
Service Manual

Microwave Oven

NN-GN68KS

APH (USA)

Specifications:

Model: Specifications:		NN-GN68KS	
Power Source:		120V AC Single Phase, 60Hz	
Power	Microwave:	1310W	
Consumption:	Heater:	1140W	
Output:	Microwave:	1000W	
	Heater:	1100W	
Microwave Frequency:		2450MHz	
Timer:		30 min. / Stage (HIGH Power) ~ 3 Stage Maximum 90 min. 00 sec / Stage (Other Power Levels) ~ 3 Stage Maximum	
Outside Dimensions: (W) x (H) x (D)		20 ¹¹ / ₁₆ " (525mm) x 12 ¹ / ₄ " (310mm) x 15 ¹³ / ₁₆ " (401mm)	
Oven Cavity Dimensions: (W) x (H) x (D)		14 ⁹ / ₆₄ " (359mm) x 9 ²³ / ₃₂ " (247mm) x 14 ¹ / ₄ "(362mm)	
Oven Cavity Dimensions:		1.2 cu. ft.	
Weight:		Approx. 29.1 lbs./13.2 kg	
PbF		This product with PbF	
		Specifications subject to change without notice.	

Your safety and the safety of others are very important.

We have provided important safety messages in this manual and on your appliance. Always read and obey all safety messages.

This is the safety alert symbol. It is used to alert you to potential hazards that can kill or hurt you and others.

The safety messages will follow the safety alert symbol and either the word "DANGER", "WARNING" or "CAUTION". These words mean:

You can be killed or seriously injured if you don't immediately follow instructions.

 $oldsymbol{\Delta}$ warning

You can be killed or seriously injured if you don't follow instructions.

 $oldsymbol{ \Delta }$ Caution

You can be exposed to a potentially hazardous situation which, if not avoided, may result in minor or

The safety messages will tell you what the potential hazard is, tell you how to reduce the chance of injury, and tellyou what can happen if the instructions are not followed.

⚠ WARNING

- 1. This product should be serviced only by trained, qualified personnel.
- 2. Though this product has been manufactured in compliance with:
 - "Federal Performance Standard 21 CFR Subchapter J"(D.H.H.S): U.S.A. models
 - or "Radiation Emitting Devices Act" (Health and Welfare Canada): Canadian models
 - it is very important all repairs should be made in accordance with procedures described in this manual to avoid being exposed to excessive microwave radiation.
- 3. Check for radiation leakage before and after every servicing according to the "procedure for measuring radiation leakage."
- 4. If the unit cannot be repaired on site, advise the customer not to use until unit is repaired.
- 5. Any serviceman who learns of any accident pertaining to microwave radiation leakage including the oven operating with open door should immediately notify the appropriate address listed below and Center for Devices and Radiological Health, DHH\$.

IN U.S.A AND PUERTO RICO (PNA)

Panasonic Corporation of North America Two Riverfront Plaza Newark, NJ 07102

Attention: Technical Hotline

(800)572-2672

IN CANADA Panasonic Canada Inc. (PCI)

5770 Ambler Drive, Mississauga,

Ontario, L4W2T3 (905)624-5010

6. There are special components used in the microwave oven which are important for safety. These parts are marked with a 🛆 on the replacement parts list. It is essential that these critical parts should be replaced only with the manufacture's specified parts to prevent microwave leakage, shock, fire, or other hazards. Do not modify the orginal design.

PRECAUTIONS TO BE OBSERVED BEFORE AND **DURING SERVICING TO AVOID POSSIBLE EXPOSURE** TO EXCESSIVE MICROWAVE ENERGY

- (A) Do not operate or allow the oven to be operated with the door open.
- (B) Make the following safety checks on all ovens to be serviced before activating the magnetron or other microwave source, and make repairs as necessary:
 - (1) Interlock operation
 - (2) Proper door closing
 - (3) Seal and sealing surfaces (arcing, wear, and other damage)
 - (4) Damage to or loosening of hinges and latches.
 - (5) Evidence of dropping or abuse
- (C) Before turning on microwave power for any service test or

- inspection within the microwave generating compartments. check the magnetron, waveguide or transmission line, and cavity for proper alignment, integrity and connections.
- (D) Any defective or misadjusted components in the interlock, monitor, door seal, and microwave generation and transmission systems shall be repaired, replaced, or adjusted by procedures described in this manual before the oven is released to the owner.
- (E) A microwave leakage check to verify compliance with the Federal Performance Standard should be performed on each oven prior to release to the owner.

⚠ CAUTION

About lead free solder (PbF)

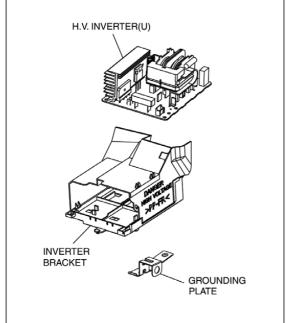
Distinction of PbF PCB: PCBs (manufactured) using lead free solder will have a PbF stamp on the PCB.

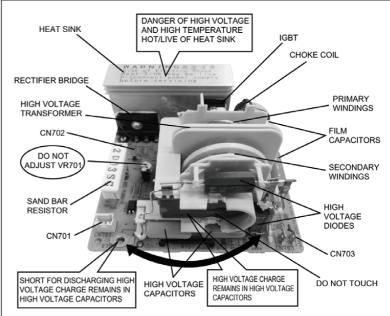
- Caution: Pb free solder has a higher melting point than standard solder; Typically the melting point is 30 40°C higher. Please use a high temperature soldering iron. In case of the soldering iron with temperature control, please set it to $370 \pm 10^{\circ}$ C.
 - Pb free solder will tend to splash when heated too high (about 600°C). Use eyeware protection.

DANGER OF HIGH VOLTAGE AND HIGH TEMPERATURE (HOT/LIVE) OF THE INVERTER POWER SUPPLY (U)

⚠ WARNING

This Inverter board looks like a regular PCB. However, this PCB drives the magnetron tube with extremely high voltage and high current. Take cautionary measures when disassembling and troubleshooting the Inverter circuit. Improper handling can result in an electrical shock or burns, which might lead to injury or death.

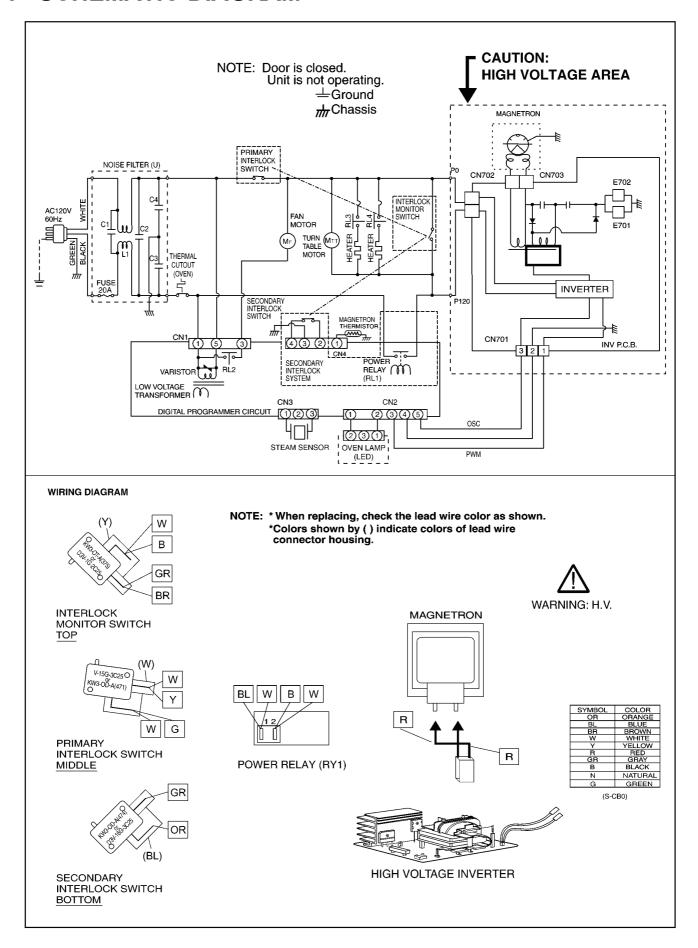

- IT HAS: 1. Very high voltage and high current circuits.
 - It functions the same as the high voltage transformer and high voltage capacitor in ordinary microwave ovens.
 - 2. Aluminum heat sink that is energized with very high voltage and high heat energy.
 - 3. Very high voltage which may remain in circuitry even when oven is off. High voltage charge may remain in the capacitors on the board.


DO NOT:

- Do not touch circuitry because it has very hot (high voltage) circuitry. Even when replacing board, extreme
 care should be taken to avoid possible electric shock hazards. High voltage charge may remain in circuits.
- Do not touch aluminum heat sink because it is energized with very high voltage and is also very hot in high heat energy.
- * 3. Do not try to adjust or tamper with preset control on the Inverter board because it is very dangerous to adjust without proper test equipment.
- 4. Do not test oven while Inverter grounding plate or screws are loose. It is very dangerous to operate H.V. Inverter Circuit (U) with loose mounting screws or if improperly grounded.
- * 5. For USA only:

Do not try to repair Inverter PCB because it is very dangerous to repair. Replace as a complete High Voltage Inverter Circuit unit and return fully re-packed in original shipping box and shipping materials.

