CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D2450V2

Serial Number: 963

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0131865	Dipole	SPEAG	D2450V2	725	07 Oct 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01F

Page 3 of 6

SAR System Specification

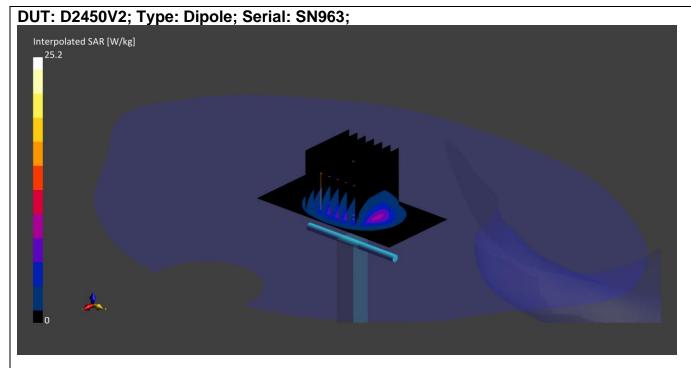
Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2450 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Faiailleleis	Value	Value	(%)
Head	2450 21	0 21.3 °C 20	20.8 °C 21.0 °C	21.0 %	20.6 °C	εr	39.20	39.74	± 5%
Head	2450	21.3 C	20.6 C	21.0 C	20.6 C	٥	1.80	1.82	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lload	SAR averaged over 1g	12.9 W/Kg	51.36 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	6.17 W/Kg	24.56 W/Kg	+16.72 / -16.42%


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head -	Impedance	48.70 0.29j Ω	± 3.01
	Return Loss	37.20	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01F

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 2450.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 2450.0 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m3; $\Delta\epsilon_r = 1.38$

%; $\Delta \sigma$ = 1.62 %; No correction

Phantom section: Flat; DASY 6 Configuration: - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(7.84, 7.84, 7.84); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

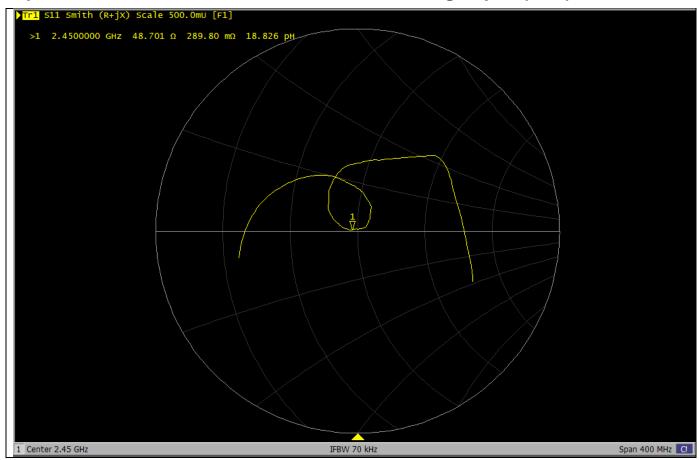
Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 16.850 V/m; Power Drift = 0.01 dB

Minimum horizontal 3dB distance: 9.0 mm;

Vertical M2/M1 Ratio: 82.2 %;

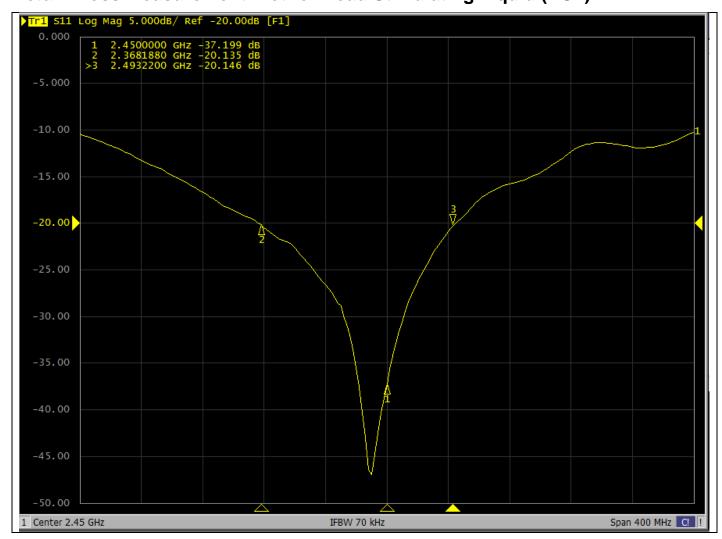

SAR(1 g) = 12.900 W/kg; SAR(10 g) = 6.170 W/kg

CERTIFICATE NUMBER: 14030223JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)


NUMBER : 14030223JD01F

CERTIFICATE

Page 6 of 6

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01F

Instrument ID: 963

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01F

Instrument ID: 963

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01F

Instrument ID: 963

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 14/Oct/2021 CERTIFICATE NUMBER: 14030223JD01G

Page 1 of 10

APPROVED SIGNATORY

10/1 Valee

Naseer Mirza

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D5GHZV2

Serial Number: 1213

Calibration Date: 12/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01G

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0178323	Dipole	SPEAG	D5GHzV2	1274	08 Mar 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
Omidiant Elquid	(MHz)	Start	End	Start	End	1 arameters	Value	Value	(%)
Head	5250	21.4 °C	20.9 °C	21.2 °C	20.6 °C	εr	35.92	35.22	± 5%
пеаа	5250	21.4 C	20.9 C	21.2 C	20.0 C	σ	4.71	4.56	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	7.62 W/Kg	76.20 W/Kg	+16.77 / -16.70%
Head	SAR averaged over 10g	2.23 W/Kg	22.30 W/Kg	± 16.70%

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	49.89 1.46j Ω	± 3.01
	Return Loss	36.68	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 4 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid		l Temp	Parameters	Target	Measured	Uncertainty	
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Llood	E600	5600 21.4 °C	21 4 °C 21 1 °C 21	21.2 ℃	.2 °C 20.8 °C	εr	35.52	34.59	± 5%
Head	3000	Z1.4 C	Z1.1 C	21.2 C	20.0 C	σ	5.06	4.95	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.18 W/Kg	81.80 W/Kg	+16.77 / -16.70%
пеац	SAR averaged over 10g	2.36 W/Kg	23.60 W/Kg	± 16.70%

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.87 - 3.73j Ω	± 3.01
пеац	Return Loss	28.42	± 2.97

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 5 of 10

SAR System Specification

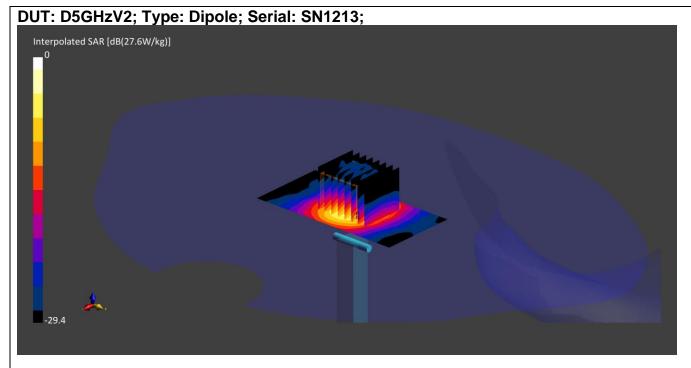
Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	5750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	5750	21.5 °C	21.1 %	21.3 ℃	21.0 °C	εr	35.36	34.34	± 5%
пеац	3730	21.5 C	21.1 6	21.5 C	21.0 C	σ	5.22	5.13	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	7.55 W/Kg	75.50 W/Kg	+16.77 / -16.70%
пеац	SAR averaged over 10g	2.20 W/Kg	22.00 W/Kg	± 16.70%


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	44.97 2.12j Ω	± 3.01
пеао	Return Loss	24.82	± 2.93

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 6 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 5250.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 5250.0 MHz; σ = 4.56 S/m; ε_r = 35.2; ρ = 1000 kg/m3; $\Delta \varepsilon_r$ = -1.97 %; $\Delta \sigma$ = -3.08 %;

No correction

Phantom section: Flat; **DASY 6 Configuration:** - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(5.24, 5.24, 5.24); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

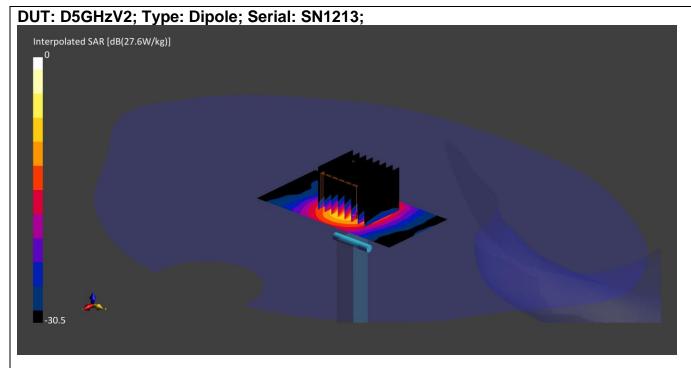
Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(22x22x22):Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio:

1.4; Reference Value = 10.740 V/m; Power Drift = -0.01 dB

Minimum horizontal 3dB distance: 7.2 mm;

Vertical M2/M1 Ratio: 66.7 %;


SAR(1 g) = 7.620 W/kg; SAR(10 g) = 2.230 W/kg

CERTIFICATE NUMBER: 14030223JD01G

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 5600.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 5600.0 MHz; σ = 4.96 S/m; ε_r = 34.6; ρ = 1000 kg/m3; $\Delta \varepsilon_r$ = -2.62 %; $\Delta \sigma$ = -2.17 %;

No correction

Phantom section: Flat; **DASY 6 Configuration:**

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(4.7, 4.7, 4.7); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(22x22x22):Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio:

1.4; Reference Value = 11.280 V/m; Power Drift = 0.03 dB

Minimum horizontal 3dB distance: 7.2 mm;

Vertical M2/M1 Ratio: 64.1 %;


SAR(1 g) = 8.180 W/kg; SAR(10 g) = 2.360 W/kg

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 8 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 5750.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 5750.0 MHz; σ = 5.13 S/m; ε_r = 34.3; ρ = 1000 kg/m3; $\Delta \varepsilon_r$ = -2.89 %; $\Delta \sigma$ = -1.64 %;

No correction

Phantom section: Flat; **DASY 6 Configuration:** - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(4.79, 4.79, 4.79); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

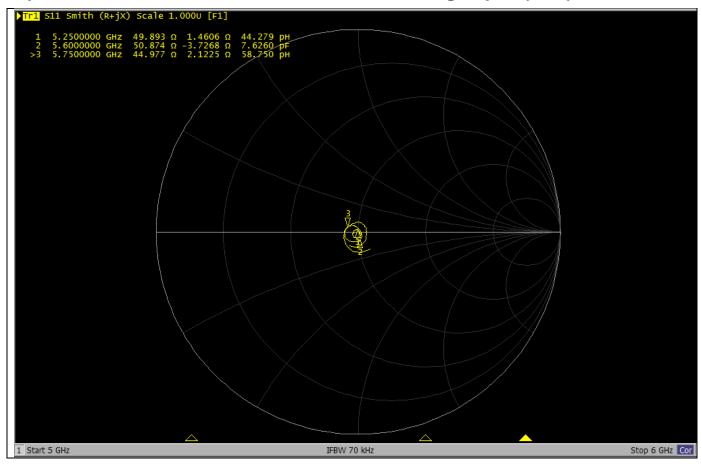
Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(22x22x22):Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio:

1.4; Reference Value = 11.060 V/m; Power Drift = 0.03 dB

Minimum horizontal 3dB distance: 7.2 mm;

Vertical M2/M1 Ratio: 62.5 %;

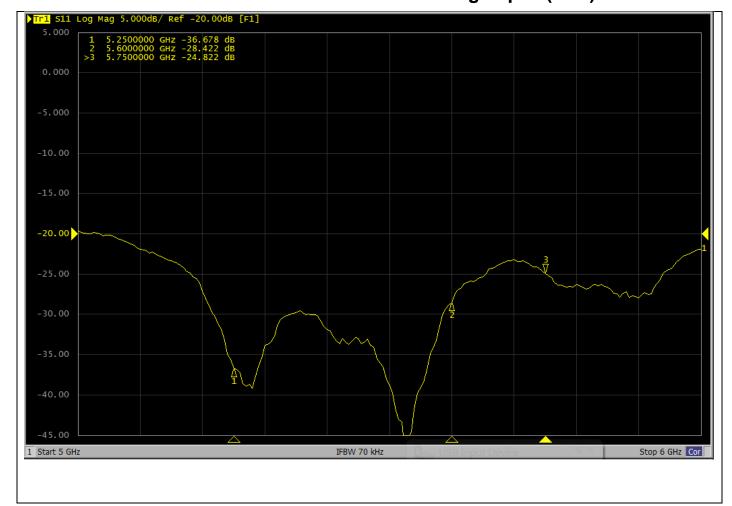

SAR(1 g) = 7.550 W/kg; SAR(10 g) = 2.200 W/kg

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01G

Page 9 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 14030223JD01G

UKAS Accredited Calibration Laboratory No. 5772

Page 10 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01G

Instrument ID: 1213

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01G

Instrument ID: 1213

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01G

Instrument ID: 1213

Calibration Date: 12/Oct/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D6.5GHzV2-1068_Mar22

CALIBRATION CERTIFICATE

Object D6.5GHzV2 - SN:1068

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: March 11, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor R&S NRP33T	SN: 100967	08-Apr-21 (No. 217-03293)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7405	31-Dec-21 (No. EX3-7405_Dec21)	Dec-22
DAE4	SN: 908	24-Jun-21 (No. DAE4-908_Jun21)	Jun-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Dec-21)	In house check: Dec-23
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-19)	In house check: Oct-22

Name Function Signature

Calibrated by: Leif Klysner Laboratory Technician

Approved by: Sven Kühn Deputy Manager

Issued: March 14, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1068_Mar22 Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1068_Mar22

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	6.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	12000	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	27.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	278 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	62.3 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1068_Mar22

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 1.3 jΩ		
Return Loss	- 32.3 dB		

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	277 W/m²
APD measured	normalized to 1W	2770 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	125 W/m²
APD measured	normalized to 1W	1250 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				

Certificate No: D6.5GHzV2-1068_Mar22

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1068, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties

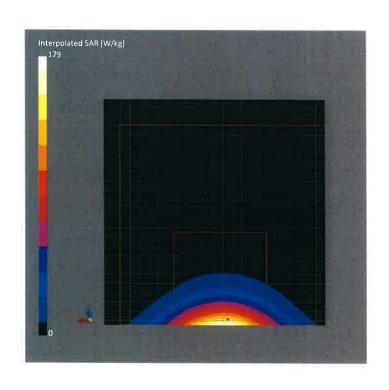
 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 D6.5GHz
 16.0 x 6.0 x 300.0
 SN: 1068

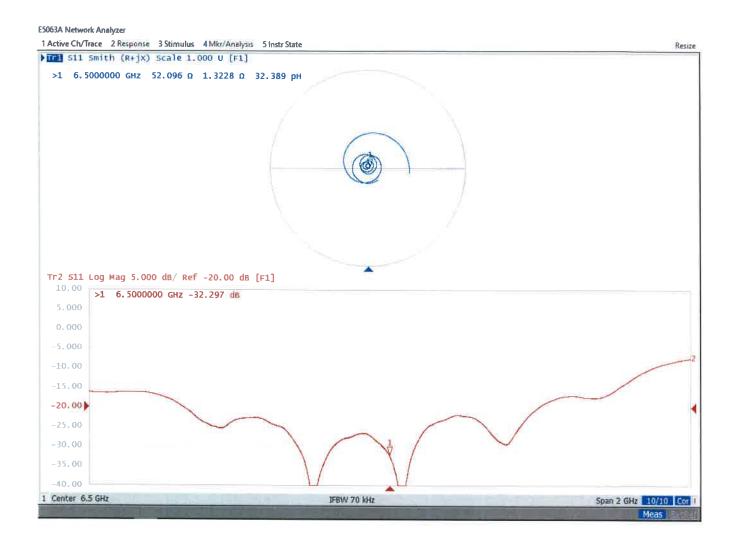
Exposure Conditions

Phantom Section, TSL	Position, Test Distance	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
,	[mm]		0.0	[]	1 00001	[3,]	Cimitalvity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.10	33.8

Hardware Setup


 Phantom
 TSL
 Probe, Calibration Date
 DAE, Calibration Date

 MFP V8.0 Center - 1182
 HBBL600-10000V6
 EX3DV4 - SN7405, 2021-12-31
 DAE4 Sn908, 2021-06-24


Measurement Results

Scan Setup

	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2022-03-11, 12:26
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	27.9
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.26
Graded Grid	Yes	psSAR10g [W/Kg]	5.13
Grading Ratio	1.4	Power Drift [dB]	0.00
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	50.2
		Dist 3dB Peak [mm]	4.8

Impedance Measurement Plot for Head TSL

