

SAR Evaluation Report				
EUT Information				
Manufacturer	Panasonic			
Model Name	WX-CH455			
FCC ID	ACJ9TAWX-CH455			
IC Number	216A-WXCH455			
EUT Type	headset			
EUT Category	portable device			
	Prepared by			
	IMST GmbH, Test Center			
Tootion I about any	Carl-Friedrich-Gauß-Str. 2 – 4			
Testing Laboratory	47475 Kamp-Lintfort			
	Germany			
	The Testcenter facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-00.			
Accreditation	"The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAB-EMC on the basis of the Council Decision of 22. June 1998 concerning the conclusion of the MRA between the European Community and the United States of America (1999/178/EC) in accordance with § 4 of the Recognition Ordinance of 11. January 2016. The recognition is valid until 20. July 2021 under the registration number: BNetzA-CAB-16/21-14."			
Prepared for				
	Panasonic			
Anniloont	1-62, 4-chome, Minoshima, Hakata-ku			
Applicant	Fukuoka 812-8531			
	Japan			
	Test Specification			
Standard Applied	IEEE 1528-2013, FCC CFR 47 § 2.1093, RSS-102 Issue 5			
Exposure Category	General Public / Uncontrolled Exposure			
Usage Configuration	head			
	Report Information			
Data Stored	60320_6171372_Panasonic_WX-CH455			
Issue Date September 28, 2017				
Revision Date				
Revision Number	-			
Remarks	This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.			

Table of Contents

1	Sub	pject of Investigation and Test Results	3
	1.1	Technical Data of EUT	3
	1.2	Antenna Configuration	3
	1.3	Test Specification / Normative References	4
	1.4	Attestation of Test Results	4
2	Exp	oosure Criteria and Limits	5
	2.1	SAR Limits	5
	2.2	Exposure Categories	5
	2.3	Distinction between Maximum Permissible Exposure and SAR Limits	5
3	The	Measurement System	6
	3.1	Phantoms	7
	3.2	E-Field-Probes	8
4	Mea	asurement Procedure	9
	4.1	General Requirement	9
	4.2	Measurement Procedure	9
	4.3	Measurement Variability	10
5	Sys	stem Verification and Test Conditions	11
	5.1	Date of Testing	11
	5.2	Environment Conditions	11
	5.3	Tissue Simulating Liquid Recipes	11
	5.4	Tissue Simulating Liquid Parameters	12
	5.5	Simplified Performance Checking	12
6	SAF	R Measurement Conditions and Results	13
	6.1	Test Conditions	13
	6.2	Tune-Up Information	13
	6.3	Measured Output Power	13
	6.4	SAR Results	14
7	Adr	ministrative Measurement Data	15
	7.1	Calibration of Test Equipment	15
	7.2	Uncertainty Assessment	16
8	Rep	oort History	18
A	ppendi	xes	19
	Append	dix A - Pictures	20
	Append	dix B - SAR Distribution Plots	22
	Append	dix C - System Verification Plots	23
	Append	dix D – Certificates of Conformity	24
	Append	dix E – Calibration Certificates for DAEs	26
	Append	dix F – Calibration Certificates for E-Field Probes	31
	Append	dix G – Calibration Certificates for Dipoles	42

1 Subject of Investigation and Test Results

The WX-CH455 is a new headset (portable device) from Panasonic operating in the DECT standard.

The objective of the measurements done by IMST was the dosimetric assessment of one device in direct contact to the flat part of the SAM phantom using head tissue simulating liquid.

1.1 Technical Data of EUT

Product Specifications				
Model Name	WX-CH455			
IMEI / SN	3			
Operation Mode	DECT UPCS (TDD)			
Usage Configuration head				
Antenna Type	integrated pattern (1x DECT)			
Max. Output Power	refer chapter 6.3			
Power Supply	internal battery DC 3.7V (1520 mAh)			
Used Accessory head band				
Notes:	Notes:			

1.2 Antenna Configuration

Fig. 1: Sketches and antenna location of the EUT (marked in red).

1.3 Test Specification / Normative References

The tests documented in this report were performed according to the standards and rules described below.

	Test Specifications					
Test Standard / Rule		Description	Issue Date			
	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	June 14, 2013			
	FCC CFR 47 § 2.1091	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Mobile Devices.	October 01, 2010			
\boxtimes	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010			
\boxtimes	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015			
		Measurement Methodology KDB				
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015			
\boxtimes	KDB 865664 D02 v01r01	Exposure Reporting	October 23, 2015			
	Product KDB					
	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015			

1.4 Attestation of Test Results

Highest Reported SAR _{1g} [W/kg]								
Band	Frequency [MHz]	СН	Side of EUT	Gap [mm]	Pic. No.	Highest Reported SAR1g [W/kg]	SAR1¢	g Limit 'kg]
DECT UPCS	1924.992	2	Inner side	0	3	0.024	1.6	PASS

Notes: To establish a connection at a specific channel and with maximum output power, engineering test software has been used.

All measured SAR results and configurations are shown in chapter 6.4 on page 14.

Prepared by:

Dessislava Patrishkova

Test Engineer

Reviewed by:

Alexander Rahn
Quality Assurance

2 Exposure Criteria and Limits

2.1 SAR Limits

Human Exposure Limits					
Condition	Uncontrolled Environment (General Population)		Controlled Environment (Occupational)		
Condition	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.	
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body	
Peak spatially-averaged SAR for the head, neck & trunk	1.6	1g of tissue*	8.0	1g of tissue*	
Peak spatially-averaged SAR in the limbs	4.0	10g of tissue*	20.0	10g of tissue*	
Note: *Defined as a tissue volume in the shape of a cube					

Revision Date:

Table 1: SAR limits.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

2.2 Exposure Categories

General Public / Uncontrolled Exposure

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

Occupational / Controlled Exposure

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 2: RF exposure categories.

2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$

The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, E and E have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

3 The Measurement System

DASY is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 4
- · High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- · Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

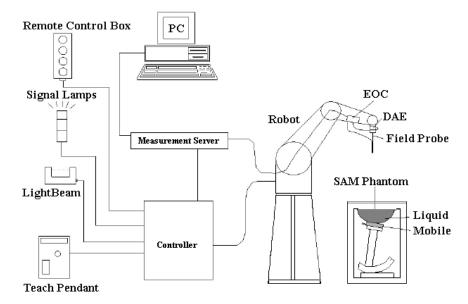


Fig. 2: The DASY4 measurement system.

Fig. 3: The measurement set-up with two SAM phantoms containing tissue simulating liquid.

The EUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

3.1 Phantoms

TWIN SAM PHANTOM V4.0				
	Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delivered by Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 5.			
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet			
Filling Volume	approx. 25 liters			

3.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

	ET3DV6R			
Construction Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm				
Frequency 10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)				
Directivity Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis)				
Dynamic Range 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB				
Calibration Range	450 MHz / 750 MHz / 900 MHz / 1750 MHz / 1900 MHz / 1950 MHz for head and body simulating liquid			

	EX3DV4
Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range $ 10 \ \mu\text{W/g to} > 100 \ \text{mW/g} $ Linearity: $\pm 0.2 \ \text{dB}$ (noise: typically < 1 μ W/g)	
Calibration Range	1950 MHz / 2450 MHz / 2600 MHz / 3500 MHz / 5200 MHz / 5300 MHz / 5600 MHz / 5800 MHz for head and body simulating liquid

4 Measurement Procedure

4.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

4.2 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 3.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

			≤ 3 GHz	≥ 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe at the measurement		probe axis to phantom surface normal	30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 - 4 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom s	Maximum zoom scan spatial resolution: ΔX _{Zoom} , ΔΥ _{Zoom}		≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial	Uniform grid: ΔZ _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm	
resolution, normal to phantom surface	on, o graded		ΔZ _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm
Surrace	grid $\Delta Z_{Zoom}(n>1)$: between subsequent points		≤ 1.5· ΔZ _{Zoom} (n-1)		
Minimum zoom scan volume X, y, z		≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE P1528-2011 for details

Table 3: Parameters for SAR scan procedures.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz

4.3 Measurement Variability

According KDB 865664 repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5 System Verification and Test Conditions

5.1 Date of Testing

Date of Testing					
Bar	nd	Frequency [MHz]	Date of System Check	Date of SAR Measurement	
DECT UPCS Head		1900	September 12, 2017	September 12, 2017	

Table 4: Date of testing.

