

Test report

FCC Part15B ICES-003 Arris DCX860 EPR2

Date of issue: August 22, 2016

Applicant:

ARRIS GROUP INC

Product:

Set-Top Box

Model:

DCX860

Specifications:

- ◆ FCC 47 CFR Part 15, Subpart B DoC
- ♦ ICES-003 Issue 6, June 2016

Lab and test locations

Company name	Nemko USA, Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
Province	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
Site number	FCC: US5058; IC: 2040B

Tested by	Feng You, Sr. Wireless Engineer
Reviewed by	James Morris, EMC and Wireless Divisions Manager
Review date	August 30, 2016
Reviewer signature	James & Morris

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko USA Inc.

Table of Contents

Table of 0	Contents	3
Section 8	Report summary	4
8.1	Test specifications	
8.2	Exclusions	4
8.3	Statement of compliance	4
8.4	Test report revision history	4
Section 9	Summary of test results	5
9.1	North America test results	5
Section 1	0 Equipment under test (EUT) details	ε
10.1	Applicant	ε
10.2	Manufacturer	6
10.3	Sample information	ε
10.4	EUT information	ε
10.5	EUT exercise and monitoring details	ε
10.6	EUT setup details	7
Section 1	1 Engineering considerations	9
11.1	Modifications incorporated in the EUT	9
11.2	Technical judgment	9
11.3	Deviations from laboratory tests procedures	g
Section 1	2 Test conditions	10
12.1	Atmospheric conditions	10
12.2	Power supply range	10
Section 1	3 Measurement uncertainty	11
13.1	Uncertainty of measurement	11
Section 1	4 Terms and definitions	12
14.1	Product classifications definitions	12
14.2	General definitions	14
Section 1	5 Testing data	15
15.1	Radiated disturbance	15
15.2	Conducted disturbance at mains port	28
Section 1	6 EUT photos	34
16.1	External photos	34

Section 8 Report summary

8.1 Test specifications

FCC 47 CFR Part 15, Subpart B – DoC	Title 47: Telecommunication; PART 15—RADIO FREQUENCY DEVICES
ICES-003 Issue 6 June 2016	Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement

8.2 Exclusions

None.

8.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

8.4 Test report revision history

Table 8.4-1: Test report revision history

Revision # Details of char		ion#	Details of changes made to test report
	1		Original report issued
	Notes:	None	

Section 9 Summary of test results

9.1 North America test results

Table 9.1-1: FCC 47 CFR Part 15, Subpart B results

Test description	Verdict	
Radiated disturbance	Pass	
Conducted disturbance at mains port	Pass	
Notes: ¹ Product classification B		

Table 9.1-2: ICES-003 results

Test description	Verdict
Radiated disturbance	Pass
Conducted disturbance at mains port	Pass

Notes: ¹ Product classification B

Section 10 Equipment under test (EUT) details

10.1 Applicant

Company name	Arris Group Inc.
Address	6450 Sequence Drive
City	San Diego
Province/State	CA
Postal/Zip code	92121
Country	USA

10.2 Manufacturer

Company name	Arris Group Inc.
Address	6450 Sequence Drive
City	San Diego
Province/State	CA
Postal/Zip code	92121
Country	USA

10.3 Sample information

Receipt date	August 18, 2016
Nemko sample ID number	#1

10.4 EUT information

Product name	Set-Top Box
Model	DCX860
Serial number	M11632TH0117
Part number	599339-001-00
Power requirements	12V DC / 12W
Description/theory of operation	Cable TV Set-Top Box
Operational frequencies	Highest clock = 1503MHz
	RF-QAM = 849MHz, MoCA = 1175MHz
Software details	PKG_MTC_6105_DCX860_STRT_0101_SIGNED.bin

10.5 EUT exercise and monitoring details

Normal operation. Receive signal from RF-QAM or MoCA generators, plays on TV.

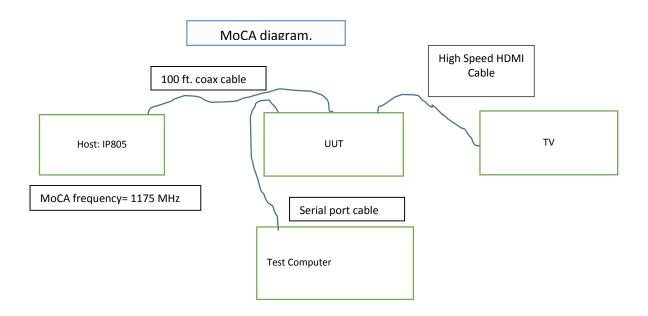
10.6 EUT setup details

Table 10.6-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number	Rev.
Set-Top Box	Arris	DCX860	M11632TH0117	EPR2
AC Adapter	Asian Power Devices	WA-12M12FU	N/A	N/A
AC Adapter	NetBit	NBS12E120110VU	N/A	N/A

Table 10.6-2: EUT interface ports

Description	Qty.
Cable IN (F)	1
Digital Audio Out (Optical)	1
HDMI Out	1
USB 2.0	1
USB 3.0	1
RJ45	1
Serial	1
DC Input	1


