

FCC TEST REPORT (15.247)

REPORT NO.: RF110427C17A
MODEL NO.: VAP2400
FCC ID: ACQ-VAP2400
RECEIVED: Nov. 23, 2011
TESTED: Nov. 30 ~ Dec. 19, 2011
ISSUED: Dec. 23, 2011

APPLICANT: Motorola Mobility Inc.

ADDRESS: 101 Tournament Drive Horsham,PA 19044 United States

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 27 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELE/	ASE CONTROL RECORD	-
1.	CERTIFICATION	4
2.	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3.	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	
3.2.2	DESCRIPTION OF SUPPORT UNITS	8
3.2.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	-
4.	TEST TYPES AND RESULTS	
4.1	RADIATED EMISSION MEASUREMENT	
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURES	
4.1.4	DEVIATION FROM TEST STANDARD	
4.1.5	TEST SETUP	.14
4.1.6	EUT OPERATING CONDITIONS	.14
4.1.7	TEST RESULTS	.15
4.2	CONDUCTED EMISSION MEASUREMENT	
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	-
4.2.2	T EST INSTRUMENTS	-
4.2.3	TEST PROCEDURES	
4.2.4	DEVIATION FROM TEST STANDARD	-
4.2.5	TEST SETUP	20
4.2.6	EUT OPERATING CONDITIONS	
4.2.7	TEST RESULTS	
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	-
6.	INFORMATION ON THE TESTING LABORATORIES	26
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	~-
	TO THE EUT BY THE LAB	.27

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Dec. 23, 2011

1. CERTIFICATION

PRODUCT:	VAP2400 Video Access Point/Client			
MODEL:	VAP2400			
BRAND:	Motorola Mobility Inc.			
APPLICANT:	Motorola Mobility Inc.			
TEST SAMPLE:	ENGINEERING SAMPLE			
TESTED:	Nov. 30 ~ Dec. 19, 2011			
STANDARDS:	FCC Part 15, Subpart C (Section 15.247)			
	ANSI C63.4-2003			
	ANSI C63.10-2009			
-	a supplementary report of RF110427C17. This report shall ther with its original report.			
PREPARED BY :	Andren Alia, DATE: Dec. 22, 2011			
APPROVED BY :Ga	Andrea Hsia / Specialist , DATE: Dec. 22, 2011 ry Chang / Technical Manager			
NOTE: The conducted emission test & radiated emission test were performed for the addendum.				
Refer to original report	for the other test data.			

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)				
STANDARD TEST TYPE AND LIMIT		RESULT	REMARK	
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -16.97dB at 0.431MHz.	
15.247(a)(2)	Spectrum Bandwidth of a Direct Sequence Spread Spectrum System Limit: min. 500kHz	NA	Refer to Note	
15.247(b)	Maximum Output Power Limit: max. 30dBm	NA	Refer to Note	
15.247(d)	Radiated Emissions Limit: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -1.3dB at 61.01MHz	
15.247(e)	Power Spectral Density Limit: max. 8dBm	NA	Refer to Note	
15.247(d)	Band Edge Measurement Limit: 20dB less than the peak value of fundamental frequency	NA	Refer to Note	
15.203	Antenna Requirement	NA	Refer to Note	

NOTE: The conducted emission test & radiated emission test were performed for the addendum. Refer to original report for the other test data.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions 9kHz~30MHz		2.44 dB
	30MHz ~ 200MHz	3.19 dB
Radiated emissions	200MHz ~1000MHz	3.21 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	VAP2400 Video Access Point/Client
MODEL NO.	VAP2400
FCC ID	ACQ-VAP2400
POWER SUPPLY	12Vdc (adapter)
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802.11n (20MHz): up to 300.0Mbps
OPERATING FREQUENCY	5745 ~ 5825MHz
NUMBER OF CHANNEL	5 for 802.11a, 802.11n (20MHz) 2 for 802.11n (40MHz)
OUTPUT POWER	475.1mW
ANTENNA TYPE	Dipole antenna with 2.0dBi gain
ANTENNA CONNECTOR	I-PEX
I/O PORTS	Refer to users' manual
DATA CABLE	NA
ACCESSORY DEVICES	Adapter

NOTE:

- This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV ADT report no.: RF110427C17.The differences compared with original report are changing component & layout. Therefore, re-tested emission test and conducted emission tests and presented in the test report.
- 2. The frequency bands used in this EUT are listed as follows:

Frequency Band (MHz)	5180~5320	5500~5580	5670~5700	5745~5825
802.11a	\checkmark	\checkmark	\checkmark	\checkmark
802.11n (20MHz)	\checkmark	\checkmark	\checkmark	\checkmark
802.11n (40MHz)			\checkmark	

- 3. The EUT has disabled the 5600-5650MHz band by S/W to avoid 5600-5650MHz band for FCC certification.
- 4. The EUT incorporates a MIMO function. Physically, the EUT provides four completed transmitters and four receivers.