5.2 Environment Conditions

Environment Conditions						
Ambient Temperature[°C]	Liquid Temperature [°C]	Humidity [%]				
22.0 ± 2	40.0 ± 5					
Notes: To comply with the required noise level (less than 12 mW/kg) periodically measurements without a DLIT were conducted						

Table 5: Environment Conditions.

5.3 Tissue Simulating Liquid Recipes

				Tis	sue Sim	nulating Lic	quid			
	Frequency Range	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Triton X/100	TWEEN 80	GERMABEN
	[MHz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
					Hea	d Tissue				
	300	37.1	56.1	0.9	5.8	0.2	1	-	-	-
	450	38.9	56.9	0.3	3.8	0.1	ı	-	-	-
	835	40.3	57.9	0.2	1.4	0.2	-	-	-	-
	900	40.3	57.9	0.2	1.4	0.2	1	-	-	-
	1800	55.2	-	-	0.3	-	44.5	-	-	-
\boxtimes	1900	55.4	-	-	0.1	-	44.5	-	-	-
	2450	55.0	ı	ı	ı	-	45.0	-	-	-
	2600	54.8	ı	ı	0.1	-	45.1	-	-	-
	5000 - 6000	65.5	ı	ı	1	-	17.2	17.25	-	-
					Bod	ly Tissue				
	450	46.2	51.2	0.2	2.3	0.1	-	-	-	-
	835	52.4	45.0	1.0	1.5	0.1	ı	-	-	-
	900	50.8	48.2	ı	0.9	0.1	ı	-	-	-
	1800	70.2	-	-	0.4	-	29.4	-	-	-
	1900	69.8	-	-	0.2	-	30.0	-	-	-
	2450	68.6	1	-	1	-	31.4	-	-	-
	2600	68.1	-	-	0.1	-	31.8	-	-	-
	5000 - 6000	79.7	-	-	-	-	-	-	20.0	0.3

Table 6: Recipes of the tissue simulating liquid.

5.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

			Tissue Si	mulating L	iquids He	ad				
Ai	mbient Tempe	rature(C): 22.	0 ± 2	Liquid Ten	nperature(C)	: 22.0 ± 2	Humidity(%): 40.0 ± 5			
		Fraguenay			Permittivity		Conductivity			
Band	Date	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta	
		[MHz]		ε'	ε'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]	
	Sept. 12,	1900.0	System Check	41.6	40.0	4.1	1.41	1.40	0.7	
DECT		1921.536	4	41.6	40.0	3.9	1.43	1.40	2.0	
DECT	2017	1924.992	2	41.5	40.0	3.9	1.43	1.40	2.3	
		1928.448	0	41.5	40.0	3.8	1.44	1.40	2.7	
Notes: Liquid	d depth is at le	ast 15 cm for	all frequency rang	ged measuren	nents.	•	•			

Table 7: Parameters of the head tissue simulating liquid.

5.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the table 8 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

	System Check Results										
		SAR Values with Head TSL [W/kg]									
Frequency	Dipole #SN	Measured				Target		Delta			
[MHz]		with 250 mW		scaled	ed to 1 W normaliz		ed to 1 W	+/- 10 [%]		Date	
		1g	10g	1g	10g	1g	10g	1g	10g		
1900	D1900V2 #535	9.20	4.96	36.80	19.84	40.10	21.00	-8.23	-5.52	Sept. 12, 2017	

Table 8: Dipole target and measured results.

6 SAR Measurement Conditions and Results

6.1 Test Conditions

	Test Conditions										
Band	TX Range [MHz]	RX Range [MHz]	Used Channels	Crest Factor	Phantom						
DECT UPCS	1921.536 - 1928.448	1921.536 - 1928.448	04, 02, 00	24	SAM Twin Phantom V4.0						
Notes: -											

Table 9: Used channels and crest factors during the test.

