

To: Joe Dichoso / FCC Application Processing Branch
From: Richard Mullen / Matsushita Electric Corp of America
Applicant: Matsushita Electric Industrial Co Ltd.
FCC ID: ACJ96NKX-TG2382
731 Confirmation Number: EA580780
Correspondence Ref No: 23201
Date: July 1, 2002
Control Ref No: KM4-02-U13A

- 1) Regarding grant declared power - JQA Part 15C test report and PCTEST SAR test report both declared 344mW (EIRP) for handset unit and 572mW (EIRP) for base unit. It appears FCC wants to subtract antenna gain and declare conducted output power. As such, we agree the grant should declare peak conducted output power is 240mW for handset unit and 224mW for the base unit.
- 2). The attached confidential Appendix I for Frequency Hopping Algorithm provides details regarding system-hopping rate from pseudorandom ordered list of hopping frequencies and contains requested list of channel frequencies and a sample of a few sequences. We request this exact information not to be exposed within FCC's web site as it contains confidential information, which would never be disclosed to the general public.
- 3) Section 15.247(a)(1) requires system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. The attached confidential Appendix I for Frequency Hopping Algorithm contains Section 1.7, which declares the following:

1.7 Conformation To FCC Sec. 15.247(a)(1) receiver requirement

The maximum 20 dB bandwidth of the hopping channel is about 600 kHz.
The 20 dB bandwidth of the receiver input is 1.2MHz. (The 3dB bandwidth of the receiver input is 900kHz). A packet is sent once per frame per bearer for the duration of the bearer; packets are not resent. See section 1.4 for a description of how the receiver gains synchronization with the transmitter, *i.e.* a dummy bearer.
- 4) Attached find Exhibit G-1, G-2 and G-3, which contains block diagram with declared employed frequencies for base unit, handset unit and RF unit employed within both the base and handset units.
- 5) Regarding how the EUT was operated/controlled during the test to assure testing of all appropriate modes, maximum power, and any duty factor driven parameters, per Supplement C Appendix B part I 2. The EUT was operated with software codes provided by Panasonic to control and maintain the power output characteristics of the device. Power was measured before and after each SAR test.
- 6) Regarding Table 12.1 shows body conductivity varies from Supplement C by more than 5% and request to estimate change in SAR if correct values were used. Refer to attached Exhibit C-3 (SAR Report – Amended Page 16), which shows corrected measured body conductivity used during the SAR evaluation.
- 7) The dipole verification target was obtained from the IEEE Standard P1528-200X Table 7.1 Draft 6.5. The 1 W targets were multiplied by a factor of 0.25 to correspond to a 0.250W power source input. Refer to attached Exhibit C-3 (SAR Report – Dipole Validation).
- 8) Attached find the requested finalized User Manual.