PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Applicant Name:

Panasonic Corporation of North America One Panasonic Way, 4B-8 Secaucus, NJ 07094 United States **Date of Testing:** 12/19/09 - 01/07/10 **Test Site/Location:**

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.:

0912152262.ACJ

FCC ID: ACJ9TGCF-311

APPLICANT: PANASONIC CORPORATION OF NORTH AMERICA

EUT Type: Notebook PC with WLAN abgn, WWAN and Bluetooth

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [July 2001]

FCC Classification: FCC Part 15 Frequency Hopping Spread Spectrum Transceiver (DSS)

Unlicensed Transmitter National Infrastructure (UNII)

PCS Licensed Transmitter(PCB)
Digital Transmission System (DTS)

Model(s): CF-31mk1

Tx Frequencies Evaluated: 2412 - 2462 MHz (WLAN)

5180 - 5825 MHz (WLAN) 2402 - 2480 MHz Bluetooth

Conducted Power: 14.22 dBm WLAN 2.4 GHz

13.86 dBm WLAN 5.2 GHz 13.39 dBm WLAN 5.3 GHz 14.05 dBm WLAN 5.5 GHz 12.92 dBm WLAN 5.8 GHz 13.67 dBm Bluetooth

 Max. Body SAR
 0.047 W/kg WLAN 802.11bgn 2.4 GHz

 Measurement:
 0.287 W/kg WLAN 802.11an 5.2 GHz

0.222 W/kg WLAN 802.11an 5.3 GHz 0.259 W/kg WLAN 802.11an 5.5 GHz 0.190 W/kg WLAN 802.11an 5.8 GHz

Test Device Serial No.: Pre-Production [S/N: 116]

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: ACJ9TGCF-311	PCTEST BOOKENED LASSACION, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 1 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn,	WWAN and Bluetooth	rage 1 01 27

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	9
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	.10
8	MULTIPLE ANTENNA & SEPARATION DISTANCES	.13
9	ANSI/IEEE C95.1-1992 RF EXPOSURE LIMITS	.15
10	MEASUREMENT UNCERTAINTIES	.16
11	SYSTEM VERIFICATION	.17
12	SAR DATA SUMMARY	.19
13	EQUIPMENT LIST	.24
14	CONCLUSION	.25
15	REFERENCES	.26

FCC ID: ACJ9TGCF-311	PCTEST'	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 2 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, W	/WAN and Bluetooth	Faye 2 01 21

1 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz[2] and Health Canada RF Exposure Guidelines Safety Code 6 [26]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [3] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 1-1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ACJ9TGCF-311	SOCIEST SOCIES ASSESSED. INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 3 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn,	WWAN and Bluetooth	rage 3 of 27

2 TEST SITE LOCATION

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

Figure 2-1
Map of the Greater Baltimore and Metropolitan
Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

(A) __dante

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA)
 Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: ACJ9TGCF-311	PCTEST*	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 4 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	1 490 1 0127

© 2010 PCTEST Engineering Laboratory, Inc.

REV 6.6

3 SAR MEASUREMENT SETUP

3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

3.3 System Electronics

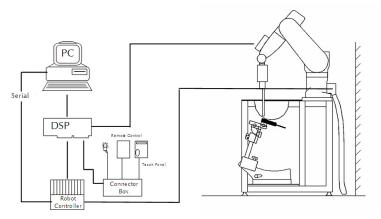


Figure 3-1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [7].

FCC ID: ACJ9TGCF-311	PCTEST*	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 5 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, W	WAN and Bluetooth	1 ago o oi 27

© 2010 PCTEST Engineering Laboratory, Inc.

3.4 Automated Test System Specifications

Positioner

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Cell Controller

Processor: Pentium 4 Clock Speed: 2.53 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: DASY4, SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: 166MHz low power Pentium MMX 32MB chipdisk

Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0)

Shell Material: Composite
Thickness: 2.0 ± 0.2 mm

Figure 3-2
DASY4 SAR Measurement System

FCC ID: ACJ9TGCF-311	POTEST. INCIDENTAL INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 6 of 27

DASY E-FIELD PROBE SYSTEM

4.1 **Probe Measurement System**

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe EX3DV4. designed in the classical triangular configuration [7] (see Figure 4-3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach

and looks for the maximum using a 2nd order fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 **Probe Specifications**

Model: ES3DV3, EX3DV4

Frequency 10 MHz - 6.0 GHz (EX3DV4) Range: 10 MHz - 4 GHz (ES3DV3)

In brain and muscle simulating tissue at Calibration: Frequencies from 835 up to 5800MHz ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4 Linearity: ± 0.2 dB (30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg - 100 W/kg

Probe Length: 330 mm

Probe Tip 20 mm Length:

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3) Tip-Center: 1 mm (2.0 mm for ES3DV3) Application: SAR Dosimetry Testing

> Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2 **Near-Field Probe**

Figure 4-3 Triangular Probe Configuration

FCC ID: ACJ9TGCF-311	PCTEST*	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 7 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	-

5 PROBE CALIBRATION PROCESS

5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

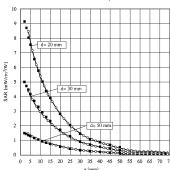


Figure 5-1 E-Field and Temperature measurements at 900MHz [7]

$$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$

where:

 σ = simulated tissue conductivity,

p = Tissue density (1.25 g/cm3 for brain tissue)

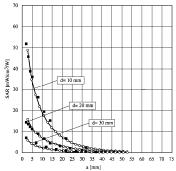


Figure 5-2 E-Field and temperature measurements at 1.9GHz [7]

FCC ID: ACJ9TGCF-311	PCTEST INCIDENTIAL LADVATORY, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 8 of 27

6 PHANTOM AND EQUIVALENT TISSUES

6.1 SAM Phantoms

Figure 6-1 SAM Phantoms

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [11][12]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

6.2 Brain & Muscle Simulating Mixture Characterization

Figure 6-2 Head Simulated

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 6-1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in IEEE-1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [13].(See Table 6-1)

Table 6-1
Composition of the Brain & Muscle Tissue Equivalent Matter

Recipe 1			, , , ,																			
1.2.Pro-panedical 1.2.	Frequency (MHz)	300	45	50	835		900		1450		18	100		19	00	1950	2000	2100 2450			3000	
	Recipe#	1	1	3	1	1	2	3	1	1	2	2	3	1	2	4	1	1	2	2	3	2
pasedial 1		Ingredient (% by weight)																				
Diacretin 1.0 4.5 4.5 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.9 4.9 4.9 4.9 4.9 4.0 4.0 4.0 4.0 1.0 4.0 4.9 4.9 4.9 4.0 4.0 4.0 4.9 4.9 4.9 4.0 4.0 4.5 4.9 4.9 4.9 4.0 4.0 4.9 4.9 4.9 4.9 4.0 4.0 4.0 4.9 4.9 4.9 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 7.0 4.0	1,2-Pro- panediol						64.81															
DogRE	Bactericide	0.19	0.19	0.50	0.10	0.10		0.50					0.50								0.50	
HEC 0.58 0.98 1.70 1.00 1.00 1.00 0.0 0.00 0.00 0.00	Diacetin			48.90				49.20					49.43								49.75	
NaCl 5.99 3.99 1.70 1.45 1.46 0.79 1.10 0.67 0.36 0.35 0.18 0.64 0.18 0.35 U. U. U. 0.16 0.16 0.16 U.	DGBE								45.41	47.00	13.84	44.92		44.94	13.84	45.00	50.00	50.00	7.99	7.99		7.99
Succession Single Singl	HEC	0.98	0.98		1.00	1.00																
Trices X-100 Image: Company of the compa	NaC1	5.95	3.95	1.70	1.45	1.48	0.79	1.10	0.67	0.36	0.35	0.18	0.64	0.18	0.35				0.16	0.16		0.16
Water 37.56 38.56 48.90 40.49 40.49 49.20 38.00 20.20 38.00 40.90 40.00 50.60 49.40 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 71.80 47.70 47.70 49.70 <t< td=""><td>Sucrose</td><td>55.32</td><td>56.32</td><td></td><td>57.00</td><td>56.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Sucrose	55.32	56.32		57.00	56.50																
Second Column C	Triton X-100										30.45				30.45				19.97	19.97		19.97
ϵ'_r 45.00 43.4 44.3 41.6 41.2 41.8 42.7 40.9 39.3 41 40.4 39.2 39.9 41 40.1 37 36.8 41.1 40.3 39.2 $\sigma(Sim)$ 0.86 0.85 0.9 0.99 0.99 0.99 1.21 1.39 1.38 1.4 1.4 1.4 1.4 1.51 1.55 1.88 1.82<	Water	37.56	38.56	48.90	40.45	40.92	34.40	49.20	53.80	52.64	55.36	54.90	49.43	54.90	55.36	55.00	50.00	50.00	71.88	71.88	49.75	71.88
σ(Sim) 0.86 0.85 0.9 0.9 0.90 0.97 0.99 1.21 1.39 1.38 1.4 1.4 1.4 1.30 1.41 1.1 1.51 1.55 1.88 1.82 Temp.(*C) 22 22 20 22 22 22 22 22 22 22 22 22 22									λ	feasured	dielectric	parameo	ers									
Trange, (°C) 22 22 20 22 22 22 22 22 22 22 22 22 21 22 21 22 20 21 21 20 22 22 20 20 20 20 20 20 20 20 20 20	e' _r	46.00	43.4	44.3	41.6	41.2	41.8	42.7	40.9	39.3	41	40.4	39.2	39.9	41	40.1	37	36.8	41.1	40.3	39.2	37.9
Target dielectric parameters (Table 2) a'r 45.50 43.50 41.5 41.50 40.5 40.0 39.80 39.2	σ(S/m)	0.86	0.85	0.9	0.9	0.98	0.97	0.99	1.21	1.39	1.38	1.4	1.4	1.42	1.38	1.41	1.4	1.51	1.55	1.88	1.82	2.46
c _r 4530 43.50 41.5 41.50 40.5 40.0 39.90 39.2	Temp. (°C)	22	22	20	22	22	22	20	22	22	21	22	20	21	21	20	22	22	20	20	20	20
	•								Targ	et dielect	ric parau	neters (Ts	ble 2)									
σ(Sim) 0.87 0.87 0.9 0.97 1.2 1.4 1.49 1.8	e' _r	45.30	43.	.50	41.5		41.50		40.5				40	0.0				39	.90	39	9.2	38.5
	σ(S/m)										2.4											
NOTE—Multiple column for any single frequency are optional recipes. Recipe 4, reference: 1 (Karals et al. [285]), 2 (Vigness [8145]), 3 (Feynus and Oxford [8115]), 4 (Februage et al. [850]).	NOTE—Multiple o	obæmna for s	say single fi	requency as	e optional s	rcipes. Reci	po 4, refere	nos: 1 (Kars	haetal. [B8	5]), 2 (Vign	ses [B143]), 3 (Peyma	n and Gabr	iel [B119]),	4 (Fukurag	et al. [BS0	Ð.					