6.2 Tune-Up Information

	Tune-Up Information										
Band	CH / Mode	Frequency [MHz]	Max. Tune-Up Tolerance Limit [dBm]								
	CH 04	1921.536	20.0								
DECT UPCS	CH 02	1924.992	20.0								
	CH 00	1928.448	20.0								

Table 10: Maximum transmitting output power values declared by the manufacturer.

6.3 Measured Output Power

6.3.1 DECT UPCS Output Power

Max. Averaged Output Power [dBm]										
Mode	Frequency [MHz]	СН	Measured Output Power							
	1921.536	04	19.04							
DECT UPCS	1924.992	02	19.04							
	1928.448	00	19.04							
Notes:										

Table 11: Conducted output power values.

6.4 SAR Results

The tables below contain the measured SAR values averaged over a mass of 1g. SAR assessment was conducted in the worst case configuration with output power values according to Table 10. According to KDB 447498 D01 V05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- Scaling Factor = tune-up limit power (mW) / RF power (mW)
- Reported SAR = measured SAR * scaling factor

Furthermore, testing of other required channels within the operating mode of frequency band is not required when the reported SAR for the mid-band or highest output power channel is ≤ 0.4 W/kg for transmission band ≥ 200 MHz.

	SAR Measurement Results											
Band	Freq. [MHz]	СН	Side of EUT	Gap [mm]	Pic. No.	Measured SAR1g	Power Drift [dB]	Output Pow	Output Power [dBm]		Reported	Plot
						[W/kg]		Measured	Limit	Factor	SAR1g [W/kg]	No.
	1924.992	2	inner	0	3	0.019	0.195	19.04	20	1.247	0.024	1
DECT	1921.536	4	inner	0	3	0.015	0.056	19.04	20	1.247	0.019	-
	1928.448	0	inner	0	3	0.017	0.112	19.04	20	1.247	0.021	-

Notes: SAR assessment was conducted with removed rubber ear buds during testing.

Table 12: SAR measurement results in head configuration.

To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 Administrative Measurement Data

7.1 Calibration of Test Equipment

	Took Facilities	Manufacture	Martel	Serial	Last	Next
	Test Equipment	Manufacturer	Model	Number	Calibration	Calibration
DA	SY System Components		1			T
\boxtimes	Software Versions DASY4	SPEAG	V4.7	N/A	N/A	N/A
\boxtimes	Software Versions SEMCAD	SPEAG	V1.8	N/A	N/A	N/A
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1579	02/2016	02/2018
\boxtimes	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1669	02/2017	02/2018
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3536	09/2016	09/2017
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3860	09/2015	09/2017
\boxtimes	Data Acquisition Electronics	SPEAG	DAE 3	335	02/2017	02/2018
	Data Acquisition Electronics	SPEAG	DAE 4	631	09/2016	09/2017
\boxtimes	Phantom	SPEAG	SAM	1059	N/A	N/A
\boxtimes	Phantom	SPEAG	SAM	1176	N/A	N/A
\boxtimes	Phantom	SPEAG	SAM	1340	N/A	N/A
	Phantom	SPEAG	SAM	1341	N/A	N/A
	Phantom	SPEAG	ELI4	1004	N/A	N/A
Dip	ooles					
	System Validation Dipole	SPEAG	D450V2	1014	03/2015	03/2018
	System Validation Dipole	SPEAG	D835V2	470	03/2015	03/2018
	System Validation Dipole	SPEAG	D900V2	006	11/2015	11/2018
ī	System Validation Dipole	SPEAG	D1640V2	311	09/2015	09/2018
1	System Validation Dipole	SPEAG	D1750V2	1005	03/2015	03/2018
\equiv	System Validation Dipole	SPEAG	D1900V2	535	03/2015	03/2018
	System Validation Dipole	SPEAG	D2450V2	709	11/2015	11/2018
	System Validation Dipole	SPEAG	D2600V2	1019	11/2015	11/2018
	System Validation Dipole	SPEAG	D5GHzV2	1028	06/2014	06/2017
Ma	terial Measurement		•			l.
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	07/2015	07/2017
	Dielectric Probe Kit	SPEAG	DAK-3.5	1234	01/2016	01/2018
	Thermometer	LKMelectronic	DTM3000	3511	01/2016	01/2018
	wer Meters and Sensors	2	2	33.1	0200	020.0
$\overline{}$	Power Meter	Agilent	E4416A	GB41050414	02/2015	02/2017
	Power Sensor	Agilent	E9301H	US40010212	03/2015	03/2017
	Power Meter	Agilent	E4417A	GB41050441	02/2015	02/2017
	Power Sensor	Agilent	E9301A	MY41495584	03/2015	03/2017
	Power Meter	Anritsu	ML2488A	6K00002319	06/2016	06/2018
	Power Sensor	Anritsu	MA2490A	6K00002078	06/2016	06/2018
	Power Sensor	Anritsu	ML2472A	002122	06/2016	06/2018
	Power Meter	Anritsu	MA2472A	990365	06/2016	06/2018
	Sources	Ailliou	WAZTIZA	330303	00/2010	00/2010
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	07/2015	07/2017
	RF Generator	Rohde & Schwarz	SM300	100142	N/A	N/A
	plifiers	TOTILE & SCHWAIZ	SIVISOU	100142	13/73	1 11/71
_	I	Mini Circuita	71.11 40 40\44	D000504.4	NI/A	NI/A
	Amplifier 10 MHz – 4200 MHz	Mini Circuits	ZHL-42-42W	D080504-1	N/A	N/A
⊠ Da	Amplifier 2 GHz – 6 GHz dio Tester	Ciao Wireless	CA26-451	37452	N/A	N/A
\d(I	1		0000=====	0.465.15	
<u> </u>	Radio Communication Tester	Anritsu	MT8815B	6200576536	04/2016	04/2018
. 1	Radio Communication Tester	Anritsu	MT8820C	6200918336	04/2016	04/2018