Table 10.6-3: Support equipment

Description	Brand name	Model/Part number	Serial number	Rev.
TV	LG	10LG30	804AMUA0S790	N/A
QAM & VSB RF Signal Generator	Tektronix	RTX 130B	B010180	N/A
Mouse	Microsoft	Serial Mouse 55305	106841	N/A
Set-top Box as MOCA Signal generator	Arris	IP805-M	M11524TJ6695	N/A
AC Adapter for IP805-M	Delta	ADP-15AR	GOID41V05LC	N/A

Table 10.6-4: Inter-connection cables

Cable description	From	То	Length (m)
F Connector Video Cable	EUT	RF Signal Generator	30.5
2.5mm to RCA AV Cable	EUT	TV	3
HDMI Cable	EUT	TV	2.4
USB Load Cable	EUT	Terminated	0.6
USB 3.0 Cable Load	EUT	Terminated	1.8
RJ45 Cable Load	EUT	Terminated	1.2

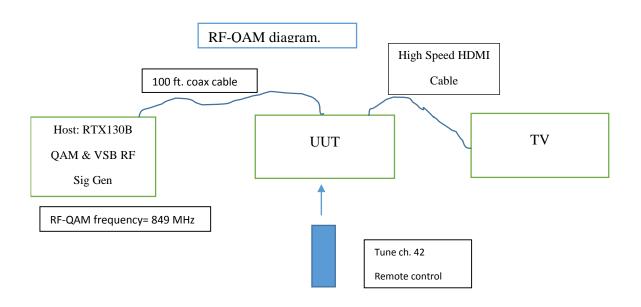


Figure 10.6-1: Setup diagram

Section 11 Engineering considerations

11.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

11.2 Technical judgment

None

11.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 12 Test conditions

12.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

12.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

120V 60Hz

Section 13 Measurement uncertainty

13.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Section 14 Terms and definitions

14.1 Product classifications definitions

14.1.7 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General

Class A digital device. A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.

Class B digital device. A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

14.1.8 ICES-003 2.2

ICES-003 prescribes two Classes of limits of radio noise for ITE: Class A limits for non-residential operation and Class B limits for residential operation, as set out in Section 5.

Only ITE intended strictly for non-residential use in commercial, industrial or business environments, and whose design or other characteristics strongly preclude the possibility of its use in a residential environment, shall be permitted to comply with the Class A limits.

All ITE that cannot meet the definition for Class A operation shall comply with the Class B limits.

Note: The ITE shall comply with both the conducted and the radiated emissions limits for power lines, within the same Class, with no intermixing.

14.1.9 EN 55011, AS/NZS CISPR 11, CISPR 11, and ICES-001

Group number

Group 1

 $group\ 1\ contains\ all\ equipment\ in\ the\ scope\ of\ this\ standard\ which\ is\ not\ classified\ as\ group\ 2\ equipment.$

Group 2

group 2 contains all ISM RF equipment in which radio-frequency energy in the frequency range 9 kHz to 400 GHz is intentionally generated and used or only used, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purposes.

Class A equipment

... is equipment suitable for use in all establishments other than domestic and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

Warning: Class A equipment is intended for use in an industrial environment. In the documentation for the user, a statement shall be included drawing attention to the fact that there may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted as well as radiated disturbances.

Class B equipment

... is equipment suitable for use in domestic establishments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

7.1 Product classifications definitions, continued

14.1.10 EN 61000-3-2

For the purpose of harmonic current limitation, equipment is classified as follows:

Class A:

- Balanced three-phase equipment;
- Household appliances excluding equipment identified as Class D;
- Tools excluding portable tools;
- Dimmers for incandescent lamps;
- Audio equipment.

Equipment not specified in one of the three other classes shall be considered as Class A equipment.

Class B:

- Portable tools;
- Arc welding equipment, which is not professional equipment.

Class C:

Lighting equipment.

Class D:

Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:

- Personal computers and personal computer monitors;
- Television receivers.

14.2 General definitions

14.2.7 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General

Digital device. (Previously defined as a computing device). An unintentional radiator (device or system) that generates and uses timing signals or pulses at a rate in excess of 9,000 pulses (cycles) per second and uses digital techniques; inclusive of telephone equipment that uses digital techniques or any device or system that generates and uses radio frequency energy for the purpose of performing data processing functions, such as electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval, or transfer. A radio frequency device that is specifically subject to an emanation requirement in any other FCC Rule part or an intentional radiator subject to subpart C of this part that contains a digital device is not subject to the standards for digital devices, provided the digital device is used only to enable operation of the radio frequency device and the digital device does not control additional functions or capabilities.

Note: Computer terminals and peripherals that are intended to be connected to a computer are digital devices.

14.2.8 ICES-003 2.1

ITE is defined as devices or systems that use digital techniques for purposes such as data processing and computation. ITE is any unintentional radiator (device or system) that generates and/or uses timing signals or pulses having a rate of at least 9 kHz and employs digital techniques for purposes such as computation, display, data processing and storage, and control. An ITE device used to create an ITE system shall comply with the requirements of ICES-003 prior to its integration into the final system if offered for sale, imported or marketed individually.

ITE is designated as Category II Equipment,1 meaning that no technical acceptability certificate (TAC) or equipment certification is required. ITE subject to ICES-003 is approved through the method of a "supplier's declaration of conformity (SDoC)" by the manufacturer, importer or distributor of ITE, which shall ensure that compliance with all technical requirements prescribed by ICES-003 has been demonstrated and that the results have been compiled into a test report. The test report shall clearly state which test method was used to determine compliance. The methods of measurement are set out in the standards incorporated by reference in ICES-003, and are specified in Section 3.

14.2.9 EN 55011, AS/NZS CISPR 11, CISPR 11, and ICES-001

industrial, scientific and medical (ISM) applications (of radio frequency energy)

operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications [ITU Radio Regulations Volume 1: 2004 – Articles, Definition 1.15]

NOTE 1 Typical applications are the production of physical, biological, or chemical effects such as heating, ionisation of gases, mechanical vibrations, hair removal, acceleration of charged particles.

NOTE 2 The abbreviation ISM RF is used throughout this standard for such equipment or appliances.

ISM equipment and appliances

equipment or appliances designed to generate and/or use locally radio-frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications and information technology and other applications covered by other CISPR publications

14.2.10 EN 61000-3-3

Voltage fluctuation: Series of changes of r.m.s voltage evaluated as a single value for each successive half-period between zero-crossings of the source voltage.

Flicker: Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time.

Short-term flicker indicator, Pst: The flicker severity evaluated over a short period (in minutes); Pst = 1 is the conventional threshold of irritability.

Long-term flicker indicator, Plt: The flicker severity evaluated over a long period (a few hours) using successive Pst values

Section 15 Testing data

15.1 Radiated disturbance

15.1.7 References

CISPR 11: 2009 + A1: 2010 and ANSI C63.4-2014

15.1.8 Test summary

Verdict	Pass		
Test date	August 18, 2016	Temperature	24 °C
Test engineer	Feng You	Air pressure	1001 mbar
Test location	San Diego	Relative humidity	64 %

15.1.9 Notes

None.

15.1.10 Setup details

EUT setup configuration	Table top
Test facility	10 m Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turn table position	0-360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-
	measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (Preview measurement)Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement) 1000 ms (Quasi-peak final measurement)

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak (Preview measurement) Peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement) 1000 ms (Peak and CAverage final measurement)

Section 8 Test name Specification Testing data Radiated disturbance Radio disturbance

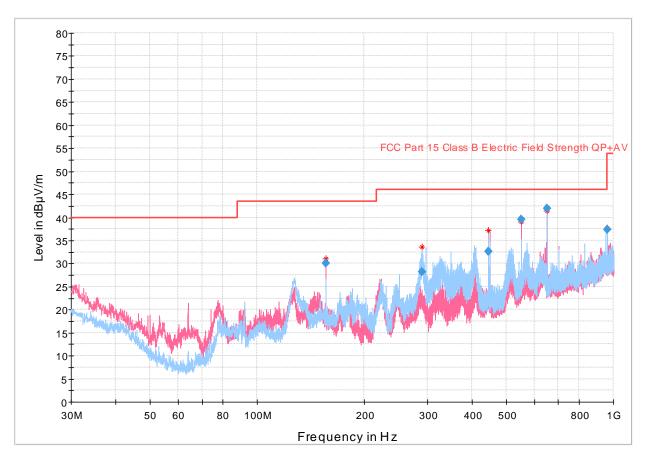
15.1.4 Setup details, continued

Table 15.1-1: Radiated disturbance equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Antenna, DRWG	EMCO	3115	2505	Annually	01-Feb-2017
Antenna, Bilog	Schaffner	CBL 6111D	22926	Annually	02-Oct-2016
EMI Test Receiver	Rohde & Schwarz	ESU 40	100064	Annually	28-Apr-2017

Notes: None

Table 15.1-2: Radiated disturbance test software details


Manufacturer of Software	Details
Rohde & Schwarz	EMC32 Version 10.00.00

Notes: None

15.1.5 Test data – RF-QAM, Asian Power Devices AC Adapter

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

Figure 15.1-1: Radiated disturbance spectral plot (30 to 1000 MHz)

Table 15.1-3: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
155.849000	30.05	43.50	13.45	1000.0	120.000	105.2	V	295.0
289.763500	28.22	46.00	17.78	1000.0	120.000	158.4	Н	70.0
445.459500	32.65	46.00	13.35	1000.0	120.000	126.6	Н	261.0
550.017000	39.61	46.00	6.39	1000.0	120.000	103.9	V	245.0
649.984000	41.98	46.00	4.02	1000.0	120.000	123.6	Н	162.0
958.347000	37.45	46.00	8.55	1000.0	120.000	111.3	V	119.0

15.1.5 Test data, continued

Full Spectrum

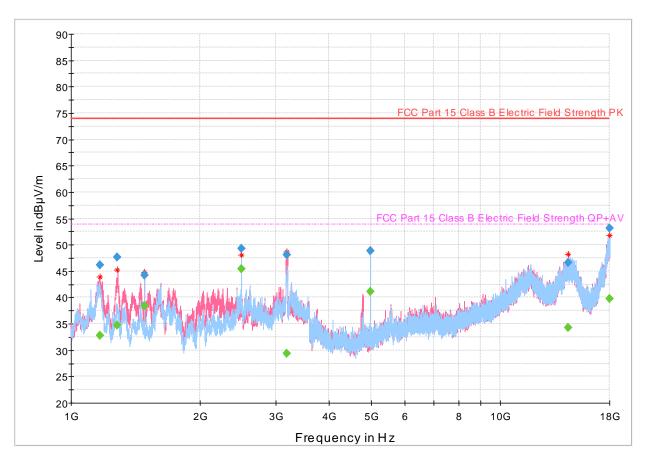
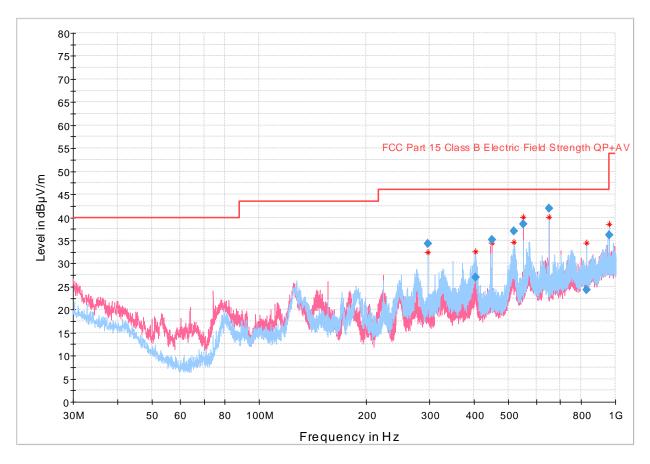


Figure 15.1-2: Radiated disturbance spectral plot (1 to 18 GHz)


Table 15.1-4: Radiated disturbance (Peak and Average) result

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)
					(ms)				
1165.6666	46.23		73.90	27.67	1000.0	1000.000	147.4	V	214.0
1165.6666		32.81	53.90	21.09	1000.0	1000.000	147.4	V	214.0
1278.9000		34.76	53.90	19.14	1000.0	1000.000	116.2	V	190.0
1278.9000	47.65		73.90	26.25	1000.0	1000.000	116.2	V	190.0
1485.1000		38.38	53.90	15.52	1000.0	1000.000	137.7	Н	11.0
1485.1000	44.20		73.90	29.70	1000.0	1000.000	137.7	Н	11.0
2493.7666	49.26		73.90	24.64	1000.0	1000.000	203.2	Н	79.0
2493.7666		45.43	53.90	8.47	1000.0	1000.000	203.2	Н	79.0
3182.5333	48.16		73.90	25.74	1000.0	1000.000	103.9	V	62.0
3182.5333		29.31	53.90	24.59	1000.0	1000.000	103.9	V	62.0
4988.0666		41.03	53.90	12.87	1000.0	1000.000	99.9	Н	100.0
4988.0666	48.77		73.90	25.13	1000.0	1000.000	99.9	Н	100.0
14401.500		34.23	53.90	19.67	1000.0	1000.000	220.4	V	75.0
14401.500	46.63		73.90	27.27	1000.0	1000.000	220.4	V	75.0
17994.966	53.12		73.90	20.78	1000.0	1000.000	172.2	V	285.0
17994.966		39.78	53.90	14.12	1000.0	1000.000	172.2	V	285.0

15.1.6 Test data – MoCA, Asian Power Devices AC Adapter

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

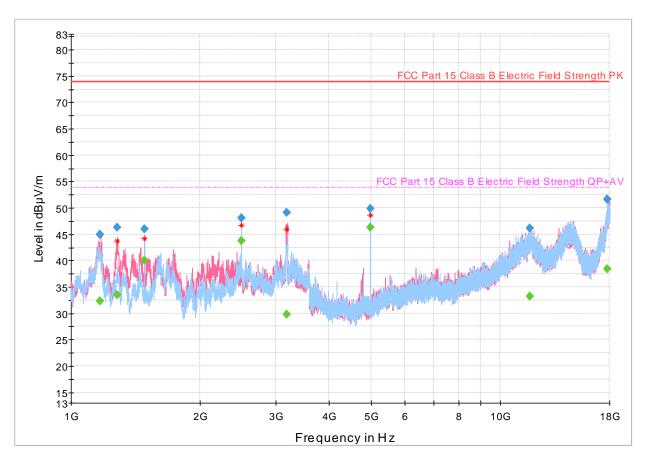
Figure 15.1-3: Radiated disturbance spectral plot (30 to 1000 MHz)

Table 15.1-5: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
297.032500	34.34	46.00	11.66	1000.0	120.000	108.1	Н	262.0
404.050000	27.00	46.00	19.00	1000.0	120.000	100.0	Н	186.0
450.010000	35.21	46.00	10.79	1000.0	120.000	104.5	V	263.0
519.753000	37.07	46.00	8.93	1000.0	120.000	110.0	Н	14.0
550.017000	38.57	46.00	7.43	1000.0	120.000	107.2	V	238.0
650.024000	41.93	46.00	4.07	1000.0	120.000	123.4	Н	170.0
830.709500	24.26	46.00	21.74	1000.0	120.000	143.7	Н	254.0
958.307000	36.20	46.00	9.80	1000.0	120.000	119.4	V	96.0

15.1.6 Test data, continued

Full Spectrum



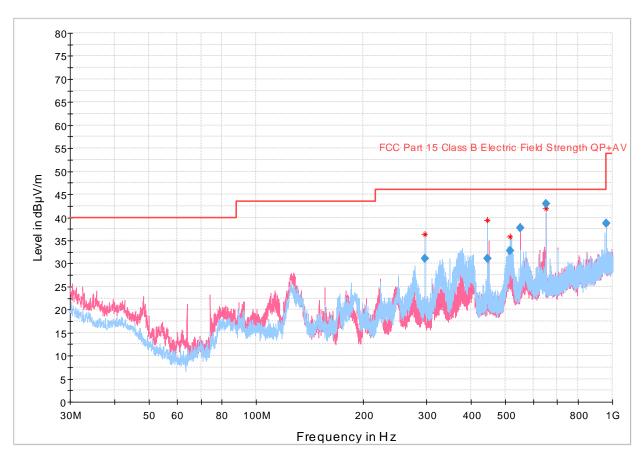

Figure 15.1-4: Radiated disturbance spectral plot (1 to 18 GHz)

Table 15.1-6: Radiated disturbance (Peak and Average) result

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)
					(ms)				
1168.0666	45.02		73.90	28.88	1000.0	1000.000	105.6	V	200.0
1168.0666		32.27	53.90	21.63	1000.0	1000.000	105.6	V	200.0
1278.9000	46.33		73.90	27.57	1000.0	1000.000	117.6	V	178.0
1278.9000	-	33.51	53.90	20.39	1000.0	1000.000	117.6	V	178.0
1485.1000		40.08	53.90	13.82	1000.0	1000.000	140.0	V	72.0
1485.1000	46.07		73.90	27.83	1000.0	1000.000	140.0	V	72.0
2493.9333	48.13		73.90	25.77	1000.0	1000.000	202.5	Н	82.0
2493.9333	-	43.79	53.90	10.11	1000.0	1000.000	202.5	Н	82.0
3178.5000	-	29.74	53.90	24.16	1000.0	1000.000	100.0	V	217.0
3178.5000	49.18		73.90	24.72	1000.0	1000.000	100.0	V	217.0
4987.6666	49.89		73.90	24.01	1000.0	1000.000	103.9	Н	146.0
4987.6666		46.36	53.90	7.54	1000.0	1000.000	103.9	Н	146.0
11740.633	46.11		73.90	27.79	1000.0	1000.000	267.7	Н	305.0
11740.633	-	33.19	53.90	20.71	1000.0	1000.000	267.7	Н	305.0
17778.433	51.61		73.90	22.29	1000.0	1000.000	171.4	Н	166.0
17778.433		38.43	53.90	15.47	1000.0	1000.000	171.4	Н	166.0

15.1.7 Test data – RF-QAM, NetBit AC Adapter

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

Figure 15.1-5: Radiated disturbance spectral plot (30 to 1000 MHz)

Table 15.1-7: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
296.952500	31.11	46.00	14.89	1000.0	120.000	154.2	Н	65.0
445.579500	31.03	46.00	14.97	1000.0	120.000	100.0	Н	59.0
516.177500	32.76	46.00	13.24	1000.0	120.000	109.9	Н	256.0
550.017000	37.64	46.00	8.36	1000.0	120.000	103.9	V	251.0
650.024000	42.92	46.00	3.08	1000.0	120.000	118.6	Н	162.0
958.347000	38.69	46.00	7.31	1000.0	120.000	312.2	Н	163.0

15.1.7 Test data, continued

Full Spectrum

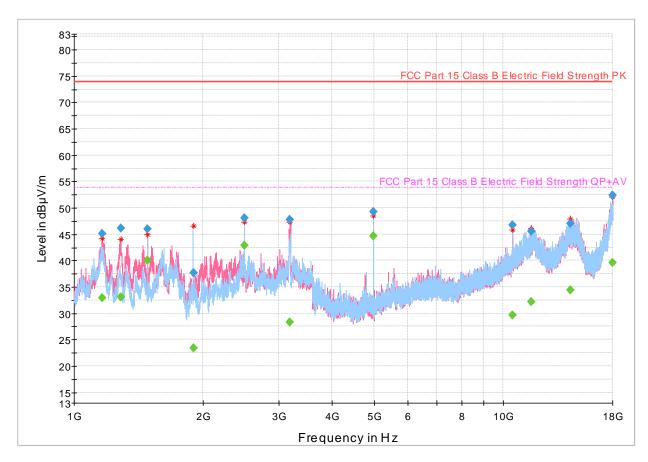


Figure 15.1-6: Radiated disturbance spectral plot (1 to 18 GHz)

Section 8Testing dataTest nameRadiated disturbanceSpecificationRadio disturbance

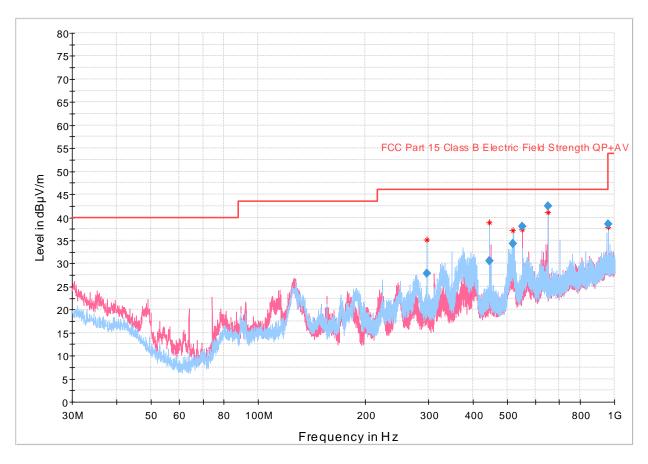


Table 15.1-8: Radiated disturbance (Peak and Average) result

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
1163.3333	45.06		73.90	28.84	1000.0	1000.000	135.3	V	107.0
1163.3333		32.87	53.90	21.03	1000.0	1000.000	135.3	V	107.0
1283.8666	46.17		73.90	27.73	1000.0	1000.000	106.4	V	192.0
1283.8666		33.05	53.90	20.85	1000.0	1000.000	106.4	V	192.0
1485.1000		40.04	53.90	13.86	1000.0	1000.000	147.5	V	75.0
1485.1000	45.93		73.90	27.97	1000.0	1000.000	147.5	V	75.0
1899.2000	37.73		73.90	36.17	1000.0	1000.000	110.1	Н	174.0
1899.2000		23.45	53.90	30.45	1000.0	1000.000	110.1	Н	174.0
2493.5333		42.94	53.90	10.96	1000.0	1000.000	206.4	Н	77.0
2493.5333	48.15		73.90	25.75	1000.0	1000.000	206.4	Н	77.0
3180.3000	47.78		73.90	26.12	1000.0	1000.000	103.9	V	214.0
3180.3000		28.28	53.90	25.62	1000.0	1000.000	103.9	V	214.0
4987.8333		44.65	53.90	9.25	1000.0	1000.000	112.9	Н	116.0
4987.8333	49.23		73.90	24.67	1000.0	1000.000	112.9	Н	116.0
10532.100		29.68	53.90	24.22	1000.0	1000.000	237.9	Н	58.0
10532.100	46.74		73.90	27.16	1000.0	1000.000	237.9	Н	58.0
11652.833		32.12	53.90	21.78	1000.0	1000.000	136.5	V	142.0
11652.833	45.60		73.90	28.30	1000.0	1000.000	136.5	V	142.0
14336.200		34.35	53.90	19.55	1000.0	1000.000	161.1	V	100.0
14336.200	47.00		73.90	26.90	1000.0	1000.000	161.1	V	100.0
17990.633		39.66	53.90	14.24	1000.0	1000.000	164.3	V	176.0
17990.633	52.42		73.90	21.48	1000.0	1000.000	164.3	V	176.0

15.1.8 Test data – MoCA, NetBit AC Adapter

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

Figure 15.1-7: Radiated disturbance spectral plot (30 to 1000 MHz)

Table 15.1-9: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
296.992500	27.90	46.00	18.10	1000.0	120.000	115.4	Н	184.0
445.579500	30.51	46.00	15.49	1000.0	120.000	104.3	Н	42.0
519.753000	34.23	46.00	11.77	1000.0	120.000	107.0	Н	337.0
550.017000	38.00	46.00	8.00	1000.0	120.000	103.9	٧	250.0
650.024000	42.41	46.00	3.59	1000.0	120.000	113.0	Н	156.0
958.347000	38.55	46.00	7.45	1000.0	120.000	300.8	Н	152.0

15.1.8 Test data, continued

Full Spectrum

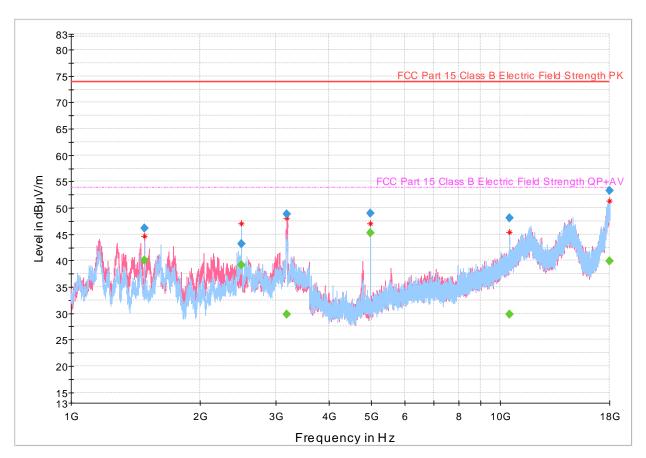


Figure 15.1-8: Radiated disturbance spectral plot (1 to 18 GHz)

