CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CE

CERTIFICATE NUMBER : 14030223JD01E

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

AC-MRA UKAS CALIBRATION 5772

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	04/Oct/2021
Manufacturer:	Speag		
Type/Model Number:	D2100V2		
Serial Number:	1043		
Calibration Date:	05/Oct/2021		
Calibrated By:	Masood Khan Test Engineer		
Signatura	MAARIA		

Molaaz

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134264	Dipole	SPEAG	D2100V2	1020	07 Oct 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version: cDASY16.0.0.116	
Phantom: Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2100 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

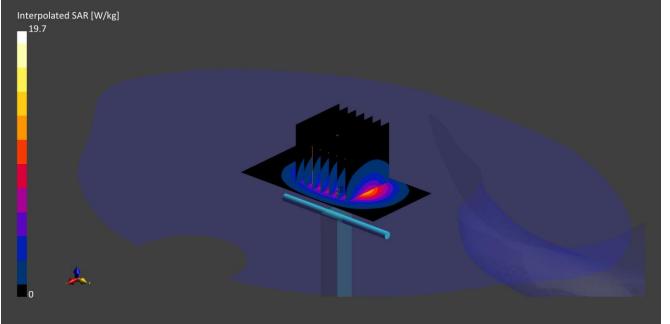
Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	2100	21.6 °C	20.9 °C	21 2 °C	20.5 °C	٤r	39.82	39.93	± 5%
neau	2100	21.0 C	20.9 C	21.2 C	20.5 C	σ	1.49	1.49	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	10.30 W/Kg	41.01 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	5.25 W/Kg	20.90 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	49.71 <i>-</i> 4.03j Ω	± 3.01
	Return Loss	27.50	± 2.97


CERTIFICATE NUMBER : 14030223JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2100V2; Type: Dipole; Serial: SN1043;

Communication System: CW UID: 0; Frequency: 2100.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_122256_Head - 1900 2100 5%; Medium parameters used: f = 2100.0 MHz; σ = 1.49 S/m; ϵ_r = 39.9; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.28 %; $\Delta \sigma$ = 0.03 %; No correction

correction

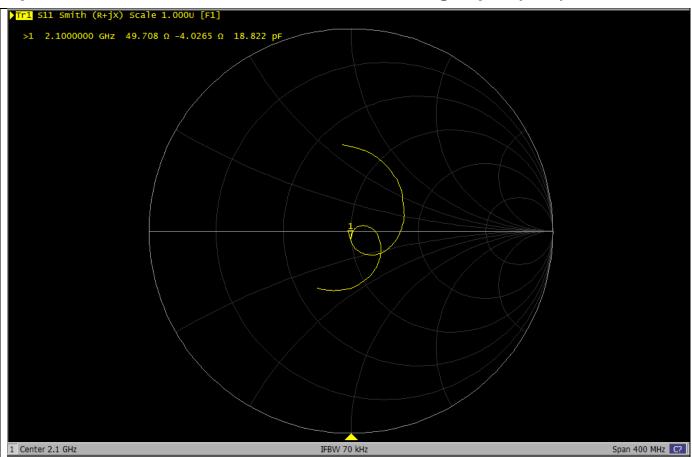
Phantom section: Flat;

- DASY 6 Configuration:
- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(8.32, 8.32, 8.32); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818
- Measurement SW: cDASY16.0.0.116

Area Scan (40x80): Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 14.740 V/m; Power Drift = -0.07 dB

Minimum horizontal 3dB distance: 9.8 mm;

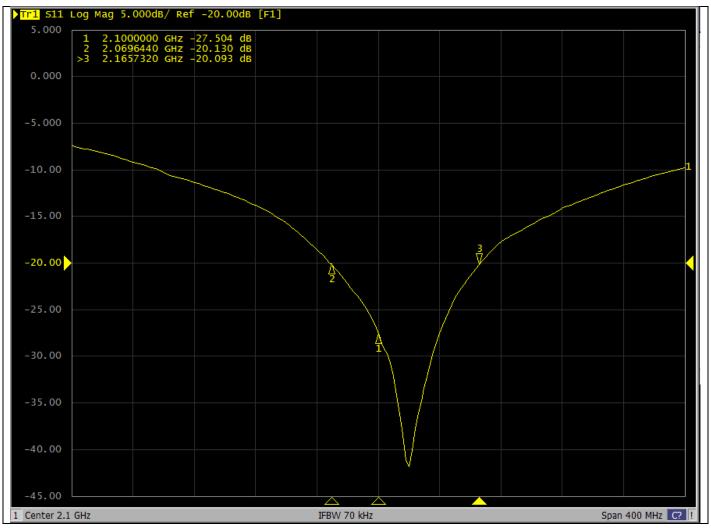

Vertical M2/M1 Ratio: 81.4 %;

SAR(1 g) = 10.300 W/kg; SAR(10 g) = 5.250 W/kg

Page 5 of 6

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 14030223JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01E

Instrument ID: 1043

Calibration Date: 05/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01E

Instrument ID: 1043

Calibration Date: 05/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CE

CERTIFICATE NUMBER : 14030223JD01A

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

CALIBRATION 5772

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	04/Oct/2021
Manufacturer:	Speag		
Type/Model Number:	D750V3		
Serial Number:	1139		
Calibration Date:	06/Oct/2021		
Calibrated By:	Masood Khan Test Engineer		
Cignoturo	MAD		

Monay

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0135601	Dipole	SPEAG	D750V3	SN1147	06 Oct 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom: Flat section of SAM Twin Phantom		
Distance Dipole Centre:	15 mm (with spacer)	
Frequency:	750 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

								. /	
Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	750	20.9 °C	21 0 °C	21.8 °C	21.3 ℃	٤r	41.94	42.71	± 5%
neau	750	20.9 C	21.0 C	21.0 C	21.5 C	σ	0.89	0.91	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	2.04 W/Kg	8.12 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	1.36 W/Kg	5.41 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.64 2.23j Ω	± 3.01
	Return Loss	27.53	± 2.97

CERTIFICATE NUMBER : 14030223JD01A

UKAS Accredited Calibration Laboratory No. 5772

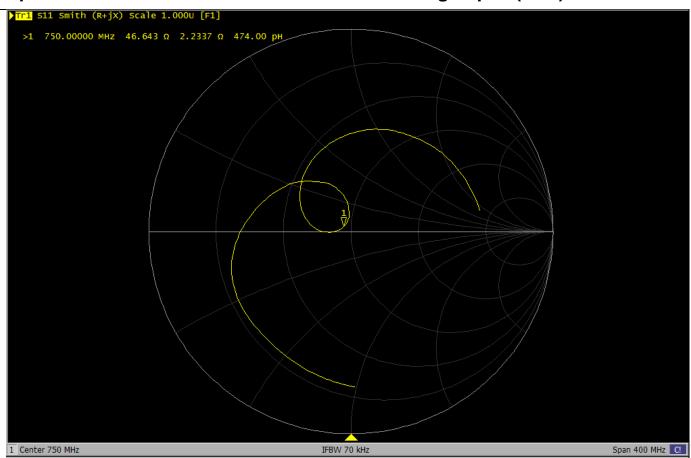
Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 750.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 750.0 MHz; σ = 0.905 S/m; ε_r = 42.7; ρ = 1000 kg/m3; Δε_r = 1.84 %; Δ σ = 1.27 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

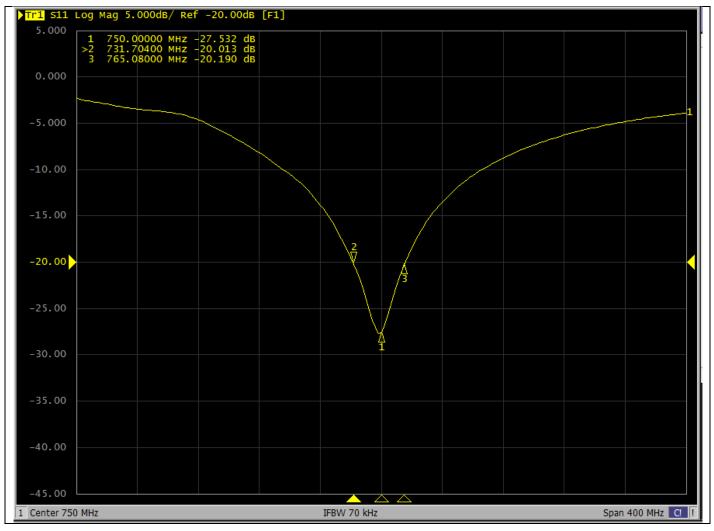

- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(10.34, 10.34, 10.34); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 2.350 V/m; Power Drift = 0.01 dB Minimum horizontal 3dB distance: 17.2 mm; Vertical M2/M1 Ratio: 89.5 %; SAR(1 g) = 2.040 W/kg; SAR(10 g) = 1.360 W/kg

Page 5 of 6

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 14030223JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100
	Certificate Number: 14030223JD01A
	Instrument ID: 1139
UKAS CALIBRATION 5772	Calibration Date: 06/Oct/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021

CERTIFICATE NUMBER : 14030223JD01B

UL INTERNATIONAL (UK) LTD **UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

5772

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL LLC 12 Laboratory Dr. **RTP, NC 27709 USA**

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	04/Oct/2021
Manufacturer:	Speag		
Type/Model Number:	D900V2		
Serial Number:	1d180		
Calibration Date:	06/Oct/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	MMaal		

Monal

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134199	Dipole	SPEAG	D900V2	SN035	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	15 mm (with spacer)		
Frequency:	900 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

								`			
	Simulant Liquid	Frequency	Room	Temp	Liquic	d Temp Parameters		Target	Measured	Uncertainty	
		(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)	
	Head	900	21.1 ℃ 20.9 ℃	21.1.%	20.9 °C	21.8 °C	21 2 °C	٤r	41.50	42.32	± 5%
		900	21.1 C	20.9 C	21.0 C	21.2 C	σ	0.97	0.96	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)	
Head	SAR averaged over 1g	2.67 W/Kg	10.63 W/Kg	+16.80 / -16.43%	
neau	SAR averaged over 10g	1.75 W/Kg	6.97 W/Kg	+16.72 / -16.42%	

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)	
Head	Impedance	47.97 <i>-</i> 0.564j Ω	± 3.01	
	Return Loss	33.79	± 3.34	

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 14030223JD01B

Page 4 of 6

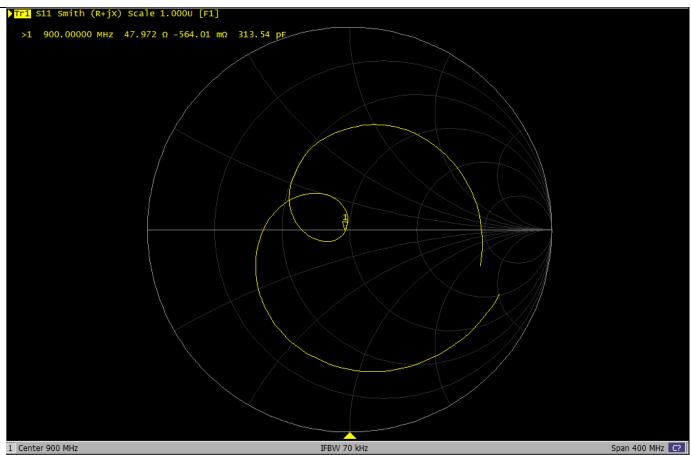
DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D900V2; Type: Dipole; Serial: SN1d180;

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 900.0 MHz; σ = 0.96 S/m; ε_r = 42.3; ρ = 1000 kg/m3; Δε_r = 1.97 %; Δ σ = -1.06 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

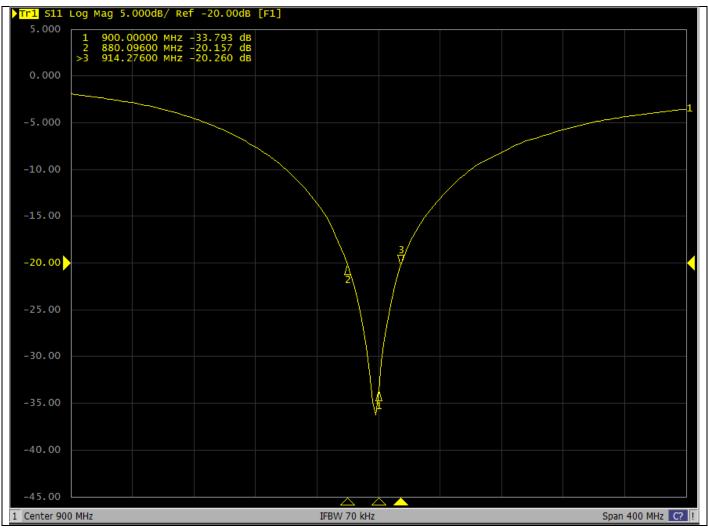

- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(9.7, 9.7, 9.7); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 3.110 V/m; Power Drift = -0.02 dB Minimum horizontal 3dB distance: 18.0 mm; Vertical M2/M1 Ratio: 88.7 %; SAR(1 g) = 2.670 W/kg; SAR(10 g) = 1.750 W/kg

Page 5 of 6

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 14030223JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100
	Certificate Number: 14030223JD01B
	Instrument ID: 1d180
UKAS CALIBRATION 5772	Calibration Date: 06/Oct/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER : 14030223JD01D

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	04/Oct/2021
Manufacturer:	Speag		
Type/Model Number:	D1900V2		
Serial Number:	5d202		
Calibration Date:	06/Oct/2021		
Calibrated By:	Masood Khan Test Engineer		
Signatura	MADIN		

Molanz

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134198	Dipole	SPEAG	D1900V2	537	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1900 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

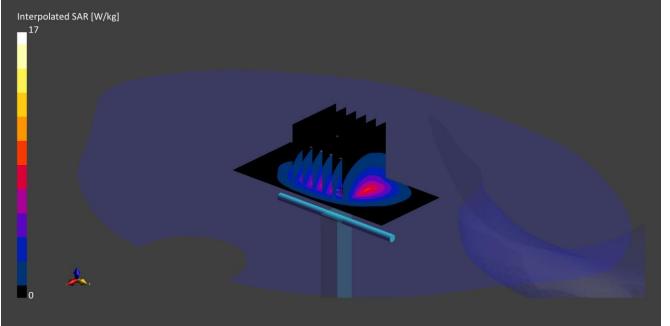
									· /	
	Simulant Liquid	Frequency	Room	Temp	Liquic	uid Temp Parameters		Target	Measured	Uncertainty
		(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
	Head	1900	21.4 °C	20.8 °C	21.4 °C	20.9 °C	٤r	40.00	40.17	± 5%
	neau	1900	21.4 C	20.0 C	21.4 C	20.9 C	σ	1.40	1.37	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	9.51 W/Kg	37.86 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	5.09 W/Kg	20.26 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	51.95 <i>-</i> 4.40j Ω	± 3.01
пеао	Return Loss	26.34	± 2.97


CERTIFICATE NUMBER : 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1900V2; Type: Dipole; Serial: SN5d202;

Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_122256_Head - 1900 2100 5%; Medium parameters used: f = 1900.0 MHz; σ = 1.37 S/m; ϵ_r = 40.2; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.44 %; $\Delta \sigma$ = -1.83 %; No

correction

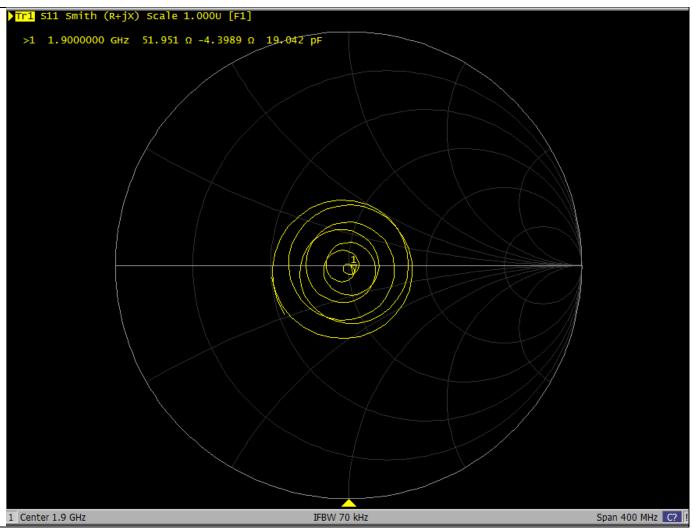
Phantom section: Flat;

- DASY 6 Configuration:
- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(8.4, 8.4, 8.4); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90): Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30): Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 13.320 V/m; Power Drift = -0.03 dB Minimum horizontal 3dB distance: 9.9 mm;

Winimum nonzonial 30B distance: 9.9 r

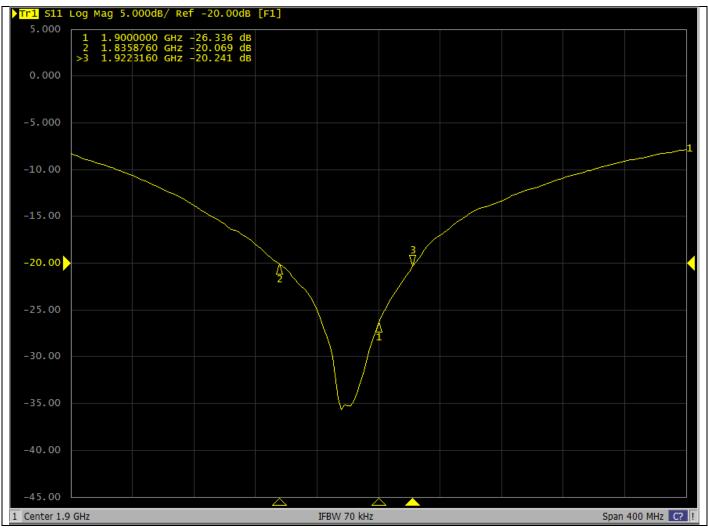

Vertical M2/M1 Ratio: 85.2 %;

SAR(1 g) = 9.510 W/kg; SAR(10 g) = 5.090 W/kg

Page 5 of 6

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 14/Oct/2021 CERTIFICATE NUMBER : 14030223JD01C

UL INTERNATIONAL (UK) LTD **UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL LLC 12 Laboratory Dr. **RTP, NC 27709 USA**

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	04/Oct/2021
Manufacturer:	Speag		
Type/Model Number:	D1750V2		
Serial Number:	1136		
Calibration Date:	12/Oct/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	MMaal		

Molanz

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0178321	Dipole	SPEAG	D1800V2	SN2d218	09 Mar 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	1750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

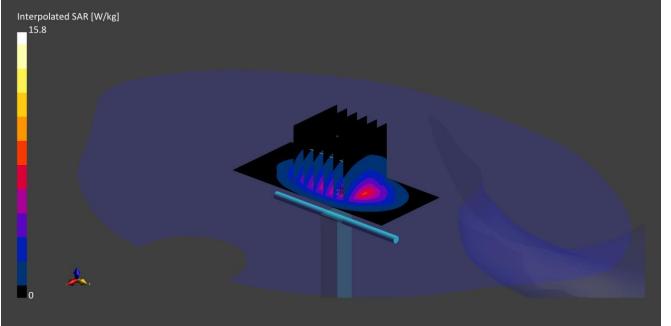
								. ,	
Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	1750	21.2 °C	20.6 °C	21.5 °C	21.0 °C	٤r	40.08	40.89	± 5%
neau	1750	21.2 C	20.0 C	21.5 C	21.0 C	σ	1.37	1.32	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	8.65 W/Kg	34.44 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	4.68 W/Kg	18.63 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.78 0.15j Ω	± 3.01
пеао	Return Loss	42.08	± 3.34


UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 14030223JD01C

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1750V2; Type: Dipole; Serial: SN1136;

Communication System: CW UID: 0; Frequency: 1750.0 MHz; Duty Cycle: 1;

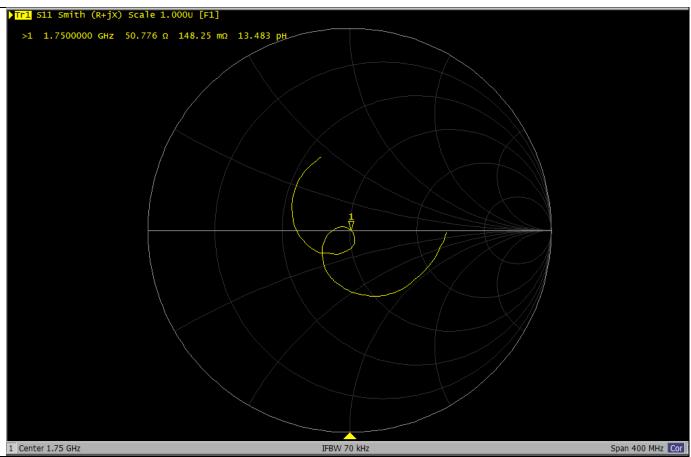
Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 1750.0 MHz; σ = 1.32 S/m; ϵ_r = 40.9; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 2.03 %; $\Delta \sigma$ = -3.37 %; No correction

Phantom section: Flat;

- DASY 6 Configuration:
- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(8.7, 8.7, 8.7); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90): Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 10.660 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 9.6 mm;

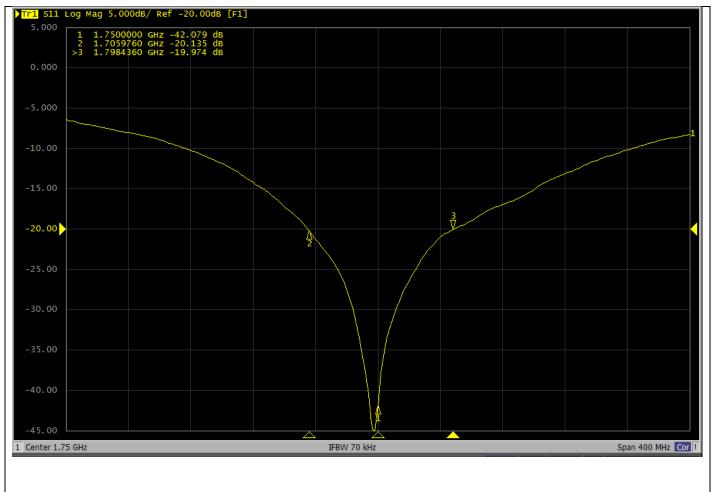

Vertical M2/M1 Ratio: 83.1 %;

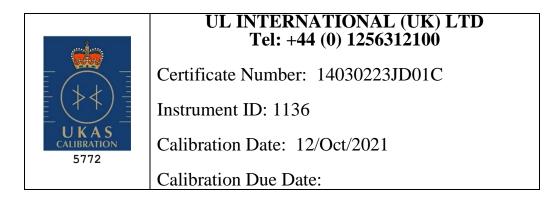
SAR(1 g) = 8.650 W/kg; SAR(10 g) = 4.680 W/kg

Page 5 of 6

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)




CERTIFICATE NUMBER : 14030223JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL USA Client

Certificate No: D2300V2-1050_Nov21

CALIBRATION CERTIFICATE

Object	D2300V2 - SN:10	050	
	BLOODIL ONIN		
Calibration procedure(s)	QA CAL-05.v11		
		edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	November 09, 20	21	
This calibration certificate documer	its the traceability to nati	onal standards, which realize the physical ur	nits of measurements (SI).
The measurements and the uncerta	ainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity $< 70%$
		$(22 \pm 3)^{-1}$	o anu nunnuny < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
ype-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Willer
		~	
Approved by:	Niels Kuster	Quality Manager	1.180
			lanuadi Navani an di 2001
	174-552 Mg (554-557 44	full without written approval of the laboratory	Issued: November 11, 2021

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.71 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	 6	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.83 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	46.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.3 Ω - 3.1 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.2 Ω - 0.8 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

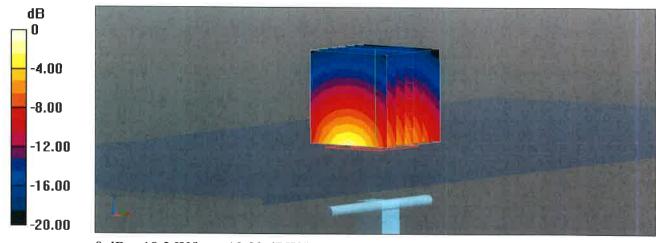
Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Date: 09.11.2021

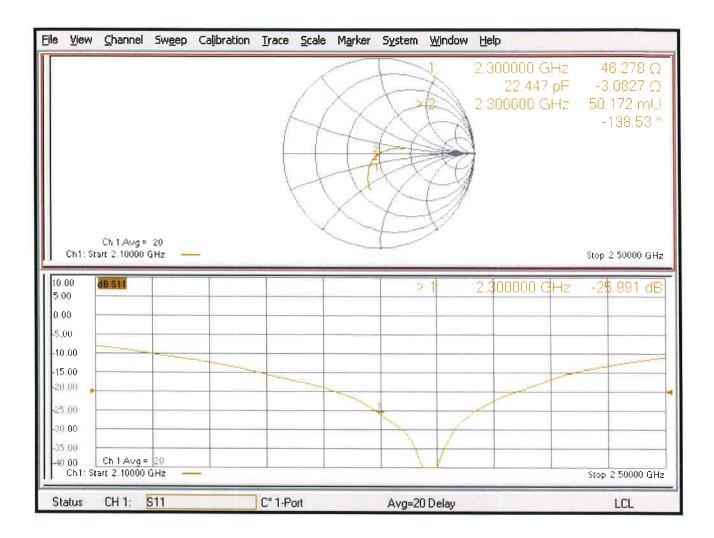
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1050


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.71$ S/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 22.4 W/kg **SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.06 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 56.1% Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

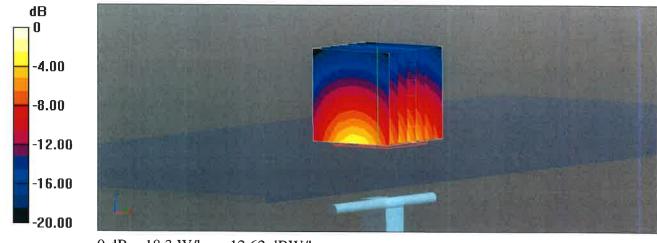
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

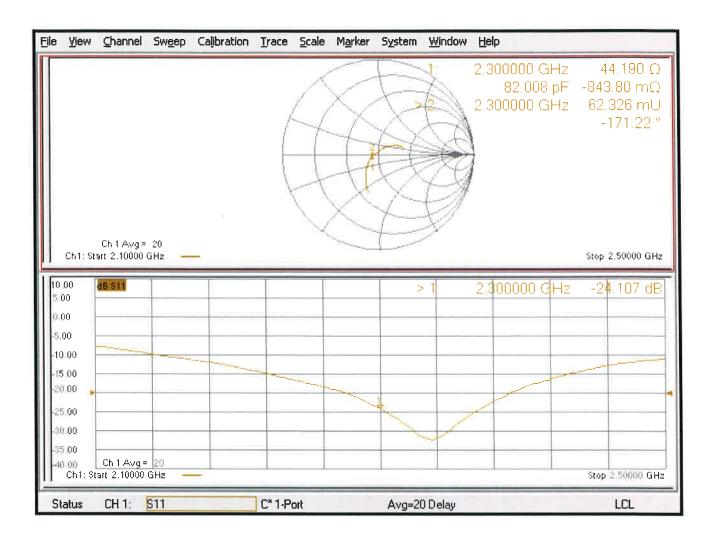
Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1050


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.13, 8.13, 8.13) @ 2300 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.7 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 21.6 W/kg **SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.73 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.8% Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D2600V2-1104_Nov21

CALIBRATION CERTIFICATE

Other			
Object	D2600V2 - SN:11	104	
Calibration procedure(s)	QA CAL-05.v11		
	Calibration Procedure for SAR Validation Sources between 0.7-3 GHz		
	Calibration Proce	dure for SAR validation Sources	between 0.7-3 GHz
Calibration date:	November 09, 20	21	
1			
This calibration certificate documer	nts the traceability to nati	onal standards, which realize the physical ur	its of measurements (SI).
i ne measurements and the uncertain	ainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conducted	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°	C and humidity < 70%
Calibration Equipment used (M&TE	critical for calibration)		
	a		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
	ï		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Nomo		
Calibrated by:	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M Mb Cor
Approved by:	Number 17 and		
Approved by:	Niels Kuster	Quality Manager	
		/	
			Issued: November 11, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.2 Ω - 7.6 jΩ	
Return Loss	- 21.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.5 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

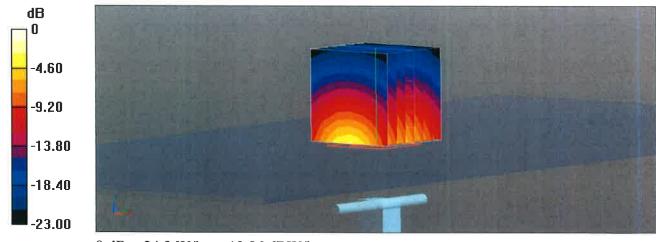
Additional EUT Data

OI ERG	Manufactured by	SPEAG
--------	-----------------	-------

Date: 09.11.2021

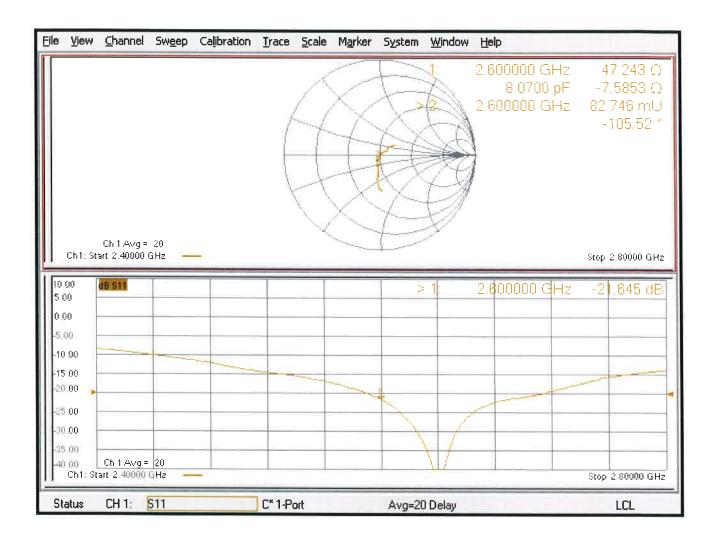
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1104


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.04 S/m; ϵ_r = 38.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 120.2 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.9 W/kg **SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.6 W/kg** Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 24.3 W/kg

0 dB = 24.3 W/kg = 13.86 dBW/kg

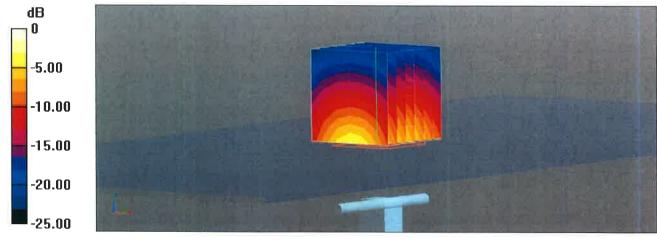
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.11.2021

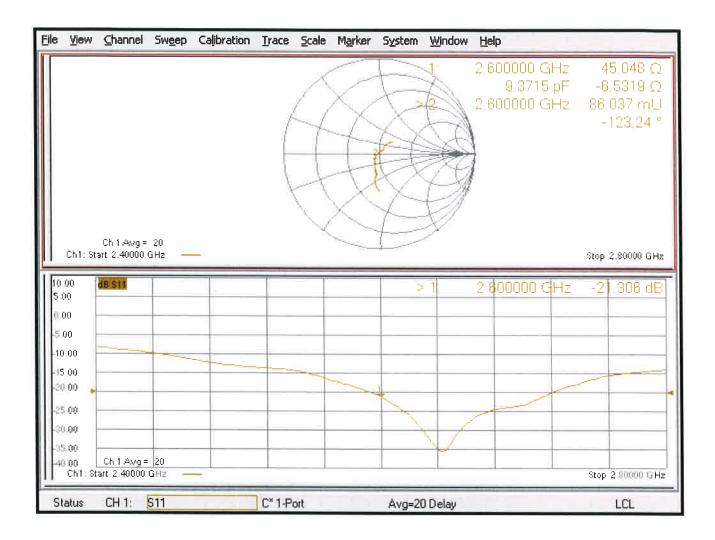
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1104


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.19$ S/m; $\varepsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.91, 7.91, 7.91) @ 2600 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.1 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 26.9 W/kg **SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.17 W/kg** Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 52% Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura S

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **UL USA** Certificate No: D3500V2-1135_Mar22

CALIBRATION CERTIFICATE

Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S)). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Calibration Six: BH9394 (20k) 09-Apr-21 (No. 217-03291/03292) Apr-22 Power neetro RIP Six: 104274 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NIP-Z91 Six: 104274 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NIP-Z91 Six: 104274 09-Apr-21 (No. 217-03343) Apr-22 Power sensor NIP-Z91 Six: 105027 09-Apr-21 (No. 217-03344) Apr-22 Power sensor NIP-Z91 Six: 105027 OB-Apr-21 (No. 217-03344) Apr-22 DaE4 Six: 6B39512475 30-Oct-14 (In house check Oct-20) In house check: Oct-22 Now 10972 Six: 10972 Six: 10972 Six: 10972 Six: 10972	Object	D3500V2 - SN:11	25	
Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Object	D000072 - 014.11	00	
Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)	04 CAL-22 V6		
Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Campation procedure(s)		dure for SAR Validation Sources	between 3-10 GHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.		Calibration Froce	une for SAN valuation Sources	Detween 0-10 Chiz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03343) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: WY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A <td>Calibration date:</td> <td>March 02, 2022</td> <td></td> <td></td>	Calibration date:	March 02, 2022		
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03343) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: WY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A <td></td> <td></td> <td></td> <td></td>				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03343) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: WY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A <td></td> <td></td> <td></td> <td></td>				
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.		-		
Calibration Equipment used (M&TE critical for calibration)Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477809-Apr-21 (No. 217-03291/03292)Apr-22Power sensor NRP-Z91SN: 10324409-Apr-21 (No. 217-03291)Apr-22Power sensor NRP-Z91SN: 10324509-Apr-21 (No. 217-03292)Apr-22Reference 20 dB AttenuatorSN: BH9394 (20k)09-Apr-21 (No. 217-03343)Apr-22Type-N mismatch combinationSN: 310982 / 0632709-Apr-21 (No. 217-03344)Apr-22Reference Probe EX3DV4SN: 350331-Dec-21 (No. EX3-3503_Dec21)Dec-22DAE4SN: 60101-Nov-21 (No. DAE4-601_Nov21)Nov-22Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22NameFunctionSignature	The measurements and the uncerta	ainties with confidence pr	robability are given on the following pages an	d are part of the certificate.
Calibration Equipment used (M&TE critical for calibration)Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477809-Apr-21 (No. 217-03291/03292)Apr-22Power sensor NRP-Z91SN: 10324409-Apr-21 (No. 217-03291)Apr-22Power sensor NRP-Z91SN: 10324509-Apr-21 (No. 217-03292)Apr-22Reference 20 dB AttenuatorSN: BH9394 (20k)09-Apr-21 (No. 217-03343)Apr-22Type-N mismatch combinationSN: 310982 / 0632709-Apr-21 (No. 217-03344)Apr-22Reference Probe EX3DV4SN: 350331-Dec-21 (No. EX3-3503_Dec21)Dec-22DAE4SN: 60101-Nov-21 (No. DAE4-601_Nov21)Nov-22Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22NameFunctionSignature				
Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477809-Apr-21 (No. 217-03291/03292)Apr-22Power sensor NRP-Z91SN: 10324409-Apr-21 (No. 217-03291)Apr-22Power sensor NRP-Z91SN: 10324509-Apr-21 (No. 217-03292)Apr-22Reference 20 dB AttenuatorSN: BH9394 (20k)09-Apr-21 (No. 217-03343)Apr-22Type-N mismatch combinationSN: 310982 / 0632709-Apr-21 (No. 217-03344)Apr-22Beference Probe EX3DV4SN: 350331-Dec-21 (No. EX3-3503_Dec21)Dec-22DAE4SN: 60101-Nov-21 (No. DAE4-601_Nov21)Nov-22Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22NameFunctionSignature	All calibrations have been conducted	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477809-Apr-21 (No. 217-03291/03292)Apr-22Power sensor NRP-Z91SN: 10324409-Apr-21 (No. 217-03291)Apr-22Power sensor NRP-Z91SN: 10324509-Apr-21 (No. 217-03292)Apr-22Reference 20 dB AttenuatorSN: BH9394 (20k)09-Apr-21 (No. 217-03343)Apr-22Type-N mismatch combinationSN: 310982 / 0632709-Apr-21 (No. 217-03344)Apr-22Beference Probe EX3DV4SN: 350331-Dec-21 (No. EX3-3503_Dec21)Dec-22DAE4SN: 60101-Nov-21 (No. DAE4-601_Nov21)Nov-22Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22NameFunctionSignature				
Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 3503 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	Calibration Equipment used (M&TE	critical for calibration)		
Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 3503 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	· · · ·			
Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 3503 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Signature	Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 3503 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: 109372 15-Jun-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22		SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91SN: 10324509-Apr-21 (No. 217-03292)Apr-22Reference 20 dB AttenuatorSN: BH9394 (20k)09-Apr-21 (No. 217-03343)Apr-22Type-N mismatch combinationSN: 310982 / 0632709-Apr-21 (No. 217-03344)Apr-22Reference Probe EX3DV4SN: 350331-Dec-21 (No. EX3-3503_Dec21)Dec-22DAE4SN: 60101-Nov-21 (No. DAE4-601_Nov21)Nov-22Secondary StandardsID # Check Date (in house)Scheduled CheckPower meter E4419BSN: GB3951247530-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22NameFunctionSignature	Power sensor NRP-Z91	SN: 103244	•	Apr-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 	Power sensor NRP-Z91	SN: 103245		Apr-22
Type-N mismatch combination Reference Probe EX3DV4 DAE4SN: 310982 / 06327 SN: 3503 SN: 3503 SN: 3601Op-Apr-21 (No. 217-03344) SN: 2503_Dec21)Apr-22 Dec-22 Dec-22 Nov-21Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter E4419B Power sensor HP 8481A Power sensor HP 8481ASN: GB39512475 SN: MY41093315 SN: MY41093315O7-Oct-15 (in house check Oct-20) SN: 100972 SN: 100972 SN: 100972 SN: 15-Jun-15 (in house check Oct-20)In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22RF generator R&S SMT-06 Network Analyzer Agilent E8358ASN: US41080477 SN: US41080477FunctionSignature	Reference 20 dB Attenuator	SN: BH9394 (20k)		Apr-22
Reference Probe EX3DV4 DAE4SN: 3503 SN: 60131-Dec-21 (No. EX3-3503_Dec21) O1-Nov-21 (No. DAE4-601_Nov21)Dec-22 Nov-22Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter E4419B Power sensor HP 8481A Power sensor HP 8481ASN: GB39512475 SN: US3729278330-Oct-14 (in house check Oct-20) O7-Oct-15 (in house check Oct-20)In house check: Oct-22 In house check: Oct-22Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358ASN: US41080477 SN: US4108047707-Oct-15 (in house check Oct-20) SN: 100972In house check: Oct-22 In house check: Oct-22NameFunctionSignature	Type-N mismatch combination	SN: 310982 / 06327		Apr-22
Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter E4419BSN: GB3951247530-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22Network Analyzer Agilent E8358ASN: US4108047731-Mar-14 (in house check Oct-20)In house check: Oct-22NameFunctionSignature		SN: 3503		Dec-22
Power meter E4419BSN: GB3951247530-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22Network Analyzer Agilent E8358ASN: US4108047731-Mar-14 (in house check Oct-20)In house check: Oct-22NameFunctionSignature	DAE4	SN: 601		Nov-22
Power meter E4419BSN: GB3951247530-Oct-14 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: US3729278307-Oct-15 (in house check Oct-20)In house check: Oct-22Power sensor HP 8481ASN: MY4109331507-Oct-15 (in house check Oct-20)In house check: Oct-22RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-20)In house check: Oct-22Network Analyzer Agilent E8358ASN: US4108047731-Mar-14 (in house check Oct-20)In house check: Oct-22NameFunctionSignature		un Va		
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature		SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	Power sensor HP 8481A	SN: MY41093315		In house check: Oct-22
Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature	RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Name Function Signature Calibrated by: Michael Weber Laboratory Technician ////////////////////////////////////	-	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
Name Function Signature Calibrated by: Michael Weber Laboratory Technician Michael Signature Approved by: Sven Kühn Deputy Manager S G G	. –	12		
Calibrated by: Michael Weber Laboratory Technician Approved by: Sven Kühn Deputy Manager		Name	Function	Signature
Approved by: Sven Kühn Deputy Manager S	Calibrated by:	Michael Weber	Laboratory Technician	1/4//
Approved by: Sven Kühn Deputy Manager S	· · ·			M. MESC
Approved by: Sven Kühn Deputy Manager				
54	Approved by:	Sven Kühn	Deputy Manager	C
				565
				·
Issued: March 3, 2022				Issued: March 3, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	2.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 4.0 jΩ
Return Loss	- 27.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.136 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

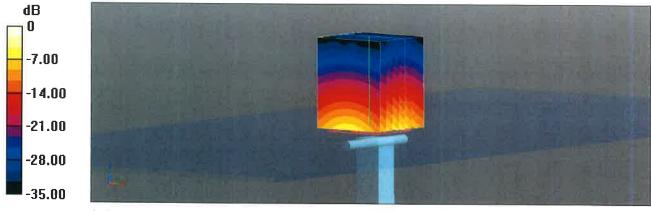
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

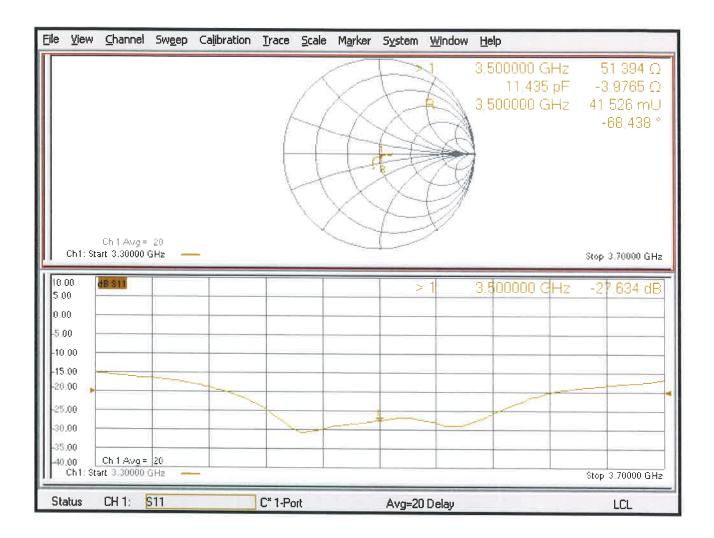
Date: 02.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1135


Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.93$ S/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.65 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.50 W/kg Smallest distance from peaks to all points 3 dB below = 8.6 mm Ratio of SAR at M2 to SAR at M1 = 75.3% Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.09 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D3700V2-1110_Mar22

CALIBRATION CERTIFICATE Object D3700V2 - SN:1110 QA CAL-22.v6 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 02, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Scheduled Calibration Cal Date (Certificate No.) Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) Apr-22 09-Apr-21 (No. 217-03343) Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 SN: 3503 Reference Probe EX3DV4 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Michael Weber Laboratory Technician SUT Approved by: Sven Kühn **Deputy Manager**

Issued: March 3, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
- **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR measured	100 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	42.7 Ω + 0.3 jΩ
Return Loss	- 22.0 dB

General Antenna Parameters and Design

	Y
Electrical Delay (one direction)	1.138 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

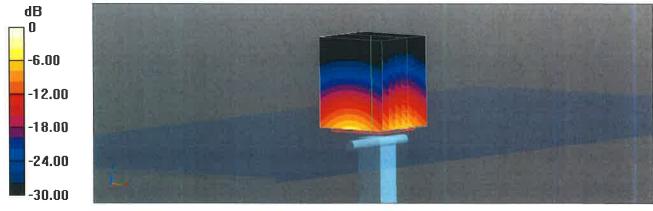
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

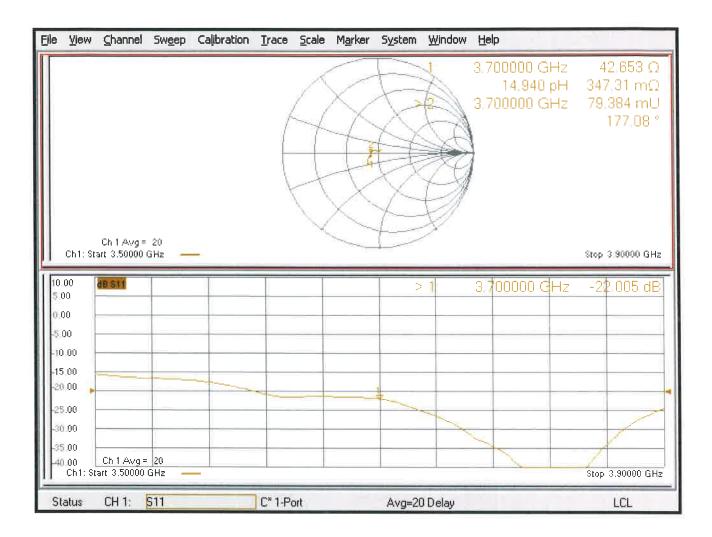
Manufactured by	SPEAG
-----------------	-------

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1110


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; σ = 3.09 S/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 71.27 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 19.5 W/kg
SAR(1 g) = 6.93 W/kg; SAR(10 g) = 2.5 W/kg
Smallest distance from peaks to all points 3 dB below = 8 mm
Ratio of SAR at M2 to SAR at M1 = 73.7%
Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