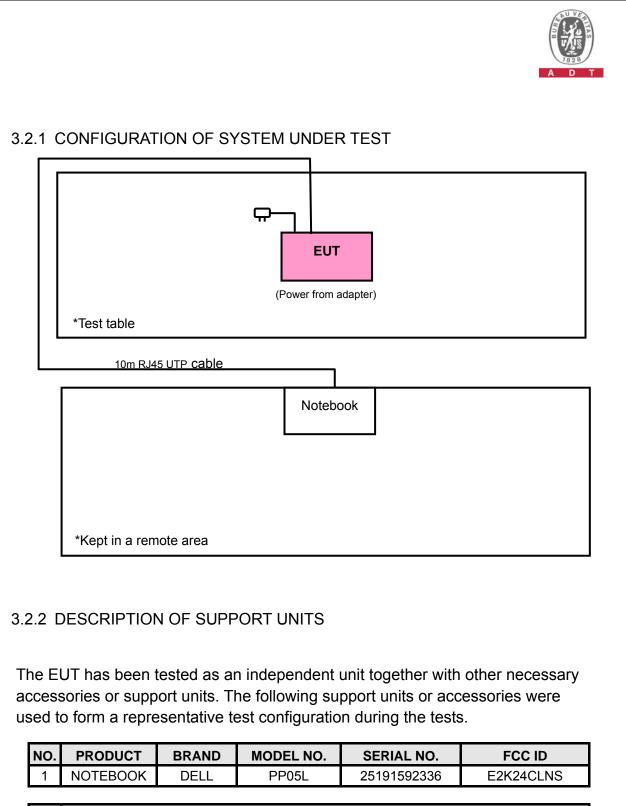
MODULATION MODE	TX FUNCTION
802.11a	4TX
802.11n (20MHz)	4TX
802.11n (40MHz)	4TX

5. The EUT were powered by the following adapters:

ADAPTER 1			
BRAND	LEADER		
MODEL	MT12-Y120100-A1		
INPUT POWER	100-120Vac, 50/60Hz, 0.3A		
OUTPUT POWER	12Vdc, 1.0A		
POWER LINE	DC: 1.8m non-shielded cable with 1 core		

ADAPTER 2		
BRAND	DELTA ELECTRONICS. INC	
MODEL	EADP-13BB B	
INPUT POWER	100-240Vac, 0.4A, 50/60Hz	
OUTPUT POWER	12Vdc, 1.085A	
POWER LINE	DC: 1.8m non-shielded cable without core	

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.


3.2 DESCRIPTION OF TEST MODES

5 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (40MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
151	5755MHz	159	5795MHz

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	10m RJ45 UTP cable.

NOTE:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item 1 acted a communication partner to transfer data.

3.2.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		APPLICABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	
А	-	\checkmark	\checkmark	Adapter model: MT12-Y120100-A1
В		\checkmark	\checkmark	Adapter model: EADP-13BB B

Where

RE≥1**G**: Radiated Emission above 1GHz **PLC**: Power Line Conducted Emission **RE<1G:** Radiated Emission below 1GHz **NOTE:** "-" means no effect.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
В	802.11n (20MHz)	149 to 165	149	OFDM	BPSK	7.2

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
А, В	802.11n (20MHz)	149 to 165	149	OFDM	BPSK	15.0

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
A, B	802.11n (20MHz)	149 to 165	149	OFDM	BPSK	15.0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Brad Wu	
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Antony Lee	
PLC	25deg. C, 65%RH	120Vac, 60Hz	Anderson Huang	

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.4-2003 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESI7	838496/016	Dec. 27, 2010	Dec. 26, 2011
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Apr. 12, 2011	Apr. 11, 2012
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-408	Jan. 06, 2011	Jan. 05, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	148	Jul. 20, 2011	Jul. 19, 2012
Preamplifier Agilent	8449B	3008A01961	Oct. 29, 2011	Oct. 28, 2012
Preamplifier Agilent	8447D	2944A10738	Oct. 29, 2011	Oct. 28, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309220/4	Nov. 03, 2011	Nov. 02, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250724/4	Nov. 03, 2011	Nov. 02, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	295012/4	Nov. 03, 2011	Nov. 02, 2012
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA	NA
Turn Table ADT.	TT100.	TT93021704	NA	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA	NA
High Speed Peak Power Meter	ML2495A	0842014	Apr. 26, 2011	Apr. 25, 2012
Power Sensor	MA2411B	0738404	Apr. 26, 2011	Apr. 25, 2012
26GHz ~ 40GHz Amplifier	EM26400	815221	Oct. 29, 2011	Oct. 28, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