Table 15.1-10: Radiated disturbance (Peak and Average) result

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)
					(ms)				
1484.8666		40.04	53.90	13.86	1000.0	1000.000	143.1	V	75.0
1484.8666	46.07		73.90	27.83	1000.0	1000.000	143.1	V	75.0
2493.7666		39.17	53.90	14.73	1000.0	1000.000	127.5	Н	195.0
2493.7666	43.24		73.90	30.66	1000.0	1000.000	127.5	Н	195.0
3188.0000		29.80	53.90	24.10	1000.0	1000.000	100.0	V	217.0
3188.0000	48.87		73.90	25.03	1000.0	1000.000	100.0	٧	217.0
4987.6666		45.24	53.90	8.66	1000.0	1000.000	108.4	Н	114.0
4987.6666	49.02		73.90	24.88	1000.0	1000.000	108.4	Н	114.0
10531.933		29.77	53.90	24.14	1000.0	1000.000	274.8	Н	246.0
10531.933	48.14		73.90	25.76	1000.0	1000.000	274.8	Н	246.0
17994.100		39.89	53.90	14.01	1000.0	1000.000	189.9	V	40.0
17994.100	53.23		73.90	20.67	1000.0	1000.000	189.9	V	40.0

15.1.9 Setup photos

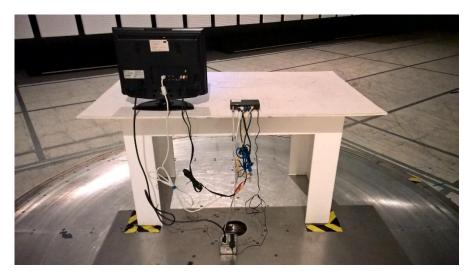


Figure 15.1-3: Radiated disturbance setup photo

Figure 15.1-4: Radiated disturbance setup photo

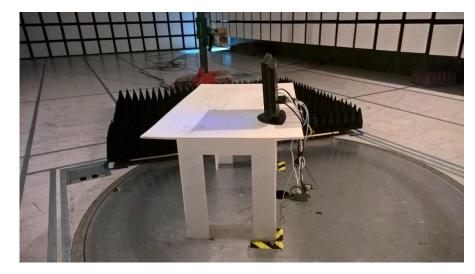


Figure 15.1-5: Radiated disturbance setup photo above 1GHz

15.2 Conducted disturbance at mains port

15.2.7 References

CISPR 11: 2009 + A1: 2010 and ANSI C63.4-2014

15.2.8 Test summary

Verdict	Pass		
Test date	August 22, 2016	Temperature	24 °C
Test engineer	Feng You	Air pressure	1003 mbar
Test location	San Diego	Relative humidity	65 %

15.2.9 Notes

None

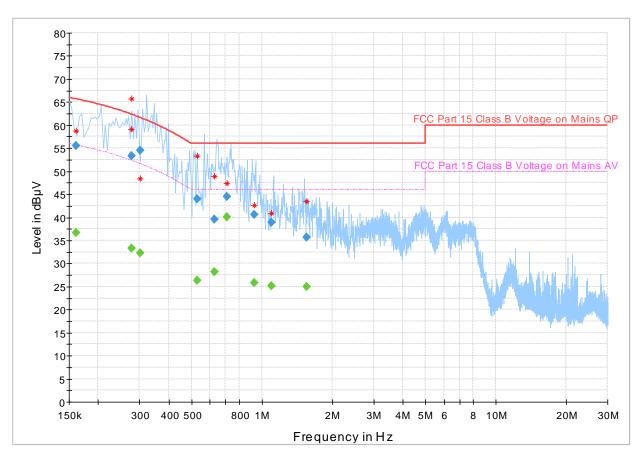
15.2.10 Setup details

Port under test	AC Mains
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or
	above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.
Receiver settings:	
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview measurement)
	Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	– 100 ms (Peak and Average preview measurement)
	– 1000 ms (Quasi-peak final measurement)
	- 160 ms (CAverage final measurement)

Table 15.2-1: Conducted disturbance at mains port equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Two Line V-Network	Rohde & Schwarz	ENV216	101045	Annually	15-Jun-2017
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESCI 7	100800	Annually	17-Mar-2017

Notes: None


Table 15.2-2: Conducted disturbance at mains port test software details

Manufac	cturer of Software	Details
Rohde &	Schwarz	EMC32 Version 10.00.00
Notes:	None	