INVERTER POWER SUPPLY



CONTENTS

Page	Page
1 SCHEMATIC DIAGRAM5	5.3. Magnetron17
2 DESCRIPTION OF OPERATING SEQUENCE6	5.4. Inverter power supply (U)18
2.1. Variable power cooking control6	5.5. Temperature thermistor18
2.2. Inverter power supply circuit6	6 MEASUREMENTS AND ADJUSTMENTS19
2.3. Inverter defrost6	6.1. Adjustment of primary interlock switch, secondary interlock
2.4. Grill cooking control6	switch and interlock monitor switch19
2.5. Combination Cooking6	6.2. Measurement of microwave output19
2.6. Sensor cooking7	7 PROCEDURE FOR MEASURING MICROWAVE ENERGY
2.7. Sensor reheat7	LEAKAGE20
2.8. Steam sensor and digital programmer circuit8	7.1. Equipment20
3 CAUTIONS TO BE OBSERVED WHEN TROUBLESHOOTING 9	7.2. Procedure for measuring radiation leakage20
3.1. Check the grounding9	7.3. Record keeping and notification after measurement 20
3.2. Inverter warnings9	7.4. At least once a year, have the radiation monitor checked
3.3. Part replacement 10	for calibration by its manufacturer21
3.4. When the 20A fuse is blown due to the malfunction of the	8 TROUBLESHOOTING GUIDE22
interlock monitor switch:10	8.1. (Troubleshooting) Oven stops operation during cooking - 23
3.5. Avoid inserting nails, wire etc. through any holes in the	8.2. (Troubleshooting) Other problems24
unit during operation10	8.3. Troubleshooting of inverter circuit (U) and magnetron 25
3.6. Verification after repair 10	8.4. Trouble related to Digital Programmer Circuit26
3.7. Sharp edges10	8.5. SIMPLE WAY OF H.V. INVERTER/MAGNETRON
4 DISASSEMBLY AND PARTS REPLACEMENT PROCEDURE - 11	TROUBLESHOOTING27
4.1. Magnetron11	8.6. H.V.INVERTER BOARD MAIN PARTS LIST
4.2. Digital programmer circuit (D.P.C)11	(F606Y9X90AP)27
4.3. Low voltage transformer and/or power relays (RY1) 12	8.7. How to check the semiconductors using an OHM meter 28
4.4. Fan motor12	9 EXPLODED VIEW AND PARTS LIST29
4.5. Door assembly12	9.1. EXPLODED VIEW29
4.6. Turntable motor14	9.2. PARTS LIST30
4.7. Quartz heater 14	9.3. ESCUTCHEON BASE ASSEMBLY 32
4.8. Steam sensor15	9.4. DOOR ASSEMBLY 33
4.9. Inverter power supply16	9.5. WIRING MATERIALS34
5 COMPONENT TEST PROCEDURE17	9.6. PACKING AND ACCESSORIES35
5.1. Primary, Secondary Interlock Switch & Power Relay RY1	10 DIGITAL PROGRAMMER CIRCUIT36
17	10.1. SCHEMATIC DIAGRAM36
5.2 Interlock Monitor Switch 17	10.2 PARTS LIST 38

1 SCHEMATIC DIAGRAM

2 DESCRIPTION OF OPERATING SEQUENCE

2.1. Variable power cooking control

High Voltage Inverter Power Supply (U) controls output power by the signal from Digital Programmer Circuit (DPC). Power relay always stay on, but PWM (Pulse Width Modulation) signal controls microwave output power.

NOTE:

The ON/OFF time ratio does not correspond with the percentage of microwave power since approximately 2 seconds are required for heating of magnetron filament.

Variable Power Cooking

variable Power Cooking					
POWER SETTING		OUTPUT POWER(%)	MANUAL MICROWAVE DUTY		
		APPROX.	ON(SEC)	OFF(SEC)	
HIGH	P10	100%	22	0	
	P9	90%	22	0	
	P8	80%	22	0	
MEDIUM-HIGH	P7	70%	22	0	
MEDIUM	P6	60%	22	0	
	P5	50%	22	0	
	P4	40%	22	0	
MEDIUM-LOW	P3	30%	22	0	
	P2	20%	13	9	
	P1	10%	6	16	

2.2. Inverter power supply circuit

The Inverter Power Supply circuit powered from the line voltage, 120V 60Hz AC input supplies 4,000V DC to the magnetron tube, and functions in place of the H.V. transformer, the H.V. capacitor and H.V. diode.

- 1. The AC input voltage 120V 60Hz is rectified to DC voltage immediately.
- 2. DC voltage will be supplied to the switching devices called IGBT. These devices are switched ON-OFF by the 20 to 40 kHz PWM (pulse width modulation) signal from the microcomputer in the DPC.
- 3. This drives the High voltage transformer to increase voltage up to 2,000V AC.
- 4. Then the half-wave doubler voltage rectifier circuit, consisting of the H.V. diodes and capacitors, generates the necessary 4,000V DC needed for the magnetron.
- 5. Output power of the magnetron tube is always monitored by the signal output from the current transformer built into the inverter circuit.
- 6. This signal is fed back to the microcomputer in the DPC to determine operating conditions and output necessary to control PWM signal to the Inverter Power Supply for control of the output power.

2.3. Inverter defrost

When the Auto Control feature is selected and the Start button is tapped:

1. The digital programer circuit determines the power level and cooking time to complete cooking and indicates the operating state in the display window. Table shows the corresponding cooking times for respective serving by categories.

Inverter Turbo Defrost

SELECTED WEIGHT	COOKING TIME
1.0 LB	4 min.00 sec.

When cooking time in the display window has elapsed, the oven turns off automatically by a control signal from the digital programmer circuit.

2.4. Grill cooking control

Grill cooking is accomplished by upper heaters only. One grill cooking cycle is 33 seconds.

1. During grill cooking, the digital programmer circuit controls power relay RL3 & RL4's ON-OFF time. In all three grill cooking categories, power relay RL1 always stay ON, but RL3 & RL4's ON-OFF time are shown in Figure.

GRILL	GRILL (RL3/RL4)		MICROWAVE (DUTY)	
CATEGORY	ON (sec.)	OFF (sec.)	ON (sec.)	OFF (sec.)
1	33	0		
2	24	9	0	33
3	18	15		

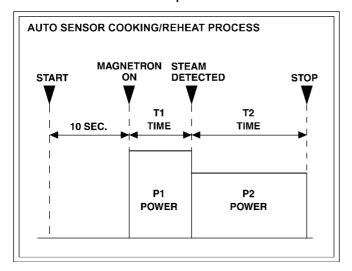
2.5. Combination Cooking

Combination cooking is accomplished by microwave and grill cooking (upper heaters) being done synchronously during one combination cooking cycle. One combination cooking cycle is 33 seconds.

1. During combination cooking, the digital programmer circuit controls power relay RL3/RL4 & RL1's duty ON-OFF time. In all three combination cooking categories, power relay RL3/RL4 & RL1's duty ON-OFF time are as shown in Figure.

COMBIN ATION	GRILL	(RL3)	GRILL	(RL4)	MICRO (DU	
CATEG ORY	ON (sec.)	OFF (sec.)	ON (sec.)	OFF (sec.)	ON (sec.)	OFF (sec.)
1	13	20	33	0	10	12
2	8	25	27	6	22	0
3	8	25	20	13	22	0

2.6. Sensor cooking


Auto sensor cooking without setting a power level or selecting a time. All that is necessary is to select an Auto Sensor Program before starting to cook.

Understanding Auto Sensor Cooking

As the food cooks, a certain amount of steam is produced. If the food is covered, this steam builds up and eventually escapes from the container. In Auto Sensor Cooking, a carefully designed instrument, called the steam sensor element, senses this escape of steam. Then, based upon the Auto Sensor Program selected, the unit will automatically determine the correct power level and the proper length of time it will take to cook the food.

NOTE:

Auto Sensor Cooking is successful with the foods and recipes found in the Auto Sensor Cooking Guide. Because of the vast differences in food composition, items not mentioned in the Cooking Guide should be prepared in the microwave oven using power select and time features. Please consult Variable Power Microwave Cookbook for procedures.

Explanation of the Auto Sensor Cooking process

- 1. During the first 10 second period there is no microwave activity. When calculating the T2 time by using the formula below make sure this 10 seconds is subtracted from the T1 time. In other words, T1 time starts at the end of the 10 second period.
- T1 time The total amount of time it takes the microwave oven to switch to T2 time after the 10second period.
- 3. T2 time When the steam escapes from the cooking container placed in the oven, the steam sensor detects it and the microprocessor calculates the balance of cooking time. This T2 time is then shown in the display and begins counting down.

Balance of cooking time (T2 time)

The balance of cooking time which is called T2 time, can be calculated by the following formula.

T2 time (in sec.) = T1 time X K factor - 150

NOTE:

Remember, the T1 time starts after the 10 second period. The coefficient K is programmed into the microprocessor memory and they are listed in the following tables along with the P1 and P2 powers.

NOTE:

When "More" or "Less" pad is selected, the K factor varies resulting in T2 time to be increased or decreased.

Example of calculating the T2 time

Example 1: If the T1 time is measured to be 2 minutes and 40 seconds after the 10 second period.

 $T2 = T1 \times K$.

= 2 min. and 40 sec. × 1.1

= 160sec. × 1.1

= 176 sec.

Category	P1	P2	K Factor
	Power	Power	Standard
Oatmeal	Power Level P7	Power Level P7	0.3

2.7. Sensor reheat

Auto Sensor Reheat is a quick and easy way to reheat refrigerated and room temperature foods.

Simply press the reheat pad. There is no need to select power level and cooking time.

NOTE:

The Auto Sensor Reheat process is similar as Auto Sensor Cooking process.

Balance of cooking time (T2 time)

The balance of cooking time which is called T2 time, can be calculated by the following formula.

T2 time (in sec.) = T1 time X K factor - 150

NOTE:

Remember, the T1 time starts after the 10 second period. The coefficient K is programmed into the microprocessor memory and they are listed in the following tables along with the P1 and P2 powers.

NOTE:

When "More" or "Less" pad is selected, the K factor varies resulting in T2 time to be increased or decreased.

Example of calculating the T2 time

Example 1: If the T1 time is measured to be 2 minutes and 40 seconds after the 10 second period.

- $T2 = T1 \times K 150 \text{ sec.}$
- = 2 min. and 40 sec. × 1.1 150 sec.
- = 160sec. × 1.1 150 sec.
- = 26 sec.

Category	P1	P2	K Factor
	Power	Power	Standard
Sensor Reheat	Power Level P7	Power Level P7	1

2.8. Steam sensor and digital programmer circuit

In order to determine if the steam sensor function of the digital programmer circuit is working, do the following test.

- 1. Place a water load (150 cc) in the oven.
- 2. Tap Sensor Reheat pad.
- 3. Tap Start pad.
- 4. Steam Sensor detects steam about 1.5 to 4 minutes after the Start pad is tapped.
- 5.T1 time cooking automatically switches to remaining time for cooking (T2).
- The remaining cooking time (T2) appears in display window. If the following cooking time appears, Steam Sensor function is normal.

T1 TIME	T2 TIME (Remainingcooking time)		
50 Sec. ~ 12 Min.	0 Sec. ~ 10 Min.42 Sec.		

3 CAUTIONS TO BE OBSERVED WHEN TROUBLESHOOTING

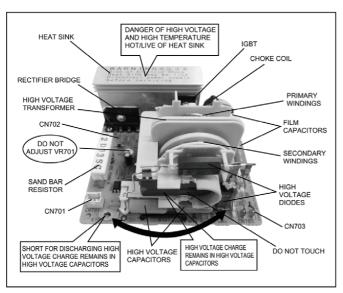
Unlike many other appliances, the microwave oven is a high voltage, high current device. It is free from danger in ordinary use, though extreme care should be taken during repair.

