

Panasonic Corporation of North America

RF TEST REPORT

Report Type:

FCC Part 15.247

Model:

EYADA112WA, EYADA112WB, EYADA212WA, EYADA212WB, EYADA218WA, EYADA218WB, EYADA407WA, EYADA407WB

REPORT NUMBER: 230700847SHA-001

ISSUE DATE: December 21, 2023

DOCUMENT CONTROL NUMBER: TTRF15.247-03_V1 © 2018 Intertek

intertek Total Quality. Assured.

TEST REPORT

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 230700847SHA-001

APPLICANT:	Panasonic Corporation of North America Two Riverfront Plaza, NEWARK NJ 07102
MANUFACTURER:	Panasonic Corporation 1006, Oaza Kadoma, Kadoma City, Osaka 571-8501, Japan
Factory:	Panasonic Corporation 1006, Oaza Kadoma, Kadoma City, Osaka 571-8501, Japan
FCC ID:	ACJ-EYADA

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification: **47CFR Part 15 (2021):** Radio Frequency Devices (Subpart C)

ANSI C63.10 (2020): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

Donan -Ping

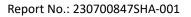
Project Engineer Damon Ding

REVIEWED BY:

Frie. li

Reviewer Eric Li

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.


Content

R	VISION HISTORY	5
Μ	EASUREMENT RESULT SUMMARY	6
1	GENERAL INFORMATION	7
	1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
	1.2 TECHNICAL SPECIFICATION	8
	1.3 DESCRIPTION OF TEST FACILITY	9
2	TEST SPECIFICATIONS	10
	2.1 Standards or specification	10
	2.2 MODE OF OPERATION DURING THE TEST	10
	2.3 TEST SOFTWARE LIST	
	2.4 TEST PERIPHERALS LIST	
	2.5 TEST ENVIRONMENT CONDITION:	
	2.6 INSTRUMENT LIST	
	2.7 MEASUREMENT UNCERTAINTY	13
3	MINIMUM 6DB BANDWIDTH	14
	3.1 LIMIT	
	3.2 MEASUREMENT PROCEDURE	
	3.3 Test Configuration	
	MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P.	
4		
	4.1 LIMIT	
	4.2 MEASUREMENT PROCEDURE	
	4.3 TEST CONFIGURATION	
-	POWER SPECTRUM DENSITY	
5		
	5.1 LIMIT	
	5.2 MEASUREMENT PROCEDURE	
	5.4 Test Results of Power spectrum density	
6	EMISSION OUTSIDE THE FREQUENCY BAND	
0		
	6.1 LIMIT	
	6.2 MEASUREMENT PROCEDURE	
	6.3 TEST CONFIGURATION	
7	RADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	
	7.1 LIMIT	
	7.1 LIMIT	
	7.3 TEST CONFIGURATION	
	7.4 TEST CONFIGURATION	-
8	POWER LINE CONDUCTED EMISSION	
	8.1 LIMIT	29
	8.2 Test Configuration	
	8.3 Measurement Procedure	-
	8.4 TEST RESULTS OF POWER LINE CONDUCTED EMISSION	
9	OCCUPIED BANDWIDTH	33

intertek Total Quality. Assured.

TEST REPORT

APPENDIX A: TEST RESULTS	
10 ANTENNA REQUIREMENT	
9.4 The results of Occupied Bandwidth	
9.3 Test Configuration	
9.2 Measurement Procedure	
9.1 Liмit	

Revision History

Report No.	Version	Description	Issued Date
230700847SHA-001	Rev. 01	Initial issue of report	December 21, 2023

Measurement result summary

TEST ITEM	FCC REFERENCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	Pass
Power spectrum density	15.247(e)	Pass
Emission outside the frequency band	15.247(d)	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	Pass
Power line conducted emission	15.207(a)	Pass
Occupied bandwidth	-	Tested
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product nan	ne:		Scre	ewdriver		
1 router nam			EYADA112WA, EYADA112WB,			
Type/Model:			EYADA212WA, EYADA212WB,			
			EYADA218WA, EYADA218WB,			
				DA407WA, EYADA407WB	· · · ·	
					function, There are eight models.	
				alls refer to model list. We tested data into this report.	d all of models and put the worst	
Description	of FUT			odel codes of EYADA** all have s	same wireless communication	
Description	01 20 1.			ures for WLAN. The difference b		
					lue output. RPM and Torque are	
			ach	ieved by difference of mechanica	al components	
			30\	,90W		
Rating:				pter:		
			Input : 100-240Vac , 50/60Hz , 2.6A Max ; Output : 30Vdc, 3A			
Category of EUT:			Class B			
EUT type:			Table top 🔲 Floor standing			
Software Ve	rsion:		-			
Hardware Ve	ersion:		-			
Sample Iden	ntification	No.:	023	0230720-51		
Sample rece	vived date	:	Sep	September 21, 2023		
Date of test:			September 24, 2023 ~ October 25, 2023			
Model list:						
Product No.	RPM	Torqu	ie	*Torque value output		
EYADA112WA	0,1-1,0N		,0Nm	Available	-	
EYADA112WB			-	N/A		
EYADA212WA			5Nm	Available		
EYADA212WB			,51411	N/A		
EYADA218WA			0Nm	Available		
EYADA218WB	1000	1800 0,3-2,0Nm		N/A		
EYADA407WA	650			Available		
FYADA407WB	650	650 1,5-4,4Nr		N/A		

*With Torque value output function, recording the torque value of each fastened screw is possible.

N/A

EYADA407WB

Total Quality. Assured. TEST REPORT

1.2 Technical Specification

Frequency Band:	2400MHz ~ 2483.5MHz		
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20		
Type of Modulation:	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11n-HT20: OFDM (64-QAM, 16-QAM, QPSK, BPSK)		
Channel Number:	11 Channels for 802.11b, 802.11g and 802.11n(HT20)		
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n-HT20: Up to MCS7		
Channel Separation:	5 MHz		
Antenna Information:	1.25dBi, Chip Antenna		

Total Quality. Assured. TEST REPORT

1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN0175
	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Member No.: 3598 (Registration No.: R-14243, G-10845, C-14723, T-12252)
	A2LA Accreditation Lab Certificate Number: 3309.02

Total Quality. Assured.

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2021) ANSI C63.10 (2020) KDB 558074 (v05r02)

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied by following software.

Software name	Manufacturer	Version	Supplied by
EspRFTestTool	-	V2.8	applicant

The lowest, middle and highest channel were tested as representatives.

Frequency Band (MHz)	Mode	Lowest (MHz)	Middle (MHz)	Highest (MHz)
2400-2483.5	802.11b	2412	2437	2462
	802.11g	2412	2437	2462
	802.11n(HT20)	2412	2437	2462

Data rate VS Power:

The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rata as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate	Power Setting
2400-2483.5	802.11b	1Mbps	4
	802.11g	6Mbps	4
	802.11n(HT20)	MCS0	4

And there have the following test mode:

Radiated test mode:

Mode 1: EUT transmitted signal with internal antenna;

Conducted test mode:

Mode 2: EUT transmitted signal from PCBA RF port connected to SPA directly;

We have verified all test modes, and list all the results in this report.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	SKET Auto EMC Test Software	Keleto	V3.0
Radiated emission	SKET Auto EMC Test Software	Keleto	V3.0

2.4 Test peripherals list

Item No.	m No. Name Band and Model		Description
1	Laptop computer	HP ProBook 6470b	100-240V AC, 50/60Hz

2.5 Test environment condition:

Test items	Temperature	Humidity
Minimum 6dB Bandwidth		
Maximum conducted output power and e.i.r.p.		
Power spectrum density	23°C	52% RH
Emission outside the frequency band		
Occupied bandwidth		
Power line conducted emission	22°C	53% RH
Radiated Emissions in restricted frequency bands	22°C	55% RH

Intertek Total Quality. Assured. TEST REPORT

2.6 Instrument list

<mark>Condı</mark>	Conducted Emission						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Test Receiver	R&S	ESCS 30	EC 2107	2024-07-18		
\square	A.M.N.	R&S	ESH2-Z5	EC 3119	2023-11-09		
\square	Shielded room	Zhongyu	-	EC 2838	2024-01-11		
Radia [†]	ted Emission						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Test Receiver	R&S	ESIB 26	EC 3045	2024-07-18		
\square	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2024-08-23		
\square	Pre-amplifier	Tonscend	tap01018050	EC 6432-1	2023-12-07		
\square	Horn antenna	Tonscend	bha9120d	EC 6432-2	2024-02-15		
\square	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2024-07-29		
\square	Semi-anechoic chamber	Albatross project	-	EC 3048	2024-07-08		
RF tes	t						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2024-03-05		
\square	Spectrum Analyzer	Keysight	N9030B	EC 6078	2024-06-03		
\square	Test Receiver	R&S	ESCI 7	EC 4501	2024-03-05		
\square	Signal generator	Agilent	N5182A	EC 6172	2024-08-09		
\square	Signal generator	Agilent	N5181A	EC 6171	2024-08-09		
<mark>Additi</mark>	Additional instrument						
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date		
\square	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2024-03-24		
\square	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 5199	2024-03-13		
\square	Pressure meter	YM3	Shanghai Mengde	EC 4620	2024-09-13		

2.7 Measurement uncertainty

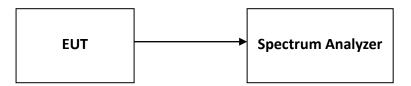
The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74 dB
Power spectrum density	\pm 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	\pm 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	\pm 2.89dB
Power line conducted emission	\pm 3.19dB
Minimum 6dB Bandwidth	\pm 0.84 × 10 ⁻⁷
Occupied bandwidth	$\pm 0.84 \times 10^{-7}$

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit


For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The minimum 6dB bandwidth is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 8.2) for compliance requirements.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

Total Quality. Assured.

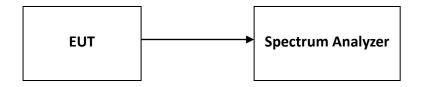
4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).


4.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 9.2.2.2) for compliance requirements.

- a) Set span to at least 1.5OBW.
- b) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3RBW.
- d) Number of points in sweep ≥ 2span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".</p>
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

5 Power spectrum density

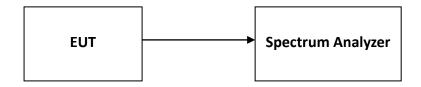
Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure


The power outputwas tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 10.3) for compliance requirements.

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle \geq 98 %); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.50BW.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set VBW \geq 3RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep ≥ 2 span/RBW.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

Total Quality. Assured.

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

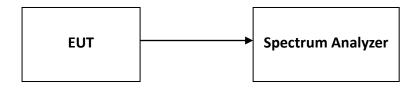
6.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 11.0) for compliance requirements.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.


Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

Total Quality. Assured.

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88~216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

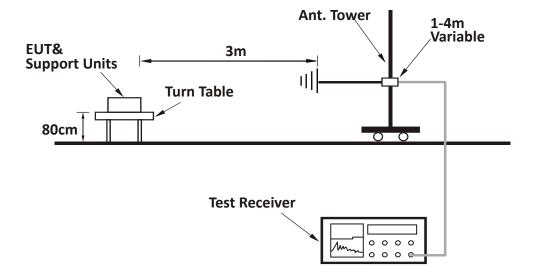
Total Quality. Assured.

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

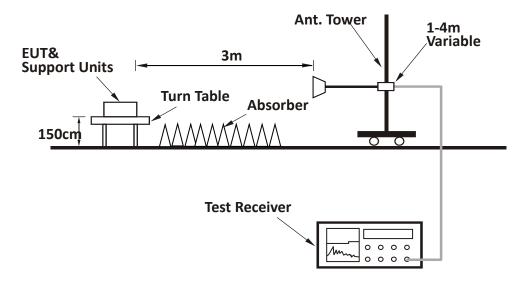

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported

Report No.: 230700847SHA-001



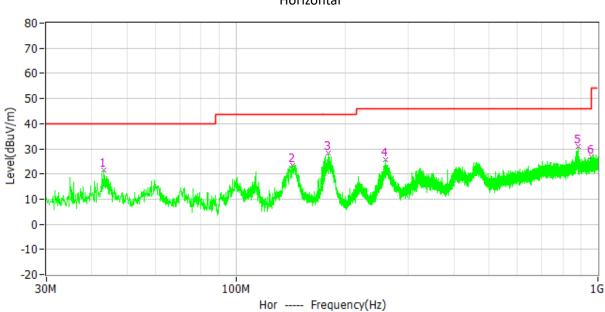
7.3 Test Configuration

For Radiated emission below 30MHz:

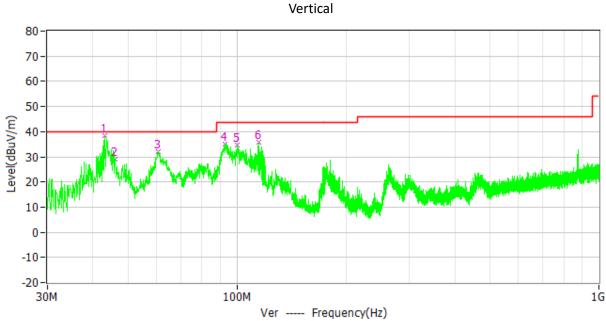


For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:



intertek Total Quality. Assured. **TEST REPORT**


7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

The worst waveform from 30MHz to 1000MHz is listed as below:

Horizontal

Intertek Total Quality. Assured. TEST REPORT

Test data:	
icst autur	

ala.						
Antenna	Frequency (MHz)	Limit (dBuV/m)	Level (dBuV/m)	Margin (dB)	Detector	
	43.289MHz	40.0	21.5	18.5	РК	
	143.781MHz	43.5	23.6	19.9	РК	
	179.574MHz	43.5	28.5	15.0	РК	
Н	258.629MHz	46.0	25.8	20.2	РК	
	879.817MHz	46.0	30.8	15.2	РК	
	959.745MHz	46.0	26.9	19.1	РК	
	43.095MHz	40.0	38.4	1.6	РК	
	46.199MHz	40.0	29.0	11.0	РК	
N	60.846MHz	40.0	32.0	8.0	РК	
V	92.856MHz	43.5	35.1	8.4	РК	
	100.131MHz	43.5	34.7	8.8	РК	
	114.972MHz	43.5	35.8	7.7	РК	

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

2. Level = Original Receiver Reading + Correct Factor

3. Margin = Limit - Level

4. If the PK Level is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Level = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

intertek Total Quality. Assured.

TEST REPORT

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

802.11b:

СН	Antenna	Frequency (MHz)	Measured Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390.00	56.8	74.0	17.2	PK
	Н	2390.00	45.8	54.0	8.2	AV
	V	2390.00	54.2	74.0	19.8	PK
L	V	2390.00	44.5	54.0	9.5	AV
L	Н	4824.00	53.3	74.0	20.7	PK
	Н	4824.00	43.8	54.0	10.2	AV
	V	4824.00	52.7	74.0	21.3	PK
	V	4824.00	42.6	54.0	11.4	AV
	Н	4874.00	53.9	74.0	20.1	PK
м	Н	4874.00	43.6	54.0	10.4	AV
171	V	4874.00	53.2	74.0	20.8	PK
	V	4874.00	43.1	54.0	10.9	AV
	Н	2483.50	56.8	74.0	17.2	PK
	Н	2483.50	45.1	54.0	8.9	AV
	V	2483.50	55.6	74.0	18.4	РК
	V	2483.50	44.3	54.0	9.7	AV
Н	Н	4924.00	53.7	74.0	20.3	PK
	Н	4924.00	43.5	54.0	10.5	AV
	V	4924.00	53.8	74.0	20.2	PK
	V	4924.00	43.1	54.0	10.9	AV

802.11g:

СН	Antenna	Frequency (MHz)	Measured Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390.00	56.2	74.0	17.8	РК
	Н	2390.00	46.3	54.0	7.7	AV
	V	2390.00	55.5	74.0	18.5	РК
L	V	2390.00	46.0	54.0	8.0	AV
L	Н	4824.00	53.7	74.0	20.3	РК
	Н	4824.00	44.2	54.0	9.8	AV
	V	4824.00	53.2	74.0	20.8	РК
	V	4824.00	43.5	54.0	10.5	AV
	Н	4874.00	53.1	74.0	20.9	PK
М	Н	4874.00	43.3	54.0	10.7	AV
IVI	V	4874.00	53.2	74.0	20.8	РК
	V	4874.00	43.7	54.0	10.3	AV
	Н	2483.50	55.3	74.0	18.7	РК
	Н	2483.50	44.7	54.0	9.3	AV
	V	2483.50	54.3	74.0	19.7	РК
н	V	2483.50	43.9	54.0	10.1	AV
	Н	4924.00	53.9	74.0	20.1	РК
	Н	4924.00	43.3	54.0	10.7	AV
	V	4924.00	53.5	74.0	20.5	РК
	V	4924.00	43.2	54.0	10.8	AV

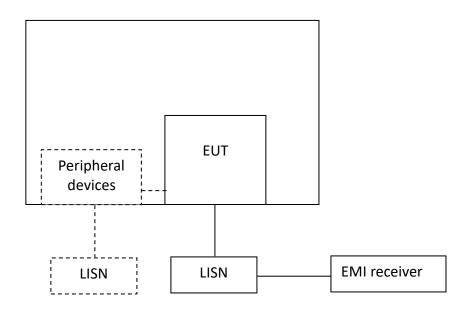
intertek Total Quality. Assured.