15.2.5 Test data - RF-QAM, Asian Power Devices AC Adapter

Full Spectrum

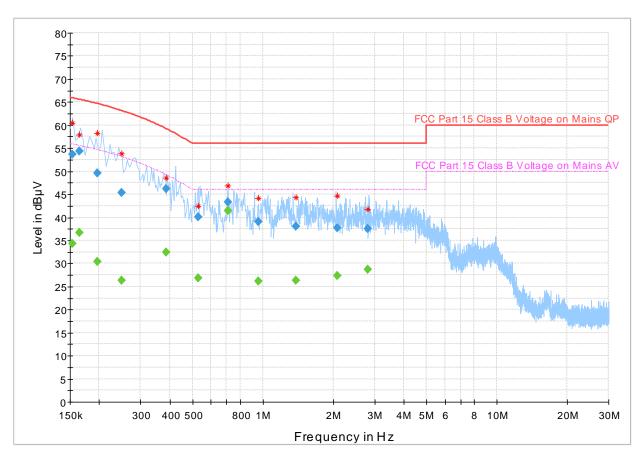
The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators)

Figure 15.2-1: Conducted disturbance at mains port spectral plot

Section 8 Testing data

Test name Conducted disturbance at mains port

Specification Radio disturbance


Table 15.2-3: Conducted disturbance at mains port (Quasi-Peak and Average) results

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line
0.161000		36.65	55.69	19.03	1000.0	9.000	L1
0.161000	55.53		65.69	10.16	1000.0	9.000	L1
0.277000		33.34	52.37	19.03	1000.0	9.000	L1
0.277000	53.31		62.37	9.06	1000.0	9.000	L1
0.301000		32.29	51.69	19.39	1000.0	9.000	N
0.301000	54.45		61.69	7.24	1000.0	9.000	N
0.529000	44.05		56.00	11.96	1000.0	9.000	L1
0.529000		26.30	46.00	19.70	1000.0	9.000	L1
0.625000	39.58		56.00	16.42	1000.0	9.000	L1
0.625000		28.27	46.00	17.73	1000.0	9.000	L1
0.709000		40.17	46.00	5.83	1000.0	9.000	N
0.709000	44.54		56.00	11.46	1000.0	9.000	N
0.929000		25.87	46.00	20.13	1000.0	9.000	L1
0.929000	40.63		56.00	15.37	1000.0	9.000	L1
1.101000	38.89		56.00	17.11	1000.0	9.000	L1
1.101000		25.18	46.00	20.82	1000.0	9.000	L1
1.549000	35.70		56.00	20.30	1000.0	9.000	L1
1.549000		25.03	46.00	20.97	1000.0	9.000	L1

15.2.6 Test data - RF-QAM, NetBit AC Adapter

Full Spectrum

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators)

Figure 15.2-2: Conducted disturbance at mains port spectral plot

Section 8 Testing data

Test name Conducted disturbance at mains port

Specification Radio disturbance

Table 15.2-4: Conducted disturbance at mains port (Quasi-Peak and Average) results

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)	
0.154000		34.24	55.89	21.65	1000.0	9.000	L1
0.154000	53.73		65.89	12.16	1000.0	9.000	L1
0.165000	54.33		65.57	11.25	1000.0	9.000	N
0.165000		36.65	55.57	18.92	1000.0	9.000	N
0.197000		30.40	54.66	24.26	1000.0	9.000	L1
0.197000	49.54		64.66	15.12	1000.0	9.000	L1
0.249000		26.40	53.17	26.77	1000.0	9.000	N
0.249000	45.29		63.17	17.88	1000.0	9.000	N
0.385000	46.18		59.29	13.11	1000.0	9.000	L1
0.385000		32.36	49.29	16.92	1000.0	9.000	L1
0.529000		26.86	46.00	19.14	1000.0	9.000	L1
0.529000	40.13		56.00	15.87	1000.0	9.000	L1
0.709000		41.47	46.00	4.53	1000.0	9.000	L1
0.709000	43.37		56.00	12.63	1000.0	9.000	L1
0.957000	39.12		56.00	16.88	1000.0	9.000	L1
0.957000		26.19	46.00	19.81	1000.0	9.000	L1
1.381000		26.36	46.00	19.64	1000.0	9.000	L1
1.381000	38.08		56.00	17.92	1000.0	9.000	L1
2.081000		27.41	46.00	18.59	1000.0	9.000	L1
2.081000	37.74		56.00	18.26	1000.0	9.000	L1
2.817000	37.55		56.00	18.45	1000.0	9.000	L1
2.817000		28.65	46.00	17.35	1000.0	9.000	L1

15.2.7 Setup photos

Figure 15.2-3: Conducted disturbance at mains port setup photo

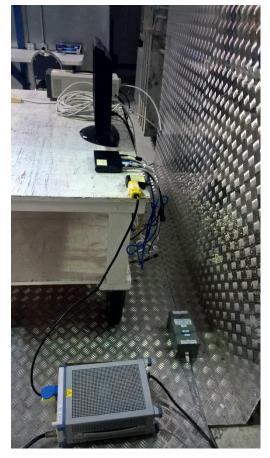


Figure 15.2-4: Conducted disturbance at mains port setup photo

Section 16 EUT photos

16.1 External photos

Figure 16.1-1: Front view photo

Figure 16.1-2: Rear view photo

Figure 16.1-3: Side view photo

Figure 16.1-4: Top view photo

Figure 16.1-5: Bottom view photo

Figure 16.1-6: APD AC Adapter view photo

Figure 16.1-7: NetBit AC Adapter view photo