⚠ CAUTION

Servicemen should remove their watches and rings whenever working close to or replacing the magnetron.

3.1. Check the grounding

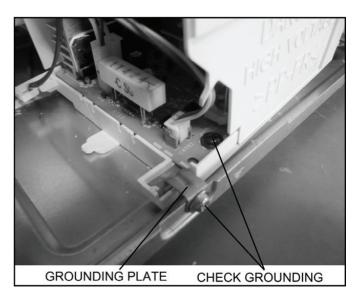
Do not operate on a two wire extension cord. The microwave oven is designed to be grounded when used. It is imperative, therefore, to ensure the appliance is properly grounded before beginning repair work.


3.2. Inverter warnings

\triangle Warning high voltage and high temperature (hot/live) of the inverter power supply (u)

The High Voltage Inverter Power Supply generates very high voltage and current for the magnetron tube. Though it is free from danger in ordinary use, extreme care should be taken during repair.

The aluminum heat sink is also energized with high voltage (HOT), do not touch when the AC input terminals are energized. The power device Collector is directly connected to the aluminum heat sink.


The aluminum heat sink may be HOT due to heat energy, therefore, extreme care should be taken during servicing.

H.V. Inverter warning

\triangle Warning for inverter power supply (U) grounding

Check the High Voltage Inverter Power Supply circuit grounding. The high voltage inverter power supply circuit board must have a proper chassis ground. The inverter grounding plate must be connected to the chassis. If the inverter board is not grounded it will expose the user to very high voltages and cause extreme DANGER! Be sure that the inverter circuit is properly grounded via the inverter grounding plate.

Grounding of the inverter circuit board

⚠ WARNING DISCHARGE THE HIGH VOLATGE CAPACITORS

For about 30 seconds after the oven is turned off, an electric charge remains in the high voltage capacitors of the Inverter Power Supply circuit board.

When replacing or checking parts, remove the power plug from the outlet and short the inverter output terminal of the magnetron filament terminals to the chassis ground with an insulated handle screwdriver to discharge. Please be sure to contact the chassis ground side first and then short to the output terminal.

NSULATED HANDLE SCREWDRIVER MAGNETRON FILAMENT TERMINAl Contact chassis side first then short to the terminal of the magnetron filament terminal.

Discharging the high voltage capacitors

↑ WARNING

There is high voltage present with high current capabilities in the circuits of the primary and secondary windings, choke coil and heat sink of the inverter. It is extremely dangerous to work on or near these circuits with the oven energized. DO NOT measure the voltage in the high voltage circuit including the filament voltage of the magnetron.

⚠ WARNING

Never touch any circuit wiring with your hand or with an insulated tool during operation.

3.3. Part replacement.

When troubleshooting any part or component is to be replaced, always ensure that the power cord is unplugged from the wall outlet.

3.4. When the 20A fuse is blown due to the malfunction of the interlock monitor switch:

⚠ WARNING

When the 20A 120V fuse is blown due to the malfunction of the interlock monitor switch, you must replace components (primary interlock switch, interlock monitor switch and power relay RY1). Also replace the secondary interlock switch when the continuity check reads shorted contacts.

- 1. This is mandatory. Refer to "measurements and adjustments" for the location of these switches.
- 2. When replacing the fuse, confirm that it has the appropriate rating for these models.
- 3. When replacing faulty switches, be sure the mounting tabs are not bent, broken or deficient in their ability to hold the switches.

3.5. Avoid inserting nails, wire etc. through any holes in the unit during operation.

Never insert a wire, nail or any other metal object through the lamp holes on the cavity or any holes or gaps, because such objects may work as an antenna and cause microwave leakage.

3.6. Verification after repair

- After repair or replacement of parts, make sure that the screws of the oven, etc. are neither loosen or missing. Microwave energy might leak if screws are not properly tightened.
- 2. Make sure that all electrical connections are tight before inserting the plug into the wall outlet.
- 3. Check for microwave energy leakage. (Refer to procedure for measuring microwave energy leakage).

CAUTION OF MICROWAVE RADIATION LEAKAGE

USE CAUTION NOT TO BECOME EXPOSED TO RADIATION FROM THE MICROWAVE MAGNETRON OR OTHER PARTS CONDUCTING MICROWAVE ENERGY.

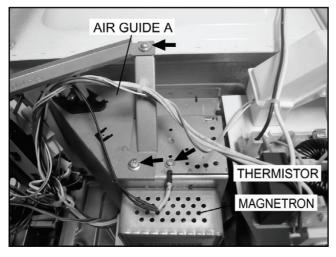
IMPORTANT NOTICE

- 1. The following components have potentials above 2000V while the appliance is operated.
 - Magnetron
 - High voltage transformer (Located on inverter (U))
 - High voltage diodes (Located on inverter (U))
 - High voltage capacitors (Located on inverter (U))

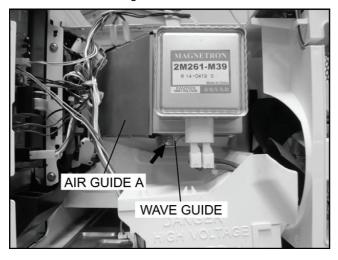
Pay special attention to these areas.

2. When the appliance is operated with the door hinges or magnetron installed incorrectly, the microwave leakage can exceed more than 5mW/cm². After repair or exchange, it is very important to check if the magnetron and the door hinges are correctly installed.

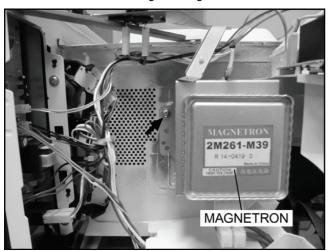
3.7. Sharp edges

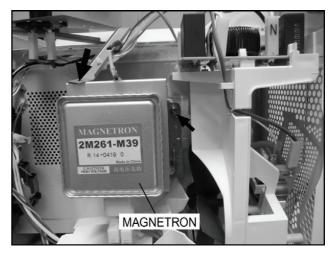

⚠ CAUTION

Please use caution when disassembling or reassembling internal parts. Some exposed edges may be sharp to the touch and can cause injury if not handled with care.


4 DISASSEMBLY AND PARTS REPLACEMENT PROCEDURE

4.1. Magnetron


- 1. Discharge the high voltage capacitor.
- 2. Remove 1 screw holding air guide A on the magnetron.
- 3. Remove 1 screw holding air guide A on cavity top plate.
- 4. Remove 1 screws holding thermistor on the magnetron.



Remove 1 screw holding air guide A on the wave guide, then remove the air guide A.

6. Remove 2 screws holding the magnetron.

NOTE:

After replacement of the magnetron, tighten mounting screws properly, making sure there is no gap between the waveguide and the magnetron to prevent microwave leakage.

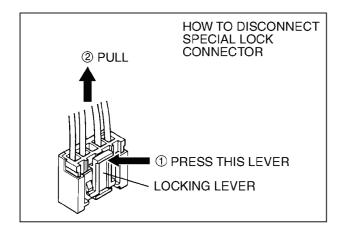
CAUTION

When replacing the magnetron, be sure the antenna gasket is in

4.2. Digital programmer circuit (D.P.C)

⚠ CAUTION:

Be sure to ground any static electric charge built up in your body before handling the DPC.


- 1. Disconnect connector CN701 on H.V. Inverter board.
- 2. Remove 1 screw holding escutcheon base and slide the escutcheon base upward slightly.
- 3. Remove all screws holding D.P.C. board on escutcheon base.
- 4. Separate D.P.C board from tabs on the escutcheon base and remove D.P.C board.

To replace membrane key board

5. Use tools such as kinfe etc. to lift the edge of escutcheon sheet and peel off escutcheon sheet & key board membrane completely from escutcheon base.

NOTE:

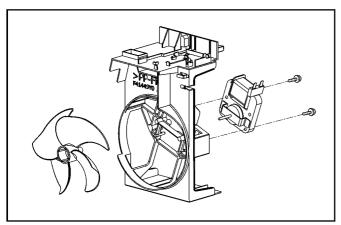
- The membrane key board is attached to the escutcheon base with double faced adhesive tape.
 Therefore, applying hot air such as using a hair dryer is recommended for smoother removal.
- 2. When installing the new key board membrane, make sure that the surface of escutcheon base is clean to prevent a malfunction or shorted contacts.

4.3. Low voltage transformer and/or power relays (RY1)

⚠ CAUTION:

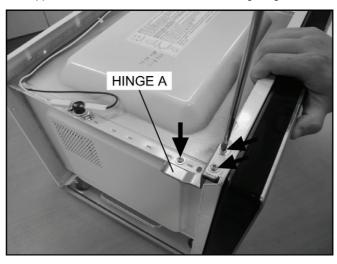
Be sure to ground any static electric charge built up in your body before handling the DPC.

- 1. Replace D.P.C. board.
 - (A) Using solder wick or a desoldering tool and 30W soldering iron carefully remove all solder from the terminal pins of the low voltage transformer and/or power relays.


⚠ CAUTION:

Do not use a soldering iron or desoldering tool of more than 30 watts on D.P.C. contacts.

(B) With all the terminal pins cleaned and separated from D.P.C. contacts, remove the defective transformer/power relays, Replace components making sure all terminal pins are inserted completely resolder all terminal contacts carefully.


4.4. Fan motor

- 1. Disconnect 2 lead wires from fan motor terminals.
- 2. Remove 2 screws at location on oven attaching orifice assembly.
- 3. Remove orifice assembly from oven assembly.
- Remove fan blade from the fan motor shaft by pulling it straight out.
- 5. Remove 2 screws holding fan motor to orifice.

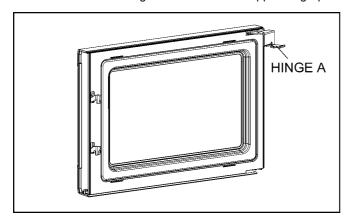
4.5. Door assembly

1. Support the door, remove 3 screws holding hinge A.

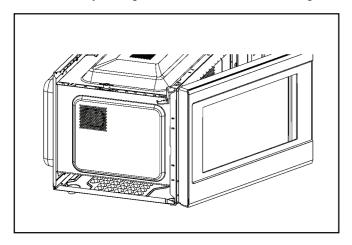
2. Open the door, remove door(U) and hinge A from cavity.
NOTE:

Support the door before opening.

- 3. Remove door C from door A (U) & door E by carefully pulling outward starting from upper right hand corner using a flat blade screwdriver.
- 4. Separate door E from tabs on door A (U) and remove door
- 5. Remove door key and door key spring from door E.


6. Replace other components.

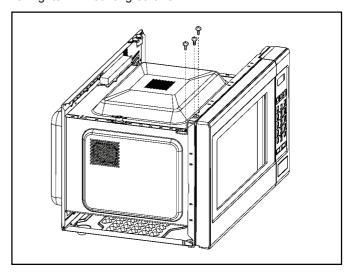
To re-install components:


NOTE:

After replacement of the defective component parts of the door, reassemble it properly and adjustment so as to prevent an excessive microwave leakage. Adjustment of the door assembly (Refer page 17).

7. Place the hole of hinge A into the door's upper hinge pin.

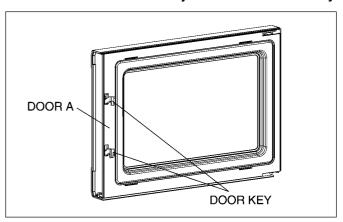
8. Use your left index finger to support the door's lower hinge pin while guiding the door's hinge A into the cavity slot. Then lower your finger to seat the door onto the hinge.

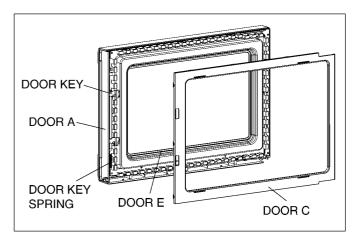

NOTE:

Door alignment is crucial. If door is misaligned, apply pressure until alignment is achieved.

NOTE:

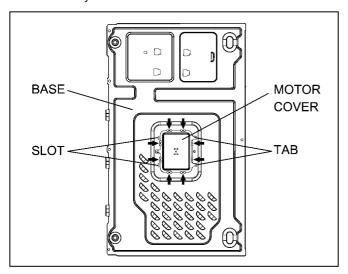
Adjust so that the upper portion of the door will touch firmly to the oven cavity front plate, without pushing the door. If the door assembly is not mounted properly, microwave power may leak from the clearance between the door and oven.


9. Tighten 2 mounting screws.

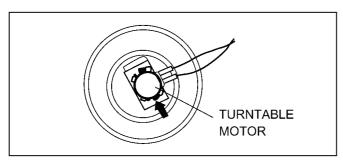


Be sure the gap between door E and cavity front plate will be $0.3\sim0.7$ mm.

NOTE:


Always perform the microwave leakage measurement test after installation and adjustment of door assembly.

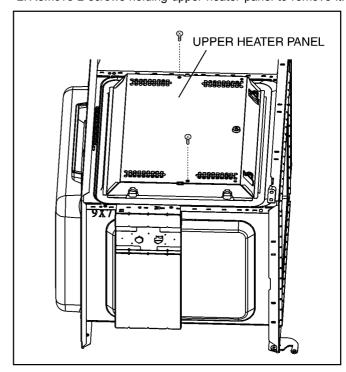
4.6. Turntable motor


1. Remove the motor cover by breaking off at the 8 spots indicated by arrows with a cutter or the like.

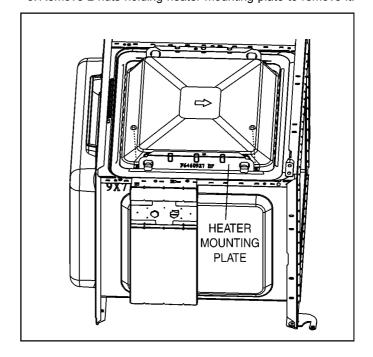
⚠ NOTE:

After removing the motor cover, be sure that cut portions are properly trimmed or bent to the inside so that no sharp edges will be exposed to outside.

- 2. Disconnect 2 lead wires connected to the turntable motor.
- 3. Remove the turntable motor by removing screw.



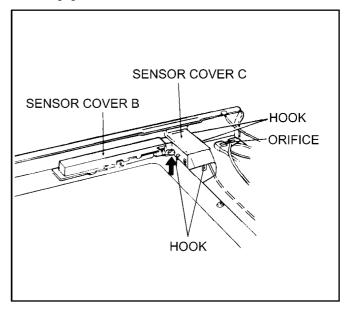
⚠ NOTE:


After reinstalling the new turntable motor and reconnecting the 2 lead wires, reinstall the motor cover by rotating it around 180, tucking the 2 tabs under the base in the 2 provided slots, then screw the single tab to the base using a 4mm × 6mm screw.

4.7. Quartz heater

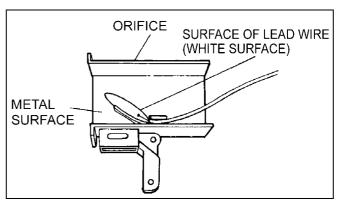

- 1. Disconnect lead wires from both side of heater terminals.
- 2. Remove 2 screws holding upper heater panel to remove it.

3. Remove 2 nuts holding heater mounting plate to remove it.



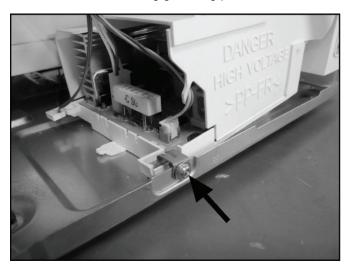
4. Remove the heater by pulling it out from the cavity left side.

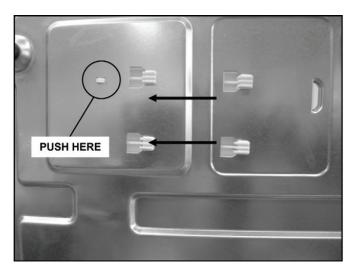
4.8. Steam sensor


- 1. Disconnect connector CN2 from digital programmer circuit board.
- 2. Disengage catch hooks on sensor cover C from orifice.

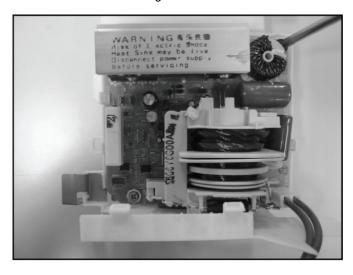
3. Remove steam sensor from orifice.

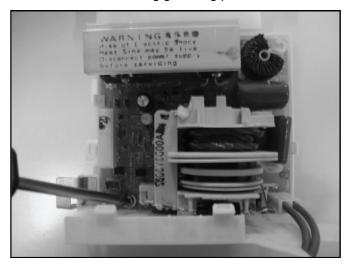
⚠ NOTE:


When installing the steam sensor, make sure that the direction of steam sensor is as shown in figure.


4.9. **Inverter power supply**

CAUTIONS


- Always leave the grounding plate in place.
 Always securely tighten the ground screw through the bottom of the chassis (base).
- 3. Securely connect 3 lead wire connectors.
- 4. Make sure the heat sink has enough space (gap) from the oven. Take special care not to dress any lead wire over the aluminum heat sink because it is hot.
- 1. Discharge high voltage charge.
- 2. Remove the H.V.lead wire from magnetron terminals.
- 3. Disconnect 2 connectors from CN701 & CN702 on H.V.Inverter(U).
- 4. Remove 1 screw holding grounding plate to the base.


5. Press 1 encircled locking tab and then slide 4 locking tabs of Inverter bracket at the bottom of the base in direction of arrows.

6. Remove 1 screw holding H.V.Inverter to Inverter bracket.

7. Remove 1 screw holding grounding plate to H.V. Inverter.

8. Seperate H.V. Inverter from Inverter bracket by freeing 3 catch hooks on the Inverter bracket.

5 COMPONENT TEST PROCEDURE

⚠ WARNING

- High voltage is present at the output terminals of the High Voltage Inverter (U) including aluminum heat sink during any cook cycle.

 It is poither processory nor advisable to attempt measurement of the
- 2. It is neither necessary nor advisable to attempt measurement of the high voltage.
- Before touching any oven components, or wiring, always unplug the power cord and discharge the high voltage capacitors (see page 8).

5.1. Primary, Secondary Interlock Switch & Power Relay RY1

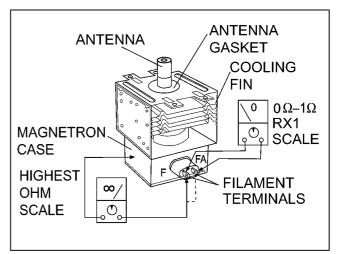
- 1. Unplug lead connectors to Power Relay RY1 and verify open circuit of the Power Relay RY1 1-2 terminals.
- 2. Unplug lead connectors to Primary Interlock Switch and Secondary Interlock Switch.
- 3. Test the continuity of switches at door opened and closed positions with ohm meter (low scale).

Normal continuity readings should be as follows.

	Door Closed	Door Opened
Primary Interlock Switch	0Ω (Close)	$\infty\Omega(Open)$
Secondary Interlock Switch	0Ω (Close)	$\infty\Omega(Open)$
Power Relay RY1	_∞ Ω (Open)	$\infty\Omega(Open)$

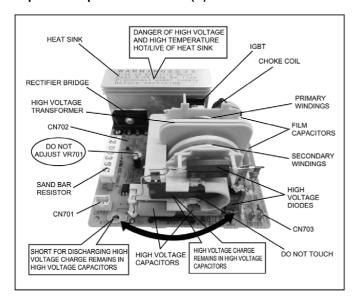
5.2. Interlock Monitor Switch

- 1. Unplug lead wires from Inverter Power Supply (U) primary terminals.
- 2. Connect test probes of ohm meter to the disconnected leads that were connected to Inverter Power Supply (U).
- Test the continuity of Interlock Monitor Switch with door opened and closed positions using lowest scale of the ohm meter.


Normal continuity readings should be as follows.

Door Opened	Door Closed
0Ω (Close)	$\infty\Omega$ (Open)

5.3. Magnetron


Continuity checks can only indicate an open filament or a shorted magnetron. To diagnose for an open filament or shorted magnetron.

- Isolate magnetron from the circuit by disconnecting the leads.
- A continuity check across magnetron filament terminals should indicate one ohm or less.
- 3. A continuity check between each filament terminal and magnetron case should read open.

5.4. Inverter power supply (U)

DO NOT try to REPAIR H.V. Inverter power supply (U). Replace complete H.V. Inverter(U) Unit.

WARNING: HIGH VOLTAGE

Test if failure codes H95, H97 or H98 appear when performing the following procedure. It is recommended to use an AC line input current ammeter for testing.