TEST REPORT

802.11n (HT20):

СН	Antenna	Frequency (MHz)	Measured Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390.00	55.1	74.0	18.9	РК
	Н	2390.00	45.2	54.0	8.8	AV
	V	2390.00	55.6	74.0	18.4	РК
	V	2390.00	44.1	54.0	9.9	AV
L	Н	4824.00	54.0	74.0	20.0	РК
	Н	4824.00	43.3	54.0	10.7	AV
	V	4824.00	53.6	74.0	20.4	РК
	V	4824.00	43.8	54.0	10.2	AV
	Н	4874.00	53.9	74.0	20.1	РК
М	Н	4874.00	43.6	54.0	10.4	AV
IVI	V	4874.00	53.5	74.0	20.5	РК
	V	4874.00	42.8	54.0	11.2	AV
	Н	2483.50	56.1	74.0	17.9	РК
	Н	2483.50	45.8	54.0	8.2	AV
	V	2483.50	55.1	74.0	18.9	РК
н	V	2483.50	44.0	54.0	10.0	AV
	Н	4924.00	54.3	74.0	19.7	РК
	Н	4924.00	44.5	54.0	9.5	AV
	V	4924.00	53.5	74.0	20.5	РК
	V	4924.00	43.9	54.0	10.1	AV

Intertek Total Quality. Assured. TEST REPORT


8 Power line conducted emission

Test result: Pass

8.1 Limit

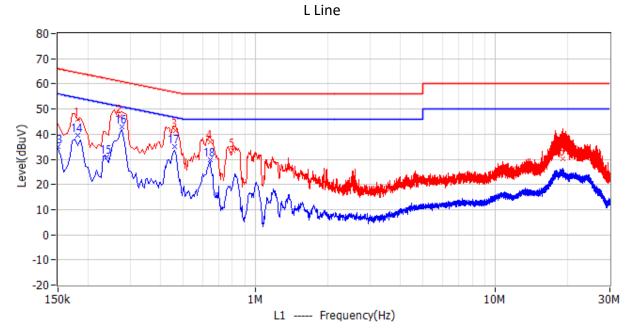
Frequency range	Limits dB(μV)			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	79	66		
0.5 ~ 30	73	60		
Note: If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.				

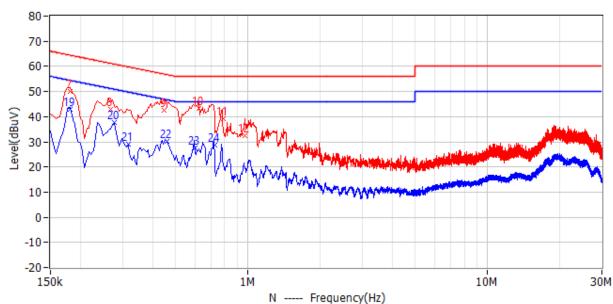
8.2 Test Configuration

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.


The bandwidth of the test receiver is set at 9 kHz.


Intertek Total Quality. Assured. TEST REPORT

8.4 Test Results of Power line conducted emission

Test Voltage: 240V/60Hz

Test Curve:

N Line

intertek Total Quality. Assured.

TEST REPORT

Test Data:

	Frequency	Limit	Level	Delta	Reading	Factor		Phase
No.		dBuV	dBuV	dB	dBuV	dB	Detector	
1	181.500kHz	64.4	45.9	-18.5	39.7	6.2	QP	L1
2	271.500kHz	61.1	47.1	-13.9	40.9	6.2	QP	 L1
3	465.000kHz	56.6	41.3	-15.3	35.1	6.2	QP	L1
4	645.000kHz	56.0	37.0	-19.0	30.7	6.3	QP	L1
5	807.000kHz	56.0	33.4	-22.6	27.1	6.3	QP	L1
6	19.046MHz	60.0	30.2	-29.8	23.7	6.5	QP	L1
7	181.500kHz	64.4	50.0	-14.4	43.8	6.2	QP	N
8	267.000kHz	61.2	43.1	-18.1	36.9	6.2	QP	N
9	447.000kHz	56.9	42.4	-14.5	36.2	6.2	QP	Ν
10	627.000kHz	56.0	43.4	-12.6	37.2	6.2	QP	Ν
11	789.000kHz	56.0	39.0	-17.0	32.7	6.3	QP	N
12	973.500kHz	56.0	32.4	-23.6	26.1	6.3	QP	Ν
13	150.000kHz	56.0	34.9	-21.1	28.7	6.2	CAV	L1
14	181.500kHz	54.4	39.4	-15.0	33.2	6.2	CAV	L1
15	240.000kHz	52.1	31.0	-21.1	24.7	6.3	CAV	L1
16	276.000kHz	50.9	42.9	-8.0	36.7	6.2	CAV	L1
17	460.500kHz	46.7	34.9	-11.8	28.7	6.2	CAV	L1
18	645.000kHz	46.0	29.7	-16.3	23.4	6.3	CAV	L1
19	181.500kHz	54.4	43.1	-11.4	36.9	6.2	CAV	Ν
20	276.000kHz	50.9	37.8	-13.2	31.6	6.2	CAV	Ν
21	316.500kHz	49.8	29.1	-20.7	22.9	6.2	CAV	Ν
22	460.500kHz	46.7	30.2	-16.5	24.0	6.2	CAV	Ν
23	604.500kHz	46.0	27.4	-18.6	21.2	6.2	CAV	Ν
24	726.000kHz	46.0	28.7	-17.3	22.4	6.3	CAV	Ν

Remark: 1. Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Level = Original Receiver Reading + Factor
- 3. Delta = Level Limit
- 4. If the PK Level is lower than AV limit, the AV test can be elided.

Example: Assuming LISN Factor = 10.00dB, Cable Loss = 2.00dB,

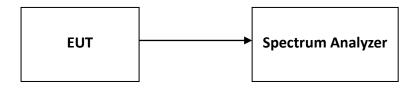
Original Receiver Reading = 10.00dBuV, Limit = 66.00dBuV. Then Factor = 10.00 + 2.00 = 12.00dB; Level = 10dBuV + 12.00dB = 22.00dBuV; Delta = 22.00dBuV - 66.00dBuV = -44.00dB.

9 Occupied Bandwidth

Test result: Pass

9.1 Limit

None


9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen Issue 5 Clause 6.7 was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

Please refer to Appendix A

10 Antenna requirement

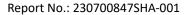
Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

Total Quality. Assured.

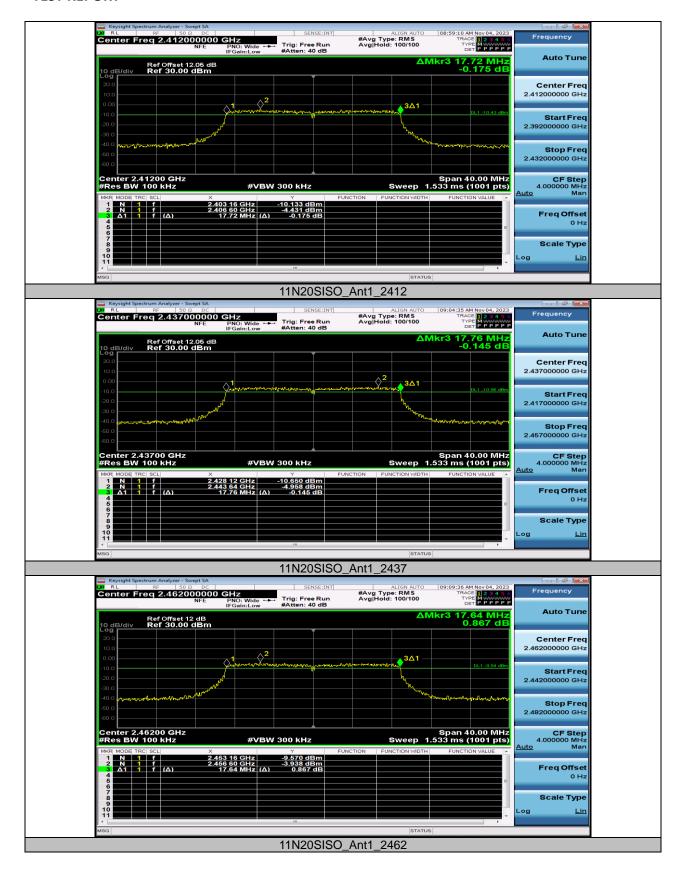

TEST REPORT

Appendix A: Test results

DTS Bandwidth

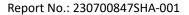
Test Result

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	10.120	2406.920	2417.040	0.5	PASS
11B		2437	10.080	2431.960	2442.040	0.5	PASS
		2462	10.120	2456.920	2467.040	0.5	PASS
	Ant1	2412	16.520	2403.720	2420.240	0.5	PASS
11G		2437	16.520	2428.720	2445.240	0.5	PASS
		2462	16.560	2453.680	2470.240	0.5	PASS
	Ant1	2412	17.720	2403.160	2420.880	0.5	PASS
11N20SISO		2437	17.760	2428.120	2445.880	0.5	PASS
		2462	17.640	2453.160	2470.800	0.5	PASS

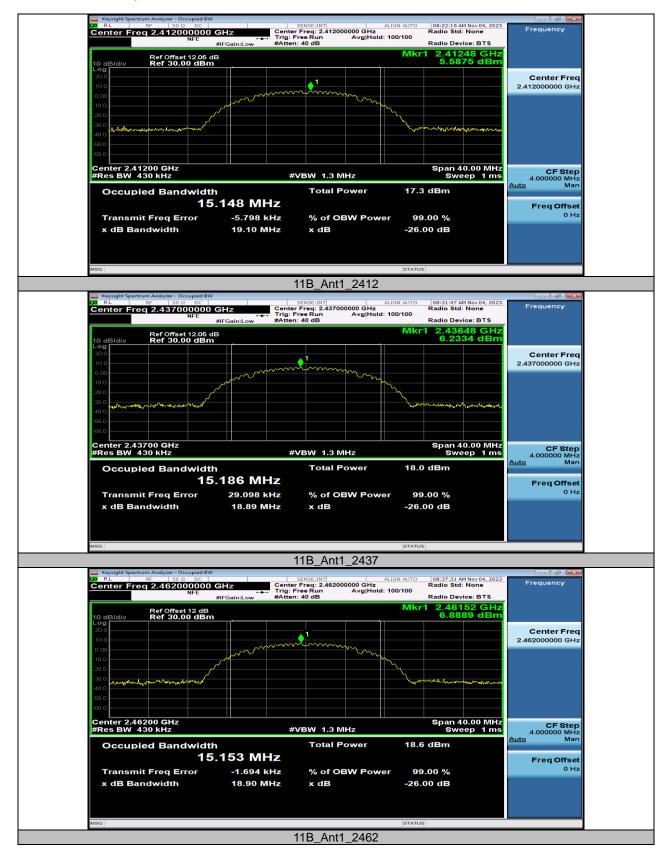


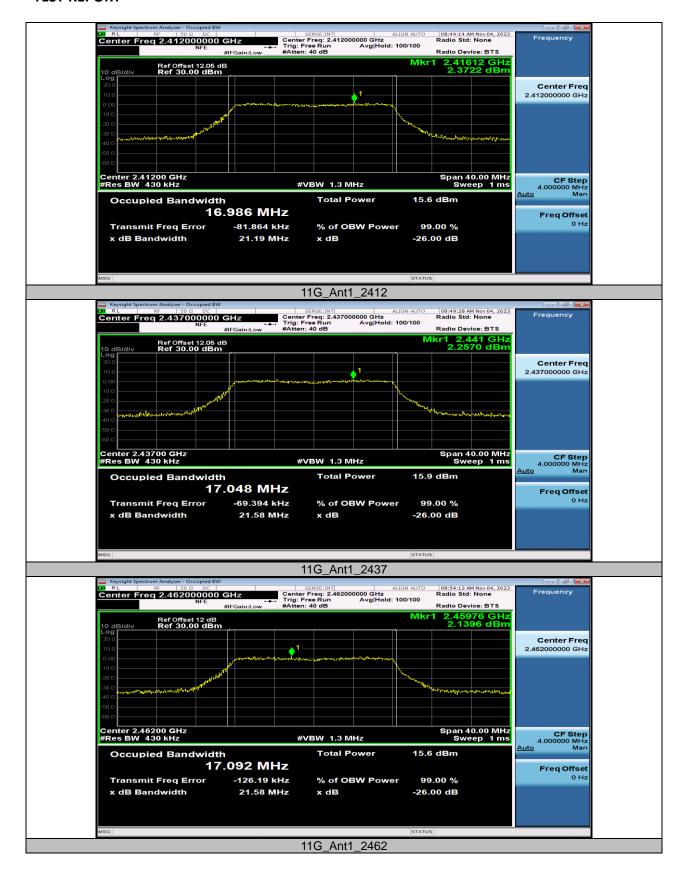
Total Quality. Assured.

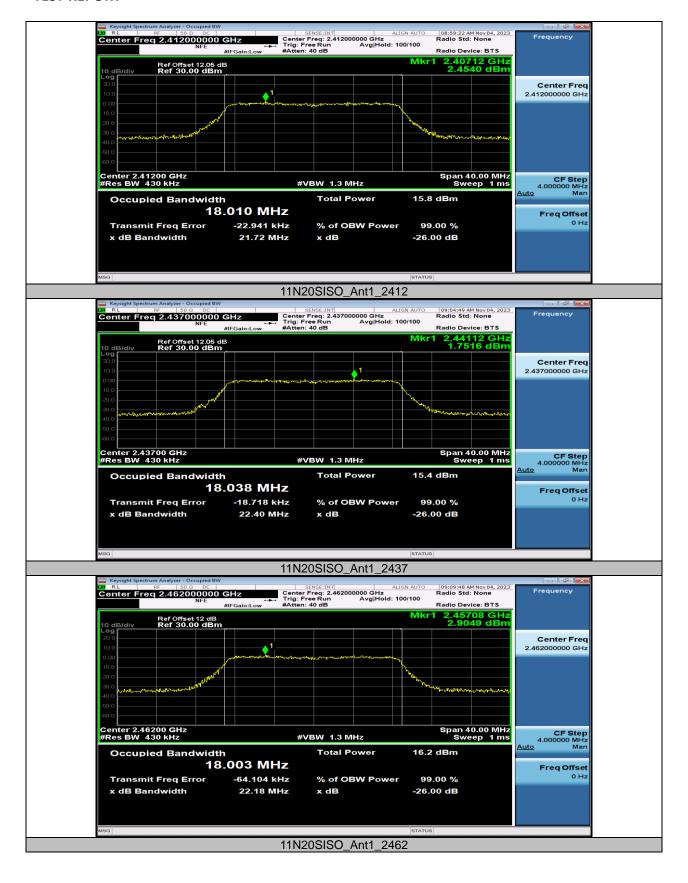
Test Graphs



Occupied Channel Bandwidth


Test Result

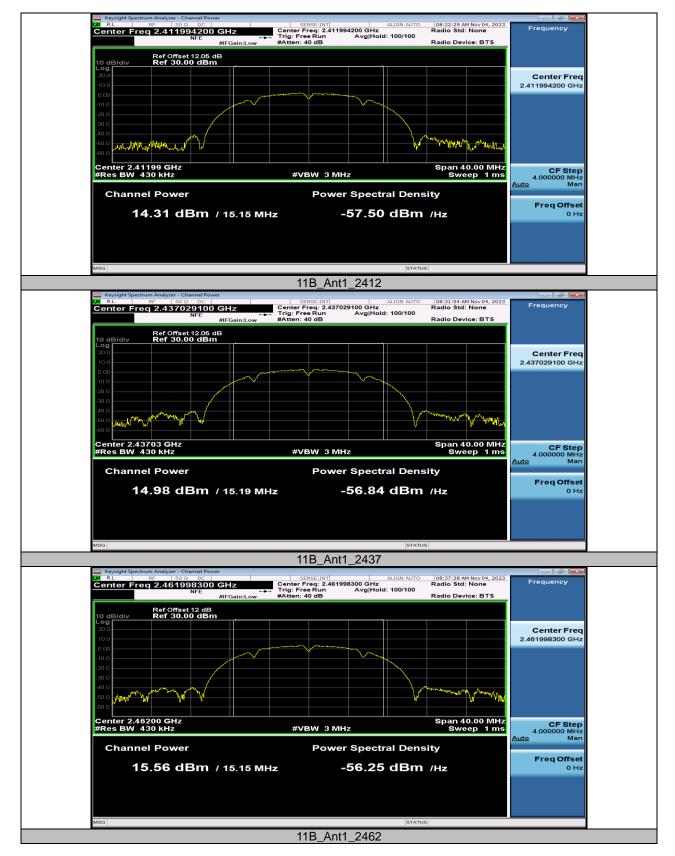

TestMode	Antenna	Channel Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	15.148	2404.4202	2419.5682		
11B	Ant1	2437	15.186	2429.4361	2444.6221		
		2462	15.153	2454.4218	2469.5748		
		2412	16.986	2403.4251	2420.4111		
11G	Ant1	2437	17.048	2428.4066	2445.4546		
		2462	17.092	2453.3278	2470.4198		
		2412	18.010	2402.9721	2420.9821		
11N20SISO	Ant1	2437	18.038	2427.9623	2446.0003		
		2462	18.003	2452.9344	2470.9374		

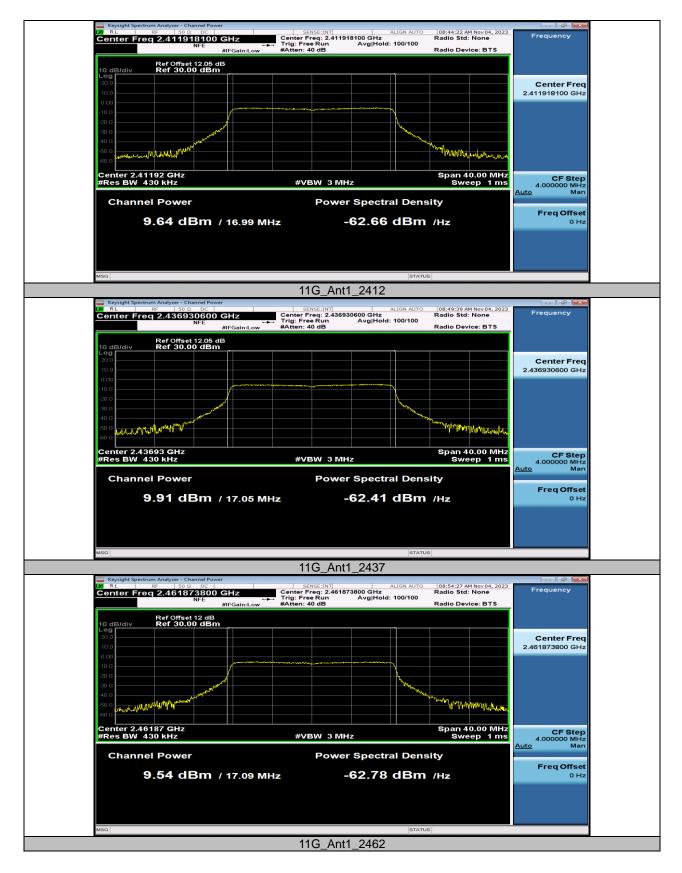


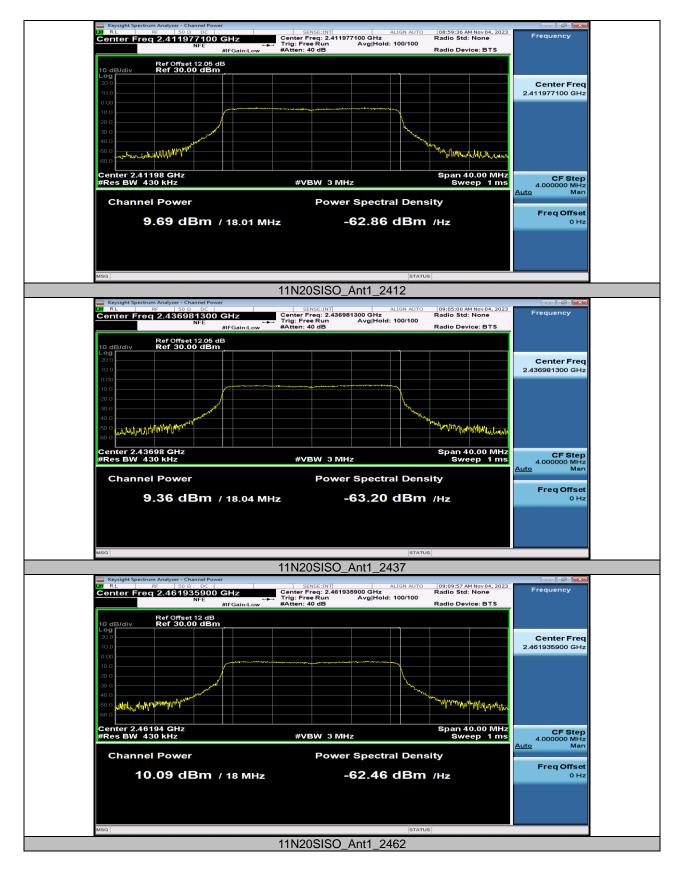
Total Quality. Assured.

Test Graphs

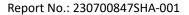
Maximum conducted output power


Test Result Peak


TestMode	Antenna	Frequenc y[MHz]	Set Power	Peak Powert[dBm]	Conducted Limit[dBm]	EIRP [dBm]	EIRP Limit[dBm]	Verdict
		2412		14.31	≤30.00	15.56	≤36.00	PASS
11B	Ant1	2437		14.98	≤30.00	16.23	≤36.00	PASS
		2462		15.56	≤30.00	16.81	≤36.00	PASS
		2412		9.64	≤30.00	10.89	≤36.00	PASS
11G	Ant1	2437		9.91	≤30.00	11.16	≤36.00	PASS
		2462		9.54	≤30.00	10.79	≤36.00	PASS
11N20SIS		2412		9.69	≤30.00	10.94	≤36.00	PASS
0	Ant1	2437		9.36	≤30.00	10.61	≤36.00	PASS
0		2462		10.09	≤30.00	11.34	≤36.00	PASS

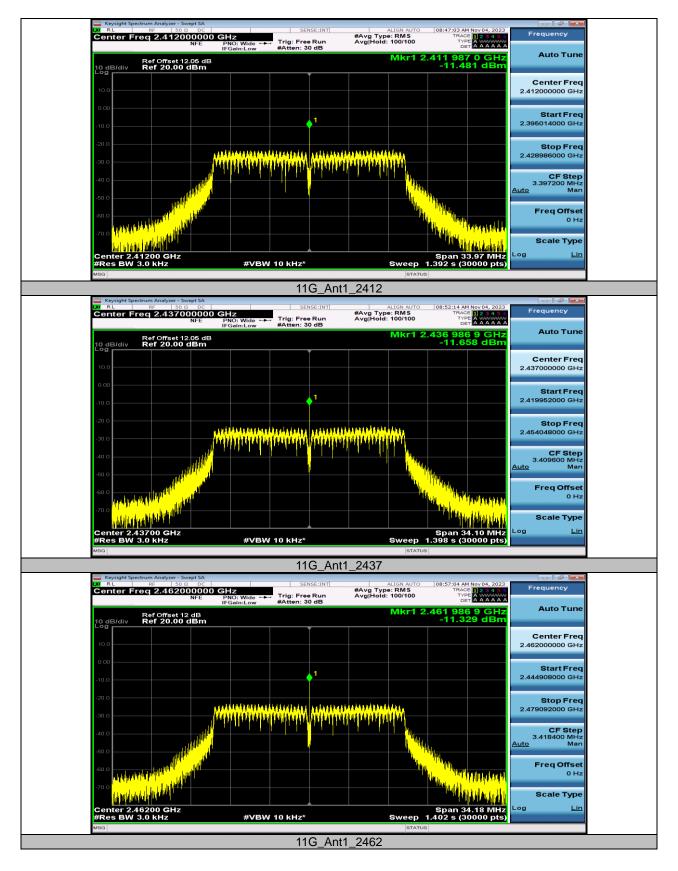


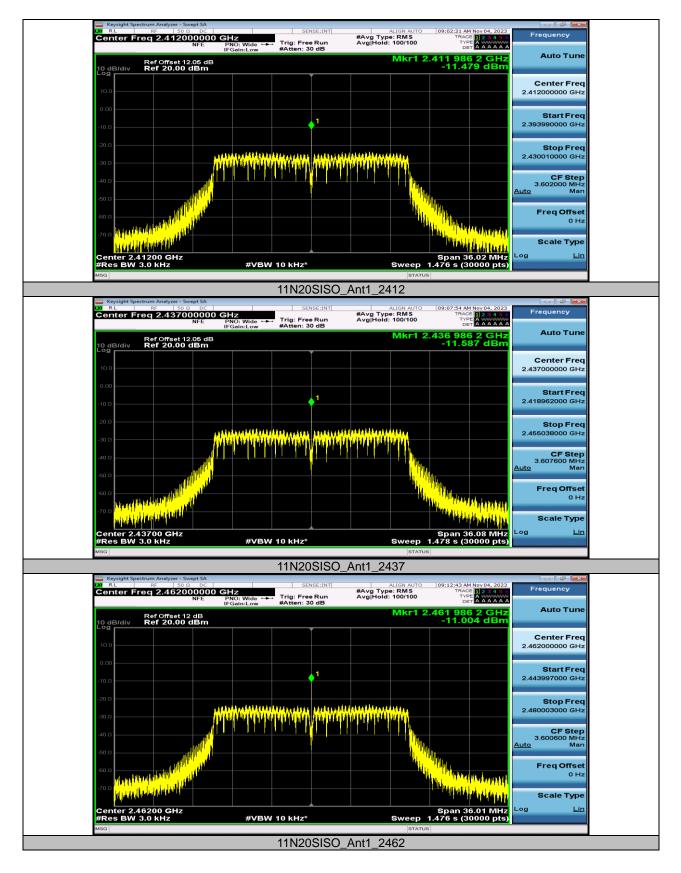
Test Graphs Peak



Maximum power spectral density

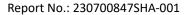

Test Result


TestMode	Antenna	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2412	-12.1	≤8.00	PASS
11B	Ant1	2437	-14.41	≤8.00	PASS
		2462	-11.67	≤8.00	PASS
		2412	-11.48	≤8.00	PASS
11G	Ant1	2437	-11.66	≤8.00	PASS
		2462	-11.33	≤8.00	PASS
		2412	-11.48	≤8.00	PASS
11N20SISO	Ant1	2437	-11.59	≤8.00	PASS
		2462	-11	≤8.00	PASS



Total Quality. Assured.

Test Graphs



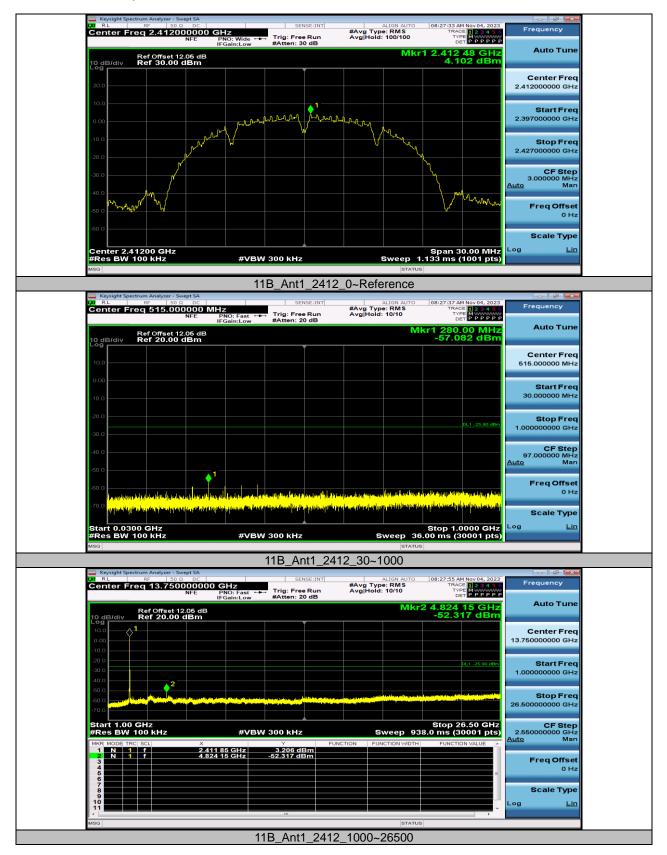
Band edge measurements Test Result

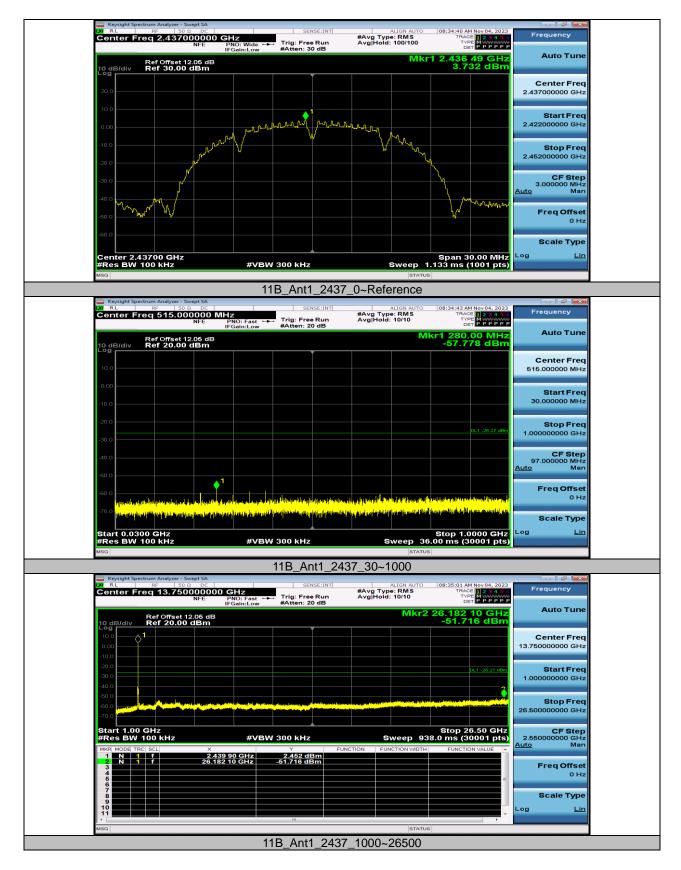
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	3.73	-40.21	≤-26.27	PASS
IID	Anti	High	2462	5.09	-41.92	≤-24.91	PASS
11G	Ant1	Low	2412	-4.46	-39.68	≤-34.46	PASS
110	Anti	High	2462	-4.66	-45.77	≤-34.66	PASS
11N20SISO	Ant1	Low	2412	-4.70	-39.09	≤-34.7	PASS
1111203130	AIIT	High	2462	-3.81	-46.04	≤-33.81	PASS

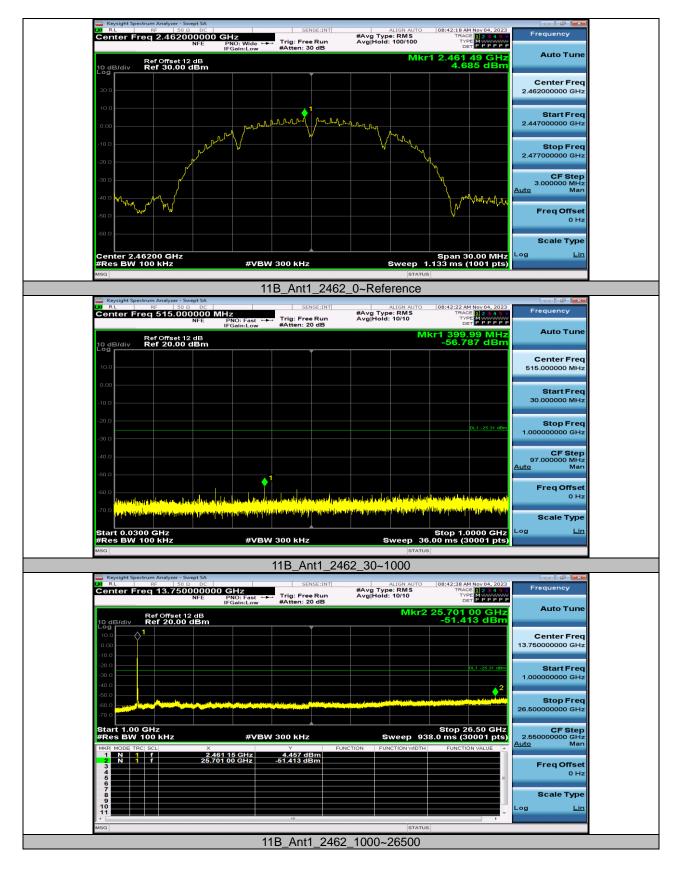
Total Quality. Assured.

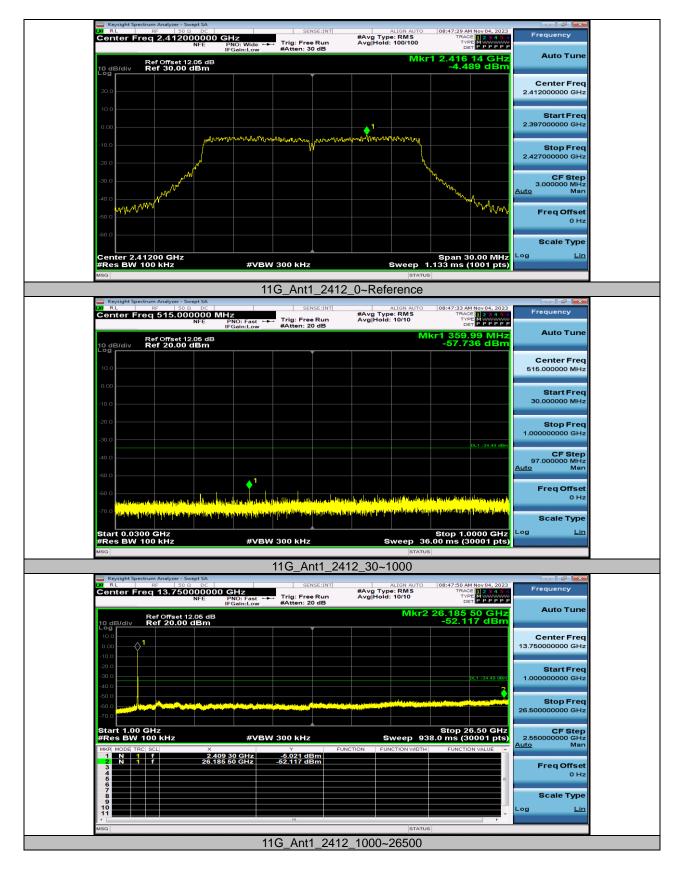
Test Graphs

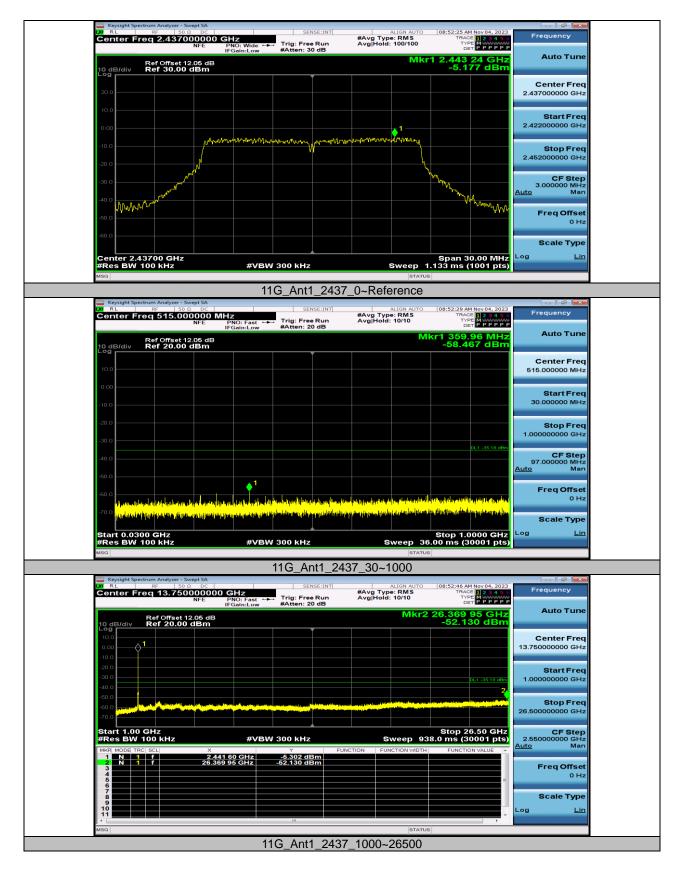
Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA RL RF S0 Ω DC Center Freq 2.4950000000 GHz Fig: Free Run Keysight Spectrum Analyzer - Swept SA Viewer State Sense:Int Augn Autor Augn Autor O8:57:15 AM Nov 04, 2022 Keysight Spectrum Analyzer - Swept SA Viewer State Sense:Int Augn Autor Augn Autor O8:57:15 AM Nov 04, 2022 Keysight Spectrum Analyzer - Swept SA Viewer State Sense:Int Augn Autor Augn Autor O8:57:15 AM Nov 04, 2022 Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Viewer State Sense:Int Augn Autor Sense:Int Autor Sen	Frequency	
Ref Offset 12 dB Mkr4 2.483 89 GHz	Auto Tune	
	Center Freq 2.495000000 GHz	
20.0 30.0 40.0 50.0	Start Freq 2.440000000 GHz Stop Freq	
600 70.0 Stop 2.55000 GHz Start 2.44000 GHz #VBW 300 kHz Stop 2.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 4.067 ms (1001 pts	2.55000000 GHz	
MRR MODE TRC Science X Y FUNCTION FUNCTION MIDTH FUNCTION VALUE A 1 N 1 f 2.455 07 GHz -4.659 dBm	Auto Man Freq Offset 0 Hz	
0 0	Scale Type	
11		
11G_Ant1_High_2462		
Keysight Spectrum Analyzer - Swept SA Sense:INT ALIGN AUTO 09:02:33 AM Nov 04, 202 OW RL RF S0 DC Sense:INT ALIGN AUTO 09:02:33 AM Nov 04, 202 Center Freq 2.365000000 GHz Frace Frace NFE Physics Augli Hoid: 100:100 Trace 10:23 GB NFE Physics Frace Frace Data 200 Data 200 Data 200 NFE Physics Frace Frace Data 200 Data 200 Data 200 NFE Physics Frace Frace Data 200 Data 200 Data 200 NFE Physics Frace Not 200 Data 200 Data 200 Data 200 NFE Physics Frace Not 200 Data 200 Data 200 Data 200 NFE Physics Frace Not 200 Data 200 Data 200 Data 200 NFE Physics Frace Not 200 Data 200 Data 200 Data 200 NFE Physics Frace Not 200 Data 200 Data 200 Data 200 NF Frace Frace <td>Prequency</td> <td></td>	Prequency	
Ref Offset 12.05 dB Mkr5 2.399 97 GHz 10 dB/div Ref 20.00 dBm 0.00 0	Center Freq 2.36500000 GHz	
-10.0 -20.0 -30.0 -40.0 	Start Freq 2.30000000 GHz	
-500 -500 <th< td=""><td>Stop Freq 2.430000000 GHz</td><td></td></th<>	Stop Freq 2.430000000 GHz	
Start 2.30000 GHz Stop 2.43000 GHz Stop 2.43000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 4.800 ms (1001 pts MRR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH 1 N 1 f 2.406 60 GHz -4.696 dBm 2 N 1 f 2.400 00 GHz (4.50.606 dBm -39.885 dBm 3 N 1 f 2.400 00 GHz (4.50.606 dBm -39.085 dBm	13.000000 MHz <u>Auto</u> Man	
1 N 1 f 2.406 60 GHz -4.696 dBm 2 N 1 f 2.400 60 GHz -39.085 dBm 3 N 1 f (Δ) 2.390 00 GHz (Δ) 4 N 1 f (Δ) -50.606 dBm 5 N 1 f 2.310 00 GHz -51.813 dBm 6 N 1 f 2.399 97 GHz -39.085 dBm 7 7 7 7 7 8 9 9 9 1	Freq Offset 0 Hz Scale Type	
	Log <u>Lin</u>	
MBG BTATUS 11N20SISO Ant1_Low 2412		
Keysight Spectrum Analyzer - Swept SA Sense:INT ALIGN AUTO 09:12:54 AM Nov 04, 202: XM RL RF 50 Ω DC SENSE:INT ALIGN AUTO 09:12:54 AM Nov 04, 202: Center Freq 2.495000000 GHz #Avg Type: RMS Trace D234 S Trace D234 S Trace D234 S NFE PNO: Fast →→ Trig: Free Run #AvgIHoid: 100/100 Trace D234 S Trace D234 S	Frequency	
Ref Offset 12 dB Mkr4 2.483 78 GH2 10 dB/div Ref 20.00 dBm -46.035 dBm	Auto Tune	
	Center Freq 2.495000000 GHz	
-30.0 -40.0 -50.0	Start Freq 2.44000000 GHz Stop Freq	
600 70.0 Start 2.44000 GHz Stop 2.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 4.067 ms (1001 pts	11.000000 MHz	
MKR MODE TRC Scl Y FUNCTION FUNCTION MUDH FUNCTION VALUE A 1 N 1 f 2.456.61 GHz 3814.dBm A	Auto Man Freq Offset 0 Hz	
6 6 7 7 8 9 9 9 9 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1	Scale Type	
MSG STATUS		
11N20SISO_Ant1_High_2462		

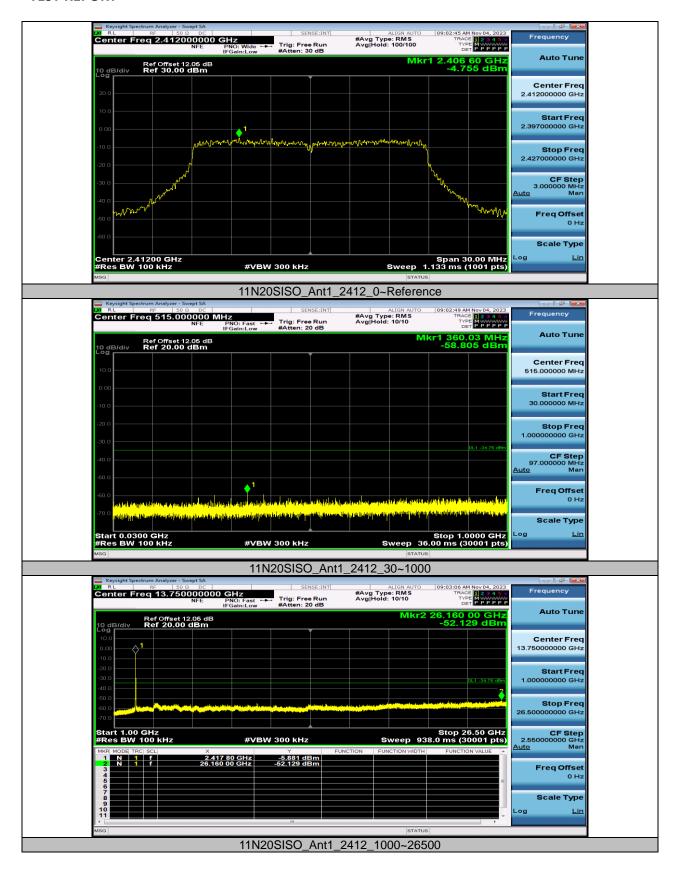

Conducted Spurious Emission

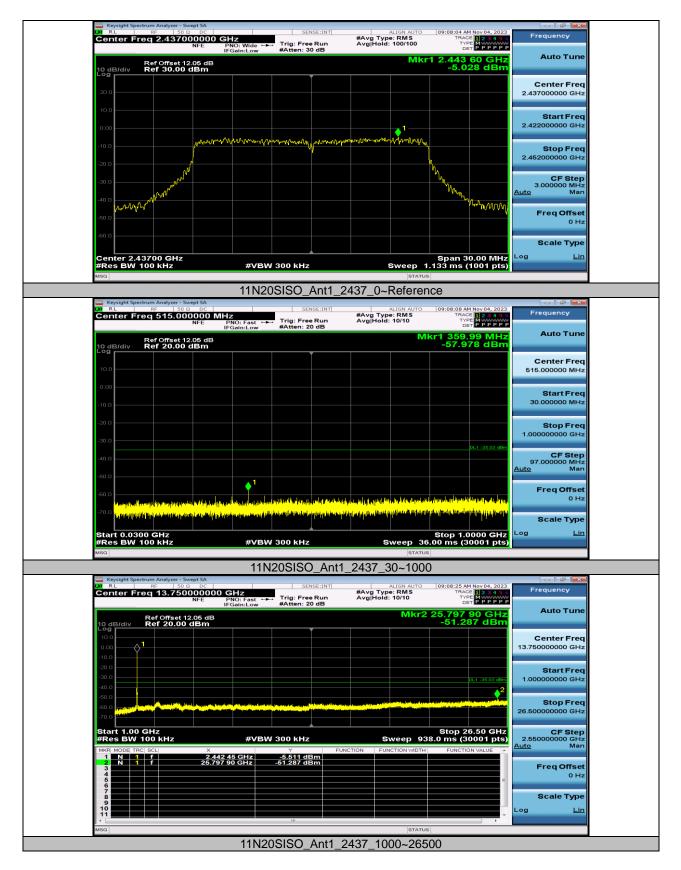

Test Result


TestMode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	4.10	4.10		PASS
		2412	30~1000	4.10	-57.08	≤-25.9	PASS
			1000~26500	4.10	-52.32	≤-25.9	PASS
			Reference	3.73	3.73		PASS
11B	Ant1	2437	30~1000	3.73	-57.78	≤-26.27	PASS
			1000~26500	3.73	-51.72	≤-26.27	PASS
			Reference	4.69	4.69		PASS
		2462	30~1000	4.69	-56.79	≤-25.31	PASS
			1000~26500	4.69	-51.41	≤-25.31	PASS
			Reference	-4.49	-4.49		PASS
		2412	30~1000	-4.49	-57.74	≤-34.49	PASS
			1000~26500	-4.49	-52.12	≤-34.49	PASS
			Reference	-5.18	-5.18		PASS
11G	Ant1	2437	30~1000	-5.18	-58.47	≤-35.18	PASS
			1000~26500	-5.18	-52.13	≤-35.18	PASS
			Reference	-4.49	-4.49		PASS
		2462	30~1000	-4.49	-58.46	≤-34.49	PASS
			1000~26500	-4.49	-51.55	≤-34.49	PASS
			Reference	-4.76	-4.76		PASS
		2412	30~1000	-4.76	-58.81	≤-34.76	PASS
			1000~26500	-4.76	-52.13	≤-34.76	PASS
			Reference	-5.03	-5.03		PASS
11N20SISO	Ant1	2437	30~1000	-5.03	-57.98	≤-35.03	PASS
			1000~26500	-5.03	-51.29	≤-35.03	PASS
			Reference	-4.43	-4.43		PASS
		2462	30~1000	-4.43	-57.7	≤-34.43	PASS
			1000~26500	-4.43	-51.19	≤-34.43	PASS


Total Quality. Assured.


Test Graphs





Ref Offset 12 dB Mkr1 2.455 1 10 dB/dlv Ref 30.00 dBm -4.48 20 0 -4.48 -4.48 20 0 -4.48 -4.48 20 0 -4.48 -4.48 20 0 -4.48 -4.48 20 0 -4.48 -4.48 20 0 -4.48 -4.48 20 0 -4.49 -4.48 20 0 -4.49 -4.48 20 0 -4.49 -4.48 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0 -4.49 -4.49 20 0	9 dBm Center Freq 2.46200000 GHz Start Freq 2.447000000 GHz Start Freq 2.447000000 GHz Stop Freq 2.477000000 GHz Stop Freq 2.477000000 GHz Stop Freq 2.477000000 GHz Stop Freq 3.00000 MHz GF Step 001 Pts) Scale Type Log Lin Nov04, 2023 Frequency S MHZ Auto Tune
-4.48 -4	Center Freq 2.46200000 GHz 2.46200000 GHz 2.447000000 GHz 2.447000000 GHz 2.47700000 GHz 2.47700000 GHz 2.47700000 GHz 3.00000 GHz Auto Man Freq Offset 0 Hz CC Step 3.00000 MHz 0 Hz CC Step 4.00 MHz 0 Hz CC Step 3.00000 GHz Man Freq Offset 0 Hz CS Cale Type Log Lin CS Cale Type CS CALE TYPE
20.0 10.0	2.46200000 GHz Start Freq 2.44700000 GHz 2.44700000 GHz 2.44700000 GHz 2.47700000 GHz 2.47700000 GHz 3.00000 GHz Auto CF Step Auto Scale Type Log Lin Nov04, 2023 Frequency Auto Tune
100 100 100 100 100 100 100 100	Nov 04, 2023 Image: Construction of the
100 100	Nov 04, 2023 Frequency Nov 04, 2023 Frequency Nov 04, 2023 Frequency Auto Tune Auto Tune
100	Nov 04, 2023 Frequency Nov 04, 2023 Frequency Auto Tune Auto Tune
200 300 400 <td>Nov 04, 2023 Frequency Nov 04, 2023 Frequency Auto Tune Auto Tune</td>	Nov 04, 2023 Frequency Nov 04, 2023 Frequency Auto Tune Auto Tune
300 0	3.000000 MHz Auto Man Freq Offset 0.00 MHz Scale Type Log Lin Nov 04, 2023 Frequency So MHz Auto Tune
Center 2.46200 GHz #VBW 300 kHz Span 30 #Res BW 100 kHz #VBW 300 kHz Sweep 1.133 ms (1 MsG IIG_Ant1_2462_0~Reference IIG_entt_2462_0~Reference Sense:INT ALIGN AUTO 08:57:29 AM Center Freg 515,0000000 MHz Sense:INT	Nov 04, 2023 Nov 04, 2023 Nov 04, 2023 Frequency Auto
500 600 600 Span 30 Center 2.46200 GHz #VBW 300 kHz Sweep 1.133 ms (1 #Res BW 100 kHz #VBW 300 kHz Sweep 1.133 ms (1 IIG_Ant1_2462_0~Reference IIG_Ant1_2462_0~Reference Image: Rel BF 50 00 DC SENSE:INT ALIGN AUTO 00:57:29 AM Center Freg 515,0000000 MHz #Avg Type: RMS TRACE	Nov 04, 2023 South Parts Nov 04, 2023 Parts Nov 04, 2023 Parts Nov 04, 2023 Parts Parts Nov 04, 2023 Parts Par
Eesile Span 30 Center 2.46200 GHz #VBW 300 kHz Sweep 1.133 ms (1 #Res BW 100 kHz #VBW 300 kHz Sweep 1.133 ms (1 Msg	Nov 04, 2023 Nov 04, 2023 Nov 04, 2023 Nov 04, 2023 Nov 04, 2023 Nov 04, 2023 Frequency Auto Tune
Center 2.46200 GHz Span 30 #Res BW 100 kHz #VBW 300 kHz Sweep 1.133 ms (1 MBG [status] IIIG_Ant1_2462_0~Reference Keysight Spectrum Analyzer - Swept SA ALIGN AUTO Center Freg 515,000000 MHz	Nov 04, 2023 Source of the second se
MSQ STATUS 11G_Ant1_2462_0~Reference Keysight Spectrum Analyzer - Swept SA R R BF 50 0 DC SENSE:INT ALIGN AUTO 08:57:29 AM Center Freg 515,000000 MHz #Avg Type: RMS TRACE	Nov 04, 2023 Requency Auto Tune
11G_Ant1_2462_0~Reference Keystight Spectrum Analyzer - Swept 5A ME RE RE Colspan="2">Colspan="2"	Nov 04, 2023 Frequency 123450 Frequency PPPPPP Auto Tune
Keysight Spectrum Analyzer - Swept SA	Nov 04, 2023 Frequency 123450 Frequency PPPPPP Auto Tune
Center Freq 515.000000 MHz #Avg Type: RMS TRACE NFE PNO: Fast →→ Trig: Free Run Avg Hold: 10/10 Type IFGain:Low #Atten: 20 dB DET	PPPPP OS MIHZ Auto Tune
Ref Offset 12 dB Mkr1 359.5 10 dB/div Ref 20.00 dBm -58.46	0 dBm
	Center Freq
	515.000000 MHz
	Start Freq 30.000000 MHz
-10.0	
-20.0	Stop Freq 1.00000000 GHz
	CF Step
-40.0	97.000000 MHz <u>Auto</u> Man
-so.o ↓ ↓ 1	Freq Offset
	nin and and a second seco
Start 0.0300 GHz Stop 1.00 #Res BW 100 kHz #VBW 300 kHz Sweep 36.00 ms (30)	000 GHz Log Lin 0001 pts)
العمار (معند) 11G Ant1 2462 30~1000	
Keysight Spectrum Analyzer - Swept SA So Ω DC SENSE:INT ALIGN AUTO 08:57:46 AM	Nov 04, 2023 Frequency
Center Freq 13.750000000 GHz #Avg Type: RMS TRACE NFE PNO: Fast	123456 MWWWW PPPPPP
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm -51.55	Auto Tune
	Center Freq
-10.0	13.750000000 GHz
-20.0 -30.0	Start Freq 1.000000000 GHz
-40.0	¢ ²
	26.50000000 GHz
Start 1.00 GHz Stop 26	.50 GHz CF Step
MKR MODELTRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION	2.550000000 GHz
1 N 1 f 2.466 25 GHz -5.037 dBm 2 N 1 f 25.532 70 GHz -51.554 dBm 3	FreqOffset
	0 Hz
	Scale Type
	Log <u>Lin</u>
11G_Ant1_2462_1000~26500	

