Bit rate	Chip/Sy	mbol rate	Bit/Sym	ibol rate	Chip/Bit rate	
1Mbit/sec 2Mbit/sec 5.5Mbit/sec 11Mbit/sec	11 c 8	2 4	DBPSK DQPSK CCK CCK	11 5.5 2 1		

1) For 1 and 2 Mbit/sec mode

The theoretical prosess gain is 10*Log(11)=10dB

2) For 5.5 and 11 Mbits/sec mode

The theoretical prosess gain is 10*Log(8)=9dB

The modulation of our system is compliant to IEEE 802.11b for all signaling rates. For 5.5 and 11Mbits/sec mode, the modulation technique is CCK (Complementary Code Keying). For this modulation technique the symbol length is 8 chips. However, the 8 chips are not a fixed spreading sequence as is the 1 and 2 Mbit/sec mode. These 8 chips, applied in a QPSK modulation, use 256 unique patterns out of 65536 different possible patterns, whereby each pattern represents a specific data sequence (4 or 8 bits).

Due to the fact that only 256 code sequences out of the 65536 code sequences that are available are used, there is coding gain.

Therefore the processing gain of a CCK system consists of spreading the consists of spreading gain.

Therefore the processing gain of a CCK system consists of spreading gain and coding gain together.

As such system does meet the FCC requirement for a process gain of minimal 10dB.