Test 1

- 1. With the oven unit's AC power supply cord is unplugged from the wall outlet, unplug the 2 pin H.V. connector CN703 from the magnetron tube.
- 2. Place 1 liter of water load into oven cavity.
- 3. Plug in the oven's AC power supply cord into outlet.
- 4. Program DPC.
 - a. Press Timer/Clock button twice.
 - b. Press Start button once.
 - c. Press Power Level button once.
- 5. Program oven at High power for 1 minute and press [Start] button.
 - a. After approximately 23 seconds, oven stops operating.
 - b. During oven operation, the input current is approximately 0.5 to 1A. If both a and b are OK, proceed to test 2.

	INPUT CURRENT	FAILURE CODE
Unplug CN703	0.5 to 1A	Oven stops in 23 seconds after started.

Test 2

Continued from Test 1

- 1. Unplug the oven's AC power supply cord from outlet.
- 2. Unplug 3 pin connector CN701. CN703 remains unplugged.
- 3. Plug in the oven's AC power supply cord into outlet.
- 4. Program DPC.
 - a. Press Timer/Clock button twice.
 - b. Press Start button once.
 - c. Press Power Level button once.

- Program oven at High power for 1 minute and press [Start] button.
 - a. After approximately 3 seconds, oven stops operating.
 - b. During oven operation, the input current is approximately 0.4A.

	INPUT CURRENT	FAILURE CODE
Unplug CN701	≈ 0.4A	Oven stops in 3
		seconds after started.

If both a and b check OK, the Inverter Power Supply (U) can be determined to be OK.

5.5. Temperature thermistor

The thermistor that is attached to the magnetron detects the temperature of the magnetron and will stop magnetron operation when overheating is detected. A normal thermistor's resistance is $35 \mathrm{K}\Omega$ to $110 \mathrm{K}\Omega$ for an ambient temperature range of 10-30 degree C.

If the resistance reading is out of the range stated here, the thermistor is detective and must be replaced.

It is also possible to display thermistor level by taking the following steps.

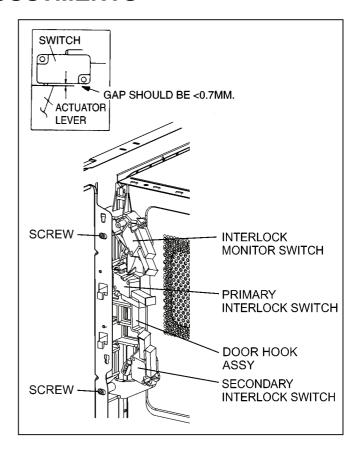
- Program the DPC into TEST MODE
 Plug-in oven → press Time/Clock twice → press Start once → press Power Level once.
- 2. Program oven at Standing Time for 1 minute and press [Start] button.
- 3. Press Power Level 4 times, the thermistor level reading will shown on the display.

The normal reading should be in the range of 20-200.

6 MEASUREMENTS AND ADJUSTMENTS

△ WARNING

- * For continued protection against radiation hazard, replace only with identical replacement parts (For touch models part No. J61415G10XN, Type No. V-15G-3C25 for primary interlock switch; Part No. F61415U30XN, Type No. KW3-OD-A(474) for secondary interlock switch and Part No. F61785U30XN, Type No. KW3-OT-A(375) for interlock monitor switch.)
- * When the 20 Amp. fuse is blown due to the malfunction of the interlock monitor switch, you must replace power relay RY1 (part No. K6B1AYY00129, Type No. JQC-25F), the primary interlock switch and the interlock monitor switch. Also replace the secondary interlock switch when the continuity check reads shorted contacts. Then follow the installation procedures below.
- * Interlock switch replacement: In replacing faulty switches, be sure mounting tabs are not bent, broken or otherwise deficient in their ability to hold the switches.
- * Refer to schematic diagram to ensure proper connection.


6.1. Adjustment of primary interlock switch, secondary interlock switch and interlock monitor switch.

 Mount the Primary Interlock Switch, the Secondary Interlock Switch and the Interlock Monitor Switch to the door hook assembly as shown in illustration.

NOTE:

No specific individual adjustments during installation of the Primary Interlock Switch, Secondary Interlock Switch or Interlock Monitor Switch to the door hook are required.

- 2. When mounting the door hook assembly to the oven assembly, adjust the door hook assembly by moving it in the direction of the arrows in the illustration so that the oven door will not have any play in it. Check for play in the door by pulling the door assembly. Make sure that the latch keys move smoothly after adjustment is completed. Completely tighten the screws holding the door hook assembly to the oven assembly.
- 3. Reconnect the interlock monitor switch and check the continuity of the monitor circuit and all interlock switches again by following the component test procedures.

6.2. Measurement of microwave output

The output power of the magnetron can be determined by performing IEC standard test procedures. However, due to the complexity of IEC test procedures, it is recommended to test the magnetron using the simple method outlined below.

Necessary Equipment:

- *1 liter beaker *Glass thermometer
- *Wrist watch or stopwatch

NOTE:

Check the line voltage under load. Low voltage will lower the magnetron output. Take the temperature readings and heating time as accurately as possible.

- 1. Fill the beaker with exactly one liter of tap water. Stir the water using the thermometer and record the water's temperature. (recorded as T1).
- Place the beaker on the center of glass tray.Set the oven for High power and heat it for exactly one minute.
- Stir the water again and read the temperature of the water. (recorded as T2).
- 4. The normal temperature rise at High power level for each model is as shown in table.

TABLE ((1L	<u>-1min.</u>	test)	

RATED OUTPUT	TEMPERATURE RISE
1200W	Min. 18.5°F(10.3°C)

7 PROCEDURE FOR MEASURING MICROWAVE ENERGY LEAKAGE

△ WARNING

Check for radiation leakage after every servicing. Should the leakage be more than 2 mW/cm² (1mW/cm² for Canada) inform PNA or PCI immediately. After repairing or replacing any radiation safety device, keep a written record for future reference, as required by D.H.H.S. and Health and Welfare Canada regulation. This requirement must be strictly observed. In addition, the leakage reading must be recorded on the service repair ticket while in the customer's home.

NOTE:

The U.S. Government standard is 5 mW/cm² while in the customer's home. 2mW/cm² stated here is our own voluntary standard. (1mW/cm² for Canada)

7.1. Equipment

- Electromagnatic radiation monitor
- Glass thermometer 212°F or 100°C
- 600cc glass beaker

7.2. Procedure for measuring radiation leakage

Note before measuring:

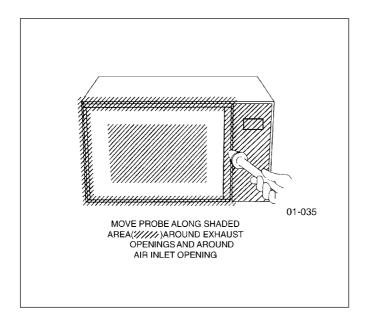
- Do not exceed meter full scale deflection. Leakage monitor should initially be set to the highest scale.
- To prevent false readings, the test probe should be held by the grip portion of the handle only and moved along the shaded area in Figure no faster than 1 inch/sec (2.5cm/sec).
- Leakage with the outer panel removed: less than 5mW/cm².
- Leakage for a fully assembled oven with door normally closed: less than 2mW/cm² (1mW/cm² for Canada).
- Leakage for a fully assembled oven [Before the latch switch (primary) is interrupted] while pulling the door: less than 2mW/cm².
- 1. Pour 275 ± 15cc (9ozs^s± 1/2oz) of 20°C ± 5°C (68° ± 9°F) water in a beaker which is graduated to 600cc, and place in the center of the oven.
- Set the radiation monitor to 2450MHz and use it following the manufacturer's recommended test procedure to assure correct results.
- 3. When measuring the leakage, always use the 2 inch (5cm) spacer supplied with the probe.
- 4. Tap the [Start] pad or set the timer and with the magnetron oscillating, measure the leakage by holding the probe perpendicular to the surface being measured.

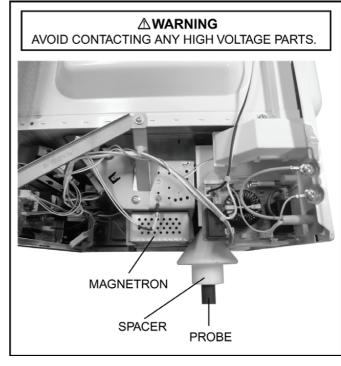
7.2.1. Measurement with the outer panel removed.

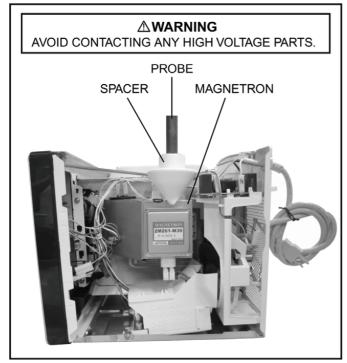
Whenever you replace the magnetron, measure for radiation leakage before the outer panel is installed and after all necessary components are replaced or adjusted. Special care should be taken in measuring around the magnetron.

△ WARNING

Do not touch any high voltage parts. Doing so can lead to personal injury or death.


7.2.2. Measurements with a fully assembled oven.


After all components, including outer panel are fully assembled, measure for radiation leakage around the door periphery, the door viewing window, the exhaust opening, control panel and air inlet openings.


7.3. Record keeping and notification after measurement

- After any adjustment or repair to a microwave oven, a leakage reading must be taken. Record this leakage reading on the repair ticket even if it is zero.
- A copy of this repair ticket and the microwave leakage reading should be kept by repair facility.
- Should the radiation leakage be more than 2 mW/cm² (1mW/cm² for Canada) after determining that all parts are in good condition, functioning properly, and genuine replacement parts as listed in this manual have been used, immediately notify PNA or PCI.

7.4. At least once a year, have the radiation monitor checked for calibration by its manufacturer.

8 TROUBLESHOOTING GUIDE

DANGER: HIGH VOLTAGES \land

- 1. DO NOT RE-ADJUST PRESET CONTROL on the H.V.Inverter (U). It is very dangerous to repair or adjust without proper test equipment because this circuit generates very large current and high voltage. Operating a misaligned inverter circuit is dangerous.
- Ensure proper grounding before troubleshooting.
- 3. Be careful of the high voltage circuitry, taking necessary precautions when troubleshooting.
- 4. Discharge high voltage remaining in the H.V.Inverter (U).
- 5. When checking the continuity of the switches or the H.V.Inverter, disconnect one lead wire from these parts and then check continuity with the AC plug removed. Doing otherwise may result in a false reading or damage to your meter. When disconnecting a plastic connector from a terminal, you must hold the plastic connector instead of the lead wire and then disconnect it, otherwise lead wire may be damaged or the connector cannot be removed.
- 6. Do not touch any parts of the circuitry on the digital programmer circuit, since static electric discharge may damage this control panel. Always touch ground while working on this panel to discharge any static charge in your body.
- 7. 120V AC is present on the digital programmer circuit (Terminals of power relay's and primary circuit of Digital Programmer Circuit). When troubleshooting, be cautious of possible electrical shock hazard.

Before troubleshooting, operate the microwave oven following the correct operating procedures in the instruction manual in order to find the exact cause of any trouble, since operator error may be mistaken for the oven's malfunction.

H97 & H98 error code display

If 3 times H97 or 2 times H98 exist, microwave oven can not be used any more, even if the defective parts already be replaced & un-plug and plug-in again.

How to reset for the service:

Please take the following steps

- 1. Plug-in oven.
- 2. Press Stop/Reset button once.
- 3. Open the door.
- 4. Keep pressing Start button for more than 2 seconds until buzzer beeps.
- 5. Press Stop/Reset button three times.
- 6. Press Power Level button once, oven will show the total number of occurrence of H97 & H98.
- 7. Keep pressing Start button for more than 2 seconds (until buzzer beeps) to reset.
- 8. While finish resetting, one beeps, and show "End".
- 9. Press Stop/Reset to return to initial stage.

Magnetron usage time display

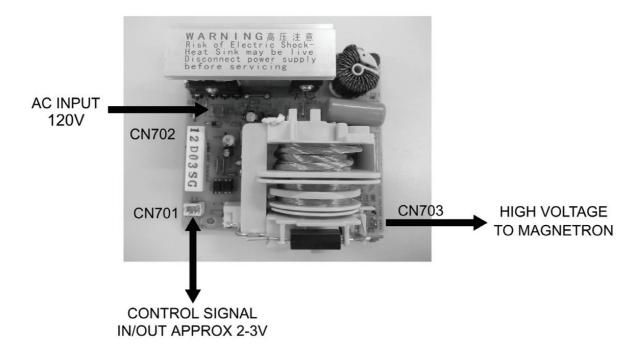
Oven has magnetron usage time display function but it will not be activated in normal operation mode.

To show magnetron usage time result, please take the following steps:

- 1. Plug-in oven.
- 2. Press Stop/Reset button once.
- 3. Open the door.
- 4. Keep pressing Start button for more than 2 seconds until buzzer beeps.
- 5. Press Stop/Reset button three times, oven will show the total usage time of magnetron.

(note1:the magnetron usage time is kept in L.S.I. memory.)

(note2:Magnetron usage time display is in hours.)

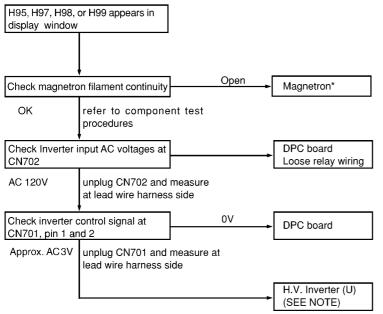

NOTE:

To clear the recorder of L.S.I. memory.

- a. Press Start button for more than 2 seconds until buzzer beeps.
- b. While finish resetting, one beeps and show "End".
- c. Press Stop/Reset to return to initial stage.

8.1. (Troubleshooting) Oven stops operation during cooking

	SYMPTOM	CAUSE	CORRECTIONS
1.	Oven stops in 3 seconds after pressing [Start] button		Interlock Switch Power relay RY1 Loose lead wire connector CN701, CN702 H.V. Inverter (U)
	Oven stops in 23 seconds after pressing [Start] button		Magnetron Loose lead wire connector CN703 H.V. Inverter (U)
	Oven stops in 10 seconds after pressing [Start] button (Auto sensor cooking)		Steam sensor DPC Open or loose wiring of sensor terminal from connector CN2 on DPC
2.	No display and no operation at all. Fuse is blown.	Most probably loose connection of connectors, or door latch mechanism is not adjusted properly	Allign door, Door Interlock Switches Loose wiring connectors

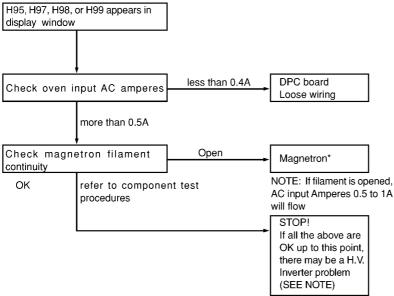


8.2. (Troubleshooting) Other problems

	SYMPTOM	CAUSE	CORRECTIONS
1.	Oven is dead.	Open or loose lead wire harness	
	Fuse is OK.	2. Open thermal cutout / thermistor	Check thermal cutout is defective.
	No display and no operation at all.	Open low voltage transformer	
		4. Defective DPC	
2.	No display and no operation at all.	Shorted lead wire harness	Check adjustment of primary, secondary
	Fuse is blown.	Defective primary interlock switch	interlock switch and interlock monitor switch
		Defective interlock monitor switch (NOTE 1)	including door.
		4. Defective Inverter Power Supply (U)	
		NOTE 1:	
			interlock monitor switch and power relay RY1).
_	Over deep not appent key input	Key input is not in proper sequence	en the continuity check reads shorted contacts. Refer to operation procedure.
3.	Oven does not accept key input (Program)	1 ' ' ' ' '	
	· · ·	2. Defective DPC or defective light touch switch	Refer to DPC troubleshooting.
4.	Fan motor turns on when oven is plugged in with door closed.	Misadjustment or loose wiring of secondary interlock switch	Adjust door and interlock switches.
		Defective secondary interlock switch	
		3. Door switch CN4	
5.	Timer starts count down but no	Off-alignment of primary interlock switch	Adjust door and interlock switches.
	microwave oscillation. (No heat while oven lamp and fan	Open or loose connection of high voltage	
	motor turn on)	circuit especially magnetron filament circuit NOTE:	
		Large contact resistance will cause lower	
		magnetron filament voltage and cause	
		magnetron to have lower output and/or be	
		intermittent.	
		Defective high voltage component	Check high voltage component according to
		H.V. Inverter Power Supply (U)	component test procedure and replace if it is
		Magnetron	defective.
		4. Open or loose wiring of power relay RY1	
		Defective primary interlock switch Defective DPC or power relay RY1	Pofor to DDC troublesheating
6	Oven can program but timer does not	Delective DPC of power relay K i Open or loose wiring of secondary interlock	Refer to DPC troubleshooting
0.	start countdown.	switch	
		2. Off-alignment of secondary interlock switch	
_		Defective secondary interlock switch	
7.	Microwave output is low. Oven takes	Decrease in power source voltage	Consult electrician
	longer time to cook food.	Open or loose wiring of magnetron filament circuit.(Intermittent oscillation)	
		Aging change of magnetron	
8.	Fan motor turns on and turntable	Aging change of magnetion Low voltage transformer on DPC.	+
0.	motor rotates when door is opened.		
9.	Oven does not operate and return to	Defective DPC	Check grounding connector on escutcheon
	plugged in mode as soon as [Start] button is pressed.		base.
10	Loud buzzing noise can be heard.	Loose fan and fan motor	
	Heater does not turn on.	Open or loose wiring of heater	
	and a document on .	Defective heater	
		Defective nearer Defective power relay	
		4. Defective DPC	
12	Turntable motor does not rotate.	Open or loose wiring of turntable motor	
		Defective turntable motor	
13.	Oven stops operation during cooking.	Open or loose wiring of primary and	Adjust door and interlock switches.
		secondary interlock switch	
		2. Operation of thermal cutout	

8.3. Troubleshooting of inverter circuit (U) and magnetron

This oven is programmed with a self diagnostics failure code system which will help for troubleshooting. H95, H97, H98 and H99 are the provided failure codes to indicate magnetron and inverter circuit problem areas. This section explains failure codes of H95, H97, H98 and H99. First, you must program the DPC into TEST MODE, press $\boxed{\text{Timer/Clock}}$ button twice \rightarrow press $\boxed{\text{Start}}$ button once \rightarrow press $\boxed{\text{Power Level}}$ button once. Program unit for operation. H95, H97, H98, H99 appears in display window a short time after [Start] pad is pressed and there is no microwave oscillation.


⚠ WARNING: DO NOT try to repair this Inverter Power Supply (U) and also DO NOT RE-ADJUST PRESET CONTROL on the board. It is very dangerous to repair or adjust without proper test equipment because this circuit generates very high voltage and very large current. Off alignment of inverter board operation is dangerous. Operating a misaligned Inverter circuit is dangerous due to the very high voltage and current that is produced by this board. Defective boards must be replaced with a new one.

 Check magnetron filament for open or short to case before proceeding to determine a good magnetron.

NOTE: After check, unplug unit to reset to normal operation mode.

Alternate way to troubleshoot oven with AC Ampere meter used

H95, H97, H98, H99 appears in display window a short time after [Start] button is pressed and no microwave oscillation with AC Ampere meter used for troubleshooting.

NOTE: After check, unplug unit to reset to normal operation mode.

8.4. Trouble related to Digital Programmer Circuit

SYMPTOM	STEP	CHECK	RESULT	CAUSE/CORRECTIONS
No display when oven is first plugged in	1	Fuse pattern of D.P.C., FUSE1	Normal	→Step2
			Open	Replace D.P.C. or Fuse Pattern or FUSE
	2	Low voltage transforment (L.V.T.)	Abnormal 0V	L.V.T. (T10)
		secondary voltage	Normal	→Step3
	3	IC1 pin 13 voltage/IC10 pin voltage	Abnormal	IC10
			Normal=5V	IC1, Display
No key input	1	Touch switch continuity	Abnormal	Touch switch
			Normal	IC1
No beep sound	1	IC1 pin 49 voltage	Abnormal	IC1
			Normal=5V	BZ210, Q210
No microwave oscillation at any power		re r par es remiges mane aparement at mgm	Abnormal	IC1
			Normal=5V	→Step2
	2	Collector of Q227 voltage	Abnormal	Q227 and/or Q225, Q226
			Normal _≈ 0.7V	→Step3
	3	Short circuit between collector of Q227	Still not turn on	RL1
		and emitter of Q225	RL1 turns on	Q227 and/or Q225, Q226
Dark or unclear display	1	Replace display and check operation	Normal	Display
			Abnormal	IC1
Missing or lighting of unnecessary	1	Replace IC1 and check operation	Normal	IC1
segment			Abnormal	Display
H95/H97/H98 appears in window and oven stops operation.Program High	1	Unplug CN702 (2 pin) connector and measure voltage between terminals	Abnormal=0V	 Interlock Switch D.P.C. /Power Relay
power for 1 minute and conduct			Normal=120V	→Step2
following test quickly, unless H95/H97/H98 appears and oven stops	2	Unplug CN701 (3 pin) connector and	Abnormal=0V	D.P.C.
		measure pin1 voltage	Approx. AC 3V	Magnetron

8.5. SIMPLE WAY OF H.V. INVERTER/MAGNETRON TROUBLESHOOTING

Purpose:

Simple way (3/23 seconds rule) of identifying whether it's Magnetron, Inverter or others.

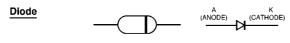
Set-up

The unit under question is connected through the Ammeter as shown below.

Procedure:

Follow the matrix table below to identify the problem source.

Note:


Do not replace both Inverter board and Magnetron simultaneously and automatically without going through this procedure.

Power will:	Ammeter reading is:	To do:	Remedy:
Shut off in 23 seconds after "Start".	1. Between 0.5A and 1.0A.		Open magnetron wiring between Inverter and magnetron terminal.
	2. Between 1.0A and 2.0A.	Check continuity of D702 in Inverter PCB.	
		<	
		1. D702 shorted	Replace H.V.Inverter(F606Y9X90AP)
		2. D702 is OK	Replace magnetron
Shut off in 3 seconds after "Start"		Check open circuit: Interlock Switch, DPC, Power Relay and CN701	Replace defective component(s), or correct switch, cables and connectors.

8.6. H.V.INVERTER BOARD MAIN PARTS LIST (F606Y9X90AP)

Ref. No.		Part No.	Part Name & Description	Pcs/Set	Remarks
DB701		B0FBCR000004	BRIDGE DIODE	1	20A,600V
L701		F5020W100AP	CHOKE COIL	1	
Q701		B1JAGV000017	TRANSISTOR SI	1	1150V
T701	Δ	F609A8X00AP	H.V. TRANSFORMER	1	Including:C706,C707,D701,D702
C701		F0C2H284A020	CAPACITOR	1	0.28µF/600VDC
C702		F0C2E455A331	CAPACITOR	1	4.5µF/250VDC

8.7. How to check the semiconductors using an OHM meter

	FORWARD	REVERSE
A-K	SMALL	∞

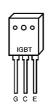
<u>Transistor</u> NPN Transistor

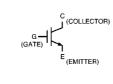
2SC...... 2SD......

	FORWARD	REVERSE
B-E	SMALL	∞
B-C	SMALL	8
C-E	8	8

PNP Transistor
2SA······
2SB······

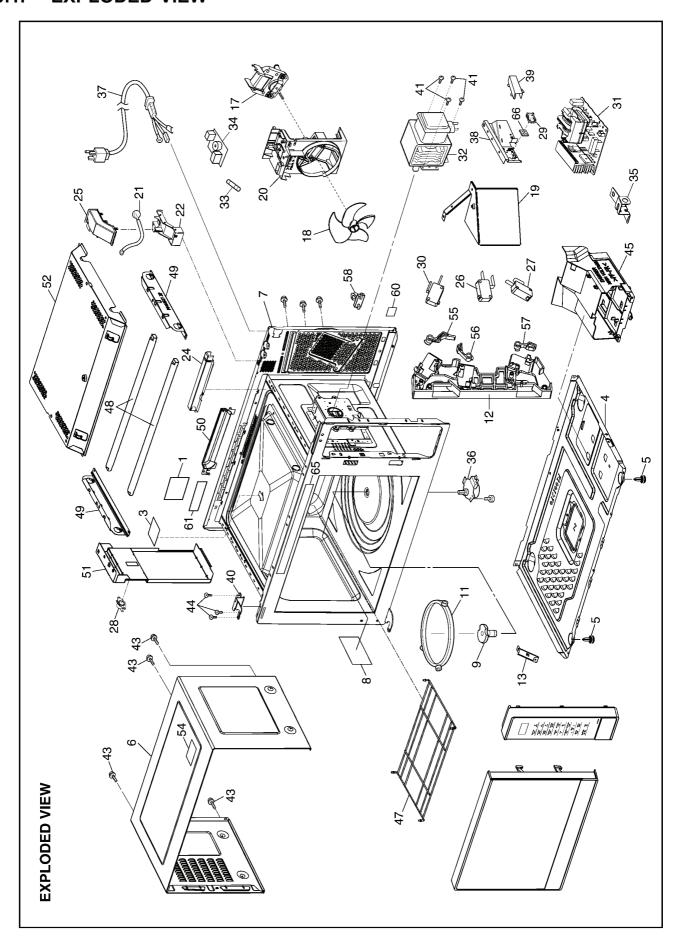
	FORWARD	REVERSE
B-E	SMALL	∞
C-B	SMALL	∞
C-E	8	∞


Digital Transistor PNP Transistor



	FORWARD	REVERSE
E-B	10kΩ ~ 30kΩ	10k Ω ~ 30k Ω
C-B	50kΩ ~ 90kΩ	∞
C-E	40kΩ ~ 80kΩ	∞

$\frac{\text{IGBT}}{\text{(INSULATED GATE BIPOLAR TRANSISTOR)}}$



	FORWARD	REVERSE		
E-C	SMALL	∞		
E-G	∞	∞		
C-G	∞	∞		

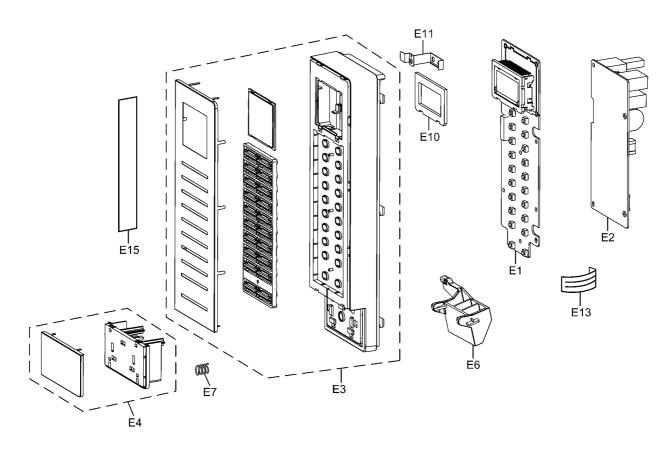
9 EXPLODED VIEW AND PARTS LIST

9.1. EXPLODED VIEW

9.2. PARTS LIST

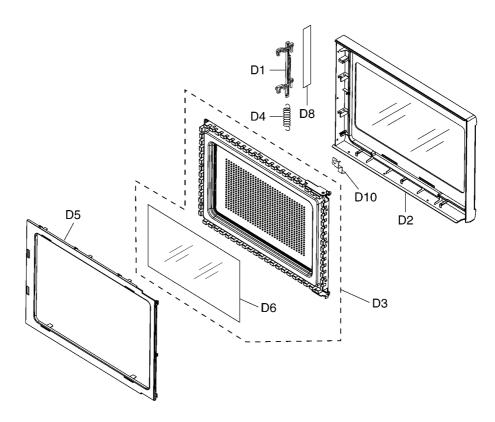
NOTE:

- 1. When ordering replacement part(s), please use part number(s) shown in this part list. Do not use description of the part.
- 2. Important safety notice:

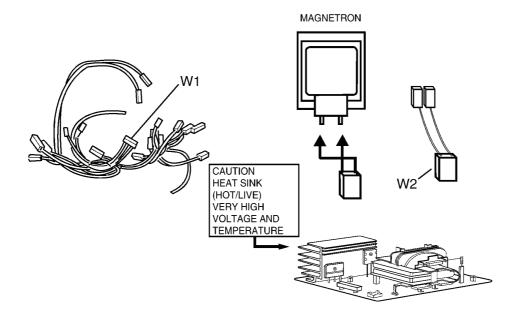

Components identified by $\underline{\Lambda}$ mark have special characteristics important for safety.

When replacing any of these components, use only manufacture's specified parts.

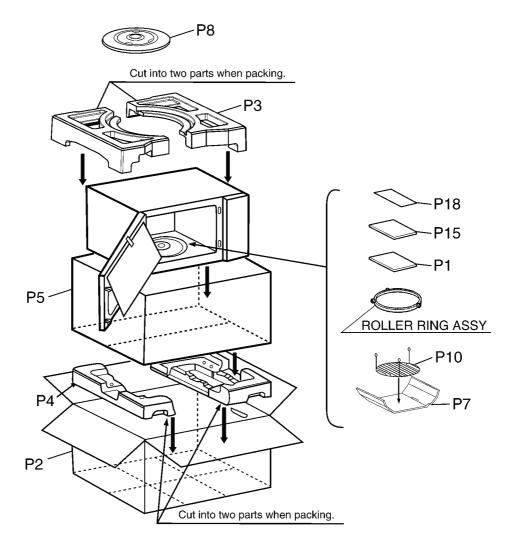
Ref. No.		Part No.	Part Name & Description	Pcs/Set	Remarks
1					Remairs
		F00064W70AP	CAUTION LABEL	1	
3		F00339Y00AP	FUSE LABEL	1	
4		F10019Y00AP	BASE	1	
5		F10089W40HPS	RUBBER FOOT	2	
6		F10099Y00SCP	CABINET BODY (U)	1	
7	⚠	F200ACB20SYU	OVEN (U)	1	
8		F20559Y00AP	COVER	1	
9		F21319Y00AP	PULLY SHAFT	1	
11		F290D6W50XP	ROLLER RING (U)	1	
12	\triangle	F30209X70EP	DOOR HOOK	1	
13		F11619Y00AP	REINFORCEMENT BRACKET	1	
17		F400A9Y30AP	FAN MOTOR	1	
18		F40089Y00AP	FAN BLADE	1	
19		F4025CA00QP	AIR GUIDE A	1	
20		F41449Y00AP	ORIFICE	1	
				_	
21		J607S4T00AP	STEAM SENSOR	1	
22		F64499X70EP	SENSOR COVER A	1	
24		F64509X70EP	SENSOR COVER B	1	
25		F65439X70EP	SENSOR COVER C	1	
				_	
26	<u> </u>	J61415G10XN	MICRO SWITCH	1	(PRIMARY INTERLOCK SWITCH)
27	<u> </u>	F61415U30XN	MICRO SWITCH	1	(SECONDARY INTERLOCK SWITCH)
28		F6145-1F90	THERMAL CUTOUT	1	
29		F612ECB00AP	LAMP (U)	1	LED LAMP INSIDE
30	Δ	F61785U30XN	MICRO SWITCH	1	(SHORT SWITCH)
31	Δ	F606Y9X90AP	H.V.INVERTER (U)	1	
32	\triangle	2M261-M39R	MAGNETRON	1	
33	\triangle	F62308F20AP	FUSE	1	(20A)
34		F607XBY60AP	NOISE FILTER	1	
35		F66629Y00AP	GROUNDING PLATE	1	
36		F63265G60AP	TURNTABLE MOTOR	1	
37	Δ	F900C9Y00AP	AC CORD W/PLUG	1	
38		F22379X70EP	HEAT INSULATION PLATE	1	
39		F4026CA00MP	AIR GUIDE B	1	
40		F30069X70EP	HINGE A	1	
				-	
41		XTWFL4+12T	SCREW	4	FOR MAGNETRON
43		XTWFA4+12D	SCREW	4	FOR CABINET BODY
44		XTWFA4+12LR	SCREW	3	FOR HINGE A
45		F65859X70EP	INVERTER BRACKET	1	TON MINGE A
3		E UJUJAN / UEP	INVENTER BRACKET	1	
		E673E0V70ED	HEAMED DROMECHOD	-1	
47		F67359X70EP	HEATER PROTECTOR	1	
48		F630G9X90CP	HEATER (AU)	2	
49		F64609X70EP	HEATER MOUNTING PLATE	2	
50		F40249X70EP	EXHAUST GUIDE A	1	
51		F203S9X70EP	LEFT HEATER PANEL (U)	1	
52		F22179X70EP	INSULATION PLATE	1	
		F01508G60HP	NO TOUCHING LABEL	1	
54					
54					
54 55		F31389X70EP	HOOK LEVER C	1	
		F31389X70EP F31369X70EP	HOOK LEVER C HOOK LEVER A	1	
55					
55 56		F31369X70EP	HOOK LEVER A	1	


Ref. No.	Part No.	Part Name & Description	Pcs/Set	Remarks
62	F00067C50AP	CAUTION LABEL	1	
65	F0334CB00AP	MENU LABEL	1	
66	F6437-10A0	GLASS	1	

9.3. ESCUTCHEON BASE ASSEMBLY

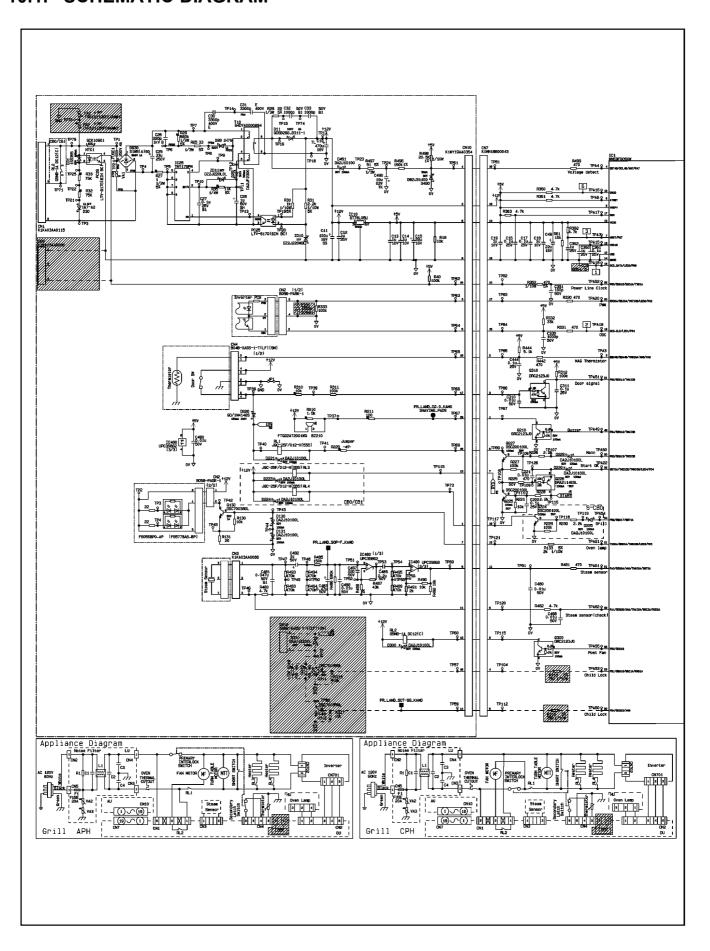

Ref. No.	Part No.	Part Name & Description	Pcs/Set	Remarks
E1	F603LCB00AP	D.P.CIRCUIT (AU)	1	
E2	F603YCB00AP	D.P.CIRCUIT (DU)	1	
E3	F800LCB00SAP	ESCUTCHEON BASE (U)	1	
E4	F891PCA00SAP	DOOR OPENING BUTTON (U)	1	
E6	F82569Y00AP	DOOR OPENING LEVER	1	
E7	F80375K00AP	COOK BUTTON SPRING	1	
E10	F8284CA00QP	CUSHION RUBBER	1	
E11	F90098N00AP	GROUNDING METAL	1	
E13	F66168J00XP	FLAT CABLE	1	
E15	F0007CB00SAP	NAME PLATE	1	

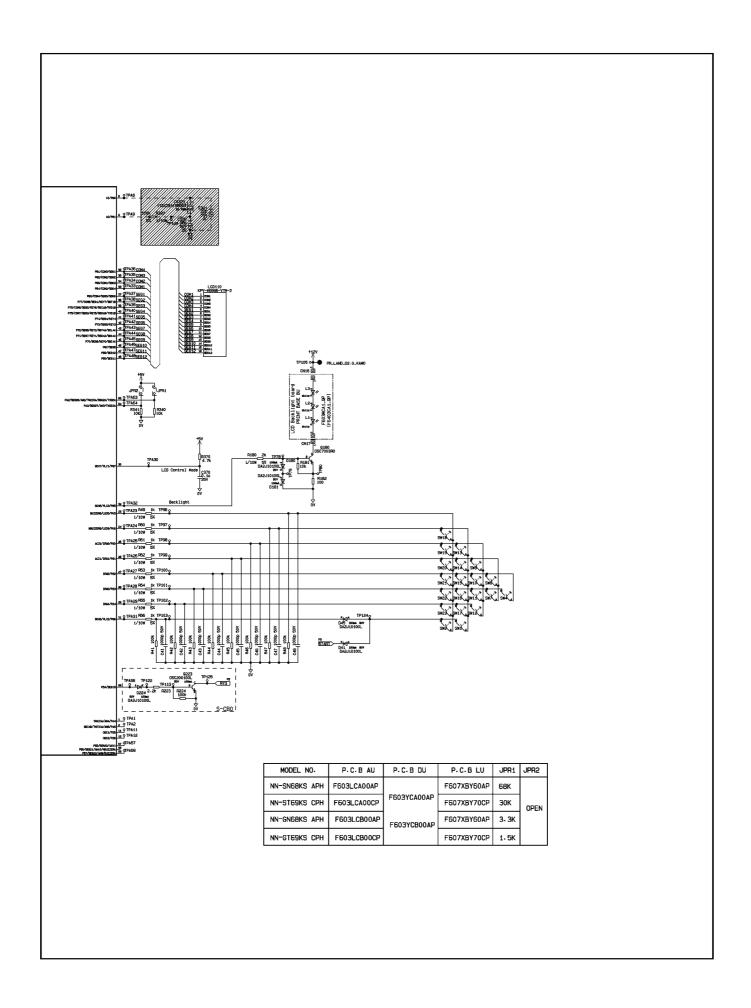
9.4. DOOR ASSEMBLY


Ref. No.		Part No.	Part Name & Description	Pcs/Set	Remarks
D1		F30189Y00AP	DOOR KEY A	1	
D2	Δ	F302ACA00SCP	DOOR A (U)	1	
D3	Δ	F302K9X70EP	DOOR E (U)	1	
D4		F30215G10XN	DOOR KEY SPRING	1	
D5	Δ	F30859Y00AP	DOOR C	1	
D6	Δ	F31459X70EP	DOOR SCREEN A	1	
D8		F02459660AP	DHHS LABEL	1	

9.5. WIRING MATERIALS

Ref. No.	Part No.	Part Name & Description	Pcs/Set	Remarks
W1	F030ACB00AP	LEAD WIRE HARNESS	1	(INCLUDING MAGNETRON THERMISTOR)
W2	F030ECA50CP	H.V.LEAD WIRE	1	


9.6. PACKING AND ACCESSORIES



Ref. No.	Part No.	Part Name & Description	Pcs/Set	Remarks
P1	F0003CB00AP	INSTRUCTION MANUAL	1	
P2	F0102CB00SAP	PACKING CASE, PAPER	1	
Р3	F01049Y00AP	UPPER FILLER	1	
P4	F01059Y00AP	LOWER FILLER	1	
P5	F01067F00AP	P.E.BAG	1	
P6	F01078J00XN	DOOR SHEET	1	
P7	F01089X90QP	RACK PACKING	1	
P8	E06014N30BP	COOKING TRAY	1	
Р9	F01099Y00AP	SHEET	1	
P10	F060V9X70EP	OVEN RACK	1	

10 DIGITAL PROGRAMMER CIRCUIT

10.1. SCHEMATIC DIAGRAM

10.2. PARTS LIST

Ref. No.	Part No.	Part Name & Description	Pcs/Set	Remarks
BZ210	L0DDEA000014	BUZZER	1	2.0KHz
LCD110	L5AYAYY00424	LCD	1	
DISP HOLDER	F6617CA10QP	LCD HOLDER	1	
	F67525E20XN	DIFFUSION SHEET	1	
VA1	D4EAY2710001	VARISTOR	1	270V
IC1	MNCA2F50ABS	L.S.I.	1	
IC10	C0DBGYY05981	IC	1	VOLTAGE-STABILIZED
IC25	C0DAZYY00046	IC	1	
IC480	C0ABBA000230	IC	1	
PC25, PC26	B3PAA0000302	IC	2	
RL1,RL3,RL4	K6B1AYY00129	POWER RELAY	3	
RL2	K6B1AGA00193	POWER RELAY	1	
T10	G4DYA0000894	LOW VOLTAGE TRANSFORMER	1	
SW1,SW2,SW4,SW6,SW7,SW9-SW23	K0H1BA000691	SWITCH	20	
FUSE1	K5G402YA0159	FUSE	1	4A,250V