⁸The formulas containing Triton X-100 and corresponding measured parameters are under review and verification

FCC ID: ACJ9TGCF-311	*** VECTEST** *** VINCELETER LADGETET, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn, W	WAN and Bluetooth	Page 9 of 27

7 DOSIMETRIC ASSESSMENT & PHANTOM SPECS

7.1 Measurement Procedure

The evaluation was performed using the following procedure:

- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the phantom was measured at a distance of 3.0mm from the inner surface of the shell. The horizontal grid spacing was 15mm x 15mm.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Figure 7-1):
 - a. The data at the surface was extrapolated since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The Sample SAR Area Scan extrapolation was based on a least square algorithm [15]. A polynomial of the fourth order was calculated through the points in the z-axis. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was found with a software algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using 3D-Spline interpolation. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [15][16]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 1, was re-measured to measure drift. If the value drifted by more than 5%, the evaluation was repeated.

7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 7-2 SAM Twin Phantom Shell

FCC ID: ACJ9TGCF-311	PCTEST INDICATION, INC.	CERTIFICATION REPORT	nasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn, WWAN and	d Bluetooth	Page 10 of 27

7.3 SAR Testing with IEEE 802.11 a/b/g Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

7.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

7.3.2 Frequency Channel Configurations [22]

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

Table 7-1 802.11 Test Channels per FCC Requirements

			000000 0000	Turbo		fault Test		s"
Mo	de	GHz	Channel	Channel		.247	UN	ш
				Спаппет	802.11b	802.11g	Ul	ш
		2.412	1		1	∇		
802.1	l b/g	2.437	6	6	1	∇	7	
	22000	2.462	11		1	∇		
		5.18	36				√	
		5.20	40	42 (5.21 GHz)				*
		5.22	44	42 (J.21 GII2)				*
		5.24	48	50 (5.25 GHz)			1	
		5.26	52	50 (5.25 GIL)			1	
		5.28	56	58 (5.29 GHz)				*
		5.30	60	50 (5.25 GIL)				*
		5.32	64				1	
		5.500	100					*
	UNII	5.520	104				√	
		5.540	108					*
802.11a		5.560	112					*
002.11.		5.580	116				√	
		5.600	120	Unknown				
		5.620	124				√	
		5.640	128					*
		5.660	132					*
		5.680	136				√	
	5	5.700	140					*
	UNII	5.745	149		√		- √	
	or	5.765	153	152 (5.76 GHz)		*		*
	§15.247	5.785	157		√			*
		5.805	161	160 (5.80 GHz)		*	√	
777	§15.247	5.825	165	63	√			

FCC ID: ACJ9TGCF-311	POTEST SHOULD LADACIDET, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 11 of 27

7.4 Device Conducted Powers: WLAN 802.11abgn

Mode	Freq	Channel	Antenna	С	onducted F	Power [dBr	n]				
IVIOGE	1164	Oname	Antenna		Data Rat	te [Mbps]					
	[MHz]			1	2	5.5	11				
802.11b	2412	1	В	13.54	13.00	13.50	13.05				
802.11b	2437	6	В	13.54	13.52	13.55	13.25				
802.11b	2462	11	В	12.84	13.25	13.23	13.10				
Mada	Гиан	Channal	Antonno			С	onducted I	Power [dBr	n]		
Mode	Freq	Channel	Antenna					e [Mbps]			
	[MHz]			6	9	12	18	24	36	48	54
802.11g	2412	1	В	11.91	11.78	11.77	11.78	11.68	11.00	11.54	10.30
802.11g	2437	6	В	14.22	14.16	14.03	14.01	13.84	13.80	12.50	10.70
802.11g	2462	11	В	12.56	12.50	12.45	12.44	12.28	12.20	12.22	11.15
							onducted F				
Mode	Freq	Channel	Antenna					e [Mbps]			
	[MHz]			HT0	HT1	HT2	HT3	HT4	HT5	HT6	HT7
802.11 n	2422	3	В	7.42	7.43	7.77	7.15	7.08	7.00	7.01	6.90
802.11n	2437	6	В	14.05	14.00	13.93	13.68	13.61	12.20	10.49	8.80
802.11n	2452	9	В	7.73	7.78	8.14	7.50	7.40	7.84	7.38	7.31
			U	7.70	7.70		Conducted F			7.00	7.01
Mode	Freq	Channel	Antenna					e [Mbps]	'']		
	[MHz]			6	9	12	18	24	36	48	54
802.11a	5180	36	В	12.28	12.20	12.11	12.12	12.00	11.94	11.96	9.80
802.11a	5200	40	В		12.20	12.11	12.12	12.72	12.62		
802.11a	5220	44	В	12.98						11.85	10.03
		44		13.34	13.34	13.73	13.76	13.86	13.80	12.94	11.15
802.11a	5240		В	12.65	13.11	13.04	13.05	12.92	12.83	11.63	10.23
802.11a	5260	52	В	12.84	13.24	12.80	12.83	12.70	12.66	11.85	10.04
802.11a	5280	56	В	13.11	13.10	13.10	13.14	12.97	12.91	11.71	10.23
802.11a	5300	60	В	13.18	13.30	13.39	13.19	13.24	13.24	12.33	10.60
802.11a	5320	64	В	13.22	13.18	12.94	12.92	12.73	13.02	11.78	9.95
802.11a	5500	100	В	13.10	13.32	13.24	13.31	12.81	12.80	12.30	10.64
802.11a	5520	104	В	13.51	13.42	13.70	13.02	13.12	13.16	12.22	10.68
802.11a	5540	108	В	13.27	13.26	14.05	12.84	12.90	12.97	12.04	10.37
802.11a	5560	112	В	13.11	13.50	13.89	13.20	12.86	12.89	11.75	10.51
802.11a	5580	116	В	13.45	13.39	13.39	12.71	12.80	13.05	11.81	10.09
802.11a	5600	120	В	12.74	12.67	12.62	12.72	12.56	12.54	11.74	9.49
802.11a	5620	124	В	12.82	13.07	13.34	13.86	12.28	12.33	11.27	9.16
802.11a	5640	128	В	13.07	12.91	13.34	12.40	12.22	12.48	11.63	9.31
802.11a	5660	132	В	12.71	12.88	13.06	12.53	12.52	12.54	11.61	9.27
802.11a	5680	136	В	12.75	12.66	12.93	12.30	12.97	12.41	11.64	9.30
802.11a	5700	140	В	12.47	12.43	12.06	12.12	12.00	11.93	11.10	9.28
802.11a	5745	149	В	11.82	12.04	12.00	12.03	11.84	11.76	10.85	8.50
802.11a	5785	157	В	12.31	12.35	12.10	12.20	12.03	11.95	11.10	8.78
802.11a	5825	165	В	12.92	12.80	12.40	12.62	12.10	12.10	11.25	8.85
							onducted I				
Mode	Freq	Channel	Antenna					e [Mbps]			
	[MHz]			HT0	HT1	HT2	HT3	HT4	HT5	HT6	HT7
802.11n	5190	38	В	9.06	9.01	8.97	8.81	8.67	8.73	8.68	8.63
802.11n	5230	46	В	12.82	12.41	12.72	12.40	12.08	11.56	9.81	7.97
802.11n	5270	54	В	12.22	12.60	12.52	12.32	12.22	11.76	10.01	8.25
802.11n	5310	62	В	10.03	10.01	9.96	9.78	9.71	9.69	9.73	8.35
802.11n	5510	102	В	11.47	11.43	11.36	11.16	11.10	10.63	10.27	8.48
802.11n	5550	110	В	11.21	11.09	11.42	11.05	11.40	11.04	9.14	7.68
802.11n	5590	118	В	12.59	12.57	12.45	11.03	11.40	11.43	10.00	8.25
802.11n	5630	126	В	10.72	10.89	10.80	10.44	10.56	10.47	8.17	6.72
802.11n	5670	134	В								
				11.80	11.79	11.69	11.47	11.42	11.24	9.17	5.06
802.11n	5755	151 159	В	11.35	11.66	11.54	11.35	11.30	10.72	8.60	5.60
802.11n	5795	109	В	12.00	11.90	11.76	11.56	11.40	11.00	8.81	6.01

FCC ID: ACJ9TGCF-311	POTEST SOCIETATION, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 12 of 27

Table 10-1 Maximum Conducted Power

	Maximum Conducted Power										
Transmitter	Frequency Band	Highest Frequency	Conducted Power		60/f (GHz)	>60/f					
	MHz	MHz	dBm	mW	mW						
Bluetooth	2441	2,480.00	13.67	23.28	24.19	no					
802.11b	2437	2,462.00	13.54	22.59	24.37	no					
802.11g	2437	2,462.00	14.22	26.42	24.37	yes					
802.11a	5200	5,240.00	13.86	24.32	11.45	yes					
802.11a	5300	5,320.00	13.39 21.83		11.28	yes					
802.11a	5500	5,600.00	14.05	25.41	10.71	yes					
802.11a	5785	5,825.00	12.92	19.59	10.30	yes					
802.11n	2437	2,462.00	14.05	25.41	24.37	yes					
802.11n	5200	5,240.00	12.82	19.14	11.45	yes					
802.11n	5300	5,320.00	12.60	18.20	11.28	yes					
802.11n	5500	5,600.00	12.59	18.16	10.71	yes					
802.11n	5785	5,825.00	12.00	15.85	10.30	yes					

FCC ID: ACJ9TGCF-311	POTEST SOCIETATION, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 13 of 27

Distance - Antenna to Body								
Position		Antenna (Unit: mm						
FUSILIUIT	WWAN Main	WLAN Main	WLAN Aux	BT				
Laptop	300	300	37	37				

Table 10-2 Distance – Antenna to Body

Distance - Antenna to Antenna									
Antenna (Unit: mm)	WWAN Main	WLAN Main	WLAN Aux	BT					
WWAN Main	N/A	120	NA	263					
WLAN Main	120	N/A	NA	310					
WLAN Aux	N/A	N/A	N/A	345					
BT	NA	NA	345	NA					

Table 10-3 Distance – Antenna to Antenna

NOTE: SAR evaluation is not required for antennas located greater than 20 cm from the body Therefore WWAN Main and WLAN Main antenna was not evaluated.

The Maximum antenna output power of Bluetooth is $<60/f,\,$ therefore SAR evaluation is not required.

FCC ID: ACJ9TGCF-311	SOCIETAL LADRATINA, INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 14 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	raye 14 01 27

9.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

9.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 9-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

HUM	HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)						
SPATIAL PEAK SAR Brain	1.6	8.0						
SPATIAL AVERAGE SAR Whole Body	0.08	0.4						
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20						

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ACJ9TGCF-311	POTEST. INCIDENTAL INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 15 of 27

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

10 MEASUREMENT UNCERTAINTIES

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		c _i	c _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.6	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1. <i>7</i>	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	8
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)		•	RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ACJ9TGCF-311	PCTEST VEGINERAL LADORATORY, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 16 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, W	WAN and Bluetooth	rage 10 01 27

11 SYSTEM VERIFICATION

11.1 Tissue Verification

Table 11-1 Measured Tissue Properties

Calibrated Date:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
		2401	1.897	51.50	1.95	52.70	-2.72%	-2.28%
12/14/2009	2450M	2450	1.978	51.31	1.95	52.70	1.44%	-2.64%
		2499	2.046	51.15	1.95	52.70	4.92%	-2.94%
		5170	5.296	48.71	5.26	49.15	0.61%	-0.90%
01/04/2010 5200M	5200M	5210	5.352	48.60	5.31	48.95	0.75%	-0.72%
		5250	5.425	48.70	5.36	48.75	1.21%	-0.10%
		5270	5.452	48.51	5.38	48.65	1.26%	-0.29%
01/04/2010	5300M	5310	5.490	48.34	5.43	48.45	1.07%	-0.23%
		5350	5.570	48.42	5.48	48.25	1.64%	0.35%
		5470	5.716	48.01	5.61	48.63	1.82%	-1.27%
01/04/2010	5500M	5510	5.709	47.95	5.66	48.59	0.83%	-1.32%
		5550	5.831	47.92	5.71	48.55	2.12%	-1.30%
		5570	5.828	47.87	5.73	48.53	1.64%	-1.36%
01/04/2010	5600M	5610	5.847	47.69	5.78	48.49	1.12%	-1.65%
		5650	5.924	47.62	5.83	48.45	1.61%	-1.71%
		5670	5.976	47.66	5.85	48.40	2.08%	-1.52%
01/04/2010	5700M	5710	5.999	47.46	5.90	48.34	1.64%	-1.81%
		5750	6.047	47.44	5.95	48.28	1.63%	-1.73%
		5770	6.155	47.41	5.97	48.25	3.03%	-1.73%
01/04/2010	5800M	5800	6.172	47.24	6.01	48.20	2.70%	-1.99%
		5850	6.195	47.26	6.07	48.13	2.06%	-1.80%

FCC ID: ACJ9TGCF-311	POTEST. INCIDENTAL INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 17 of 27

11.2 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the specifications by using the system validation kit(s). (Graphic Plots Attached)

Table 11-2 System Verification Results

	System Verification TARGET & MEASURED											
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Tissue Type	Targeted SAR _{1g} (mW)	Measured SAR _{1g} (mW)	Deviation (%)			
12/19/2009	24.5	22.8	0.100	2450	797	Muscle	5.30	5.06	-4.53%			
01/06/2010	23.4	21.7	0.025	5200	1057	Muscle	1.98	1.89	-4.42%			
01/07/2010	23.6	21.9	0.025	5500	1057	Muscle	2.04	1.97	-3.43%			
01/07/2010	23.8	22.1	0.025	5800	1057	Muscle	1.79	1.80	0.56%			

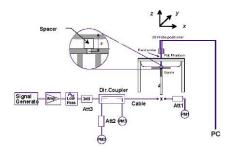


Figure 11-1 System Verification Setup Diagram

Figure 11-2
System Verification Setup Photo

FCC ID: ACJ9TGCF-311	SOCIEST SOCIEST INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 18 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	raye 10 01 27

12 SAR DATA SUMMARY

14.1 WLAN 802.11bgn 2.4GHz Body SAR Results

				MEAS	UREMEN	T RESUL	TS			
FREQU	ENCY	Mode		Conducted Power [dBm]		Modulation	Data Rate	Spacing	Antenna	SAR
MHz	Ch.	Моде	Start	End	Position	Modulation	(Mbps)	(cm)		(W/kg)
2412	1	802.11b	13.54	13.37	Lap	DSSS	1	0.0	В	0.030
2437	6	802.11b	13.54	13.34	Lap	DSSS	1	0.0	В	0.037
2462	11	802.11b	12.84	12.66	Lap	DSSS	1	0.0	В	0.047
2412	1	802.11g	11.91	11.79	Lap	OFDM	6	0.0	В	0.032
2437	6	802.11g	14.22	14.03	Lap	OFDM	6	0.0	В	0.033
2462	11	802.11g	12.56	14.23	Lap	OFDM	6	0.0	В	0.026
2422	3	802.11n	7.42	7.55	Lap	OFDM	13.5	0.0	В	0.017
2437	6	802.11n	14.05	13.87	Lap	OFDM	13.5	0.0	В	0.036
2452	9	802.11n	7.73	8.30	Lap	OFDM	13.5	0.0	В	0.036
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population				Body 1.6 W/kg (mW/g) averaged over 1 gram					

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- Batteries are fully charged for all readings. Standard batteries were investigated.
 Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. WLAN Main antenna (A) located greater than 20 cm from the body of the user and thus was not evaluated for SAR.

FCC ID: ACJ9TGCF-311	PCTEST. INCIDENTAL LADVATORY, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 19 of 27

14.2 WLAN 802.11an 5.2GHz Body SAR Results

	MEASUREMENT RESULTS											
FREQU	ENCY	Mode	Conducted Power [dBm]		Test	Modulation	Data Rate	Spacing	Antenna	SAR		
MHz	Ch.	mode	Start	End	Position		(Mbps)	(cm)		(W/kg)		
5200	40	802.11a	12.98	12.93	Тор	OFDM	6	*	В	0.287		
5220	44	802.11a	13.34	13.44	Тор	OFDM	6	*	В	0.221		
5220	44	802.11a	13.86	13.68	Тор	OFDM	24	*	В	0.199		
5190	38	802.11n	9.06	9.03	Тор	OFDM	13.5	*	В	0.134		
5230	46	802.11n	12.82	12.98	Тор	OFDM	13.5	*	В	0.259		
5200	40	802.11a	12.98	12.87	Lap	OFDM	6	0.0	В	< 0.01		
ANSI /	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body					
	Spatial Peak				1.6 W/kg (mW/g)							
Unconti	rolled Ex	cposure/Ge	neral Po	pulation		average	ed over 1 (gram				

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard batteries were investigated.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. Due to the antenna placement and thickness of the DUT no discernable hotspot was found in the Lap position so the device was tested with the antenna (keyboard), 1.0 cm from the SAM phantom.
- 7. WLAN Main antenna (A) located greater than 20 cm from the body of the user and thus was not evaluated for SAR.

FCC ID: ACJ9TGCF-311	POTEST SOCIETATION, INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 20 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	Faye 20 01 27

14.3 WLAN 802.11an 5.3GHz Band Body SAR Results

				MEAS	UREMEN	NT RESUL	LTS				
FREQU	ENCY	Mode	Conducted Power [dBm]		Test	Modulation	Data Rate	Spacing	Antenna	SAR	
MHz	Ch.		Start	End	Position		(Mbps)	(cm)		(W/kg)	
5260	52	802.11a	12.84	12.70	Тор	OFDM	6	*	В	0.185	
5260	52	802.11a	13.24	13.06	Тор	OFDM	9	*	В	0.180	
5300	60	802.11a	13.18	13.27	Тор	OFDM	6	*	В	0.222	
5300	60	802.11a	13.39	13.23	Тор	OFDM	12	*	В	0.208	
5270	54	802.11n	12.22	12.27	Тор	OFDM	13.5	*	В	0.205	
5310	62	802.11n	10.03	10.22	Тор	OFDM	13.5	*	В	0.125	
5260	52	802.11a	12.84	12.70	Lap	OFDM	6	0.0	В	< 0.01	
ANSI / II	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Body					
Spatial Peak					1.6 W/kg (mW/g)						
Uncontrol	lled Expo	osure/Gei	neral Po	oulation		averag	ged over 1	gram			

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard batteries were investigated.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. Due to the antenna placement and thickness of the DUT no discernable hotspot was found in the Lap position so the device was tested with the antenna (keyboard), 1.0 cm from the SAM phantom.
- 7. WLAN Main antenna (A) located greater than 20 cm from the body of the user and thus was not evaluated for SAR.

FCC ID: ACJ9TGCF-311	POTEST SUCCESSION INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 21 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	raye 21 01 27

14.4 WLAN 802.11an 5.5GHz Body SAR Results

				MEAS	UREME	NT RESUL	.TS			
FREQU	ENCY	Mode		ed Power Bm]	Test	Modulation	Data Rate	Spacing	Antenna	SAR
MHz	Ch.		Start	End	Position	modulation	(Mbps)	(cm)		(W/kg)
5540	108	802.11a	13.27	13.10	Тор	OFDM	6	*	В	0.228
5540	108	802.11a	14.05	13.98	Тор	OFDM	12	*	В	0.259
5560	112	802.11a	13.11	12.97	Тор	OFDM	6	*	В	0.227
5560	112	802.11a	13.89	13.81	Тор	OFDM	12	*	В	0.118
5620	124	802.11a	12.82	12.96	Тор	OFDM	6	*	В	0.196
5620	124	802.11a	13.86	14.00	Тор	OFDM	18	*	В	0.174
5510	102	802.11n	11.47	11.34	Тор	OFDM	13.5	*	В	0.132
5590	118	802.11n	12.59	12.45	Тор	OFDM	13.5	*	В	0.231
5670	134	802.11n	11.80	11.97	Тор	OFDM	13.5	*	В	0.120
5540	108	802.11a	13.27	13.10	Lap	OFDM	6	0.0	В	< 0.01
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population				Body 1.6 W/kg (mW/g) averaged over 1 gram					

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard batteries were investigated.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. Due to the antenna placement and thickness of the DUT no discernable hotspot was found in the Lap position so the device was tested with the antenna (keyboard), 1.0 cm from the SAM phantom.
- 7. WLAN Main antenna (A) located greater than 20 cm from the body of the user and thus was not evaluated for SAR.

FCC ID: ACJ9TGCF-311	POTEST SHOULD LADEATERY, INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 22 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	Faye 22 01 21

14.5 WLAN 802.11an 5.8GHz Body SAR Results

	MEASUREMENT RESULTS												
FREQUI	ENCY	Mode	Conduct Power [di			Test	Modulation	Data Rate	Spacing	Antenna	SAR		
MHz	Ch.		Start	End	Position	, 3		322.2	(Mbps)	(Mbps)	(Mbps)) (cm)	
5745	149	802.11a	11.82	11.64	Тор	OFDM	6	*	В	0.181			
5785	157	802.11a	12.31	12.21	Тор	OFDM	6	*	В	0.168			
5825	165	802.11a	12.92	12.73	Тор	OFDM	6	*	В	0.097			
5755	151	802.11n	11.35	11.37	Тор	OFDM	13.5	*	В	0.190			
5795	159	802.11n	12.00	11.83	Тор	OFDM	13.5	*	В	0.137			
5745	149	802.11a	11.82	11.64	Lap	OFDM	6	0.0	В	< 0.01			
ANSI / IE	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Body							
Spatial Peak Uncontrolled Exposure/General					V/ kg (mW / ed over 1 ç	.							

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard batteries were investigated.
- 4. Tissue parameters and temperatures are listed on the SAR plots
- 5. Liquid tissue depth is 15.1 cm. \pm 0.1.
- 6. Due to the antenna placement and thickness of the DUT no discernable hotspot was found in the Lap position so the device was tested with the antenna (keyboard), 1.0 cm from the SAM phantom.
- 7. WLAN Main antenna (A) located greater than 20 cm from the body of the user and thus was not evaluated for SAR.

FCC ID: ACJ9TGCF-311	POTEST SHOULD LADEATERY, INC.	CERTIFICATION REPORT Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 23 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, WWAN and Bluetooth	Faye 23 01 27

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/25/2009	Annual	3/25/2010	JP38020182
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/25/2009	Biennial	3/25/2011	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	4/6/2009	Annual	4/6/2010	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	8/20/2008	Biennial	8/20/2010	101695
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/5/2008	Biennial	12/5/2010	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	12/5/2008	Biennial	12/5/2010	100004
SPEAG	D1450V2	1450 MHz SAR Dipole	5/20/2009	Biennial	5/20/2011	1025
SPEAG	D1765V2	1765 MHz SAR Dipole	5/19/2009	Biennial	5/19/2011	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	1/20/2009	Biennial	1/20/2011	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2300V2	2300 MHz SAR Dipole	3/6/2008	Biennial	3/6/2010	1008
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2	2450 MHz SAR Dipole	1/8/2009	Biennial	1/8/2011	797
SPEAG	D2600V2	2600 MHz SAR Dipole	8/12/2009	Biennial	8/12/2011	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1007
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/15/2009	Biennial	1/15/2011	1057
SPEAG	D835V2	835 MHz SAR Dipole	1/19/2009	Biennial	1/19/2011	4d047
SPEAG	D835V2	835 MHz SAR Dipole	8/24/2009	Biennial	8/24/2011	4d026
SPEAG	DAE3	Dasy Data Acquisition Electronics	9/17/2009	Annual	9/17/2010	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/14/2009	Annual	5/14/2010	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/25/2009	Annual	5/25/2010	665
SPEAG	ES3DV2	SAR Probe	9/18/2009	Annual	9/18/2010	3022
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/21/2009	Annual	7/21/2010	859
SPEAG	D750V3	750 MHz Dipole	2/19/2009	Biennial	2/19/2011	1003
Rohde & Schwarz	CMU200	Base Station Simulator	6/12/2009	Annual	6/12/2010	836536/0005
Speag	ES3DV3	SAR Probe	4/15/2009	Annual	4/15/2010	3213
Speag	ES3DV3	SAR Probe	4/15/2009	Annual	4/15/2010	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	5/21/2009	Annual	5/21/2010	832810/021
Speag	D1640V2	1640 MHz Dipole	8/21/2008	Biennial	8/21/2010	321
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/25/2009	Annual	8/25/2010	100976
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5318
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	98150041
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	1070030
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5821
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	8013
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	2400

Notes:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by PCTEST prior to SAR evaluation. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

FCC ID: ACJ9TGCF-311	PCTEST*	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	WAN and Plustaath	Page 24 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn, W	WAN and Bluetooth	Page I

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ACJ9TGCF-311	PCTEST:	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Page 25 of 27
0912152262.ACJ	12/19/09 - 01/07/10	Notebook PC with WLAN abgn,	WWAN and Bluetooth	rage 23 01 27

15

REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

PCTEST SHOULDER LABORATERY, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Test Dates:	EUT Type:	VAN and Bluetooth	Page 26 of 27
T	SNOWLESIAN LABORATURY, INC.	est Dates: EUT Type:	est Dates: EUT Type:

- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [21] FCC SAR Measurement Procedures for 3G Devices v2.0, October 2007
- [22] SAR Measurement procedures for IEEE 802.11a/b/g rev 1.2, May 2007
- [23] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [24] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [25] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 2, November 2005
- [26] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 1999
- [27] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas v01r05 #648474, September 2008
- [28] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz 3 GHz, Rev 1.1, January 2007
- [29] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, #616217, v01r01, April 2008
- [30] FCC SAR Measurement Requirements for 3 6 GHz Rev1.1, October 2006
- [31] FCC Mobile Portable RF Exposure Procedure D01 v03r03, KDB 447498, Jan. 2009
- [32] FCC SAR Procedures for Dongle Transmitters D02 v01, KDB 447498, Dec. 2008
- [33] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.

FCC ID: ACJ9TGCF-311	PCTEST INCIDENTIAL LADVATORY, INC.	CERTIFICATION REPORT	Panasonic	Reviewed by: Quality Manager
Filename: 0912152262.ACJ	Test Dates: 12/19/09 - 01/07/10	EUT Type: Notebook PC with WLAN abgn,	WWAN and Bluetooth	Page 27 of 27