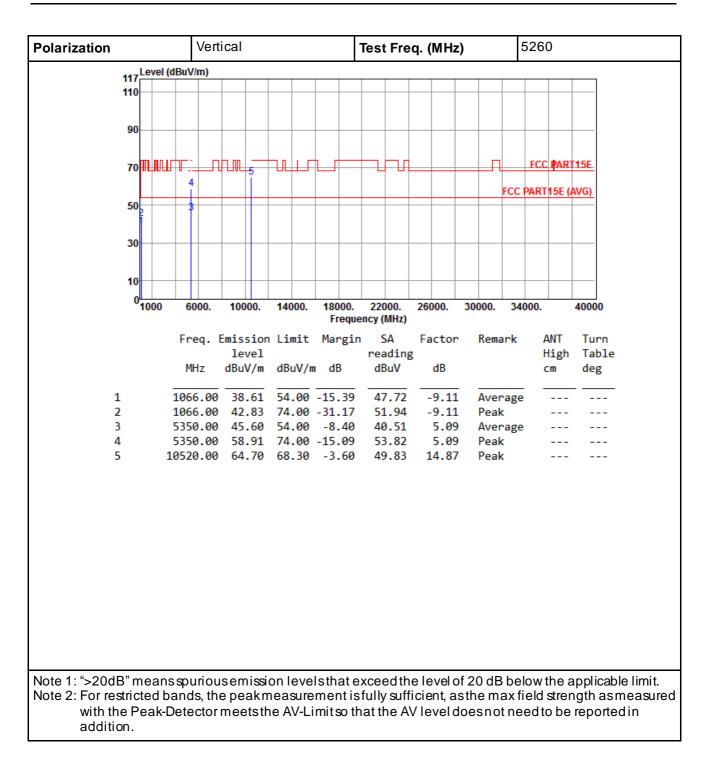


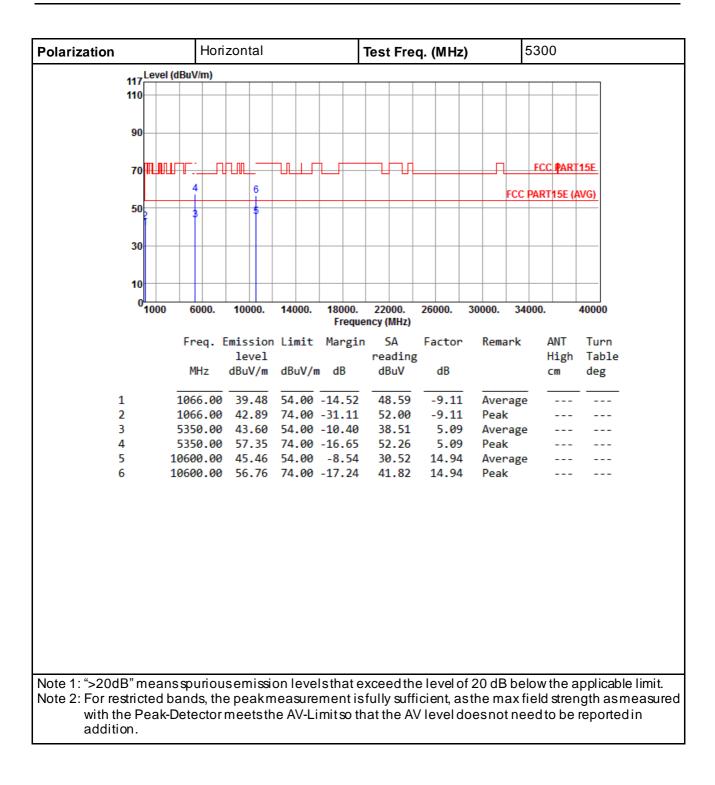


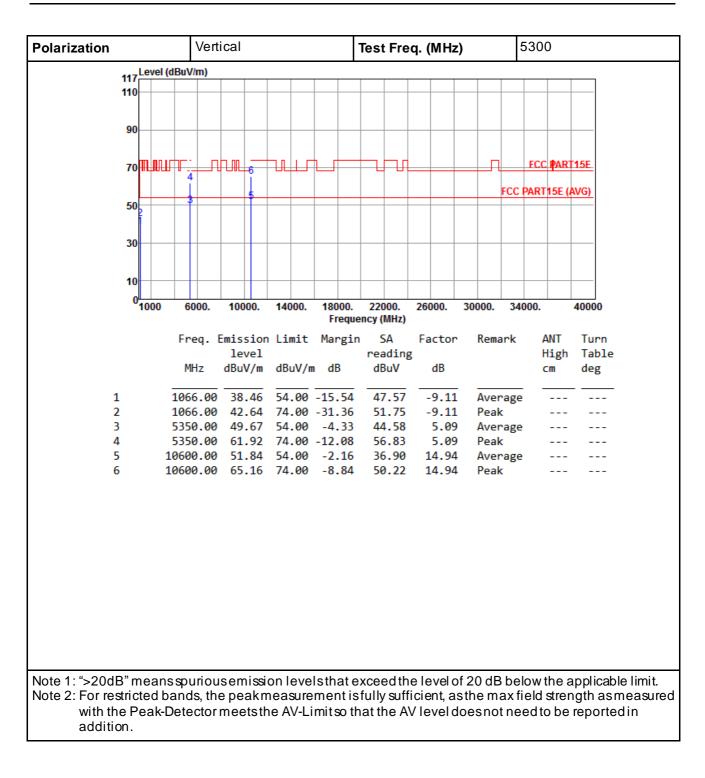


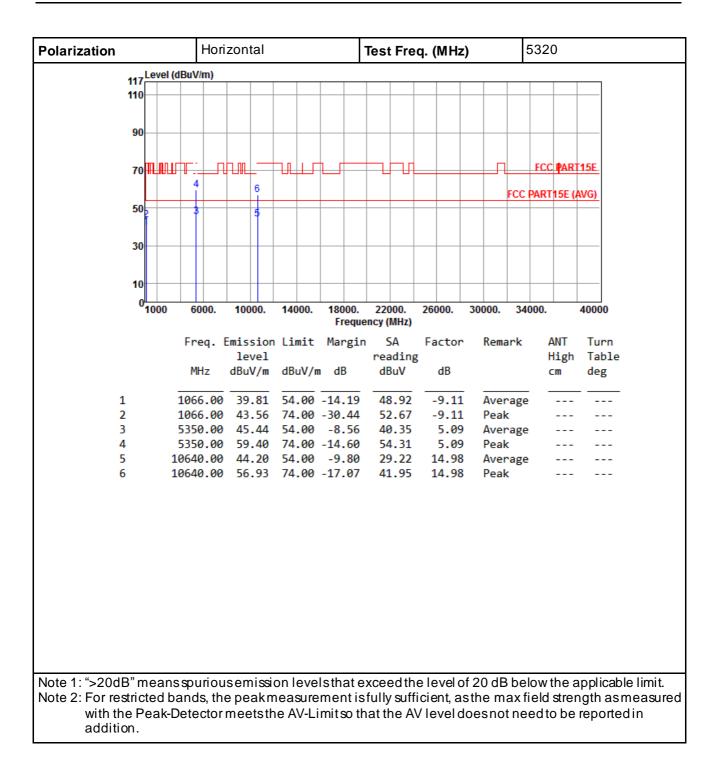


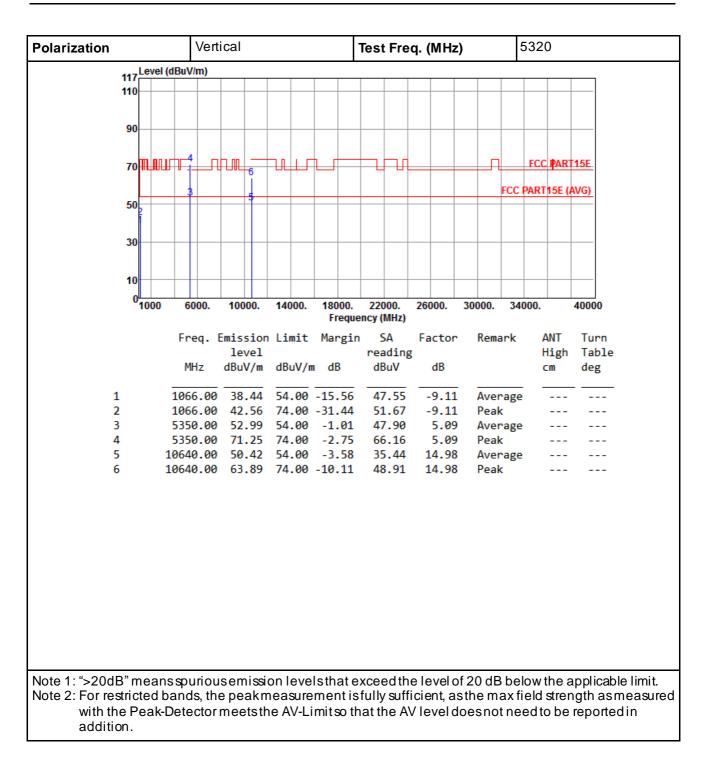


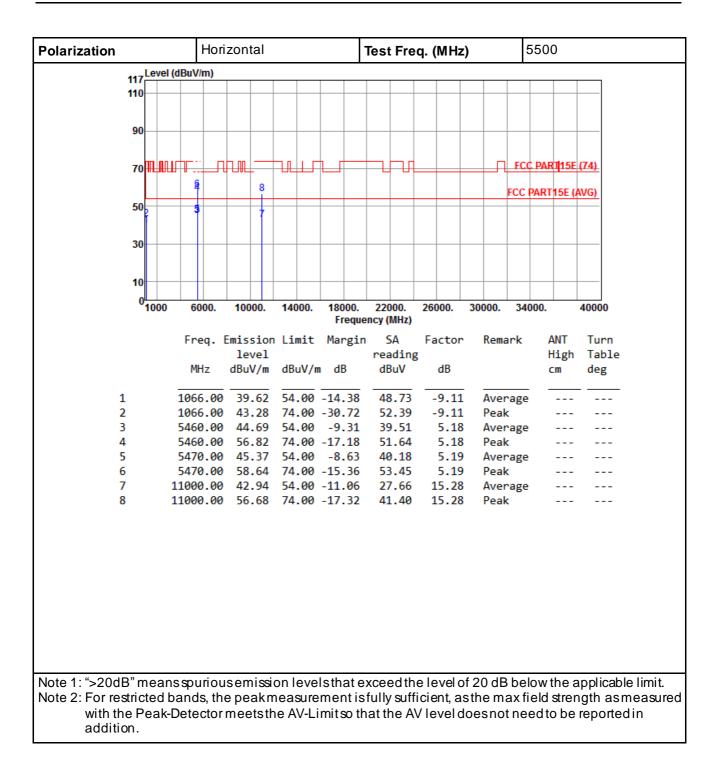


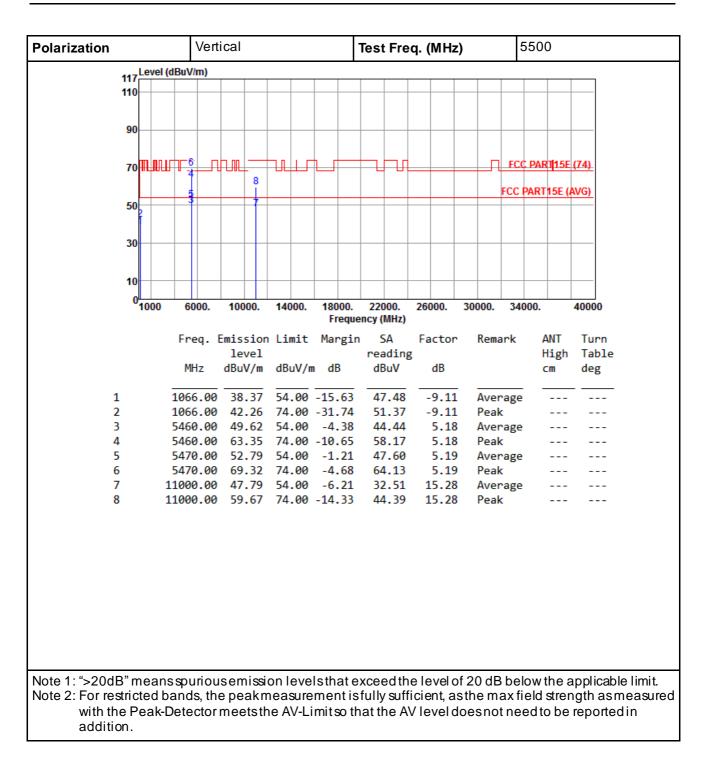


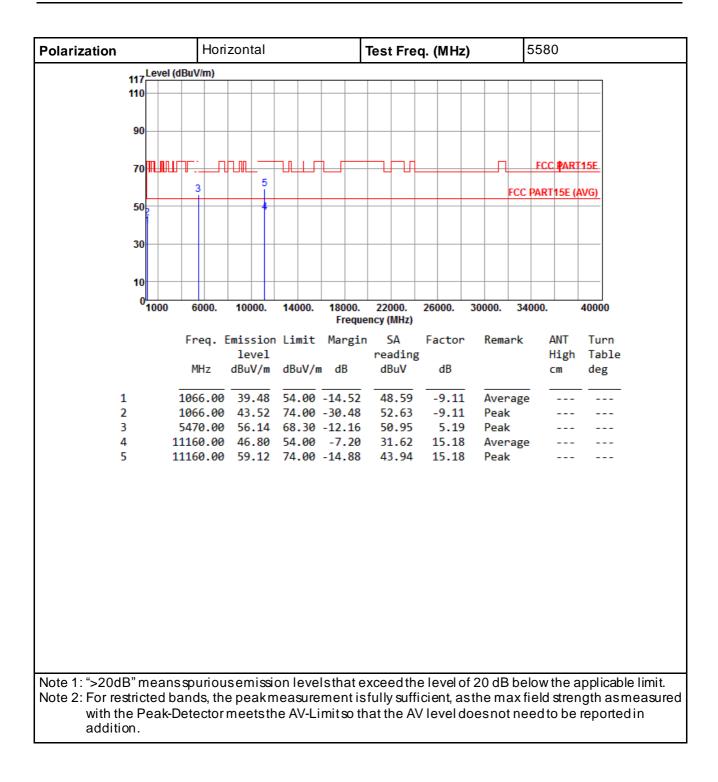


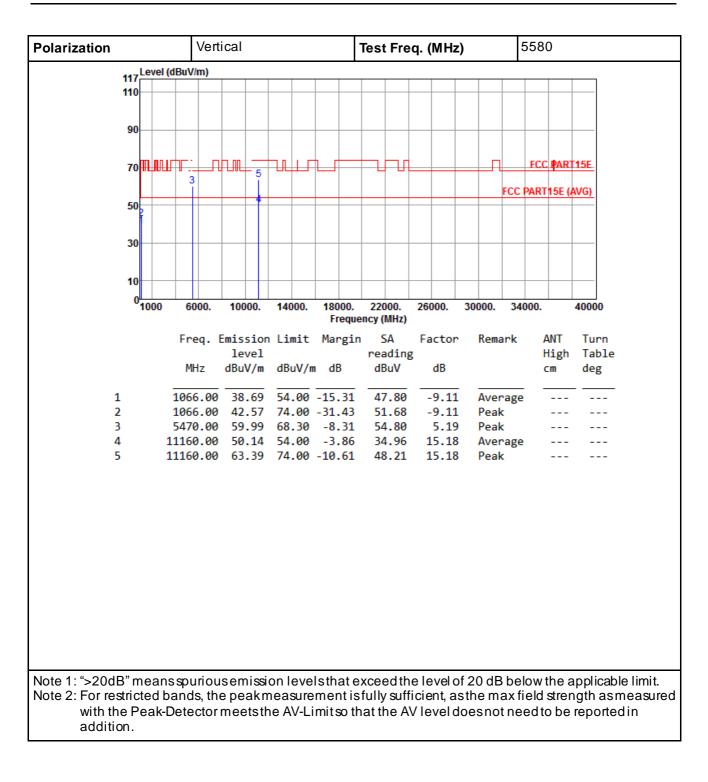


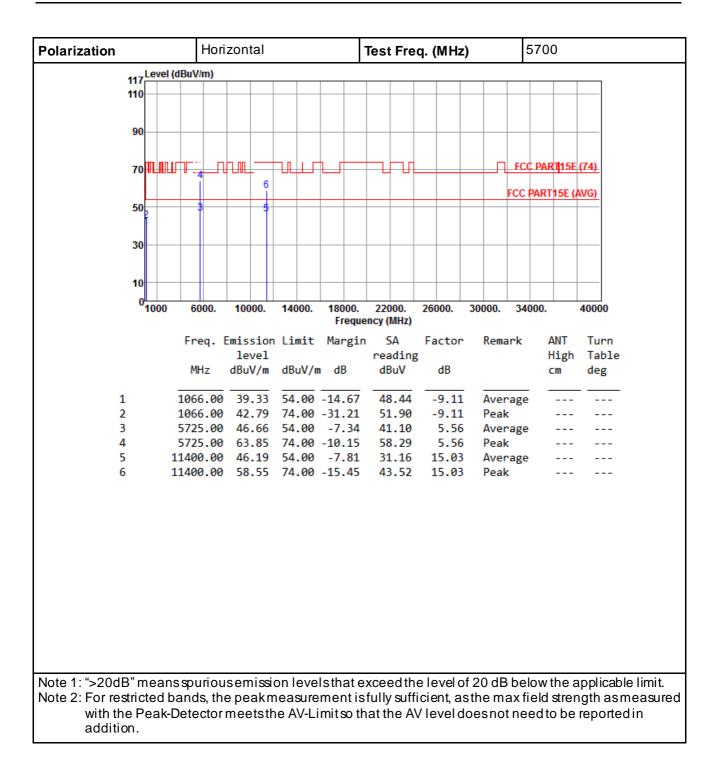


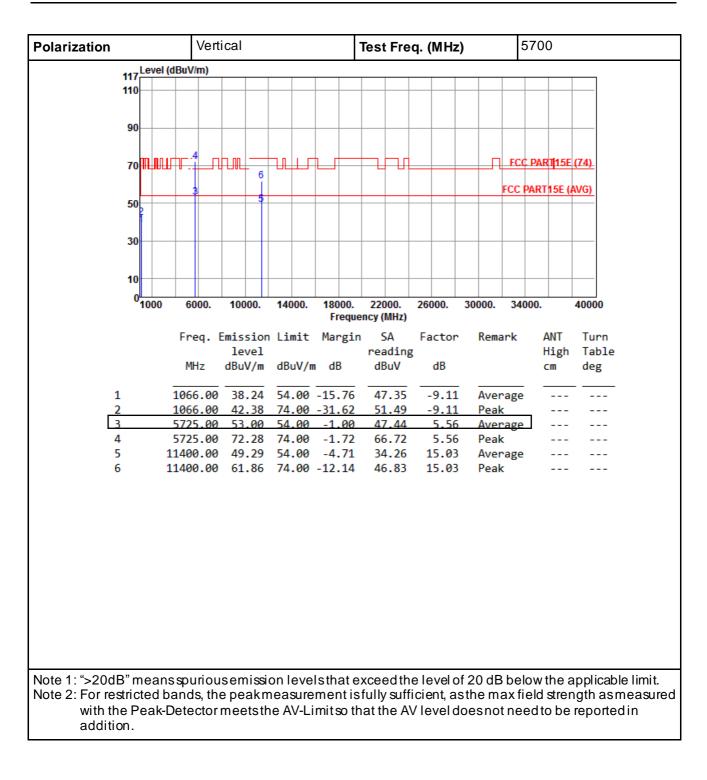






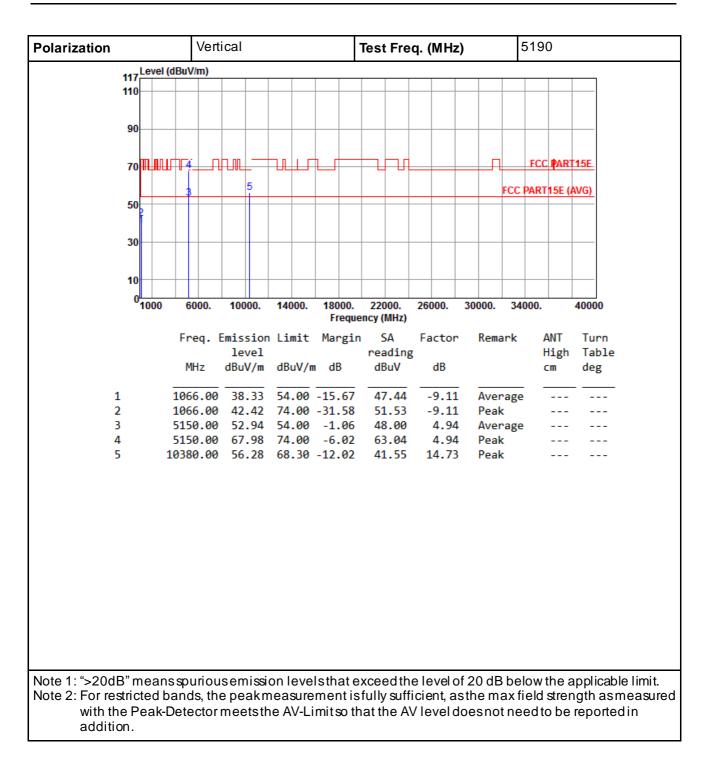





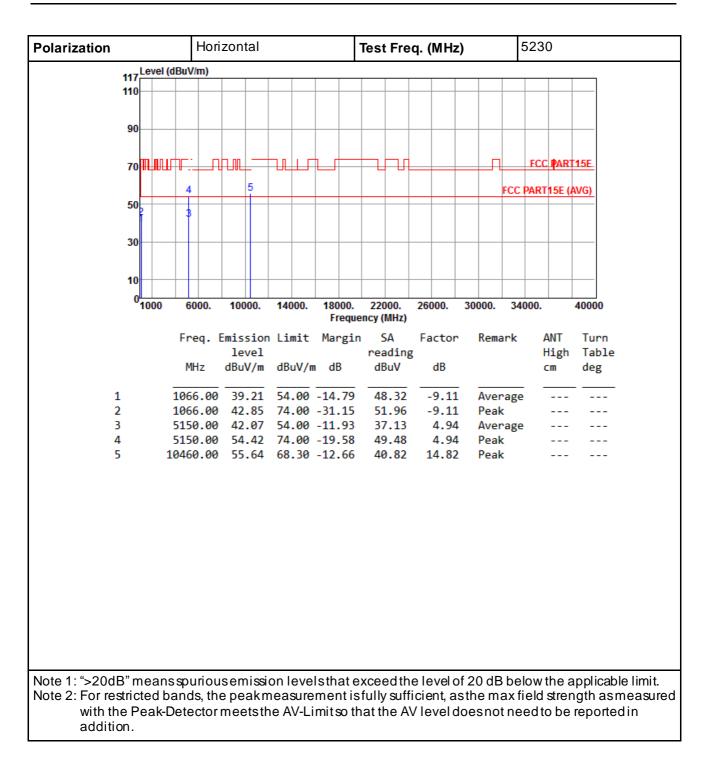




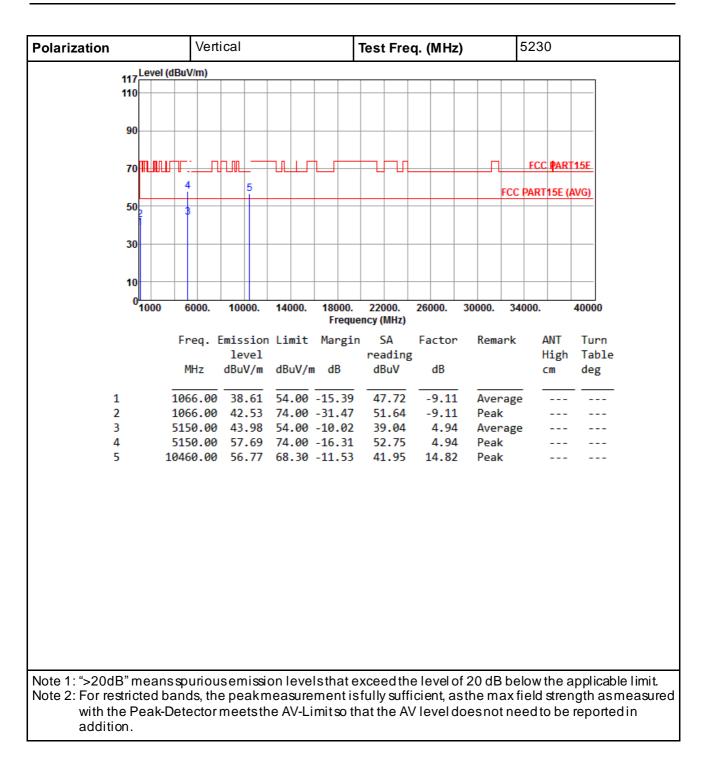


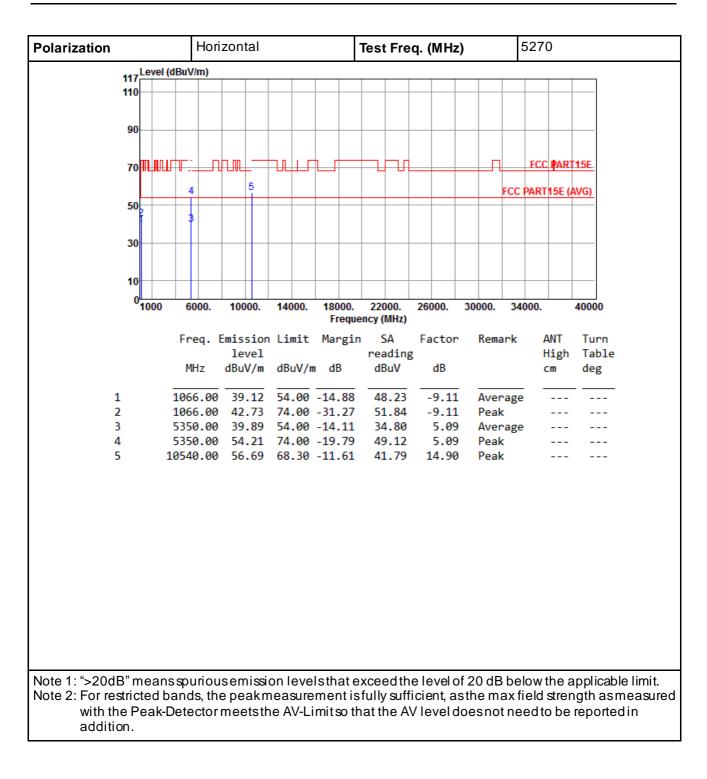




## 3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

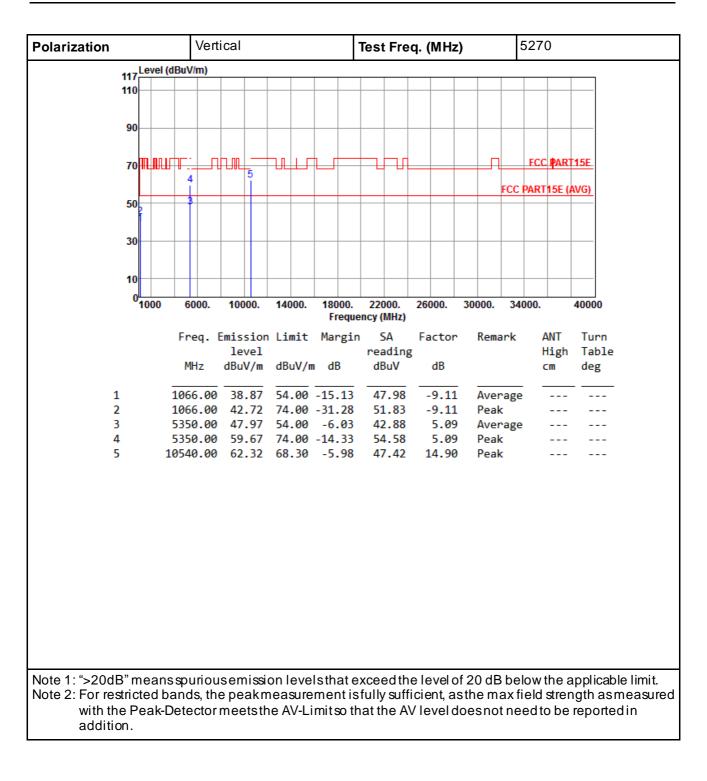
| <pre>117<br/>10<br/>90<br/>90<br/>70<br/>70<br/>4<br/>4<br/>5<br/>50<br/>30<br/>90<br/>90<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70<br/>70</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 110<br>90<br>70<br>70<br>4<br>5<br>50<br>30<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 70       4       5       FCC PARTISE         50       3       6       6         30       4       5       6         30       6       6       6         10       6       6       6         10       6       10       10000.       14000.         1000       6000.       10000.       14000.       26000.       26000.         1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.         1000       Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 70       4       5       FCC PART 15E         50       3       4       5       FCC PART 15E         30       5       FCC PART 15E         50       6000.       10000.       18000.       26000.       30000.         6000.       10000.       14000.       18000.       26000.       30000.       34000. <td></td>                                                                                                                                     |       |
| 4       5       FCC PART 15E         50       3       4       5         30       3       4       5         10       10       10       10         0       1000       6000.       10000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin       SA       Factor       Remark       ANT         level       reading       High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 4       5       FCC PART 15E         50       3       4         30       3       4         10       10       10         0       6000.       10000.         100       6000.       10000.         1000       6000.       14000.         1000       Frequency (MHz)         Freq. Emission Limit Margin       SA         Factor       Remark         High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 50         50         FCC PARTISE           30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 | (AVG) |
| 50<br>30<br>10<br>0<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.<br>Frequency(MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Frequency(MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Freq.Emission Limit Margin SA Factor Remark ANT<br>level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40000 |
| level reading High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| MHz dBuV/m dBuV/m dB dBuV dB cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | deg   |
| 1 1066.00 39.41 54.00 -14.59 48.52 -9.11 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 2 1066.00 43.29 74.00 -30.71 52.40 -9.11 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3 5150.00 45.36 54.00 -8.64 40.42 4.94 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 4 5150.00 58.16 74.00 -15.84 53.22 4.94 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 5 10380.00 55.36 68.30 -12.94 40.63 14.73 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field stre<br>with the Peak-Detector meets the AV-Limit so that the AV level does not need to be<br>addition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |



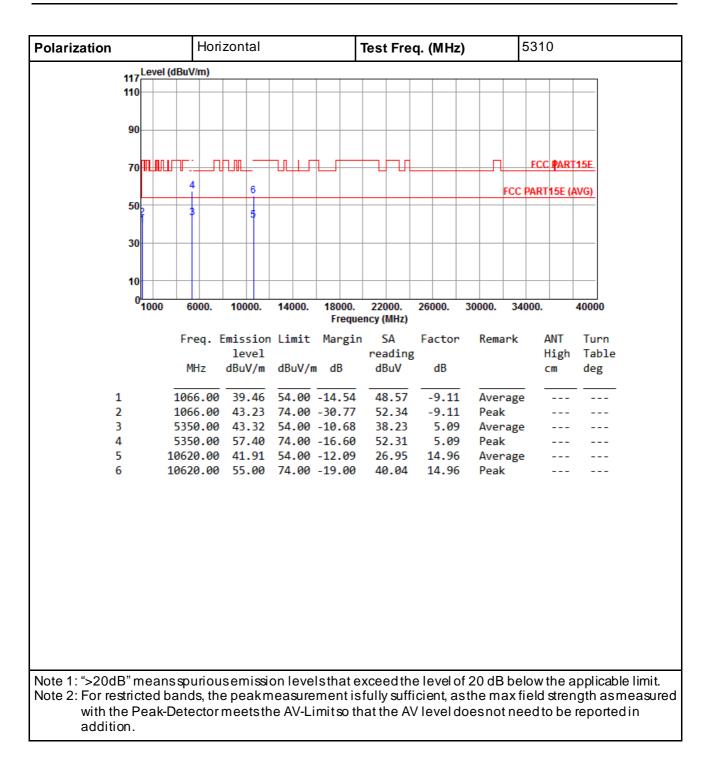


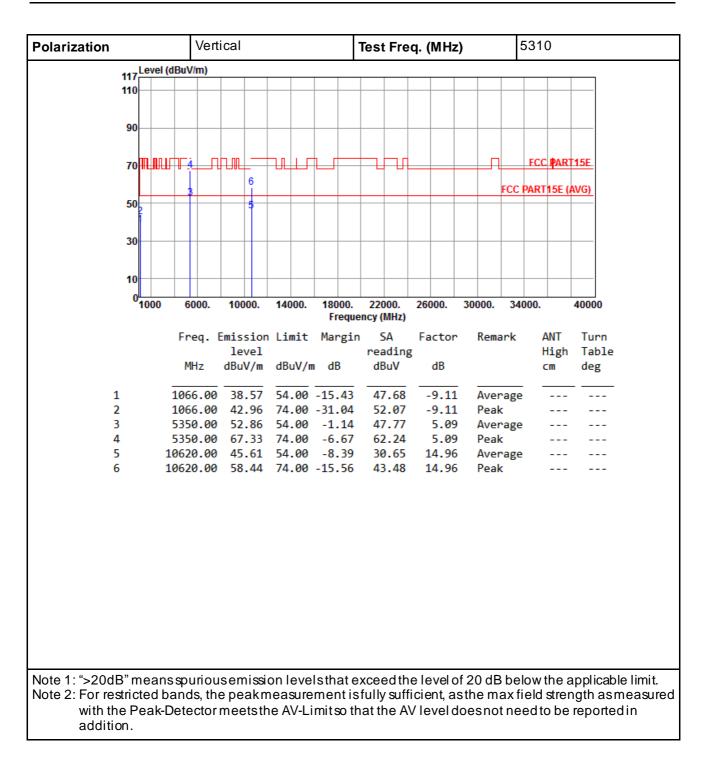


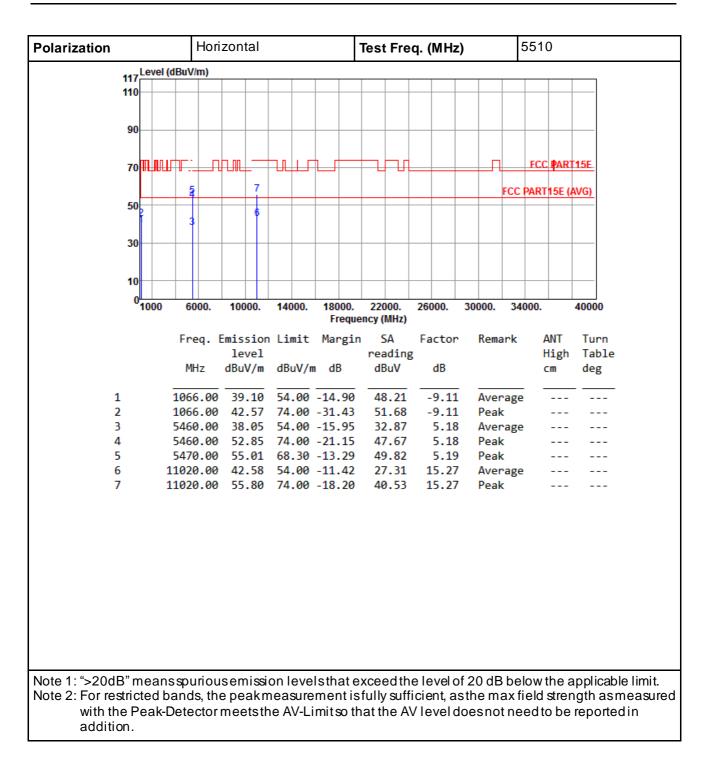


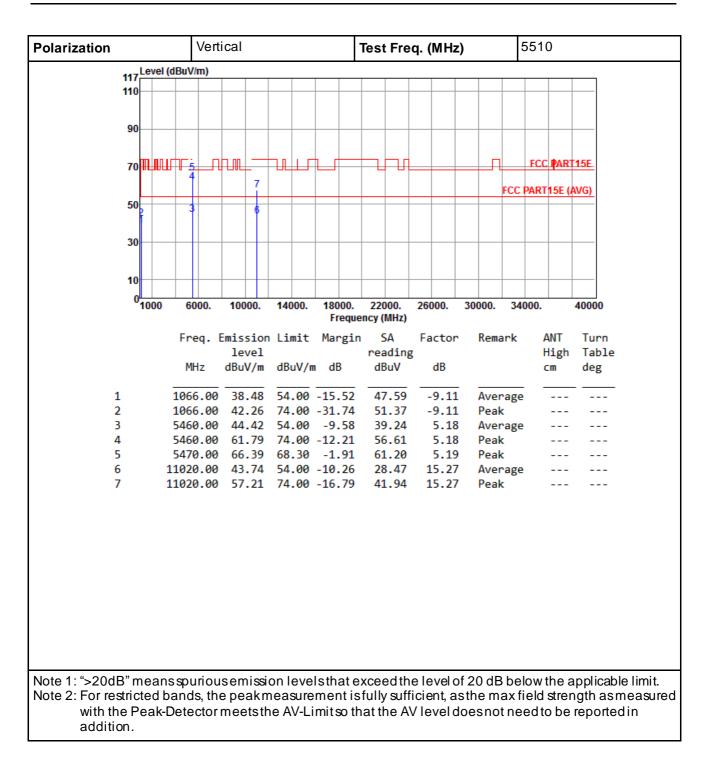


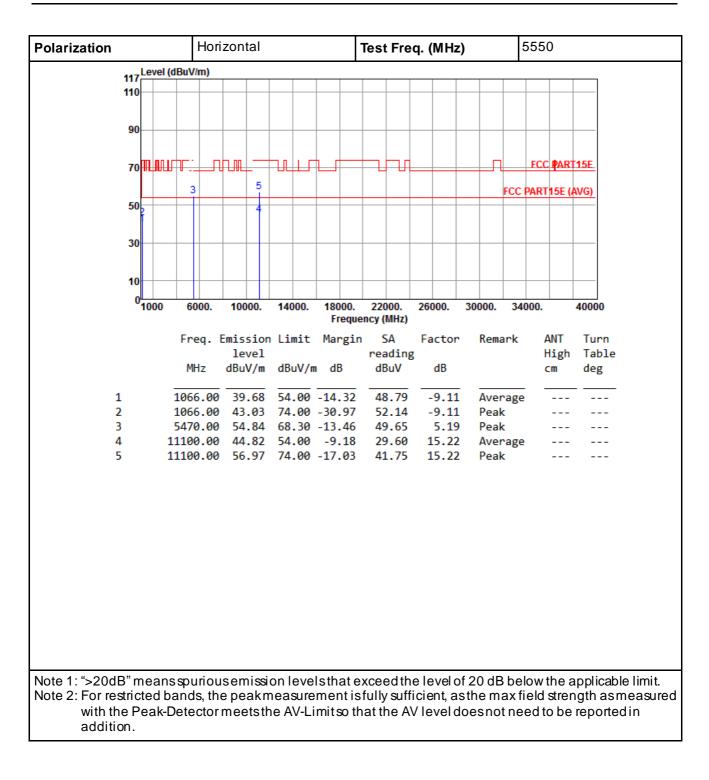


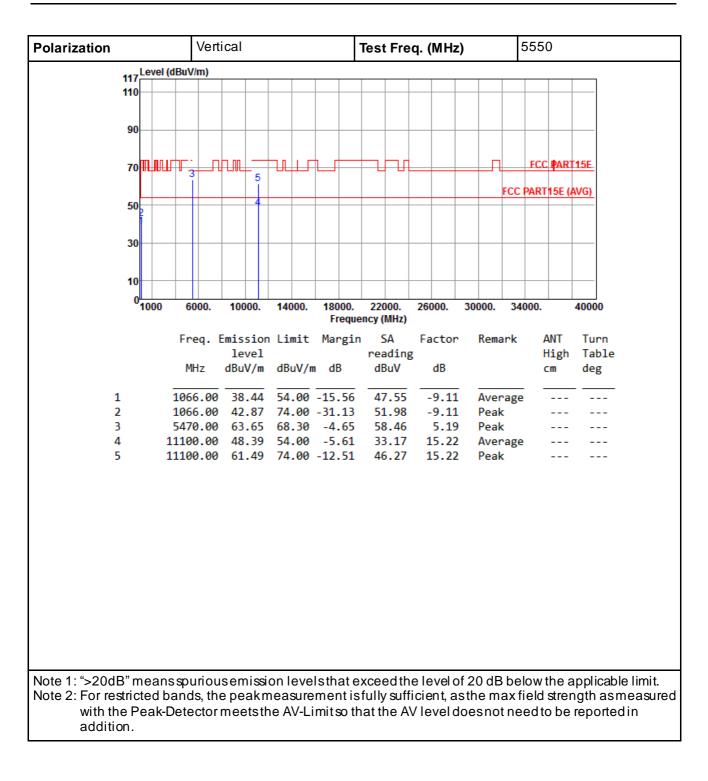


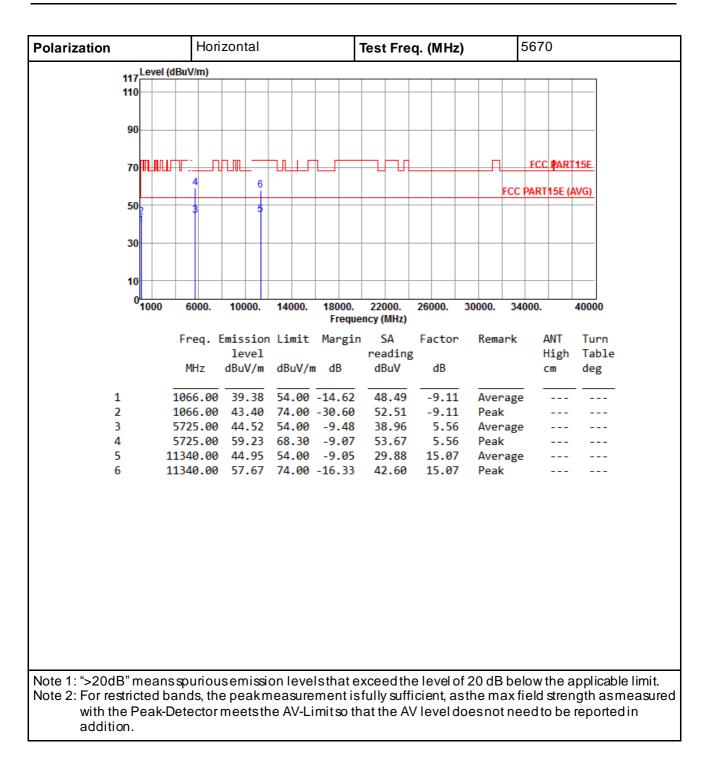


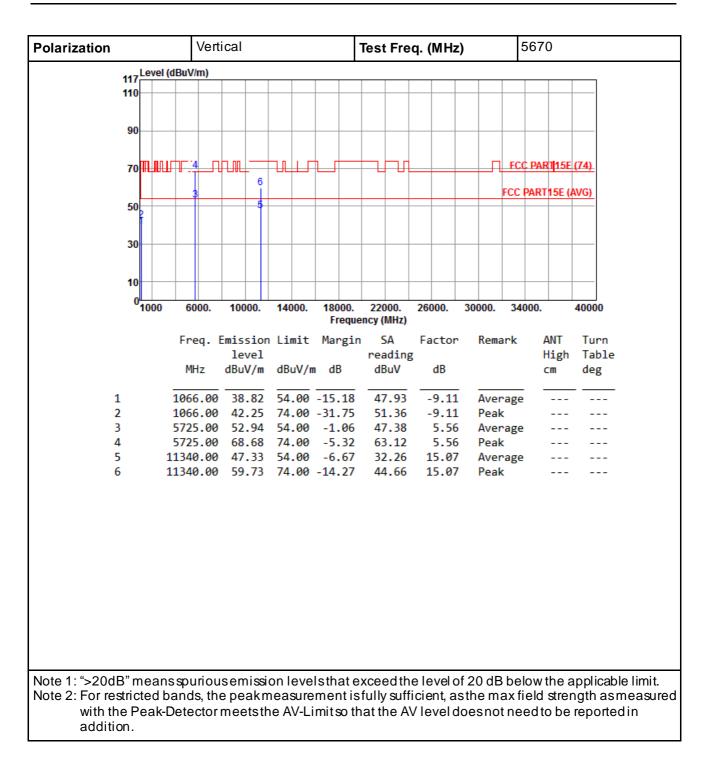










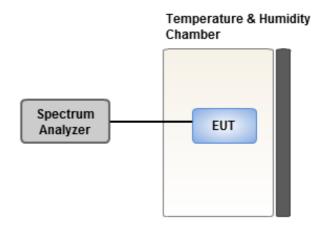









# 3.7 Frequency Stability


#### 3.7.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

#### 3.7.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

### 3.7.3 Test Setup





| Frequency:<br>5320 MHz | Frequency Drift (ppm) |                        |               |                |  |
|------------------------|-----------------------|------------------------|---------------|----------------|--|
| Temperature (°C)       | 0 minute              | 2 minutes              | 5 minutes     | 10 minutes     |  |
| T20°CVmax              | 1.96                  | 1.76                   | 1.92          | 2.37           |  |
| T20°CVmin              | -0.52                 | 0.24                   | 0.16          | 0.06           |  |
| T55°CVnom              | 0.29                  | 0.30                   | 0.69          | 0.87           |  |
| T50°CVnom              | -0.06                 | -0.25                  | 0.27          | -0.02          |  |
| T40°CVnom              | 2.02                  | 1.78                   | 2.18          | 2.28           |  |
| T30°CVnom              | 0.56                  | 0.07                   | 0.79          | 0.66           |  |
| T20°CVnom              | 0.17                  | 0.49                   | 0.35          | 0.24           |  |
| T10°CVnom              | 0.74                  | 0.66                   | 0.50          | 1.27           |  |
| T0°CVnom               | 0.80                  | 0.37                   | 1.53          | 0.38           |  |
| T-10°CVnom             | 0.30                  | -0.10                  | -0.06         | 0.25           |  |
| T-20°CVnom             | 0.44                  | -0.17                  | 0.43          | 0.47           |  |
| T-30°CVnom             | 0.22                  | 0.47                   | 0.82          | 0.22           |  |
| Vnom [V]: 110          | V                     | nax [V]: 126.5 Vmin [V |               | 3.5            |  |
| Tnom [°C]: 20          | Т                     | max [°C]: 55           | Tmin [°C]: -3 | Tmin [°C]: -30 |  |

## 3.7.4 Test Result of Frequency Stability

-END-