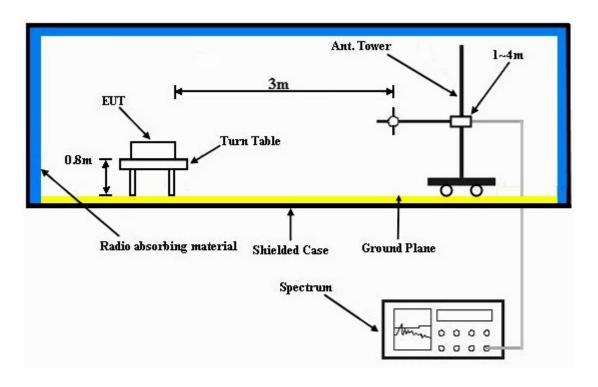
2. The test was performed in HwaYa Chamber 4.

- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC7450F-4.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on the testing table.
- b. Prepared notebook to act as communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and run a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".

4.1.7 TEST RESULTS

ABOVE 1GHz: 802.11n (20MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 149	FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER (SYSTEM)	120\/ac_60 Hz		Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Antony Lee	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5725.00	75.2 PK	80.4	-5.2	1.05 H	254	34.70	40.50
2	#5725.00	59.9 AV	69.6	-9.7	1.05 H	254	19.40	40.50
3	*5745.00	110.4 PK			1.05 H	254	69.90	40.50
4	*5745.00	99.6 AV			1.05 H	254	59.10	40.50
5	11490.00	59.6 PK	74.0	-14.4	1.54 H	86	7.70	51.90
6	11490.00	47.2 AV	54.0	-6.8	1.54 H	86	-4.70	51.90
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5725.00	86.3 PK	89.8	-3.5	1.00 V	5	45.80	40.50
2	#5725.00	67.5 AV	79.2	-11.7	1.00 V	5	27.00	40.50
3	*5745.00	119.8 PK			1.00 V	5	79.30	40.50
4	*5745.00	109.2 AV			1.00 V	5	68.70	40.50
5	11490.00	63.2 PK	74.0	-10.8	1.07 V	57	11.30	51.90
6	11490.00	49.1 AV	54.0	-4.9	1.07 V	57	-2.80	51.90

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The limit value is defined as per 15.247.
- 7. "#": The radiated frequency is out the restricted band.

BELOW 1GHz WORST-CASE DATA : 802.11n (20MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 149	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TEST MODE	A	
TESTED BY	Antony Lee			

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	61.01	30.2 QP	40.0	-9.8	1.25 H	238	16.10	14.10
2	240.60	39.4 QP	46.0	-6.6	1.25 H	256	26.10	13.30
3	426.53	35.7 QP	46.0	-10.3	1.00 H	232	16.30	19.40
4	500.42	42.4 QP	46.0	-3.6	1.75 H	103	21.00	21.40
5	601.52	40.5 QP	46.0	-5.5	1.25 H	157	16.80	23.70
6	753.18	42.8 QP	46.0	-3.2	1.00 H	121	16.50	26.30
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	61.01	38.7 QP	40.0	-1.3	1.25 V	316	24.60	14.10
2	105.73	36.8 QP	43.5	-6.7	1.00 V	235	25.20	11.60
3	239.60	39.5 QP	46.0	-6.5	1.50 V	103	26.30	13.20
4	426.53	35.9 QP	46.0	-10.1	1.50 V	85	16.50	19.40
5	500.42	41.5 QP	46.0	-4.5	1.00 V	85	20.10	21.40
6	751.23	40.4 QP	46.0	-5.6	1.25 V	100	14.20	26.20

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 149	FREQUENCY RANGE	Below 1000MHz		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TEST MODE	В		
TESTED BY	Antony Lee				

			POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	162.11	32.6 QP	43.5	-10.9	1.75 H	238	17.80	14.80
2	239.33	39.4 QP	46.0	-6.6	1.25 H	103	26.20	13.20
3	375.98	34.1 QP	46.0	-11.9	1.00 H	94	16.30	17.80
4	500.42	40.6 QP	46.0	-5.4	1.75 H	103	19.20	21.40
5	626.80	38.8 QP	46.0	-7.2	1.25 H	109	14.70	24.10
6	751.23	42.6 QP	46.0	-3.4	1.00 H	127	16.40	26.20
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	53.23	36.2 QP	40.0	-3.8	1.00 V	223	22.00	14.20
2	105.73	34.1 QP	43.5	-9.4	1.00 V	211	22.50	11.60
3	239.33	39.0 QP	46.0	-7.0	1.00 V	49	25.80	13.20
4	500.42	41.5 QP	46.0	-4.5	1.00 V	193	20.10	21.40
5	601.52	34.6 QP	46.0	-11.4	1.00 V	151	10.90	23.70
6	753.18	38.0 QP	46.0	-8.0	1.25 V	163	11.70	26.30

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

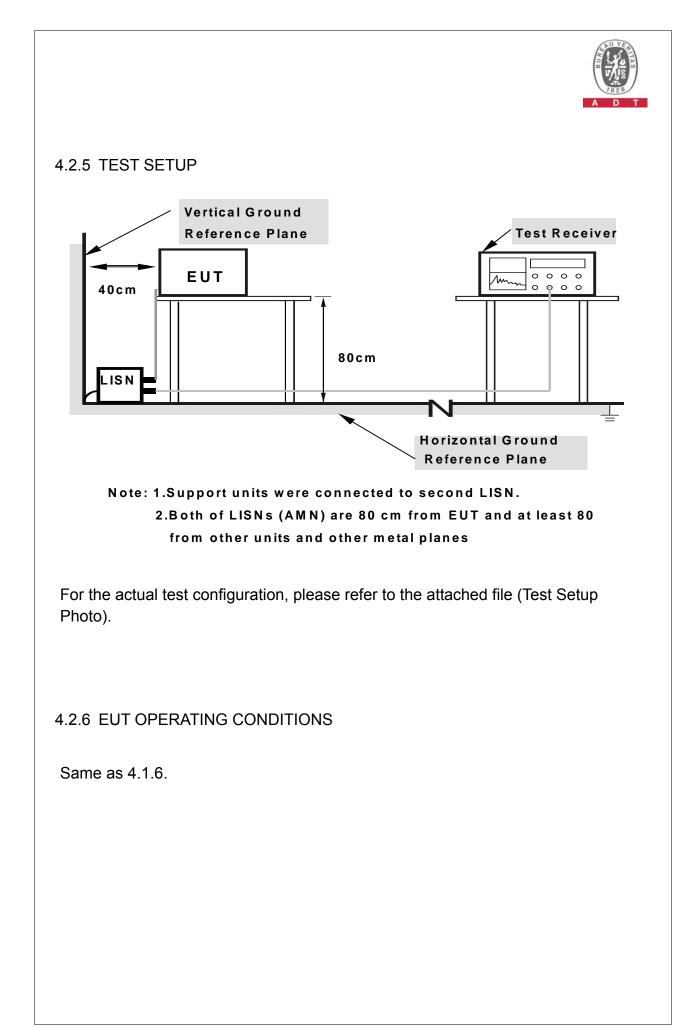
4.2.2 T EST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100291	Nov. 23, 2011	Nov. 22, 2012
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 22, 2011	Dec. 21, 2012
LISN ROHDE & SCHWARZ	ESH3-Z5	100312	Jul. 07, 2011	Jul. 06, 2012
LISN ROHDE & SCHWARZ	ESH2-Z5	100100	Jan. 06, 2011	Jan. 05, 2012
LISN ROHDE & SCHWARZ	ESH3-Z5	835239/001	Feb. 22, 2011	Feb. 21, 2012
V-LISN SCHWARZBECK	NNBL 8226-2	8226-142	Jun. 30, 2011	Jun. 29, 2012
LISN ROHDE & SCHWARZ	ENV216	100072	Jun. 10, 2011	Jun. 09, 2012
Software ADT	ADT_Cond_ V7.3.7	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations

are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.


4.2.3 TEST PROCEDURES

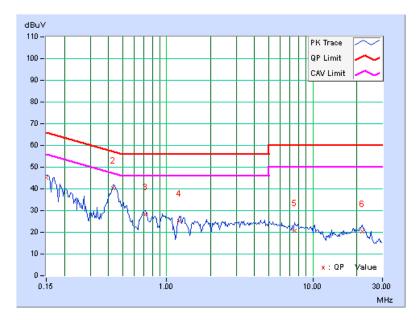
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.7 TEST RESULTS

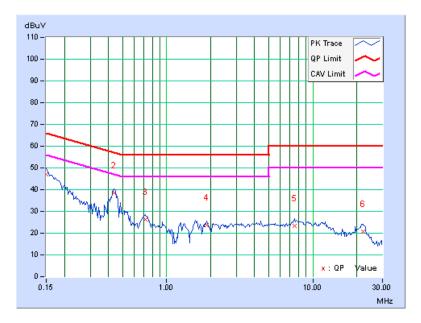

CONDUCTED WORST-CASE DATA : 802.11n (20MHz)

PHASE	Line 1	6dB BANDWIDTH	9kHz
TEST MODE	A		

	Freq.	Corr.	Reading Value			Emission Level		Limit		Margin	
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB	(uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.150	0.11	44.98	-	45.09	-	66.00	56.00	-20.91	-	
2	0.431	0.12	40.14	-	40.26	-	57.23	47.23	-16.97	-	
3	0.713	0.14	27.93	-	28.07	-	56.00	46.00	-27.93	-	
4	1.215	0.17	25.04	-	25.21	-	56.00	46.00	-30.79	-	
5	7.504	0.51	20.08	-	20.59	-	60.00	50.00	-39.41	-	
6	21.883	1.22	19.05	-	20.27	-	60.00	50.00	-39.73	-	

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

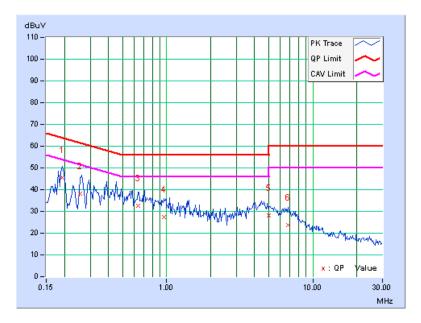


PHASE	Line 2	6dB BANDWIDTH	9kHz
TEST MODE	A		

	Freq.	Corr.	Readin	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.12	46.85	-	46.97	-	66.00	56.00	-19.03	-
2	0.435	0.14	38.44	-	38.58	-	57.15	47.15	-18.57	-
3	0.716	0.16	26.21	-	26.37	-	56.00	46.00	-29.63	-
4	1.875	0.20	23.49	-	23.69	-	56.00	46.00	-32.31	-
5	7.508	0.49	22.83	-	23.32	-	60.00	50.00	-36.68	-
6	22.215	1.01	19.56	-	20.57	-	60.00	50.00	-39.43	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. 2. "-": The Quasi-peak reading value also meets average limit and

- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

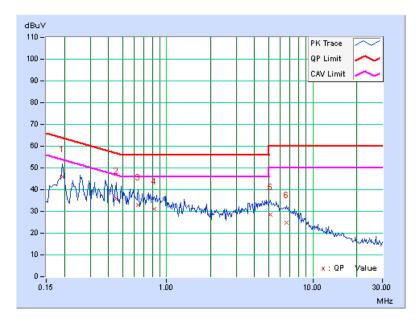


PHASE	Line 1	6dB BANDWIDTH	9kHz
TEST MODE	В		

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.193	0.12	45.58	-	45.70	-	63.91	53.91	-18.21	-
2	0.255	0.12	37.93	-	38.05	-	61.58	51.58	-23.53	-
3	0.642	0.14	32.30	-	32.44	-	56.00	46.00	-23.56	-
4	0.959	0.16	27.40	-	27.56	-	56.00	46.00	-28.44	-
5	5.000	0.37	27.67	-	28.04	-	56.00	46.00	-27.96	-
6	6.742	0.47	23.07	-	23.54	-	60.00	50.00	-36.46	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHASE	Line 2	6dB BANDWIDTH	9kHz
TEST MODE	В		

	Freq.	Corr.	Readin	g Value	Emis Le ^v	sion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.193	0.13	45.97	-	46.10	-	63.91	53.91	-17.81	-
2	0.451	0.14	35.66	-	35.80	-	56.86	46.86	-21.06	-
3	0.638	0.16	32.69	-	32.85	-	56.00	46.00	-23.15	-
4	0.826	0.17	30.84	-	31.01	-	56.00	46.00	-24.99	-
5	5.121	0.37	28.33	-	28.70	-	60.00	50.00	-31.30	-
6	6.617	0.45	24.33	-	24.78	-	60.00	50.00	-35.22	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>http://www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----