

Band Edge BLE (S=8) 2402MHz Ref

Band Edge BLE (S=8) 2480MHz Ref

5.4. Power Spectral Density

Ambient Condition

Temperature	Relative humidity		
20°C ~ 25°C	45% ~ 50%		

Method of Measurement

During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz \leq RBW \leq 100kHz
- d) Set VBW≥[3x RBW]
- e) Detector=power averaging (rms) or sample detector (when rms not available)
- f) Ensure that the number of measurement points in the sweep \geq [2 X span/RBW]
- g) Sweep time auto couple
- h) Employ trace averaging (rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.

j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.

- a) Measure the duty cycle (D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c) Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz << RBW << 100kHz
- e) Set VBW≥[3x RBW]
- f) Detector= power averaging (rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep \geq [2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging (rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level

RF Test Report

I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time

m) If measured value exceeds requirement specified by regulatory agency then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

Limits ≤ 8 dBm / 3kHz

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

TA

RF Test Report

Test Results: SISO Antenna 1

Test Mode	Carrier frequency (MHz))/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-5.95	-15.76	8	PASS
802.11b	2437/CH 6	-5.78	-15.59	8	PASS
	2462/CH11	-5.76	-15.57	8	PASS
	2412/CH 1	-8.76	-17.72	8	PASS
802.11g	2437/CH 6	-8.51	-17.47	8	PASS
	2462/CH11	-8.77	-17.73	8	PASS
802.11n HT20	2412/CH 1	-8.61	-17.50	8	PASS
	2437/CH 6	-8.71	-17.60	8	PASS
	2462/CH11	-8.99	-17.88	8	PASS
000.11-	2422/CH3	-12.28	-17.79	8	PASS
802.11n	2437/CH6	-12.11	-17.62	8	PASS
H140	2452/CH9	-11.98	-17.49	8	PASS
000 11	2412/CH 1	-11.51	-18.17	8	PASS
802.11ax	2437/CH 6	-10.76	-17.42	8	PASS
TIEZO	2462/CH11	-11.06	-17.72	8	PASS
000 11	2422/CH3	-13.11	-19.79	8	PASS
802.11ax	2437/CH6	-13.11	-19.79	8	PASS
	2452/CH9	-13.10	-19.78	8	PASS
Note: Power Spe	ctral Density (dBm/3k	Hz) =Read Value	+Duty cycle correc	tion factor + 10	*log10(3/30)

SISO Antenna 2

TA

RF Test Report

Test Mode	Carrier frequency (MHz))/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-5.76	-15.57	8	PASS
802.11b	2437/CH 6	-5.57	-15.38	8	PASS
	2462/CH11	-5.70	-15.51	8	PASS
	2412/CH 1	-8.63	-17.59	8	PASS
802.11g	2437/CH 6	-8.33	-17.29	8	PASS
	2462/CH11	-8.79	-17.75	8	PASS
000.44-	2412/CH 1	-9.01	-17.90	8	PASS
802.11n	2437/CH 6	-8.99	-17.88	8	PASS
11120	2462/CH11	-8.67	-17.56	8	PASS
000.44m	2422/CH3	-11.09	-16.60	8	PASS
802.11n	2437/CH6	-12.93	-18.44	8	PASS
11140	2452/CH9	-12.29	-17.80	8	PASS
000.11	2412/CH 1	-10.62	-17.28	8	PASS
802.11ax	2437/CH 6	-10.40	-17.06	8	PASS
TILZO	2462/CH11	-10.03	-16.69	8	PASS
000.11	2422/CH3	-12.51	-19.19	8	PASS
802.11ax	2437/CH6	-13.03	-19.71	8	PASS
	2452/CH9	-13.36	-20.04	8	PASS
Note: Power Spe	ctral Density (dBm/3k	Hz) =Read Value	+Duty cycle correc	tion factor + 10	*log10(3/30)

ΜΙΜΟ

TA

Report No.: R2306A0670-R1V2

RF Test Report

			Power Spec	tral Density	Total			
	Carrier	Ante	nna 1	Ante	nna 2	PSD	Limit	
Test Mode	frequency (MHz))/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	(dBm / 3kHz)	(dBm / 3kHz)	Conclusion
	2412/CH 1	-6.39	-16.20	-6.44	-16.25	-13.21	8.00	PASS
802.11b	2437/CH 6	-5.98	-15.79	-6.21	-16.02	-12.89	8.00	PASS
	2462/CH11	-6.15	-15.96	-6.33	-16.14	-13.04	8.00	PASS
	2412/CH 1	-8.99	-17.95	-8.76	-17.72	-14.82	8.00	PASS
802.11g	2437/CH 6	-8.67	-17.63	-8.97	-17.93	-14.77	8.00	PASS
	2462/CH11	-9.10	-18.06	-8.66	-17.62	-14.82	8.00	PASS
	2412/CH 1	-9.03	-17.92	-9.14	-18.03	-14.96	8.00	PASS
802.11n HT20	2437/CH 6	-9.47	-18.36	-9.27	-18.16	-15.25	8.00	PASS
	2462/CH11	-9.58	-18.47	-9.49	-18.38	-15.41	8.00	PASS
	2422/CH3	-12.61	-18.12	-12.22	-17.73	-14.91	8.00	PASS
802.11n HT40	2437/CH6	-11.18	-16.69	-12.10	-17.61	-14.12	8.00	PASS
	2452/CH9	-13.21	-18.72	-12.02	-17.53	-15.07	8.00	PASS
	2412/CH 1	-10.61	-17.27	-11.53	-18.19	-14.70	8.00	PASS
802.11ax HE20	2437/CH 6	-10.89	-17.55	-10.29	-16.95	-14.23	8.00	PASS
	2462/CH11	-10.02	-16.68	-11.02	-17.68	-14.14	8.00	PASS
	2422/CH3	-12.96	-19.64	-13.81	-20.49	-17.03	8.00	PASS
802.11ax HF40	2437/CH6	-13.51	-20.19	-12.85	-19.53	-16.84	8.00	PASS
	2452/CH9	-13.70	-20.38	-13.75	-20.43	-17.39	8.00	PASS

Note: 1.Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*LOG10(3 / 30) 2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral

density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain.

Directional gain = G_{ANT MAX} + Array Gain. For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=G_{ANT MAX}+ Array Gain=-0.2+10*log(2/1)= 2.81 <6dBi. So the PSD limit is 8.

RF Test Report

TB Mode SISO Antenna 1

Test Mode	Carrier frequency (MHz)/ Channel	RU Index	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
900 44 av UE00	2412/CH 1	0	-3.36	-12.47	8	PASS
26-Tone	2437/CH 6	4	-2.55	-11.72	8	PASS
	2462/CH11	8	-2.62	-10.67	8	PASS
	2412/CH 1	37	-6.33	-14.03	8	PASS
52 Topo	2437/CH 6	38	-5.42	-13.07	8	PASS
52-10He	2462/CH11	40	-5.74	-13.39	8	PASS
000 44 11500	2412/CH 1	53	-8.93	-16.48	8	PASS
802.11ax HE20 106-Tone	2437/CH 6	53	-8.66	-16.21	8	PASS
	2462/CH11	54	-8.83	-16.23	8	PASS
Note: Power Spe	ectral Density (dB	m/3kHz)	=Read Value-	Duty cycle correction	n factor + 10)*log10(3/30)

SISO Antenna 2

Test Mode	Carrier frequency (MHz)/ Channel	RU Index	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
900 44 av UE00	2412/CH 1	0	-3.83	-12.94	8	PASS
802.11ax HE20 26-Tone	2437/CH 6	4	-2.29	-11.46	8	PASS
	2462/CH11	8	-2.21	-10.26	8	PASS
	2412/CH 1	37	-5.67	-13.37	8	PASS
52 Topo	2437/CH 6	38	-5.18	-12.83	8	PASS
52-10He	2462/CH11	40	-4.72	-12.37	8	PASS
	2412/CH 1	53	-8.80	-16.35	8	PASS
802.11ax HE20 106-Tone	2437/CH 6	53	-8.90	-16.45	8	PASS
	2462/CH11	54	-8.59	-15.99	8	PASS
Note: Power Spe	ectral Density (dB	m/3kHz)	=Read Value-	+Duty cycle correctio	n factor + 10)*log10(3/30)

			Power Spec	tral Dens	Total				
	Carrier		An	tenna 1	An	tenna 2	PSD	Limit	
Test Mode	frequency	RU	Read	Power	Read	Power		(dBm /	Conclusion
	(MHz))/	Index	Value	Spectral	Value	Spectral	(dBm /	3kHz)	
	Clidimer		(dBm /	Density	(dBm /	Density	3kHz)		
			30kHz)	(dBm / 3kHz)	30kHz)	(dBm / 3kHz)			
802.11ax	2412/CH 1	0	-3.07	-12.18	-2.40	-11.51	-8.82	8.00	PASS
HE20	2437/CH 6	4	-2.30	-11.47	-2.34	-11.51	-8.48	8.00	PASS
26-Tone	2462/CH11	8	-2.34	-10.39	-2.88	-10.93	-7.64	8.00	PASS
802.11ax	2412/CH 1	37	-5.71	-13.41	-5.14	-12.84	-10.11	8.00	PASS
HE20	2437/CH 6	38	-6.08	-13.73	-5.21	-12.86	-10.26	8.00	PASS
52-Tone	2462/CH11	40	-5.20	-12.85	-5.82	-13.47	-10.14	8.00	PASS
802.11ax	2412/CH 1	53	-8.64	-16.19	-8.27	-15.82	-12.99	8.00	PASS
HE20	2437/CH 6	53	-8.55	-16.10	-8.30	-15.85	-12.96	8.00	PASS
106-Tone	2462/CH11	54	-7.92	-15.32	-8.45	-15.85	-12.57	8.00	PASS

MIMO

Note: 1.Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*LOG10(3 / 30) 2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral

density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain.

Directional gain = $G_{ANT MAX}$ + Array Gain. For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain= $G_{ANT MAX}$ + Array Gain=-0.2+10*log(2/1)= 2.81 <6dBi. So the PSD limit is 8.

RF Test Report

TA

Report No.: R2306A0670-R1V2

RF Test Report

Internal Antenna								
Test Mode	Carrier frequency (MHz))/ Channel	Read Value (dBm / 3kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion			
Bluetooth	2402/CH0	-12.20	-10.08	8	PASS			
(Low Energy)	2440/CH19	-12.35	-10.23	8	PASS			
(1M)	2480/CH39	-12.30	-10.18	8	PASS			
Bluetooth	2402/CH0	-18.81	-16.38	8	PASS			
(Low Energy)	2440/CH19	-18.49	-16.06	8	PASS			
(2M)	2480/CH39	-18.48	-16.05	8	PASS			
Bluetooth	2402/CH0	-9.33	-8.92	8	PASS			
(Low Energy)	2440/CH19	-12.38	-11.97	8	PASS			
(S=2)	2480/CH39	-9.88	-9.47	8	PASS			
Bluetooth	2402/CH0	0.09	0.20	8	PASS			
(Low Energy)	2440/CH19	0.22	0.33	8	PASS			
(S=8)	2480/CH39	0.11	0.22	8	PASS			
Note: Power Spe	ctral Density =Read V	alue+Duty cycle	correction factor					

External Antenna

Test Mode	Carrier frequency (MHz))/ Channel	Read Value (dBm / 3kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
Bluetooth	2402/CH0	-11.46	-9.34	8	PASS
(Low Energy)	2440/CH19	-12.17	-10.05	8	PASS
(1M)	2480/CH39	-12.06	-9.94	8	PASS
Bluetooth	2402/CH0	-18.60	-16.17	8	PASS
(Low Energy)	2440/CH19	-18.13	-15.70	8	PASS
(2M)	2480/CH39	-18.75	-16.32	8	PASS
Bluetooth	2402/CH0	-14.56	-13.86	8	PASS
(Low Energy)	2440/CH19	-14.63	-13.93	8	PASS
(S=2)	2480/CH39	-14.65	-13.95	8	PASS
Bluetooth	2402/CH0	-14.43	-13.73	8	PASS
(Low Energy)	2440/CH19	-14.56	-13.86	8	PASS
(S=8)	2480/CH39	-14.58	-13.88	8	PASS
Note: Power Spe	ctral Density =Read V	′alue+ Duty cycle	correction factor		

RF Test Report

SISO Antenna 1

PSD 802.11ax(HE20) 2437MHz

PSD 802.11ax(HE20) 2462MHz

PSD 802.11ax(HE40) 2422MHz

PSD 802.11ax(HE40) 2437MHz

PSD 802.11ax(HE40) 2452MHz

PSD 802.11b 2412MHz

PSD 802.11b 2437MHz

PSD 802.11b 2462MHz

PSD 802.11g 2412MHz

PSD 802.11g 2437MHz

PSD 802.11g 2462MHz

PSD 802.11n(HT20) 2412MHz

PSD 802.11n(HT20) 2437MHz

PSD 802.11n(HT20) 2462MHz

PSD 802.11n(HT40) 2422MHz

PSD 802.11n(HT40) 2437MHz

PSD 802.11n(HT40) 2452MHz

RF Test Report

SISO Antenna 2

PSD 802.11ax(HE20) 2437MHz

PSD 802.11ax(HE20) 2462MHz

PSD 802.11ax(HE40) 2422MHz

PSD 802.11ax(HE40) 2437MHz

PSD 802.11ax(HE40) 2452MHz

PSD 802.11b 2412MHz

PSD 802.11b 2437MHz

PSD 802.11b 2462MHz

PSD 802.11g 2412MHz

PSD 802.11g 2437MHz

PSD 802.11g 2462MHz

PSD 802.11n(HT20) 2412MHz

PSD 802.11n(HT20) 2437MHz

PSD 802.11n(HT20) 2462MHz

PSD 802.11n(HT40) 2422MHz

PSD 802.11n(HT40) 2437MHz

PSD 802.11n(HT40) 2452MHz

RF Test Report

MIMO

PSD 802.11ax(HE20) 2412MHz Ant2

PSD 802.11ax(HE20) 2437MHz Ant1

PSD 802.11ax(HE20) 2437MHz Ant2

PSD 802.11ax(HE20) 2462MHz Ant1

PSD 802.11ax(HE20) 2462MHz Ant2

PSD 802.11ax(HE40) 2422MHz Ant1

PSD 802.11ax(HE40) 2422MHz Ant2

PSD 802.11ax(HE40) 2437MHz Ant1

PSD 802.11ax(HE40) 2437MHz Ant2

PSD 802.11ax(HE40) 2452MHz Ant1

PSD 802.11ax(HE40) 2452MHz Ant2

PSD 802.11b 2412MHz Ant1

PSD 802.11b 2412MHz Ant2

PSD 802.11b 2437MHz Ant1

PSD 802.11b 2437MHz Ant2

PSD 802.11b 2462MHz Ant1

F 3D 602. I ID 240210102 AHL2	PSD 8	02.11b	2462MHz	Ant2
-------------------------------	-------	--------	---------	------

PSD 802.11g 2412MHz Ant1

PSD 802.11g 2412MHz Ant2

PSD 802.11g 2437MHz Ant1

PSD 802.11g 2437MHz Ant2

PSD 802.11g 2462MHz Ant1

PSD 802.11g 2462MHz Ant2

PSD 802.11n(HT20) 2412MHz Ant1

PSD 802.11n(HT20) 2412MHz Ant2

PSD 802.11n(HT20) 2437MHz Ant1

PSD 802.11n(HT20) 2437MHz Ant2

PSD 802.11n(HT20) 2462MHz Ant1

PSD 802.11n(HT20) 2462MHz Ant2

PSD 802.11n(HT40) 2422MHz Ant1

PSD 802.11n(HT40) 2422MHz Ant2

PSD 802.11n(HT40) 2437MHz Ant1

PSD 802.11n(HT40) 2437MHz Ant2

PSD 802.11n(HT40) 2452MHz Ant1

PSD 802.11n(HT40) 2452MHz Ant2

RF Test Report

TA

TB Mode SISO Antenna 1

RL 04:38:55 PM Jul 12, 2 ENSE:INT #Avg Type: RMS Avg|Hold: 100/100 Center Freq 2.412000000 GHz TRACE TYPE DET Trig: Free Run #Atten: 40 dB PNO: Fast IFGain:Low Mkr1 2.409 493 5 GHz -8.926 dBm Ref Offset 10.76 dB Ref 20.00 dBm 10 dB/div 1 when and republic production of Center 2.41200 GHz #Res BW 30 kHz Span 30.00 MHz Sweep 41.33 ms (20001 pts) #VBW 100 kHz* STATUS

PSD 802.11ax (20M) RU106 IDX53 2412MHz

PSD 802.11ax (20M) RU106 IDX53 2437MHz

TA Technology (Shanghai)Co., Ltd.TA-MB-04-005RPage 162 of 319This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

PSD 802.11ax (20M) RU106 IDX54 2462MHz

PSD 802.11ax (20M) RU26 IDX4 2437MHz

PSD 802.11ax (20M) RU26 IDX8 2462MHz

PSD 802.11ax (20M) RU52 IDX37 2412MHz

PSD 802.11ax (20M) RU52 IDX40 2462MHz

Report No.: R2306A0670-R1V2

SISO Antenna 2

PSD 802.11ax (20M) RU106 IDX53 2412MHz

PSD 802.11ax (20M) RU106 IDX53 2437MHz

PSD 802.11ax (20M) RU106 IDX54 2462MHz

PSD 802.11ax (20M) RU26 IDX4 2437MHz

PSD 802.11ax (20M) RU52 IDX37 2412MHz

PSD 802.11ax (20M) RU52 IDX40 2462MHz

RF Test Report

TA

🛟 eurofins

MIMO

PSD 802.11ax (20M) RU106 IDX53 2412MHz Ant1

PSD 802.11ax (20M) RU106 IDX53 2412MHz Ant2

PSD 802.11ax (20M) RU106 IDX53 2437MHz Ant1

PSD 802.11ax (20M) RU106 IDX53 2437MHz Ant2

PSD 802.11ax (20M) RU106 IDX54 2462MHz Ant1

PSD 802.11ax (20M) RU26 IDX0 2412MHz Ant1

PSD 802.11ax (20M) RU26 IDX4 2437MHz Ant1

PSD 802.11ax (20M) RU26 IDX8 2462MHz Ant1

PSD 802.11ax (20M) RU52 IDX37 2412MHz Ant1

PSD 802.11ax (20M) RU52 IDX37 2412MHz Ant2

PSD 802.11ax (20M) RU52 IDX38 2437MHz Ant1

PSD 802.11ax (20M) RU52 IDX38 2437MHz Ant2

PSD 802.11ax (20M) RU52 IDX40 2462MHz Ant1

Internal Antenna

RF Test Report

PSD BLE (1M) 2402MHz

PSD BLE (1M) 2440MHz

PSD BLE (1M) 2480MHz

PSD BLE (2M) 2402MHz

PSD BLE (2M) 2440MHz

PSD BLE (2M) 2480MHz

RF Test Report

🛟 eurofins

PSD BLE (S=2) 2402MHz

PSD BLE (S=2) 2440MHz

PSD BLE (S=2) 2480MHz

PSD BLE (S=8) 2402MHz

PSD BLE (S=8) 2440MHz

PSD BLE (S=8) 2480MHz

External Antenna

RF Test Report

PSD BLE (1M) 2402MHz

PSD BLE (1M) 2440MHz

PSD BLE (1M) 2480MHz

PSD BLE (2M) 2402MHz

PSD BLE (2M) 2440MHz

PSD BLE (2M) 2480MHz

PSD BLE (S=2) 2402MHz

PSD BLE (S=2) 2440MHz

PSD BLE (S=2) 2480MHz

PSD BLE (S=8) 2402MHz

PSD BLE (S=8) 2440MHz

PSD BLE (S=8) 2480MHz

5.5. Spurious RF Conducted Emissions

Ambient Condition

Temperature	Relative humidity
20°C ~ 25°C	45% ~ 50%

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test Setup

Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. "

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
	2412	7.28	-22.72
802.11b	2437	7.11	-22.89
	2462	6.91	-23.09
	2412	3.49	-26.51
802.11g	2437	4.54	-25.46
	2462	3.98	-26.02
802.11n HT20	2412	5.29	-24.71
	2437	4.31	-25.69
	2462	4.57	-25.43
802.11n HT40	2422	2.58	-27.42
	2437	2.66	-27.34
	2452	2.22	-27.78
802.11ax	2412	3.81	-26.19

TA Technology (Shanghai) Co., Ltd.TA-MB-04-005RPage 197 of 319This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF Test Report		Report No	.: R2306A0670-R1V2
HE20	2437	5.27	-24.73
	2462	4.93	-25.07
900 11ov	2422	1.93	-28.07
	2437	1.78	-28.22
	2452	1.53	-28.47

TB Mode

Test Mode	Carrier frequency (MHz)	RU Index	Reference value (dBm)	Limit
802.11ax HE20 26-Tone	2412	0	8.70	-21.30
	2437	4	10.67	-19.33
	2462	8	10.13	-19.87
802.11ax HE20 52-Tone	2412	37	7.83	-22.17
	2437	38	7.37	-22.63
	2462	40	7.39	-22.61
802.11ax HE20 106-Tone	2412	53	5.40	-24.60
	2437	53	5.01	-24.99
	2462	54	4.79	-25.21

Internal Antenna

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
Bluetooth	2402	6.62	-23.38
(Low Energy)	2440	6.48	-23.52
(1M)	2480	6.37	-23.63
Bluetooth	2402	6.58	-23.42
(Low Energy)	2440	5.89	-24.11
(2M)	2480	4.64	-25.36
Bluetooth	2402	6.83	-23.17
(Low Energy)	2440	6.66	-23.34
(S=2)	2480	6.62	-23.38
Bluetooth	2402	4.27	-25.73
(Low Energy)	2440	3.95	-26.05
(S=8)	2480	3.85	-26.15

External Antenna

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
Bluetooth	2402	7.13	-22.87
(Low Energy)	2440	6.84	-23.16
(1M)	2480	6.97	-23.03
Bluetooth	2402	4.81	-25.19
(Low Energy)	2440	6.57	-23.43

TA Technology (Shanghai) Co., Ltd.TA-MB-04-005RPage 1This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. Page 198 of 319

TA Test Report

RF Test Report		Report No	.: R2306A0670-R1V2
(2M)	2480	6.97	-23.03
Bluetooth	2402	7.97	-22.03
(Low Energy)	2440	7.27	-22.73
(S=2)	2480	6.85	-23.15
Bluetooth	2402	7.81	-22.19
(Low Energy)	2440	7.61	-22.39
(S=8)	2480	7.32	-22.68

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

Report No.: R2306A0670-R1V2

Test Results:

Tx. Spurious 802.11ax(HE20) 2412MHz Ref

Tx. Spurious 802.11ax(HE20) 2412MHz Emission

Tx. Spurious 802.11ax(HE20) 2437MHz Ref

Tx. Spurious 802.11ax(HE20) 2462MHz Ref

Tx. Spurious 802.11ax(HE40) 2422MHz Ref

Tx. Spurious 802.11ax(HE40) 2437MHz Ref

Tx. Spurious 802.11ax(HE40) 2452MHz Ref

Tx. Spurious 802.11b 2412MHz Ref

Tx. Spurious 802.11b 2412MHz Emission

Tx. Spurious 802.11b 2437MHz Ref

Tx. Spurious 802.11b 2437MHz Emission

Tx. Spurious 802.11b 2462MHz Ref

Tx. Spurious 802.11b 2462MHz Emission

Tx. Spurious 802.11g 2412MHz Ref

Tx. Spurious 802.11g 2412MHz Emission

Tx. Spurious 802.11g 2437MHz Ref

Tx. Spurious 802.11g 2437MHz Emission

Tx. Spurious 802.11g 2462MHz Ref

Tx. Spurious 802.11g 2462MHz Emission

Tx. Spurious 802.11n(HT20) 2412MHz Ref

Tx. Spurious 802.11n(HT20) 2437MHz Ref

Tx. Spurious 802.11n(HT20) 2462MHz Ref

Tx. Spurious 802.11n(HT40) 2422MHz Ref

Tx. Spurious 802.11n(HT40) 2437MHz Ref

Tx. Spurious 802.11n(HT40) 2452MHz Ref

TB Mode

Tx. Spurious 802.11ax (20M) RU106 IDX53 2412MHz Ref

Tx. Spurious 802.11ax (20M) RU106 IDX53 2412MHz Emission

Tx. Spurious 802.11ax (20M) RU106 IDX53 2437MHz Ref

Tx. Spurious 802.11ax (20M) RU106 IDX54 2462MHz Ref