Table 13: Calibration of test equipment.

7.2 Uncertainty Assessment

Error Sources	Uncertainty Value	Probability	Divisor	ci	ci		ndard rtainty	vi² or
Error Courses	[± %]	Distribution	Bivisor	0.	0.		%]	veff
Measurement System				1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	8
Axial isotropy	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	∞
Hemispherical isotropy	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	∞
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	× ×
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	×
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	oc
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	×
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	∞
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	×
Test Sample Related	·							
Test sample positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	∞
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Phantom and Set-up	·							
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	×
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	∞
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	× ×
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	× ×
Combined Standard Uncertainty						11.1	11.0	
Coverage Factor for 95%						kp)=2	
Expanded Standard Uncertainty						22.2	21.9	

Table 14: Uncertainty budget for SAR measurements.

	He a set alecter					04	-11	!2
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci		dard tainty %]	vi² or veff
Measurement System				1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	8
Axial isotropy	0.3	Rectangular	√3	1	1	0.1	0.1	8
Hemispherical isotropy	1.3	Rectangular	√3	0	0	0.0	0.0	8
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	oc
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	×
Modulation response	0.0	Rectangular	√3	0	0	0.0	0.0	×
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	×
Response time	0.0	Rectangular	√3	0	0	0.0	0.0	×
Integration time	0.0	Rectangular	√3	0	0	0.0	0.0	×
RF ambient conditions - noise	1.0	Rectangular	√3	1	1	0.6	0.6	×
RF ambient conditions - refl.	1.0	Rectangular	√3	1	1	0.6	0.6	×
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	×
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	×
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	×
Validation Dipole					l.		u .	
Dev. of exp. dipole from num.	5.0	Normal	1	1	1	5.0	5.0	×
Input power and SAR drift (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	∞
Dipole axis to liquid distance (< 2deg)	2.0	Rectangular	√3	1	1	1.2	1.2	×
Phantom and Set-up				•			•	,
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	×
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	×
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	×
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	×
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	~
Combined Standard Uncertainty						10.7	10.6	
Coverage Factor for 95%						kp)=2	
Expanded Standard Uncertainty 21.5 21.2								

Table 15: Uncertainty budget for SAR system validation.

8 Report History

	Revision History										
Revision	Description of Revision	Date	Revised Page	Revised By							
1	Initial Release	September 28, 2017	-	-							

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles