Margin

for Limits

at 300 m

 $(\mu V/m)$

6.0 TEST PROCEDURES AND RESULTS

6. 1 Safety Check

Test Equipment use: No. 17 in the Table 4-1 in this report.

 $\langle 0.5 \text{mW} / \text{cm}^2 \rangle$

6.2 Radiated Field Strength 6.2.1 Test Data

(MHz)

Test Equipment use from No. 01 to No. 16 in the Table 4-1 in this report.

 $(dB \mu V/m)$

 $(\mu V/m)$

Emission

Level

at 300 m

 $(\mu V/m)$

0.17

32.77

32.60

Limits

at 300 m

 $(\mu V/m)$

Test Condition of Instrument EUT Warm-up Time : 30 minutes Resolution Bandwidth 9kHz (4-30MHz) Date: July 12 to 13, 2001

> : 120kHz (30-1000MHz) 1MHz (1GHz-25GHz)

Detector Function : Average

(dB)

Test Mode: Maximum Operation Mode (Section 4.1, OST MP-5).

1	Measured	* Factor	Meter	Emission	Emission	l
	Frequency		Reading	Level	Level	
			at 3 m	at 3 m	at 3 m	

 $(dB \mu V/m)$

	2 nd Harmonic 4998.00	- -7. 21	⁻ 38. 90	31. 69	38. 42	0.38	32. 77	32. 39
.a1	3 rd Harmonic 7358.02	- -6. 95	38. 01	31.06	35. 73	0. 36	32. 77	32. 41
Horizontal	Sprious 8134.07	-6. 67	None	None	None	None		
Но	Emission Side Band							
	2400, 00 2500, 00	-13. 18 -13. 13	None None	None None	None None	None None		
	2 nd Harmonic							
}	4938. 00	-7. 21	42. 80	35, 59	60. 19	0, 60	32. 77	32. 17
1	3 rd Harmonic 7358.02	-6. 95	38. 87	31. 92	39. 45	0, 39	32. 77	32. 38
Vertical	Sprious 8134.07	-6. 67	<i>5</i> 1. <i>5</i> 3	44. 86	174. 94	1. 75	32. 77	31. 02
Λ	Emission Side Band							
	2400. 00	-13. 18	38. 00	24. 82	17. 41	0. 17	32. 77	32, 60

^{2500.00} -13.13 37.60 24.47 16.73 * Factor = Antenna Factor + Cable loss - AMP Gain

In the frequency range of from 9kHz to 1000MHz, emission from the EUT at 3m distance was Note: measured and the level was lower than the floor noise level of 20dB N/m.

In the frequency range of from 4th harmonic to 10th harmonic, emission from the EUT at 3m

6.3 Power output measurements (OST MP-5, 4.3)

Total power input to oven: 3950 W (208 V, 19.9 A)

Power developed in dummy load : 2387 W

. .

6.4 Frequency measurements (OST MP-5, 4.5)

Maximum frequency variation:

Load ---- 2446.2 MHz - 2468.6 MHz (2500 cc ~ 500 cc / Load)

Line Voltage --- 2458.8 MHz - 2464.3 MHz (166 V \sim 260 V / 2500 cc Load)

6.5 Description of calcuration

Field Strength at 300m (dB μ /m)

Calculation Formura to get field strength at 300m from the measured at 3m.

Field Strength at 3m (dB μ /m) = Meter Reading + Antenna Factor + Cable Loss - Amprifier Gain (dB μ /m) (dB) (dB) (dB)

= $K \times 10^{^{^{^{^{^{^{^{^{}}}}}}}} \{ Field Strength at 3 m (dB \mu V/m) + 20 \}$

K: Conversion Factor for 3 m to 300 m

Meter Reading 51.53 dB μV/m

Example: Sprious Frequency 8134.07 MHz

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Amp. Gain (dB)	K
8134. 07	25. 58	3. 65	- 35, 90	0. 01

=
$$K \times 10^{(51.53 + 25.58 + 3.65 - 35.90) + 20}$$
}
= $1.75 \mu V/m$