

SAR Evaluation Report			
DUT Information			
Manufacturer Model Under Test FCC ID IC Number DUT Type Intended Use	Panasonic Corporation KX-TGCA20 ACJ96NKX-TGCA20A 216A-KXTGCA20A handset		
interiord osc	☐ - ☐ next to the ear ☐ body-worn ☐ limb-worn ☐ hand-held ☐ front-of-face ☐ body supported ☐ clothing-integrated		
	Prepared by		
Testing Laboratory	IMST GmbH, Test Center Carl-Friedrich-Gauß-Str. 2 – 4 47475 Kamp-Lintfort Germany		
Laboratory Accreditation	The Test Center facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-01. The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAB-EMC		
Laboration y Addi culturalism	on the basis of the Council Decision of 22. June 1998 concerning the conclusion of the MRA between the European Community and the United States of America (1999/178/EC) in accordance with § 4 of the Recognition Ordinance of 11. January 2016. The recognition is valid until 20. July 2026 under the registration number: BNetzA-CAB-16/21-14.		
	Prepared for		
Manufacturer	Panasonic Corporation 1-62, 4-Chome Minoshima, Hakata-ku 812-8531 Fukuoka Japan		
	Test Specification		
Applied Standard / Rule Exposure Category Test Result	FCC CFR 47 § 2.1093; IEC/IEEE 62209-1528; RSS-102 Issue 5 ☐ general public / uncontrolled exposure ☐ occupational / controlled exposure ☐ PASS ☐ FAIL		
	Report Information		
Data Stored Issue Date Revision Date Revision Number*	6220077 February 16, 2022		
Remarks	*A new revision replaces all previous revisions and thus, become invalid herewith. This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.		

Table of Contents

1	Su	ıbject of Investigation and Test Results	3
	1.1	Technical Data of DUT	3
	1.2	Product Family / Model Variants	3
	1.3	Antenna Configuration	3
	1.4	Test Specification / Normative References	4
	1.5	Attestation of Test Results	4
2	Qu	uality Assurance	4
3	Ex	posure Criteria and Limits	5
	3.1	SAR Limits	5
	3.2	Exposure Categories	5
	3.3	Distinction between Maximum Permissible Exposure and SAR Limits	5
4	Th	e Measurement System	6
	4.1	Phantoms	7
	4.2	E-Field-Probes	ε
5	Me	easurement Procedure	9
	5.1	General Requirement	g
	5.2	Test Position of DUT operating next to the Human Ear	g
	5.3	Measurement Procedure	12
6	Sy	stem Verification and Test Conditions	13
	6.1	Date of Testing	13
	6.2	Environment Conditions	13
	6.3	Tissue Simulating Liquid Recipes	13
	6.4	Tissue Simulating Liquid Parameters	14
	6.5	Simplified Performance Checking	14
7	SA	AR Measurement Conditions and Results	15
	7.1	Test Conditions	15
	7.2	Tune-Up Information	15
	7.3	Measured Output Power	15
	7.4	Standalone SAR Test Exclusion according to KDB 447498	16
	7.5	SAR Test Exclusion Consideration according to RSS-102	16
	7.6	SAR Measurement Results	17
8	Ad	Iministrative Measurement Data	18
	8.1	Calibration of Test Equipment	18
	8.2	Uncertainty Assessment	19
9	Re	port History	20
	Apper	ndix A - Pictures	22
	Apper	ndix B - SAR Distribution Plots	24
	Apper	ndix C - System Verification Plots	25
	Apper	ndix D – Certificates of Conformity	26
	Apper	ndix E – Calibration Certificates for DAEs	29
	Apper	ndix F – Calibration Certificates for E-Field Probes	34
	Apper	ndix G – Calibration Certificates for Dipoles	43

1 Subject of Investigation and Test Results

The tested KX-TGCA20 is a new handset from Panasonic Corporation operating in DECT standard with one integrated antenna.

The objective of the measurements performed by IMST is the dosimetric assessment of DECT on one device in the intended use positions.

1.1 Technical Data of DUT

Product Specifications		
Manufacturer	Panasonic Corporation	
Model Under Test	KX-TGCA20 (refer to chapter 1.2)	
SN / IMST DUT No.	N/A / SAR 01	
Operation Mode	DECT	
Frequency Range	1921.536 – 1928.448 MHz	
Modulation	GFSK	
Maximum Duty Cycle	4.17 %	
Antenna Type	1x internal (IFA)	
Maximum Output Power	refer chapter 7.3	
Power Supply	2x NiMH 1.2 V (DC 2.4V)	
Used Accessory	N/A	
DUT Stage	production unit	☐ identical prototype
Notes:		

1.2 Product Family / Model Variants

As declared by the manufacturer, there are different model variants available. All following model name variants have identical RF design and antennas with the tested variant KX-TGCA20.

Model Variants		
Manufacturer	Panasonic Corporation	
Model Under Test	KX-TGCA20	
Identical Model Variants	KX-TGCA21; KX-TGCA22; KX-TGCA20AC; KX-TGBA31	

1.3 Antenna Configuration

Fig. 1: Sketch of DUT and antenna location.

1.4 Test Specification / Normative References

The tests documented in this report have been performed according to the standards and rules described below.

	Test Specifications				
	Test Standard / Rule	Issue Date			
Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (4 MHz to 10 GHz)		October, 2020			
	FCC CFR 47 § 2.1091	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Mobile Devices.	October 01, 2010		
\boxtimes	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010		
\boxtimes	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015		
		Measurement Methodology KDB			
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015		
\boxtimes	KDB 865664 D02 v01r01	Exposure Reporting	October 23, 2015		
Product KDB					
\boxtimes	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015		
\boxtimes	KDB 648474 D04 v01r03	Handset SAR	October 23, 2015		

1.5 Attestation of Test Results

Highest Reported SAR [W/kg]				
Exposure Configuration / Position of DUT		Equipment Class		
		PUE (DECT)	Limit SAR _{1g}	Verdict
Standalone TX	Head	0.052	1.6	PASS

Notes: To establish a connection at a specific channel and with maximum output power, engineering test software has been used. All measured SAR results and configurations are shown in chapter 7.6 on page 17.

2 Quality Assurance

The responsible test engineer states that all the measurements and evaluations have been performed under the guidelines of the valid quality assurance plan according to EN ISO IEC 17025-2017.

Prepared by:

Alexander Rahn Test Engineer Reviewed by:

Jens Lerner

Quality Assurance

3 Exposure Criteria and Limits

3.1 SAR Limits

Human Exposure Limits				
Condition	Uncontrolled Environment (General Population)		Controlled Environment (Occupational)	
	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body
Peak spatially-averaged SAR for the head, neck & trunk	1.6	1g of tissue*	8.0	1g of tissue*
Peak spatially-averaged SAR in the limbs	4.0	10g of tissue*	20.0	10g of tissue*
Note: *Defined as a tissue volume in the shape of a cube				

Table 1: SAR limits specified in IEEE Standard C95.1-2005 and Health Canada's Safety Code 6.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

3.2 Exposure Categories

General Public / Uncontrolled Exposure

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

Occupational / Controlled Exposure

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 2: RF exposure categories.

3.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$

The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, E and E have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

4 The Measurement System

DASY is an abbreviation of "<u>D</u>osimetric <u>A</u>ssessment <u>Sy</u>stem" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 4
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- · Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

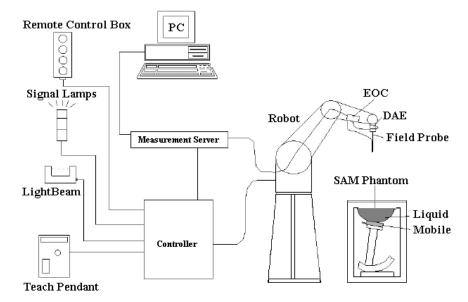


Fig. 2: The DASY4 measurement system.

Fig. 3: The measurement set-up with a DASY system and phantoms containing tissue simulating liquid.

The DUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

4.1 Phantoms

TWIN SAM PHANTOM V4.0		
Specific Anthropomorphic Mannequin delivered by Schmid & Partner Engineering AG. It enathe dosimetric evaluation of left and right hand phone usage as well as body mounted usage flat phantom region. The details and the Certificate of conformity can be found in Fig. 5 on page 27.		
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

ELI PHANTOM V4.0		
Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. The details and the Certificate of conformity can be found in Fig. 11 on page 28.		
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

4.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEC/IEEE 62209-1528 recommendations by Schmid & Partner Engineering AG.

ET3DV6R		
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	
Frequency	10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)	
Directivity	Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB	
Calibration Range	450 MHz / 750 MHz / 835 MHz / 1750 MHz / 1900 MHz	

EX3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Calibration Range	150 MHz / 300 MHz / 450 MHz / 2450 MHz / 2600 MHz / 5250 MHz / 5600 MHz / 5800 MHz	

5 Measurement Procedure

5.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

5.2 Test Position of DUT operating next to the Human Ear

5.2.1 Phantom Requirements

The phantom is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues. The physical characteristics of the phantom model shall resemble the head and the neck of a user since the shape is a dominant parameter for exposure.

5.2.2 Reference Points

As it cannot be expected that the user will hold the mobile phone exactly in one well defined position, different operational conditions shall be tested. The standards require two test positions. For an exact description helpful geometrical definitions are introduced and shown in Fig. 4 - 5. There are two imaginary lines on the mobile, the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width w_t of the handset at the level of the acoustic output (point A) and the midpoint of the width w_b of the bottom of the handset (point B) on Fig. 4 and 5. The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. The two lines intersect at point A.

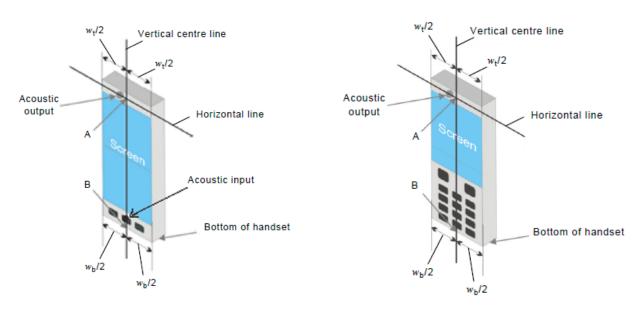


Fig. 4: Reference lines on a full touch screen smart phone.

Fig. 5: Reference lines on a keyboard handset.

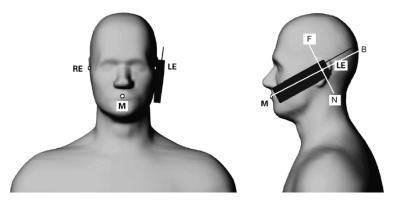
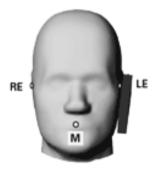



Fig. 6: Phantom reference points.

According to Fig. 6 the human head position is given by means of the following three reference points: auditory canal opening of both ears (RE and LE) and the center of the closed mouth (M). The ear reference points are 15 - 17 mm above the entrance to the ear canal along the BM line (back-mouth), as shown in Fig. 6. The plane passing through the two ear canals and M is defined as the reference plane. The line NF (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the reference pivoting line. Line BM is perpendicular to the NF line. With this definitions the test positions are given by cheek and tilted position.

5.2.3 Cheek Position

- 1. The NF line is the plane defined by the handset vertical and horizontal line
- 2. The vertical centreline from the handset is in the reference plane
- 3. Position the handset close to the surface of the phantom such that point A meets the line through the reference points (RE) and (LE) (see Fig. 7)
- 4. Move the handset towards the phantom along the line through RE and LE until point A touches the pinna at RE or LE
- 5. While keeping point A on the line through LE and RE and maintaining the handset in contact with the pinna, rotate it about the NF line until any point on the handset is in contact with the phantom below the pinna

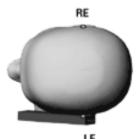


Fig. 7: The cheek position.

SAR FCC ISED Project Head v2.3

5.2.4 Tilted Position:

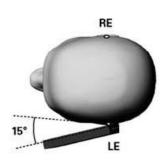


Fig. 8: The tilted position.

- 1. Repeat the above steps for the cheek position
- 2. While maintaining the orientation of the handset, remove the handset from the pinna along the RE LE line until a free rotation of the handset around the horizontal line is possible
- 3. Rotate the handset by 15° and move it back along the RE- LE line until any part touches the ear
- 4. For the case that contact occurs at any position other than the pinna, the rotation should be reduced so that the device has contact with the ear and any additional point of the phantom

5.2.5 Test to be Performed

The SAR test shall be performed with both phone positions described above, on the left and right side of the phantom. The device shall be measured for all modes operating when the device is next to the ear, even if the different modes operate in the same frequency band.

For devices with retractable antenna the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device, or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value.

The SAR test shall be performed at the high, middle and low frequency channels of each operating mode.

5.3 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according IEC/IEEE 6209-1528 as shown in Table 3.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

Area Scan				
Parameter	f ≤ 3 GHz	3 GHz < f ≤ 10 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
Maximum spacing between adjacent measured points in mm	20, or half of the corresponding zoom scan length, whichever is smaller	60/f, or half of the corresponding zoom scan length, whichever is smaller		
Maximum angle between the probe axis and the phantom surface	5° ± 1° (flat phantom) 30° ± 1°(other phantoms)	5° ± 1° (flat phantom) 20° ± 1°(other phantoms)		
Zoom	Scan			
Maximum distance between the closest measured points and the phantom surface	5 mm	½·δ ln(2) ^a		
Maximum angle between the probe axis and the phantom surface	5° ± 1° (flat phantom) 30° ± 1°(other phantoms)	5° ± 1° (flat phantom) 20° ± 1°(other phantoms)		
Maximum spacing between measured points in the x- and y-directions (Δx and $\Delta y)$	8 mm	24/f ^b		
Uniform grid: ΔZ_1 Maximum spacing between measured points in the direction normal to the phantom shell	5 mm	10/(f - 1)		
Minimum edge length of the zoom scan volume in the x- and y-directions (L_z in O.8.3.2)	30 mm	22 mm		
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell (Lh in O.8.3.2 in mm)	30 mm	22 mm		
Note:				

Table 3: Parameters for SAR scan procedures.

6 System Verification and Test Conditions

6.1 Date of Testing

Date of Testing									
Band	Band Test Position Frequency [MHz] Date of System Check Date of SAR Measurement								
DECT	Head	1900	February 04, 2022	February 04, 2022					

Table 4: Date of testing.

6.2 Environment Conditions

Environment Conditions												
Ambient Temperature[°C]	Ambient Temperature[°C] Liquid Temperature [°C] Humidity [%]											
22.0 ± 2	22.0 ± 2	40.0 ± 10										
Notes: To comply with the required noise le	vel (less than 12 mW/kg) periodically measureme	ents without a DUT were conducted.										

Table 5: Environment Conditions.

6.3 Tissue Simulating Liquid Recipes

	Tissue Simulating Liquid												
Fre	equency Range	Water	Tween 20	Tween 80	Salt	Preventol	DGME	Triton X/100					
	[MHz] [%]		[%]		[%]	[%]	[%]	[%]					
				Head Tis	sue								
	450	50.8	47.5	-	1.6	0.1	1	-					
	700 - 1000	52.8	46.0	-	1.1	0.1	-	-					
	1600 - 1800	55.4	44.1	-	0.4	0.1	-	-					
\boxtimes	1850 - 1980	55.2	44.5	-	0.2	0.1	-	-					
	2000 - 2700	55.7	45.2	-	-	0.1	-	-					
	5000 - 6000	65.5	-	-	-	-	17.25	17.25					

Table 6: Recipes of the tissue simulating liquid.

6.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Recommended values for the dielectric parameters of the tissue simulating liquids are given in IEEE 1528 and FCC published RF Exposure KDB Procedures. All tests were carried out using liquids with dielectric parameters within +/- 5% of the recommended values. The dielectric properties of the tissue simulating liquid have been measured within 24 h before SAR testing. The depth of the tissue simulant was at least 15.0 cm for all system check and device tests, measured from the ear reference point in case of the SAM phantom and from the inner surface of the flat phantom.

	Tissue Simulating Liquids Parameters											
	Ambient Tempe	Liquid Tem	nperature(C)	: 22.0 ± 2	Humidity(%): 40.0 ± 5							
				1	Permittivity		Conductivity					
Band	Date	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta			
		[MHz]		ε'	ε'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]			
		1900.0	System Check	40.3	40.0	0.6	1.39	1.40	-0.5			
DECT 1900	Ech 04 2022	1921.536	4	40.2	40.0	0.5	1.41	1.40	0.9			
MHz	Feb. 04, 2022	1924.992	2	40.2	40.0	0.5	1.42	1.40	1.3			
		1928.448	0	40.2	40.0	0.4	1.42	1.40	1.6			

Table 7: Parameters of the head tissue simulating liquid.

6.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the Table 8 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

	System Check Results											
	Dipole #SN	Measured				Tar	Target		lta			
Frequency [MHz]		Dipole #SN with 250 mW		scaled to 1 W		normalized to 1 W		+/- 10 [%]		Date		
[]		1g	10g	1g	10g	1g	10g	1g	10g			
1900	D1900V2 #535	9.06	4.84	36.24	19.36	39.20	20.50	-7.55	-5.56	February 04, 2022		

Table 8: Dipole target and measured results.

7 SAR Measurement Conditions and Results

7.1 Test Conditions

	Test Conditions										
Band	TX Range [MHz]	Used Channels	Crest Factor	Phantom							
DECT	1921.536 - 1928.448	04, 02, 00	24	SAM Twin Phantom V4.0							
Notes:											

Revision Date:

Table 9: Used channels and crest factors during the test.

7.2 Tune-Up Information

Tune-Up Output Power									
Band	Frequency [MHz]	СН	Max. Tune-Up Limit [dBm]						
DECT	1921.536 - 1928.448	00 - 04	20.0						
Notes:									

Table 10: Maximum transmitting output power values declared by the manufacturer.

7.3 Measured Output Power

Maximum Output Power											
Antenna Mode Frequency [MHz] CH Measured Output Power [dBm											
	GFSK	1921.536	04	18.4							
DECT		1924.992	02	18.6							
		1928.448	00	18.6							
Notes: -											

Table 11: Conducted output power values.

7.4 Standalone SAR Test Exclusion according to KDB 447498

SAR test exclusion is determined for the DUT according to KDB 447498 D01 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances \leq 50 mm determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [$\sqrt{f(GHz)}$] ≤ 3.0 for 1g SAR and ≤ 7.5 for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

	Standalone SAR Test Exclusion Consideration (FCC)												
Mode	Freq.	Distance	Output Power (peak		Maximum Duty Cycle	Output Power (average)		Threshold Comparison	Exclusion Threshold	SAR Testing	Estimated	SAR Testing	
	[MHz]	[mm]	[dBm]	[mW]	[%]	[dBm]	[mW]	Value	SAR 1g	Exclusion	SAR Values	Required	
DECT	1925	5	20.0	100.00	4.17	6.20	4.17	1.1	≤ 3.0	YES	measured	NO	
Notes:	Notes:												

Table 12: SAR test exclusion for the applicable transmitter according to KDB 447498.

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

 (max. power of channel. including tune-up tolerance. mW)/(min. test separation distance. mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm

7.5 SAR Test Exclusion Consideration according to RSS-102

	Standalone SAR Test Exclusion Consideration (ISED)												
Mode	Freq.	Distance	nce		Maximum Duty Cycle	Output (ave	Power rage)	Exemption Limit for	SAR Testing Exclusion	SAR Testing Required			
	[MHz]	[mm]	[dBm]	[mW]	[%]	[dBm]	[mW]	SAR 1g [mW]	EXCIUSION	Required			
DECT	1925	5	20.0	100.0	4.17	6.2	4.17	7.0	YES	NO			
Notes:	Notes:												

Table 13: SAR test exclusion for the applicable transmitter according to RSS-102, section 2.5.1.

7.6 SAR Measurement Results

SAR assessment was conducted in the worst case configuration with output power values according to the tables in Chapter 7.3. According to KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance limit shown in Table 10.

Reported SAR is calculated by the following formulas:

- Scaling factor tune up limit = tune-up limit power (mW) / RF power (mW)
- Scaling factor max. duty cycle = max. possible duty cycle / used duty cycle for SAR measurement
- Reported SAR = measured SAR * scaling factor tune up limit * scaling factor max. duty cycle

The plots with the highest measured SAR values are shown in Appendix B - SAR Distribution Plots.

7.6.1 SAR Measurement Results

	SAR Measurement Results in Head Configuration											
Band /	Freq.	СН	DUT Position	Gap	Pic.	Measured SAR1g	Power	Power [c	IBm]	Tune-Up	Reported SAR1g	Plot
Antenna	[MHz]	5		[mm]	No.	[W/kg]	Drift [dB]	Measured	Limit	SF	[W/kg]	No.
	1924.99 DECT		Cheek Left	0	3	0.038	0.021	18.6		1.380	0.052	1
		2	Tilted Left	0	4	0.016	-0.070	18.6		1.380	0.022	-
DECT			Cheek Right	0	5	0.027	-0.074	18.6	20.0	1.380	0.037	-
			Tilted Right	0	6	0.014	-0.045	18.6		1.380	0.019	-
	1921.54		Cheek Left	0	5	0.034	-0.164	18.4		1.445	0.049	-
	1928.45	0	Cheek Left	0	5	0.033	-0.013	18.6		1.380	0.046	-
Notes:												

Table 14: SAR measurement results.

8 Administrative Measurement Data

8.1 Calibration of Test Equipment

		Test Equipm	ent Overviev	V		
	Test Equipment	Manufacturer	Model	Serial Number	Last Calibration	Next Calibration
DA	SY System Components					
\boxtimes	Software Versions DASY4	SPEAG	V4.7	N/A	N/A	N/A
\boxtimes	Software Versions SEMCAD	SPEAG	V1.8	N/A	N/A	N/A
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1579	02/2020	02/2022
\boxtimes	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1669	03/2021	03/2023
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3536	08/2020	08/2022
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3860	10/2021	10/2023
\boxtimes	Data Acquisition Electronics	SPEAG	DAE 3	335	03/2021	03/2022
	Data Acquisition Electronics	SPEAG	DAE 4	631	10/2021	10/2022
	Phantom	SPEAG	SAM	1059	N/A	N/A
	Phantom	SPEAG	SAM	1176	N/A	N/A
\boxtimes	Phantom	SPEAG	SAM	1340	N/A	N/A
	Phantom	SPEAG	SAM	1341	N/A	N/A
	Phantom	SPEAG	ELI4	1004	N/A	N/A
Dip	oles	<u>.</u>				
	System Validation Loop Antenna	SPEAG	CLA150	4029	02/2020	02/2022
	System Validation Dipole	SPEAG	D450V2	1014	03/2021	03/2024
	System Validation Dipole	SPEAG	D835V2	470	03/2021	03/2024
	System Validation Dipole	SPEAG	D1640V2	311	09/2018	/
	System Validation Dipole	SPEAG	D1750V2	1005	03/2021	03/2024
\boxtimes	System Validation Dipole	SPEAG	D1900V2	535	03/2021	03/2024
	System Validation Dipole	SPEAG	D2450V2	709	10/2021	10/2024
	System Validation Dipole	SPEAG	D2600V2	1019	10/2021	10/2024
	System Validation Dipole	SPEAG	D5GHzV2	1028	05/2020	05/2023
Ma	terial Measurement					
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	10/2021	10/2023
\boxtimes	Dielectric Probe Kit	SPEAG	DAK-3.5	1234	02/2020	02/2022
	Dielectric Probe Kit	SPEAG	DAK-12	1151	02/2020	02/2022
\boxtimes	Thermometer	LKMelectronic	DTM3000	3511	02/2020	02/2022
Pov	wer Meters and Sensors					
\boxtimes	Power Meter	Anritsu	ML2487A	6K00002319	06/2020	07/2022
\boxtimes	Power Sensor	Anritsu	MA2472A	990365	06/2020	07/2022
\boxtimes	Power Meter	Anritsu	ML2488A	6K00002078	06/2020	07/2022
\boxtimes	Power Sensor	Anritsu	MA2472A	002122	06/2020	07/2022
	Spectrum Analyzer	Rohde & Schwarz	FSP7	100433	01/2021	01/2023
RF	Sources					
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	10/2021	10/2023
	RF Generator	Rohde & Schwarz	SM300	100142	N/A	N/A
Am	plifiers					
\boxtimes	Amplifier 10 MHz – 4200 MHz	Mini Circuits	ZHL-42-42W	D080504-1	N/A	N/A
	Amplifier 2 GHz – 6 GHz	Ciao Wireless	CA26-451	37452	N/A	N/A
	dio Tester	5.05 11 11 01 00 0	0.20 101	3. 102	. 4/1	
П	Radio Communication Tester	Anritsu	MT8815B	6200576536	06/2020	06/2022
	Radio Communication Tester	Anritsu	MT8820C	6200918336	05/2020	05/2022
Not	tes: Used test equipment for measurem		1 1011 00200	1 0200010000	00,2020	00/2022

8.2 Uncertainty Assessment

E C	Uncertainty	Probability	Division			Standard		Vi	
Error Sources	Value [± %]	Distribution	Divisor	Ci	Ci	Uncer [±	•	O V∈	
Measurement System				1g	10g	1g	10g		
Probe calibration	6.3	Normal (k=2)	1	1	1	6.3	6.3	0	
Probe linearity	0.3	Rectangular	√3	1	1	0.2	0.2	0	
Probe isotropy axial	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	C	
Probe isotropy spherical	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	C	
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	c	
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	c	
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	c	
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	(
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	(
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	(
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	(
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	-	
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	-	
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	-	
Data processing errors	4.0	Rectangular	√3	1	1	2.3	2.3	4	
Phantom and set-up errors		•	•				•		
Measurement of phantom conductivity	5.0	Normal	1	1	1	5.0	5.0		
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	-	
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	(
Phantom shell permittivity	4.0	Rectangular	√3	1	1	2.3	2.3	-	
Distance between DUT and medium	1.0	Normal	1	2	2	2.0	1.0	(
Repeatability of positioning the DUT	2.9	Normal	1	1	1	2.9	2.9	1	
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6		
Effect of operation mode	7.0	Rectangular	√3	1	1	4.0	4.0	(
Time-average SAR	5.0	Rectangular	√3	1	1	2.9	2.9	4	
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	4	
Corrections to the SAR result		•		•			•		
Phantom deviation from target (ε',σ)	1.2	Normal	1	1	0.8	1.2	1.0	(
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	(
Combined Standard Uncertainty	·					12.4	12.2		
Coverage Factor for 95%							kp=2		
Expanded Standard Uncertainty	nded Standard Uncertainty						24.5		

Table 15: Uncertainty budget for SAR measurements.

9 Report History

Revision History									
Revision	Description of Revision	Date	Revised Page	Revised By					
/	Initial Release	February 16, 2022	-	-					

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles