

NORTEL

FCC Part 24/Part22 Test Report for S8000 Indoor and Outdoor Base stations FCC ID#AB6S8000BTS

Document number:	PCS/BTS/DJD/017459
Document issue:	V01.01/EN
Document status:	Approved
Date:	15/12/2005

RF Tests concerning FCC Part are performed by RF GSM Department In laboratory 007 – Nortel Networks, 38 Bd Paul Cezanne, 78280 Guyancourt - France.

Author:	A. CAILLE	
Approved by:	R. JACQUES	Darge

Copyright[®] 2005-2006 Nortel Networks, All Rights Reserved

Printed in France

NORTEL CONFIDENTIAL

The information contained in this document is the property of Nortel Networks. Except as specifically authorized in writing by Nortel Networks, the holder of this document shall keep the information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to third parties and use same for evaluation, operation and maintenance purposes only.

The content of this document is provided for information purposes only and is subject to modification. It does not constitute any representation or warranty from Nortel Networks as to the content or accuracy of the information contained herein, including but not limited to the suitability and performances of the product or its intended application.

This is the Way. This is Nortel, Nortel, the Nortel logo, and the Globemark are trademarks of Nortel Networks. All other trademarks are the property of their owners.

FCC ID#AB6S8000BTS

PUBLICATION HISTORY

15/December/2005 Issue V01.01 / EN Status: Approved Creation Alain CAILLE

CONTENTS

1.	INT	FRODUCTION .				5
	1.1.	OBJECT				5
	1.2.	SCOPE				6
	1.3.	PRODUCT CONFI	gurati0ns			6
2.	RE	LATED DOCUM	1ENTS			7
	2.1.	APPLICABLE I	DOCUMENTS			7
	2.2.	REFERENCE D	OCUMENTS			7
3.	AB	BREVIATIONS	& DEFINITIONS			9
	3.1.	ABBREVIATIO	NS			9
	3.2.	DEFINITIONS				10
4.	EX	HIBIT 1 : TEST	REPORT - HEPA P	CS1900		11
	4.1.	INTRODUCTION				
	4.2.	MEASUREMENT	RESULTS			
	4.3.	NAME OF TES	Γ: RF POWER OUTPU	JT		
	4.3.	I. FCC REOUIRI	EMENTS – FCC PART	24.232		
	4.3.	2. TEST RÉSULT	S			12
	<i>4.3</i> .	3. Test procedure NAME OF TES		WIDTH		
	л.т.		EMENTS			
	4.4.	2. TEST RESULT	SS			
	4.4.	3. Test procedure				
	4.5.	NAME OF TES	1: SPURIOUS EMISS	IONS AT ANTENNA	A TERMINALS	
	4.5. 4.5.	<i>1. FCC requireme</i> <i>2. Test results wit</i>	ents LIMITS – FCC Pa h Duplexer Configura	rt 24.238 tion		
	4.5.	<i>3. Test results wit</i>	h H2D Duplexer Conf	guration		
	4.5.	4. Test results wit	h H4D Duplexer Conf	guration		
	4.5. 4.5.	5. CONCLUSION	/ /			
	4.5.	6. Test procedure				41
	4.6.	NAME OF TES	T: FREQUENCY ST	ABILITY		43
5.	EX	HIBIT 2 : TEST	REPORT FOR PCS	900 PA 30W		45
	5.1.	INTRODUCTION.				45
	5.2.	MEASUREMENT RESULTS			45	
	5.3.	NAME OF TEST :	2.1046 RF Power Ou	TPUT		
	<i>Tes</i> 5.4.	t results NAME OF TEST :	2.1049 Occupied Ban	DWIDTH		46 47
	Tes	t results				
	5.5.	SPURIOUS EMISS	IONS AT ANTENNA TER	MINALS		
PC	S/BTS/	DJD/0017459	V01.01/EN	Approved	15/12/2005	Page 3/118

FCC Part 24/Part22 Test Report for S8000 Indoor and Outdoor Base stations FCC ID#AB6S8000BTS

	Te	st results	
	5.6.	NAME OF TEST : 2.1055 FREQUENCY STABILITY	61
	Te	st results:	
	1 0	st procedure	02
6.	EX	THIBIT 3: TEST REPORT - PA30W GSM850	64
	6.1.	INTRODUCTION	64
	6.2.	MEASUREMENTS RESULTS	64
	6.3.	NAME OF TEST: 2.1046 RF POWER OUTPUT	65
	fcc	requirements	65
	tes	t results	
	<i>tes</i> 6.4.	NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH	
	fcc	requirements.	
	tes	t results	67
	tes	t procedure	
	0.3.	NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	fcc tes	requirements t results	69 70
	tes	t procedure	
	6.6.	NAME OF TEST: 2.1055 FREQUENCY STABILITY	83
	fcc	requirements	
	tes	t results	
7.	EX	THIBIT 4: TEST REPORT – HEPA60W GSM850	85
7.	EX 7.1.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION	85
7.	EX 7.1. 7.2.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS	
7.	EX 7.1. 7.2. 7.3.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT	
7.	EX 7.1. 7.2. 7.3. fcc	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements	
7.	EX 7.1. 7.2. 7.3. fcc tes	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results	
7.	EX 7.1. 7.2. 7.3. fcc tes tes	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1040 occupied DANIDWIDTH	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t results t results t results	
7.	EX 7.1. 7.2. 7.3. <i>fcc</i> <i>tes</i> <i>tes</i> 7.4. <i>fcc</i> <i>tes</i> <i>tes</i> <i>tes</i> <i>tes</i>	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t results t results t neguirements t results t neguirements t results t neguirements t neguirements<	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5. 7.5.1	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT <i>requirements t results t results</i> NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH <i>requirements t results t procedure</i> NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS FCC REQUIREMENTS	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5. 7.5.1 7.5.2	INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS FCC REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes 7.5. 7.5.1 7.5.2 7.5.3	INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS FCC REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION TEST RESULTS WITH H2D CONFIGURATION	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5. 7.5.1 7.5.2 7.5.3 7.5.4	KHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t substant t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS FCC REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION TEST RESULTS WITH H2D CONFIGURATION TEST PROCEDURE	
7.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes 7.5. 7.5.1 7.5.2 7.5.3 7.5.4 7.6.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS FCC REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION TEST RESULTS WITH H2D CONFIGURATION TEST PROCEDURE NAME OF TEST: 2.1055 FREQUENCY STABILITY	
8.	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5. 7.5.1 7.5.2 7.5.3 7.5.4 7.6.	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements tresults t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS fcc REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION TEST RESULTS WITH H2D CONFIGURATION TEST PROCEDURE NAME OF TEST: 2.1055 FREQUENCY STABILITY	
7. 8. 9	EX 7.1. 7.2. 7.3. fcc tes tes 7.4. fcc tes tes 7.5. 7.5.1 7.5.2 7.5.3 7.5.4 7.6. MI	CHIBIT 4: TEST REPORT – HEPA60W GSM850 INTRODUCTION MEASUREMENTS RESULTS NAME OF TEST: 2.1046 RF POWER OUTPUT requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH requirements t results t procedure NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS fCC REQUIREMENTS TEST RESULTS WITH DUPLEXER CONFIGURATION TEST RESULTS WITH H2D CONFIGURATION TEST PROCEDURE NAME OF TEST: 2.1055 FREQUENCY STABILITY EASUREMENT EQUIPMENT LIST	

1. INTRODUCTION

1.1. OBJECT

This report presents the test data in accordance with FCC Part 24 Subpart E for the S8000 Indoor and Outdoor Base stations in PCS1900 band configured with:

- HePA (GMSK 60W / Edge 45W) 1900 .

HePA1900 has been tested with eDRX1900 association during the last certification (FCC ID AB6S12000). New Software release allows the functionality of HePA1900 with old DRX version (DRX ND, DRX ND2) with GMSK functionality only (*Permissive Change Class1*).

- PA (GMSK 30W / Edge 30W) 1900.

These results can be applied for mixed BTS configuration 1900 Band PA (GMSK 30W / Edge 30W) and HePA (GMSK 60W / Edge 45W)

This report presents also the test data in accordance with FCC Part 22, Subpart H , for the S8000 Indoor and Outdoor Base-stations in 850 Band configured with:

- PA (GMSK 30W / Edge 30W) GSM850

- New module introduction: HePA (GMSK 60W / Edge 45W) GSM850.

These results can be applied for 1900 / 850 Dual Band BTS configurations with different mixed power amplifier type PA (GMSK 30W / Edge 30W) and HePA (GMSK 60W / Edge 45W).

This report presents test data for GMSK modulation and 8PSK modulation (EDGE functionality).

1.2. SCOPE

This document applies to the S8000 BTS GSM 1900/850 Outdoor and Indoor versions.

This report introduces a new module introduction: HePA (GMSK 60W / Edge 45W) GSM850.

Some RF Tests have been also performed in the worst case of BTS configuration: S12000 BTS. As we use same modules eDRX, DRX, HePA, ePA and duplexer in S8000 BTS and S12000 BTS, measurements available in this document done with S12000 BTS can be applied to S8000 BTS.

eDRX1900 and DRX ND 1900 radio module have equivalent radio performances and equivalent thermal behaviour. DRX ND have been tested during old FCC certification with PA1900 30W.

Radio performances with eDRX1900/HePA1900 can be applied to DRX ND, DRX ND2 associated with HePA1900. Only the GMSK functionality is ensured with DRX ND.

The last certification with eDRX1900 / HePA1900 ensures the FCC compliance of DRX ND/HePA1900 association

1.3. PRODUCT CONFIGURATIONS

As the RF transmit paths are identical in both the Outdoor system and Indoor system, radio test have been performed on indoor or Outdoor BTS version .

Measurements were taken with all available coupling configurations including with duplexer involves the compliance with H2D (two input coupler with 3dB loss coupling associated with duplexer) and the H4D configuration (four input coupler with 7dB loss coupling associated with duplexer).

The systems use both GMSK modulation and 8PSK, testing was done with both modulation types.

2. RELATED DOCUMENTS

2.1. APPLICABLE DOCUMENTS

[A1]	CFR 47 - Part 2	FREQUENCY RADIO TREATY RULES AND REG	ALLOCATIONS AND MATTERS; GENERAL GULATIONS
[A2]	CFR 47 - Part 24	PERSONAL SERVICES	COMMUNICATIONS

2.2. REFERENCE DOCUMENTS

[R1]	PE/BTS/DJD/0222	FCC Part 24 Type Acceptance Filing for Nortel's S8000 Outdoor BTS AB6OUDS8000
[R2]	PCS/BTS/DJD/0234	AB6OUDS8000: FCC Part 24 Class II Permissive Change Application : S8000 Indoor BTS
[R3]	PCS/BTS/DJD/0730	AB6OUDS8000: FCC Part 24 Class II Permissive Change Application : S8000 Indoor BTS
[R4]	PCS/BTS/DJD/0743	S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000
[R5]	PCS/BTS/DJD/0746	S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000

[R6]	PCS/BTS/DJD/04574	S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000
[R7]	PE/BTS/DJD/002630	S8000 Outdoor and Indoor BTS eGSM 850 FCC Part 22 : exhibits documents
[R8]	PE/BTS/DJD/4233	S12000 Indoor BTS GSM 850 / PCS 1900: FCC Part 22 / FCC Part 24 Certification Filing for Nortel AB6INDS12000 exhibits document
[R9]	PE/BTS/DJD/4248	S12000 Outdoor BTS GSM 850 / PCS 1900: FCC Part 22 / FCC Part 24 Certification Filing for Nortel AB6OUTS12000 exhibits document
[R10]	PCS/BTS/DJD/05945	FCC Part 24/Part22 Test Report for S8000 Indoor and Outdoor Base stations FCC ID#AB6S8000
[R11]	60039646-539500- R-TR-FCC	Radio Test report in extreme condition for the introduction of HePA 850 on GSM S8000/S12000

3. ABBREVIATIONS & DEFINITIONS

3.1. ABBREVIATIONS

DRX	Driver Receiver Unit
e-DRX	EDGE DRX
BCF	Base Common Function
BTS	Base Transceiving Station
GSM	Global System for Mobile Communications
GPRS	General Packet Radio Service
EDGE	Enhanced Data for GSM Evolution
PDTCH	Packet Data Logical Channel
PA	Power Amplifier
e-SCPA	EDGE Single Carrier PA
HePA	Edge High Power Amplifier
LNA	Low Noise Amplifier
OMC	Operation and Maintenance Center
TCU	Trans-Coding Unit
MSC	Mobile Switching Center
RF	Radio Frequency
Tx	Transmitter

3.2. DEFINITIONS

▶ <u>PCS1900</u> Frequency Band and Channels

PCS 1900	C512	C661	C810
F Tx (MHz)	1930.2	1960	1989.8
F Rx (MHz)	1850.2	1880	1909.8

For 512 < n <810

 $F_{Rx}(n) = 1850.2 + 0.2*(n-512)$ $F_{Tx}(n) = F_{Rx}(n) + 80$

IF frequencies on Radio Board:	For Tx path	299 MHz
	For Rx path	211 MHz

Clock frequency on the Radio Board 13MHz created from 4.096MHz coming from the Digital board.

► <u>GSM850 Frequency Band and Channels</u>

GSM 850	C128	C189	C251
Short	В	М	Т
F Tx (MHz)	869.2	881.4	893.8
F Rx (MHz)	824.2	836.4	848.8

For 128 < n < 251 $F_{Rx}(n) = 824.2 + 0.2*(n-128)$ $T_{Tx}(n) = F_{Rx}(n) + 45$

IF frequencies on Radio Board:	For Tx path	133 MHz
	For Rx path	71 MHz

Clock frequency on the Radio Board 13MHz created from 4.096MHz coming from the Digital board.

4. EXHIBIT 1 : TEST REPORT - HEPA PCS1900

4.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband PCS Base Station for Northern Telecom, Inc., in accordance with FCC Part 24, Subpart E and Part 2, Subpart J of the FCC Rules and Regulations.

The measurement procedures were in accordance with the requirements of Part 2.

4.2. MEASUREMENT RESULTS

Table 1 is a summary of the measurement results for this update.

FCC Measurement Specification	IC Limit Specification	Description	Result	Note
2.1046(a), 2.1033(c)(8) 24.232	6.2	RF Power Output	Complies	
2.1049		Occupied Bandwidth	Complies	
2.1051, 2.1057 24.238	6.3 6.4	Spurious Emissions at Antenna Terminals	Complies	
2.1055 24.235	7.0	Frequency Stability	Complies	

Table 1 : Measurement Results Summary

4.3. NAME OF TEST: RF POWER OUTPUT

4.3.1. FCC REQUIREMENTS – FCC PART 24.232

Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 100 watts.

4.3.2. TEST RESULTS

 Table 2 shows the test results of RF Output Power for GMSK modulation with several coupling configurations :

Radio Channel	Frequency (MHz)	Duplexer Power (dBm)	H2D Power (dBm)	H4D Power	HePA Output Power	Limit (dBm)
Channel	(11112)			(dBm)	(dBm)	(uDili)
512	1930,2	45.8	42.2	39.3		
548	1937,4	46.1	42.4	39.6		
585	1944,8	46.3	42.6	39.8		
587	1945,2	46.3	42.6	39.8		
598	1947,4	46.2	42.6	39.8	GMSK	
610	1949,8	46.3	42.6	39.8	(60W)	
612	1950,2	46.3	42.6	39.8	47.0.10	
648	1957,4	46.5	42.9	39.9	47.8 dBm	50 ID
685	1964,8	46.5	42.8	39.9		50 dBm
687	1965,2	46.5	42.8	39.9	+/- 0.3 dB	
698	1967,4	46.5	42.9	39.9		
710	1969,8	46.5	42.9	39.9		
712	1970,2	46.5	42.9	39.9		
723	1972,4	46.5	42.8	39.9		
735	1974,8	46.5	42.8	39.8		
737	1975,2	46.5	42.8	39.8		
773	1982,4	46.5	42.7	39.9		
810	1989,8	46.6	42.9	39.9		

Radio Channel	Frequency (MHz)	Duplexer Power (dBm)	H2D Power (dBm)	H4D Power (dBm)	HePA Output Power (dBm)	Limit (dBm)
512	1930,2	45	41.9	38.5		
548	1937,4	45.3	41.6	38.8		
585	1944,8	45.5	41.8	39		
587	1945,2	45.5	41.8	39		
598	1947,4	45.4	41.8	39	8PSK (45W)	
610	1949,8	45.5	41.8	39		50 dBm
612	1950,2	45.5	41.8	39		
648	1957,4	45.7	42	39.1		
685	1964,8	45.7	42	39.1	4(5 JD	
687	1965,2	45.7	42	39.1	40.5 dBm	
698	1967,4	45.7	42	39.1	+/- 0.3 ub	
710	1969,8	45.7	42	39.1		
712	1970,2	45.7	42	39.1		
723	1972,4	45.7	42	39.1	-	
735	1974,8	45.7	42	39		
737	1975,2	45.7	42	39.1		
773	1982,4	45.7	41.9	39.1]	
810	1989,8	45.8	42.1	39.2]	

Table 3 shows the test results of RF Output Power for **8PSK modulation**supported by eDRX/HePA 1900 with several coupling configurations :

Table 4 shows the HePA Output RF Power reduction available

- For GMSK modulation
- For 8PSK modulation supported by eDRX/HePA 1900

HePA (60W)	HePA (45W)
output Power	output Power
for	for
GMSK	8PSK
modulation	modulation
(dBm)	(dBm)
47.8	46.5
45.8	44.5
43.8	42.5
41.8	40.5
	HePA (60W) output Power for GMSK modulation (dBm) 47.8 45.8 43.8 43.8

4.3.3. TEST PROCEDURE

The equipment was configured as shown in schematic 1.

Schematic 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

Measurements were made at frequencies which are the bottom, middle and top of each of the licensed blocks.

The output power was measured using the power meter which has the following settings :

Mode : Average Reference Level Offset : Corrected to account for cable(s) and attenuator losses

4.4. NAME OF TEST : OCCUPIED BANDWIDTH

4.4.1. FCC REQUIREMENTS

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.4.2. TEST RESULTS

The maximum occupied bandwidth was found to be: 320 kHz, measured on channel 661, f=1960 MHz in GMSK modulation, 317 kHz, measured on channel 661, f=1960 MHz in 8PSK modulation.

4.4.3. TEST PROCEDURE

The equipment was configured as shown in schematic 2.

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer had the following settings :

Detector :	Sample
Trace :	Average
Resolution bandwidth :	10 kHz
Video bandwidth :	30 kHz
Span :	1 MHz
Reference Level Offset :	Corrected to account for cable(s) and attenuator losses
Level range :	100 dB
Sweep time :	25 ms

4.5. NAME OF TEST: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

4.5.1. FCC REQUIREMENTS LIMITS – FCC PART 24.238

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

4.5.2. TEST RESULTS WITH DUPLEXER CONFIGURATION

The reference level for spurious emissions at the antenna terminals is taken from the measured output power (46.3 dBm = 42.63 Watts).

Therefore the spurious emissions must be attenuated by at least 43 + 10*Log(42.63) = 59.3 dBThe measured output power was 46.3 dBm; therefore the limit is 46.3 - 59.3 = -13 dBm.

Spurious measurement is performed with the worst configuration with Duplexer coupling and 60W High Power amplifier .

The Nominal power at antenna connector : PD max =46.5 dBm.

The test compliance with duplexer involves the compliance with H2D (two input coupler with 3dB loss coupling associated with duplexer) and the compliance with H4D configuration (four input coupler with 7dB loss coupling associated with duplexer).

Tables 5 and 6 show the results for Spurious Emissions at Antenna Terminals.

	Channel	Power	Spurious	Limit (dB)	Margin (dB)
		emission	emissions		
		level	level (dBm)		
А	512	Pmax-4	-16.2	-13	3.2
А	585	Pmax-4	-14.7	-13	1.7
D	587	Pmax-4	-15.4	-13	2.4
D	610	Pmax-4	-14.3	-13	1.3
В	612	Pmax-4	-15.1	-13	2.1
В	685	Pmax-4	-14.1	-13	1.1
Е	687	Pmax-4	-15	-13	2
Ε	710	Pmax-4	-14.6	-13	1.6
F	712	Pmax-4	-15.2	-13	2.2
F	735	Pmax-4	-14.5	-13	1.5
C	737	Pmax-4	-14.6	-13	1.6
С	810	Pmax-4	-13.9	-13	0.9

Table 5 : Spurious emissions with the <u>diplexer for GMSK modulation</u>

	Channel	Power	Spurious	Limit (dB)	Margin (dB)
		emission	emissions		
		level	level (dBm)		
А	512	Pmax-2	-16.3	-13	3.3
А	585	Pmax-2	-16.8	-13	3.8
D	587	Pmax-2	-15.8	-13	2.8
D	610	Pmax-2	-16.2	-13	3.2
В	612	Pmax-2	-15.4	-13	2.4
В	685	Pmax-2	-15.8	-13	2.8
E	687	Pmax-2	-15.2	-13	2.2
E	710	Pmax-2	-16	-13	3
F	712	Pmax-2	-14.6	-13	1.6
F	735	Pmax-2	-16.1	-13	3.1
C	737	Pmax-2	-15.3	-13	2.3
С	810	Pmax-2	-15.2	-13	2.2

Tables 6: Spurious emissions with the diplexer for 8PSK modulation

Notes :

GMSK modulation measurements:

Figures from 3 to 6 show sample plots for the case when the transmitter was tuned with the power reduced by 4 dB in diplexer configuration for differents Edge Channel 512, 585, 737, 810.

8PSK modulation measurements:

Figures from 7 to 10 show sample plots for the case when the transmitter was tuned at the power reduced by 2dB in diplexer configuration.

Out of band measurement in GMSK modulation:

Figures from 11 to 20 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 810 at maximum power with diplexer configuration.

Figure 7:

-1 MHz adjacent band (Channel 512, Pmax-2), Diplexer only, 8PSK modulation

Figure 8:

+1 MHz adjacent band (Channel 585, Pmax-2), Diplexer only, 8PSK modulation

Figure 10: +1 MHz adjacent band (Channel 810, Pmax-2), Diplexer only, 8PSK modulation

Figure 11:

100 kHz - 50 MHz

RBW=10 kHz

RBW=1 MHz (*)

(*) Note: spectrum line at 100 kHz is internal DC spectrum line of analyser

Figure 12: 50 MHz – 500 MHz

Figure 14: 1970.2 – 1974 MHz

Figure 13 : 500 MHz – 1970.2 MHz

Figure 15 : 1974 – 1975 MHz

Figure 16 : 1991 – 1994.8 MHz

Figure 17 : 1994.8 MHz – 4 GHz

Figure 18: 4 – 8 GHz

Figure 19 : 8 – 12 GHz

Figure 20 : 12 – 20 GHz

4.5.3. TEST RESULTS WITH H2D DUPLEXER CONFIGURATION

	Channel	Power level	Spurious	Limit (dB)	Margin (dB)
			emissions		
			level (dBm)		
А	512	Pmax	-15.1	-13	2.1
А	585	Pmax	-14.1	-13	1.1
D	587	Pmax	-14.9	-13	1.9
D	610	Pmax	-14.1	-13	1.1
В	612	Pmax	-15.2	-13	2.2
В	685	Pmax	-13.7	-13	0.7
Е	687	Pmax	-14.4	-13	1.4
Е	710	Pmax	-14.1	-13	1.1
F	712	Pmax	-14.4	-13	1.4
F	735	Pmax	-13.9	-13	0.9
C	737	Pmax	-14.3	-13	1.3
С	810	Pmax	-13.5	-13	0.5

Table 7: Spurious emissions with the H2D for GMSK modulation

GMSK modulation measurements:

Figures from 21 to 24 show sample plots for the case when the transmitter was tuned with the maximum power in H2D diplexer configuration for different Edge Channel 512, 585, 737, 810.

Table 8: Spurious emissions with the H2D for 8PSK modulation

	Channel	Power level	Spurious	Limit (dB)	Margin (dB)
			emissions		
			level (dBm)		
А	512	Pmax	-16.9	-13	3.9
А	585	Pmax	-17.7	-13	4.7
D	587	Pmax	-16.5	-13	3.5
D	610	Pmax	-17.2	-13	4.2
В	612	Pmax	-16.8	-13	3.8
В	685	Pmax	-17	-13	4
E	687	Pmax	-16.2	-13	3.2
E	710	Pmax	-17.4	-13	4.4
F	712	Pmax	-16.2	-13	3.2
F	735	Pmax	-17.1	-13	4.1
C	737	Pmax	-16.2	-13	3.2
С	810	Pmax	-16.5	-13	3.5

8PSK modulation measurements:

Figures from 25 to 28 show sample plots for the case when the transmitter was tuned at the maximum power in H2D diplexer configuration.

Figure 26 :					
+1 MHz adjacent band (Channel 585, Pmax),					
H2D, 8PSK modulation					

Figure 27 : -1 MHz adjacent band (Channel 737, Pmax), H2D, 8PSK modulation

4.5.4. TEST RESULTS WITH H4D DUPLEXER CONFIGURATION

	Channel	Power level	Spurious	Limit (dB)	Margin (dB)
			emissions		
			level (dBm)		
А	512	Pmax	-17.8	-13	4.8
А	585	Pmax	-17.1	-13	4.1
D	587	Pmax	-18	-13	5
D	610	Pmax	-16.3	-13	3.3
В	612	Pmax	-18.1	-13	5.1
В	685	Pmax	-16.4	-13	3.4
Е	687	Pmax	-17.6	-13	4.6
Е	710	Pmax	-16.6	-13	3.6
F	712	Pmax	-17.1	-13	4.1
F	735	Pmax	-16.6	-13	3.6
C	737	Pmax	-17.7	-13	4.7
С	810	Pmax	-16.3	-13	3.3

Table 9: Spurious emissions with the H4D for GMSK modulation

GMSK modulation measurements:

Figures from 29 to 32 show sample plots for the case when the transmitter was tuned with the maximum power in H4D diplexer configuration for different Edge Channel 512, 585, 737, 810.

Table 10: spurious emissions with the H4D for 8PSK modulation

	Channel	Power level	Spurious	Limit (dB)	Margin (dB)
			emissions		
			level (dBm)		
А	512	Pmax	-20.2	-13	7.2
А	585	Pmax	-20.3	-13	7.3
D	587	Pmax	-19.2	-13	6.2
D	610	Pmax	-20.5	-13	7.5
В	612	Pmax	-18.9	-13	5.9
В	685	Pmax	-20.1	-13	7.1
E	687	Pmax	-18.8	-13	5.8
E	710	Pmax	-20	-13	7
F	712	Pmax	-19	-13	6
F	735	Pmax	-19.9	-13	6.9
C	737	Pmax	-19.4	-13	6.4
С	810	Pmax	-19.9	-13	6.9

8PSK modulation measurements:

Figures from 33 to 36 show sample plots for the case when the transmitter was tuned at the maximum power in H4D diplexer configuration.

PCS/BTS/DJD/0017459

PCS/BTS/DJD/0017459

4.5.5. CONCLUSION

GMSK modulation:

Coupling	Antenna	Power reduction	System Power limitation
Configuration	Output	Measurement	GMSK modulation
	power (dBm)	(qualification modules)	
Diplexer	46.5	Pmax - 4 dB = 42.5 dBm	Pmax - 6 dB = 40.5 dBm
H2D	43	Pmax = 43 dBm	Pmax - 2 dB = 41 dBm
H4D	40	Pmax = 40 dBm	Pmax = 40 dBm

For system limit, 2dB power reduction margin is taken to ensure the compliance for the case of diplexer and H2D due to eDRX/HePA products tolerances.

Performances measured with eDRX/HePA can be applied to DRX ND/HePA association (with GMSK modulation only).

In order to comply with the emission limits in the 1 MHz bands immediately outside and adjacent to the frequency block, the absolute transmit power level of the block edge channels has been done at Pmax - 6 dB = 40.5 dBm for the worst case in diplexer configuration.

8PSK modulation:

eDRX and HePA 1900 support 8 PSK modulation.

Coupling	Antenna port	Power reduction	System Power limitation
	Output power	measurement	8 PSK modulation
	(dBm)		
Diplexer	45.8	Pmax - 2 dB = 43.8 dBm	Pmax - 2 dB = 43.8 dBm
H2D	42	Pmax = 42 dBm	Pmax = 42 dBm
H4D	39	Pmax = 39 dBm	Pmax = 39 dBm

In the worst configuration (Diplexer), the maximum power emission with 2dB reduced (**Pmax-2dB**) allows to be compliant with the spurious emission limits (-13 dBm) in the 1 MHz bands immediately outside and adjacent to the frequency block for 8PSK modulation.

4.5.6. TEST PROCEDURE

The equipment was configured as shown in schematic 3.

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 512 and 810 are those channels which are at the lower and upper edges of the PCS band respectively.

The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

For these measurements, the resolution bandwidth of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was closed to 300 kHz. Therefore, the resolution bandwidth was set to 3 kHz.

The spectrum analyzer had the following settings for adjacent band:

3 kHz
10 kHz
1 MHz
Corrected to account for cable(s), filter and attenuator losses
100 dB
Coupled
Sample
Average
200

For all other measurements the BTS carrier frequency was adjusted to Channel 810.

The spectrum analyzer had the following settings	for out of block emissions.
Resolution bandwidth :	1 MHz
Video bandwidth :	1 MHz

The emissions were investigated up to the tenth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

4.6. NAME OF TEST: FREQUENCY STABILITY

Frequency stability has been tested in worst BTS configuration (BTS S12000) case for PCS 1900 HePA introduction.

Performances measured with eDRX/HePA can be applied to DRX ND/HePA association.

This BTS S12000 compliance ensures the frequency stability compliance for BTS S8000.

Table 6 shows the Frequency Stability for channel 661 (F=1960 MHz) in BTS 12000 OUTDOOR configuration (8 HePA) under extreme conditions.

Temperature	Maximum Carrier Frequency Deviation (Hz)			
(°C)	85% Nominal Supply voltage 195 V AC	Nominal Supply voltage 230V AC	115% Nominal Supply voltage 264 V AC	
-30	50.3	56.8	47.4	
-20	56.9	56.5	45.4	
-10	57.7	56.6	43.7	
0	62.3	49.2	61.5	
10	49.7	54.6	48.0	
20	49.2	58.7	56.3	
30	56.5	49.4	53.9	
40	58.7	71.0	63.0	
50	60.7	61.0	56.6	

Table 11: Frequency Stability in BTS S12000 Outdoor configuration – Channel 661

The maximum frequency deviation allowed is 90 Hz.

The maximum deviation measured (71Hz) is sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Outdoor BTS complies with the requirement which involves the compliance for BTS S8000.

TEST CONFIGURATION :

Thermal tests have been performed with OUTDOOR BTS S12000.

The BTS S12000 must operate under the following external extreme temperatures:

- BTS S12000 Outdoor : $- 30^{\circ}C / + 50^{\circ}C$

Frequency stability test is performed under following extreme conditions:

- Temperature from -30° C to $+50^{\circ}$ C at intervals of 10 degrees.
- With AC power supply variations: 195 VAC, 230 VAC, 264 VAC.

All Modules (eDRX and HePA) run with nominal power regulation at maximum power (60W) in GMSK modulation. The eDRX/HePA were configured to transmit at maximum power (Static level 0).

BTS S12000 is equipped with eDRX/HePA in slots 0, 1, 2, 3, 6, 7, 8, 9 with following emission configuration :

C542	slot 6 : BCCH \rightarrow	C632
C661	slot 7 : BCCH \rightarrow	C692
C572	slot 8 : BCCH \rightarrow	C722
C602	slot 9 : BCCH \rightarrow	C752
	C542 C661 C572 C602	C542slot 6 : BCCH \rightarrow C661slot 7 : BCCH \rightarrow C572slot 8 : BCCH \rightarrow C602slot 9 : BCCH \rightarrow

Frequency deviation is measured in slot 1 on channel C661.

A period of at least one hour was allowed prior to measurement to ensure that all the components of the oscillator circuit was stabilized at each temperature.

The equipment was configured as shown in figure 16.

Figure 16: Test configuration for Frequency Stability

5. EXHIBIT 2 : TEST REPORT FOR PCS900 PA 30W

5.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband PCS Base Station for Northern Telecom, Inc., in accordance with FCC Part 24, Subpart E and Part 2, Subpart J of the FCC Rules and Regulations.

The measurement procedures were in accordance with the requirements of Part 2.

5.2. MEASUREMENT RESULTS

Table 1 is a summary of the measurement results for this update.

FCC Measurement Specification	IC Limit Specification	Description	Result	Note
2.1046(a), 2.1033(c)(8) 24.232	6.2	RF Power Output	Complies	Refer to
2.1049		Occupied Bandwidth	Complies	[R5]
2.1051, 2.1057 24.238	6.3 6.4	Spurious Emissions at Antenna Terminals	Complies	[R6]
2.1055 24.235	7.0	Frequency Stability	Complies	

Table 1 : Measurement Results Summary

5.3. NAME OF TEST : 2.1046 RF POWER OUTPUT

TEST RESULTS

Table 2 shows the test results for RF Output Power with the diplexer configuration :

- For GMSK modulation
- For 8PSK modulation supported by eDRX/eSCPA 1900.

			Measured RF	Measured RF	
Rand	Radio	Frequency	Output Power	Output Power	Limit (dBm)
Danu	Channel	(MHz)	(dBm)	(dBm)	
			GMSK	8PSK	
А	512	1930,2	43.8	43.9	50
А	548	1937,4	43.9	44.2	50
Α	585	1944,8	44	44.3	50
D	587	1945,2	44	44.2	50
D	598	1947,4	44	44.3	50
D	610	1949,8	44	44.3	50
В	612	1950,2	44	44.3	50
В	648	1957,4	44.1	44.3	50
В	685	1964,8	44.1	44.3	50
Е	687	1965,2	44.1	44.3	50
Е	698	1967,4	44.1	44.3	50
Е	710	1969,8	44.1	44.1	50
F	712	1970,2	44.1	44.1	50
F	723	1972,4	44	44.1	50
F	735	1974,8	44	44.1	50
С	737	1975,2	44	44.2	50
С	773	1982,4	44	44	50
С	810	1989,8	43.8	44	50

5.4. NAME OF TEST : 2.1049 OCCUPIED BANDWIDTH

TEST RESULTS

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The maximum occupied bandwidth was found to be:

320 kHz , measured on channel 661, f = 1960.0 MHz GMSK modulation. 318 kHz , measured on channel 661, f = 1960.0 MHz 8PSK modulation.

Figure 1: Sample plot for occupied bandwidth . GMSK modulation

Figure 2 : Sample plot for occupied bandwidth . 8PSK modulation

5.5. SPURIOUS EMISSIONS AT ANTENNA TERMINALS

TEST RESULTS

The reference level for spurious emissions at the antenna terminals is taken from the measured output power (43.9 dBm = 24.5 Watts).

Therefore the spurious emissions must be attenuated by at least 43 + 10*Log(24.5) = 56.9 dB. The measured output power was 43.9 dBm ; therefore the limit is 43.9 - 56.9 = -13 dBm.

Spurious measurement is performed with the worst configuration with Duplexer coupling and 30W Power amplifier .

The Nominal power at antenna connector : PD max =44dBm.

The test compliance with duplexer involves the compliance with H2D (two input coupler with 3dB loss coupling associated with duplexer) and the compliance with H4D configuration (four input coupler with 7dB loss coupling associated with duplexer).

Tables 3 and 4 show the results for Spurious Emissions at Antenna Terminals.

Table 3 : Test results for Spurious	Emissions at Antenna	Terminals with	the diplexer
for	GMSK modulation.		

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
А	512	Pmax - 4 dB	-16.6	-13	3.6
А	585	Pmax - 4 dB	-14.1	-13	1.1
D	587	Pmax - 4 dB	-16.9	-13	3.9
D	610	Pmax - 4 dB	-14.5	-13	1.5
В	612	Pmax - 4 dB	-17.5	-13	4.5
В	685	Pmax - 4 dB	-14.1	-13	1.1
Е	687	Pmax - 4 dB	-17.2	-13	4.2
Е	710	Pmax - 4 dB	-14.9	-13	1.9
F	712	Pmax - 4 dB	-17.2	-13	4.2
F	735	Pmax - 4 dB	-14.5	-13	1.5
С	737	Pmax - 4 dB	-17.1	-13	4.1
С	810	Pmax - 4 dB	-14.4	-13	1.4

Table 4 : Test results for Spurious Emissions at Antenna Terminals with the diplexer for 8PSK modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
А	512	P max	-14.9	-13	1.9
А	585	P max	-13.3	-13	0.3
D	587	P max	-15.1	-13	2.1
D	610	P max	-13.8	-13	0.8
В	612	P max	-14.9	-13	1.9
В	685	P max	-13.3	-13	0.3
Е	687	P max	-14.6	-13	1.6
Е	710	P max	-13.5	-13	0.5
F	712	P max	-14.5	-13	1.5
F	735	P max	-13.8	-13	0.8
С	737	P max	-14.6	-13	1.6
С	810	P max	-14.1	-13	1.1

Frequency (MHz)	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
50	-36	-13	23
68	-44.4	-13	31.4
1231	-41	-13	28
1972.5	-47.1	-13	34.1
1974.8	-58	-13	45
1991	-39.8	-13	26.8
3750.8	-32	-13	19
6966	-28.4	-13	15.4
10926	-27.7	-13	14.7
12337	-27.2	-13	14.2

Table 5 : Test results for Spurious Emissions at Antenna Termina	ıls
with diplexer for GMSK modulation.	

Notes :

GMSK modulation measurements:

Figures from 3 to 4 show sample plots for the case when the transmitter was tuned with the power reduced by 4 dB in diplexer configuration for different Edge Channel 512, 585, 737, 810.

8PSK modulation measurements:

Figures from 5 to $\overline{6}$ show sample plots for the case when the transmitter was tuned at maximum power in diplexer configuration.

Out of band measurement in GMSK modulation:

Figures from 7 to 10 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 810 at maximum power with diplexer configuration.

Figure 3 :

-1 MHz adjacent band (Channel 512, Pmax - 4 dB) Diplexer only, GMSK modulation

+1 MHz adjacent band (Channel 585, Pmax - 4 dB) Diplexer only, GMSK modulation

Figure 4 :

-1 MHz adjacent band (Channel 737, Pmax - 4 dB) Diplexer only, GMSK modulation

+1 MHz adjacent band (Channel 810, Pmax - 4 dB) Diplexer only, GMSK modulation

PCS/BTS/DJD/0017459

Figure 5:

- 1 MHz adjacent band (Channel 512, Pmax) Diplexer only, 8PSK modulation.

+ 1 MHz adjacent band (Channel 585, Pmax) Diplexer only, 8PSK modulation.

Figure 6 :

- 1 MHz adjacent band (Channel 737, Pmax) Diplexer only, 8PSK modulation.

+ 1 MHz adjacent band (Channel 810, Pmax) Diplexer only, 8PSK modulation.

Figure 7: Out of block emissions (Channel 810, Pmax)

GMSK modulation

Band 100kHz – 50 MHz

RBW = 10 kHz RBW = 1 MHz (*)

(*) Note : spectrum lines at 100 kHz is internal DC spectrum line of analyzer.

Band 50 MHz –500MHz

PCS/BTS/DJD/0017459

Band 500 MHz- 1970.2 MHz

Band 1970.2 - 1974 MHz

Band 1974 MHz - 1975 MHz

Figure 9: Out of block emissions (Channel 810, Pmax) GMSK modulation

Band 1991 MHz - 1994.8 MHz

Band 1994.8 MHz - 4 GHz

PCS/BTS/DJD/0017459

Figure 10: Out of block emissions (Channel 810, Pmax) GMSK modulation

Band 4 – 12 GHz

Band 12 - 20 GHz

PCS/BTS/DJD/0017459

Conclusion :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation (If 8PSK is supported by modules)
Diplexer Tx Filter	Power Limitation : Pmax – 4 dB = 40 dBm	Pmax= 44 dBm
H2D	Pmax = 41 dBm	Pmax= 41 dBm
H4D	Pmax = 37 dBm	Pmax = 37 dBm

Table 6: Edge channel Power limitation for PCS1900 30W emission.

GMSK modulation:

The worst case is the Duplexer configuration and emission power has been done at PD max - $4dB = 40 \ dBm$

In order to comply with the emission limits in the 1 MHz bands immediately outside and adjacent to the frequency block, the absolute transmit power level of the block edge channels is set to **40 dBm** for GMSK modulation.

8PSK modulation:

eDRX and eSCPA 1900 support 8 PSK modulation.

In the worst configuration (Diplexer), **maximum emission power P=44 dBm** allows to be compliant with the spurious emission limits (-13 dBm) in the 1 MHz bands immediately outside and adjacent to the frequency block for 8PSK modulation.

5.6. NAME OF TEST : 2.1055 FREQUENCY STABILITY

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST RESULTS:

Table 7 shows frequency stability checked during DRX New Design introduction [R2].

Temperature (°C)	Maximum Carrier Frequency Deviation (Hz)			
	85% Nominal Supply voltage 195 V AC	Nominal Supply voltage 230V AC	115% Nominal Supply voltage 264 V AC	
-30	-66	64	-61	
-20	67	45	+48	
-10	89	68	+51	
0	-49	62	+65	
10	+66	73	-68	
20	+56	67	+53	
30	+65	-64	+48	
40	-39	+42	+35	
50	+25	-42	+42	

Table 7 : Frequency Stability in BTS S8000 Outdoor configuration – Channel 661

Tables 8 shows the frequency Stability during eDRX/eSCPA1900 introduction in quick test bench configuration in extreme conditions .

Table 8: Frequency Stability in quick test bench configuration – Channel 661

External BTS temperature			Maximum Carrier Frequency Deviation (Hz) in quick test bench configuration		
BTS S8000 Indoor	BTS S8000 Outdoor	Module Temperature (°C)	DC Supply Voltage DRX -40V PA -36V	DC Supply Voltage DRX –48V PA -48V	DC Supply Voltage DRX –57V PA -60V
-5		-5	13.88	14.08	10.78
5	-40 to 0	5	14.33	12.40	13.30
15	5	15	12.79	12.98	14.14
25	15	25	-13.50	-16.98	13.17
35	25	35	-13.69	12.46	12.40
45	35	45	14.21	12.46	12.79
	45	55	12.79	-12.46	14.01
	50	65	-13.17	-17.18	-15.95

The maximum frequency deviation allowed is 89 Hz.

The maximum deviation measured 73Hz is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S8000 Outdoor/Indoor BTS still complies with the requirement.

TEST PROCEDURE

Thermal tests has been performed with modules eDRX with eSCPA inside BTS8000. These tests have shown that thermal features of eDRX/eSCPA were equivalent or better than old DRX and PA versions inside BTS S8000 in extreme conditions.

The BTS S8000 must operate in following external extreme temperatures:

- BTS S8000 Indoor : - 5°C / +45 °C

- BTS S8000 Outdoor : -40°C / +50°C

These external temperature ranges involve the extreme temperature range from -5° C to $+65^{\circ}$ C on eDRX and eSCPA modules .

Frequency stability are checked in BTS S8000 Indoor at ambient temperature.

Frequency stability test is also performed with a quick test bench for module configuration in following extreme conditions :

- > Temperature from -5 to +65 centigrade at intervals of 10 centigrades
- With DC power supply variations eSCPA (-36V/-60V) and eDRX (-40V/-57V)

Modules (eDRX – eSCPA) run with nominal power regulation at maximum power (30W) in GMSK modulation.

The eDRX/eSCPA was configured to transmit at maximum power (Static level 0).

A period of at least one hour was allowed prior to measurement to ensure that all of the components of the oscillator circuit had stabilized at each temperature.

The equipment was configured as shown in figure 11.

Figure 12 : Test configuration for Frequency Stability

6. EXHIBIT 3: TEST REPORT - PA30W GSM850

6.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband GSM Base Station for Nortel Networks, in accordance with FCC Part 22, Subpart H and Part

2, Subpart J of the FCC Rules and Regulations. The measurement procedures were in accordance with the requirements of Part 2.999.

6.2. MEASUREMENTS RESULTS

Table 1 is a summary of the measurement results for this update.

FCC Measurement	IC Limit	Description	Result
Specification	RSS 128		
	Section		
2.1046	7.1	RF Power Output	Complies
2.1047	7.2	Modulation characteristics	Complies
2.1049		Occupied Bandwidth	Complies
2.1051	7.4,7.5	Spurious Emissions at Antenna	Complies
		Terminals	
2.1055	8.1,8.2	Frequency Stability	Complies

 Table 1 : Measurement Results Summary

Measurements in GSMK modulation for GSM 850 Band are available in document [R7].

Additional GMSK tests are performed for the Edge channel of sub-band A", A, B, A', B'.

Additional Tests are also performed in 8PSK modulation.

6.3. NAME OF TEST: 2.1046 RF POWER OUTPUT

FCC REQUIREMENTS

4.3.1.1. FCC PART 22.913

- (a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 500 watts.
- (b) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

TEST RESULTS

Radio Channel	Frequency (MHz)	RF Output Power (dBm) GMSK modulation	RF Output Power (dBm) 8PSK modulation	Maximum Rated Power (dBm)	Limit (dBm)
128	869.2	43.4	44.2		
131	869.8	43.4	44.3		
133	870.2	43.4	44.3		
181	879.8	43.7	44.5		
183	880.2	43.6	44.5	44,8 (30 W)	50
231	889.8	43.5	44.4		
233	890.2	43.5	44.4		
238	891.2	43.5	44.3		
241	891.8	43.5	44.4		
251	893.8	43.5	44.2		

Table 2 shows the test results for RF Output Power.

TEST PROCEDURE

The equipment was configured as shown in schematic 1.

Schematic 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

Measurements were made at frequencies which are the bottom and top of each of the licensed blocks.

The output power was measured using the power meter which has the following settings :

Mode : Average Reference Level Offset : Corrected to account for cable(s) and attenuator losses

6.4. NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH

FCC REQUIREMENTS

4.4.1.1. FCC PART 2.1049

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

TEST RESULTS

Figure 1: sample plot for occupied bandwith

The maximum occupied bandwidth was found 320 kHz for GMSK modulation The maximum occupied bandwidth was found 314 kHz for 8PSK modulation

TEST PROCEDURE

The equipment was configured as shown in schematic 2.

Schematic 2: Test configuration for Occupied bandwidth

The BTS was configured to transmit at maximum power (Static Level 0). Measurements were made at frequencies which were at the bottom and top of the transmit band.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer had the following settings :

Resolution bandwidth :	10 kHz
Video bandwidth :	30 kHz
Span :	1 MHz and 2.2 MHz
Reference level :	40 dBm
Reference Level Offset :	Corrected to account for cable(s) and attenuator
	losses
Level range :	90 dB
Sweep time :	25 ms

6.5. NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

FCC REQUIREMENTS

- (c) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$.
- (d) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (e) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (f) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

TEST RESULTS

The reference level for spurious emissions at the antenna terminals is taken from the measured output power (43.9 dBm = 24.5 Watts).

Therefore the spurious emissions must be attenuated by at least $43 + 10 \times Log(24.5) = 56.9 \text{ dB}$. The measured output power was 43.9 dBm; therefore the limit is 43.9 - 56.9 = -13 dBm.

Spurious measurement is performed in the following coupling configuration with 30W Power amplifier and with duplexer .

The nominal power at antenna connector : Pduplexer max = 44dBm

Tables 3 and 4 show the results for Spurious Emissions at Antenna Terminals.

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
A''	128	Pmax – 2 dB	-13.4	-13	0.4
A''	131	Pmax – 2 dB	-13.4	-13	0.4
А	133	Pmax - 2 dB	-13.6	-13	0.6
А	181	Pmax – 2 dB	-13.2	-13	0.2
В	183	Pmax – 2 dB	-13.9	-13	0.9
В	231	Pmax - 2 dB	-13.7	-13	0.7
A'	233	Pmax – 2 dB	-14.3	-13	1.3
A'	238	Pmax	-35.8	-13	22.8
B'	241	Pmax	-34	-13	21
B'	251	Pmax - 2 dB	-13.5	-13	0.5

 Table 3 : Test results For GMSK Modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
A''	128	Pmax - 2 dB	-14.8	-13	1.8
A''	131	Pmax – 2 dB	-14.9	-13	1.9
А	133	Pmax - 2 dB	-14.0	-13	1.0
А	181	Pmax - 2 dB	-14.9	-13	1.9
В	183	Pmax – 2 dB	-14.4	-13	1.4
В	231	Pmax – 2 dB	-14.8	-13	1.8
A'	233	Pmax – 2 dB	-14.3	-13	1.3
A'	238	Pmax	-31.5	-13	18.5
B'	241	Pmax	-33.6	-13	20.6
B'	251	Pmax – 2 dB	-14.8	-13	1.8

Table 4: Test results For 8PSK Modulation

Table 5 : Test results for Spurious Emissions at Antenna Terminals

Frequency MHz	Spurious Emissions Level Duplexer (dBm)	Margin (dB) Duplexer
100 kHz - 50 MHz	-33.7	20.7
50 MHz – 500 MHz	-32.5	19.5
500 MHz – 880.2 MHz	-25.5	12.5
882.6 MHz –1994.8 MHz	-33	20
1994.8 MHz – 4 GHz	-27.3	14.3
4 GHz - 12 GHz	-22.5	9.5
12 GHz -20 GHz	-23	10

Notes :

Figures 2,3,4 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures 5,6,7 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure 8,9,10 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 189 at Pmax = 44 dBm with Duplexer module.

Conclusion :

For both modulation GMSK and 8PSK, the worst case is the Duplexer configuration and it has been done at PD max - 2dB = 42 dBm.

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2dB in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, the maximum power (44dBm) has allowed to meet spurious emission requirement.

The H2D configuration has been done at maximum power PH2Dmax =44 dBm.

Figure 2:1 MHz adjacent band **GMSK MODULATION – Duplexer configuration** Power limitation : Pmax - 2 dB

Channel 128

Channel 133

Channel 181

RF Att 20 dB

Stop 871 MHz

dBm

А

1 SA

EXT

Unit

Figure 3 : 1 MHz adjacent band GMSK MODULATION – Duplexer configuration Power limitation :Pmax - 2 dB

Channel 183

Channel 231

Figure 4:1 MHz adjacent band **GMSK MODULATION – Duplexer configuration**

Channel 233 -1 MHz adjacent band, Power limitation Pmax –2dB

Channel 238 +1 MHz adjacent band **Power limitation: Pmax**

-1MHz adjacent band Channel 241 **Power limitation P Max**

+ 1MHz adjacent band Channel 251

1 AVG

-D1

dBm

Α

1 SA

EXT

Figure 5 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration Power limitation :Pmax - 2 dB

Channel 131

Channel 133

Channel 181

Figure 6 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration Power limitation :Pmax - 2 dB

Marker 1 [T1] RBH 3 HHz RF Att 20 dB 30.5 dBn 679.99996794 HHz SHI 280 ms Unit dBn 30 40.5 BD Offsit 10 HHz SHI 280 ms Unit dBn 30 40.5 BD Offsit 11 10 HHz 11 dBn 11 dBn 30 40.5 BD Offsit 11 11 11 dBn 11 dBn 11 dBn 30 40.5 BD Offsit 11 11 11 dBn 11 11 dBn 11</td

Channel 183

Channel 231

Figure 7 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration

Channel 233 -1 MHz adjacent band, Power limitation Pmax –2dB

Channel 238 +1 MHz adjacent band Power limitation: Pmax

-1MHz adjacent band Channel 241 Power limitation P Max + 1MHz adjacent band Channel 251 Pmax -2dB

Figure 8 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 100 kHz - 50 Mhz

RBW = 10 kHz

RBW = 1 MHz

Band 50 Mhz - 500 MHz

Band 500 Mhz - 880.2 MHz

Figure 9 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 882.6 Mhz - 1970.2 MHz

Band 1970.2 Mhz - 1994.8 MHz

Band 1994.8 Mhz – 4 GHz

Figure 10 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

TEST PROCEDURE

The equipment was configured as shown in schematic3.

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 128 and 251 are those channels which are at the lower and upper edges of the eGSM 850 band respectively.

The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

Initially the transmitter was set to operate to maximum power. Then in case of out of limits, the power has been decreased by 2 dB.

For these measurements, the resolution bandwidth was of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was closed to 300 kHz. Therefore, the resolution bandwidth was set to 3 kHz.

The spectrum analyzer had the f	ollowing settings for adjacent band:
Resolution bandwidth :	3 kHz
Video bandwidth :	10 kHz
Span :	1 MHz
Reference level :	30 dBm
Reference Level Offset :	Corrected to account for cable(s), filter and
	attenuator losses
Level range :	100 dB
Sweep time :	Coupled
Detector:	Sample
Trace:	Average
Sweep count:	200

The spectrum analyzer had the following settings for out of block emissions.

Resolution bandwidth :	-	1 MHz
Video bandwidth :		1 MHz

The emissions were investigated up to the twentieth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

6.6. NAME OF TEST: 2.1055 FREQUENCY STABILITY

FCC REQUIREMENTS

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST RESULTS

 Table 6 shows Frequency Stability for channel 189 (f=881.4MHz) in Quick Test Bench configuration in extreme conditions

Table 7 shows Frequency Stability in BTS S8000 Outdoor at ambient temperature for
channels B,M,T.

Table 6: Frequency	Stability in quick	test bench configuration -	- Channel 189
--------------------	--------------------	----------------------------	---------------

Module	Maximum Carrier Frequency Deviation (Hz) in quick test bench configuration				
Temperature (°C)	DC Supply Voltage DRX - 40V PA - 36V	DC Supply Voltage DRX - 57V PA - 60V			
-5	-6.91	6.91	5.94		
5	-7.75	-9.3	-7.17		
15	8.85	7.1	-9.1		
25	-7.81	-9.17	8.14		
35	-9.04	-7.81	-9.43		
45	-7.68	-7.49	8.52		
55	-8.78	-7.43	-6.84		
65	-8.52	-9.88	-7.68		

Table 7 : Frequency Stability in BTS S8000 Outdoor at ambient temperature

	Maximum Carrier Frequency Deviation (Hz) in BTS Configuration			
	Ambient temperature			
Channel	C128 (f=869.2 MHz)	C189 (f=881.4 MHz)	C251 (f= 893.8 MHz)	
	-9	-11	+9	

The maximum frequency deviation allowed is 90 Hz.

The maximum deviation measured (-11Hz) is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S8000 Indoor BTS still complies with the requirement.

TEST PROCEDURE

The BTS S8000 must operate in following external extreme temperatures:

- BTS S8000 Indoor:	- 5°C / + 45 °C
- BTS S8000 Outdoor:	- 40°C / + 50°C

These external temperature ranges involve the extreme temperature range from - 5° C to +65°C on eDRX and eSCPA modules.

Frequency stability are checked in BTS S8000 Outdoor at ambient temperature.

Frequency stability test is performed with a Quick Test Bench for module configuration in following extreme conditions:

- Temperature from -5 to +65 centigrades at intervals of 10 centigrades
- With DC power supply variations eSCPA (-36V/-60V) and eDRX (-40V/-57V)

Modules (eDRX and eSCPA) run with nominal power regulation at maximum power (30W) in GMSK modulation.

The eDRX/eSCPA were configured to transmit at maximum power (Static level 0).

A period of at least one hour was allowed prior to measurement to ensure that all of the components of the oscillator circuit had stabilized at each temperature.

The equipment was configured as shown in schematic 4.

Schematic4: Test configuration for Frequency Stability

7. EXHIBIT 4: TEST REPORT – HEPA60W GSM850

7.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband GSM Base Station for Nortel Networks, in accordance with FCC Part 22, Subpart H and Part 2, Subpart J of the FCC Rules and Regulations. The measurement procedures were in accordance with the requirements of Part 2.999.

7.2. MEASUREMENTS RESULTS

Table 1 is a summary of the measurement results for this update.

FCC Measurement	IC Limit	Description	Result
Specification	Specification		
	KSS 128 Section		
2.1046	7.1	RF Power Output	Complies
2.1047	7.2	Modulation characteristics	Complies
2.1049		Occupied Bandwidth	Complies
2.1051	7.4 , 7.5	Spurious Emissions at Antenna Terminals	Complies
2.1055	8.1,8.2	Frequency Stability	Complies

 Table 1 : Measurement Results Summary

Measurements in GSMK modulation for GSM 850 Band are available in document [R7].

Additional GMSK tests are performed for the Edge channel of sub-band A", A, B, A', B'.

Additional Tests are also performed in 8PSK modulation.

7.3. NAME OF TEST: 2.1046 RF POWER OUTPUT

FCC REQUIREMENTS

4.3.1.1. FCC PART 22.913

- (c) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 500 watts.
- (d) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rmsequivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

TEST RESULTS

Table 2 shows the test results of BTS RF Output Power for **GMSK modulation** with several coupling configurations:

Radio Channel	Frequency (MHz)	RF Output Power (dBm) GMSK	RF Output Power (dBm) GMSK	Maximum Rated Power (dBm)	Limit (dBm)
		modulation	modulation		
		Duplexer	H2D		
128	869.2	46.3	43.1		
131	869.8	46.3	43.2		
133	870.2	46.3	43.2		
181	879.8	46.4	43.2		
183	880.2	46.4	43.2	47,8 (60 W)	50
231	889.8	46.3	43	GMSK	
233	890.2	46.2	43		
238	891.2	46.2	43		
241	891.8	46.1	43		
251	893.8	45.9	42.8		

Table 3 shows the test results of BTS RF Output Power for **8PSK modulation** supported by
eDRX/HePA850 with several coupling configurations

Radio Channel	Frequency (MHz)	RF Output Power (dBm) 8PSK modulation Duplexer	RF Output Power (dBm) 8PSK modulation H2D	Maximum Rated Power (dBm)	Limit (dBm)
128	869.2	45.7	42.5		
131	869.8	45.7	42.5		
133	870.2	45.7	42.6		
181	879.8	45.8	42.6		
183	880.2	45.9	42.6	46.5 (45 W)	50
231	889.8	45.7	42.4	8 PSK	
233	890.2	45.7	42.4		
238	891.2	45.7	42.3		
241	891.8	45.6	42.3		
251	893.8	45.3	42.2		

TEST PROCEDURE

The equipment was configured as shown in schematic 1.

Schematic 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

Measurements were made at frequencies which are the bottom and top of each of the licensed blocks.

The output power was measured using the power meter which has the following settings :

Mo Ret	Mode : Reference Level Offset :		Average Corrected to account for cable(s) and attenuator losses		
PCS/BTS/DJD/00174	59 V01.01/EN	Approved	15/12/2005	Page 87/118	

7.4. NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH

FCC REQUIREMENTS

4.4.1.1. FCC PART 2.1049

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

TEST RESULTS

Figure 1: sample plot for occupied bandwith

GMSK modulation

8PSK Modulation

The maximum occupied bandwidth was found 320 kHz for GMSK modulation The maximum occupied bandwidth was found 314 kHz for 8PSK modulation

TEST PROCEDURE

The equipment was configured as shown in schematic 2.

Schematic 2: Test configuration for Occupied bandwidth

The BTS was configured to transmit at maximum power (Static Level 0). Measurements were made at frequencies which were at the bottom and top of the transmit band.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer had the following settings :

Resolution bandwidth :	10 kHz
Video bandwidth :	30 kHz
Span :	1 MHz
Reference level :	40 dBm
Reference Level Offset :	Corrected to account for cable(s) and attenuator
	losses
Level range :	90 dB
Sweep time :	25 ms

7.5. NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

7.5.1 FCC REQUIREMENTS

- (e) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB.
- (f) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (g) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (h) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

7.5.2 TEST RESULTS WITH DUPLEXER CONFIGURATION

The reference level for spurious emissions at the antenna terminals is taken from the measured output power (46.4 dBm = 43.6 Watts).

Therefore the spurious emissions must be attenuated by at least 43 + 10*Log(43.6) = 59.4 dB. The measured output power was 46.4 dBm; therefore the limit is 46.4 - 59.4 = -13 dBm.

Spurious measurement is performed in the following coupling configuration with 30W Power amplifier and with duplexer.

The nominal GMSK power at antenna connector: Pduplexer max = 47dBm The nominal 8PSK power at antenna connector: Pduplexer max = 45.7dBm

Tables 3 and 4 show the results for Spurious Emissions at Antenna Terminals.

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
A''	128	Pmax – 4 dB	-14.3	-13	1.3
A''	131	Pmax – 6 dB	-15	-13	2
А	133	Pmax – 4 dB	-14.3	-13	0.3
А	181	Pmax – 6 dB	-15.3	-13	2.3
В	183	Pmax – 4 dB	-14	-13	1
В	231	Pmax – 4 dB	-13.7	-13	0.7
A'	233	Pmax – 4 dB	-14.1	-13	1.1
A'	238	Pmax	-33.3	-13	20.3
B'	241	Pmax	-31.5	-13	18.5
B'	251	Pmax – 6 dB	-14.8	-13	1.8

Table 3: Test results For GMSK Modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)	
A''	128	Pmax – 4 dB	-13.7	-13	0.7	
A''	131	Pmax – 4 dB	-14.3	-13	1.3	
Α	133	Pmax – 4 dB	-14.1	-13	1.1	
Α	181	Pmax – 4 dB	-14.4	-13	1.4	
В	183	Pmax – 4 dB	-13.5	-13	0.5	
В	231	Pmax – 4 dB	-14.6	-13	1.6	
A'	233	Pmax – 4 dB	-14.2	-13	1.2	
A'	238	Pmax	-28.8	-13	15.8	
B'	241	Pmax	-30.6	-13	17.6	
В'	251	Pmax – 4 dB	-15.1	-13	2.1	

Table 4: Test results For 8PSK Modulation

 Table 5 : Test results for Spurious Emissions at Antenna Terminals

Frequency MHz	Spurious Emissions Level Duplexer (dBm)	Margin (dB) Duplexer
100 kHz - 50 MHz	-45	32
50 MHz – 500 MHz	-42.9	29
500 MHz – 880.2 MHz	-27.6	14
882.6 MHz –1994.8 MHz	-36.3	23
1994.8 MHz – 4 GHz	-35.7	22
4 GHz - 12 GHz	-35.2	22
12 GHz -20 GHz	-34.8	22

Notes:

Figures 2,3,4 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures 5,6,7 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure 8,9,10 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 189 at Pmax = 46.4 dBm with Duplexer module.

Conclusion:

In GMSK modulation, power has to be reduced by 6 dB (**P max - 6dB**) for Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251 in order to meet spurious emission requirement.

In 8PSK modulation, the power has to be reduced by 4dB (**P max - 4dB**) on these channels.

For Edge Channel ARFCN 238, 241, the maximum power (47dBm) has allowed to meet spurious emission requirement.

Channel 131 (Pmax – 6 dB)

Channel 133 (Pmax – 4 dB)

Figure 3 : 1 MHz adjacent band GMSK MODULATION – Duplexer configuration

RBW VBW SWT ker 1 [T1] –13.96 dBm 879.97795591 MHz 3 kHz 10 kHz 280 ms At Ref Lvl 40 dBm Unit dBm 32.3 dB Offs 11 1VIEW 154 -D1 -13 dBr 100 kHz/ Span 1 MHz Center 879.5 MHz 6.DEC.05 14:39:25

Channel 183 (Pmax – 4 dB)

Channel 231 (Pmax – 4 dB)

Figure 4 : 1 MHz adjacent band GMSK MODULATION – Duplexer configuration

Channel 241 -1MHz adjacent band P Max

ker 1 [T1] -14.80 dBm 894.01402806 MHz RBW VBW 3 KHZ 10 KHZ Ref Lvl 40 dBm SWT 280 ms Unit dBm 32.3 dB Offse 1 V I E W 154 FΧ 1D1 – 13 dBm -60 Center 894.5 MHz 100 kHz/ Span 1 MHz 6.DEC.05 15.00.27

Figure 5 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration Power limitation: Pmax - 4 dB

Channel 128

Channel 133

Figure 6 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration Power limitation :Pmax - 4 dB

Channel 183

Figure 7 : 1 MHz adjacent band 8PSK MODULATION – Duplexer configuration

Channel 233 -1 MHz adjacent band, Power limitation: Pmax –4dB

-1MHz adjacent band

Channel 238 +1 MHz adjacent band Power limitation: Pmax

+ 1MHz adjacent band

Channel 241 Power limitation: P Max

Channel 251 Pmax –4dB

Figure 8 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 100 kHz - 50 Mhz

Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser

Band 50 Mhz - 500 MHz

Figure 9 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 882.6 Mhz – 1970.2 MHz

Band 1970.2 Mhz – 1994.8 MHz

Band 1994.8 Mhz – 4 GHz

Figure 10 : Out of block emissions (channel 189, Pmax) with Duplexer **GMSK modulation**

Band 4 GHz - 12 GHz

Band 12 GHz – 20 GHz

Figure 8 : Out of block emissions (channel 189, Pmax) with Duplexer 8PSK modulation

Band 100 kHz – 50 Mhz

Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser

Band 50 Mhz – 500 MHz

Band 500 Mhz - 880.2 MHz

Figure 9 : Out of block emissions (channel 189, Pmax) with Duplexer 8PSK modulation

Band 882.6 Mhz – 1970.2 MHz

Band 1970.2 Mhz - 1994.8 MHz

Band 1994.8 Mhz – 4 GHz

Figure 10 : Out of block emissions (channel 189, Pmax) with Duplexer 8 PSK modulation

Band 4 GHz – 12 GHz

Band 12 GHz – 20 GHz

7.5.3 **TEST RESULTS** WITH H2D CONFIGURATION

Spurious measurement is performed in the H2D combiner coupling configuration with HePA 60W Power amplifier.

The nominal GMSK power at antenna connector: PH2D max = 44dBm. For H2D configuration, spurious have been measured for channels which have the worst results in Duplexer coupling.

Tables 6 and 7 show the results for Spurious Emissions for GMSK and 8PSK modulation at Antenna Terminals.

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
A''	128			-13	
A''	131	Pmax - 2 dB	-14.4	-13	1.4
А	133			-13	
А	181	Pmax - 2 dB	-13.9	-13	0.9
B'	241			-13	
B'	251	Pmax - 2 dB	-13.1	-13	0.1

Table 6 : Test results For GMSK Modulation with H2D combiner

Table 7 : Test results For 8PSK Modulation with H2D combiner

	Channel	Power emission level	Spurious Emissions Level (dBm)	Limit (dBm)	Margin (dB)
A''	128			-13	
A''	131	Pmax	-14.4	-13	1.4
А	133			-13	
А	181	Pmax	-13.9	-13	0.9
B'	241			-13	
B'	251	Pmax	-14.8	-13	1.8

Notes :

Figures 11 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures 12 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure 11 : 1 MHz adjacent band GMSK MODULATION – H2D configuration Power limitation :Pmax –2 dB

Channel 251

Figure 12 : 1 MHz adjacent band 8PSK MODULATION – H2D configuration Power limitation :Pmax

Conclusion :

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2 dB in order to meet spurious emission requirement in GMSK modulation with H2D configuration.

For Edge Channel ARFCN 238, 241, the maximum power (44dBm) has allowed to meet spurious emission requirement.

7.5.4 TEST PROCEDURE

The equipment was configured as shown in schematic3.

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 128 and 251 are those channels which are at the lower and upper edges of the eGSM 850 band respectively.
The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

Initially the transmitter was set to operate to maximum power. Then in case of out of limits, the power has been decreased by 2 dB.

For these measurements, the resolution bandwidth was of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was closed to 300 kHz. Therefore, the resolution bandwidth was set to 3 kHz.

The spectrum analyzer had the f	following settings for adjacent band:
Resolution bandwidth :	3 kHz
Video bandwidth :	10 kHz
Span :	1 MHz
Reference level :	30 dBm
Reference Level Offset :	Corrected to account for cable(s), filter and
	attenuator losses
Level range :	100 dB
Sweep time :	Coupled
Detector:	Sample
Trace:	Average
Sweep count:	200

The spectrum analyzer had the following settings for out of block emissions.

Resolution bandwidth :	-	1 MHz
Video bandwidth :		1 MHz

The emissions were investigated up to the twentieth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

7.6. NAME OF TEST: 2.1055 FREQUENCY STABILITY

FCC REQUIREMENTS

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

FCC RESULTS:

➢ BTS S8000 Indoor :

For Indoor BTS, the worst thermal case for HePA850 module is S8000 BTS.

	Maximum Carrier Frequency Deviation (Hz)		
Module	DC Voltage	DC Voltage	DC Voltage
Temperature (°C)	- 40V	- 48V	- 57V
-5	-10.98	-10.46	-11.62
5	-14.08	-8.52	-10.53
15	15.5	-10.85	-10.4
25	-12.07	-9.36	10.65
35	-13.3	-17.24	11.49
45	-16.72	-14.92	-12.53

The maximum frequency deviation allowed is 45 Hz.

The maximum deviation measured (-17 Hz) is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S8000 Indoor BTS still complies with the requirement

► <u>BTS S8000 Outdoor</u> :

For Outdoor BTS, the worst thermal case for HePA850 module is S12000 BTS. So frequency stability is measured in the BTS S12000 OUTDOOR with AC supply voltage.

The compliance for S12000 Outdoor BTS ensures S8000 outdoor compliance.

	Maximum Carrier Frequency Deviation (Hz)		
Temperature	85% Nominal Supply voltage	Nominal Supply voltage	115% Nominal Supply voltage
(°C)	195 V AC	230V AC	264 V AC
-40	-12,3	8,8	9,8
-30	-7,8	-7,8	-9,9
-20	8,5	-8,9	-11,4
-10	12,2	9,7	-9,3
0	-8,9	10,7	-9,1
10	-10,1	8,1	-9,6
20	12,2	-8,5	-11,4
30	15,2	-8,5	-8,7
40	-8,8	-7,1	11,4
50	-8,3	-9,8	8,46

Table 8: Frequency Stability in BTS S12000 Outdoor configuration – Channel 189

The maximum deviation measured **(15 Hz)** is fully compliant to FCC to ensure that the fundamental emission stays within the authorized frequency block.

The S8000 Outdoor BTS complies with the requirement.

TEST PROCEDURE

Thermal tests have been performed with INDOOR S8000 BTS / OUTDOOR S12000 BTS.

The BTS must operate under the following external extreme temperatures:

- BTS S12000/S8000 Outdoor:	- 40°C / + 50 °C
- BTS S12000 /S8000 Indoor:	- 5°C / + 45 °C

Frequency stability test is performed under following extreme conditions for Outdoor BTS:

- Temperature from -40° C to $+50^{\circ}$ C at intervals of 10 degrees.
- With AC power supply variations: 195 VAC, 230 VAC, 264 VAC.

Frequency stability test is performed under following extreme conditions for Indoor BTS:

- Temperature from -5° C to $+45^{\circ}$ C at intervals of 10 degrees.
- With DC power supply variations: -40.5 VDC, -48 VDC, -57 VDC.

All Modules (eDRX and HePA) run with nominal power regulation at maximum power (60W) in GMSK modulation. The eDRX/HePA were configured to transmit at maximum power (Static level 0).

A period of at least one hour was allowed prior to measurement to ensure that all of the components of the oscillator circuit had stabilized at each temperature.

The equipment was configured as shown in schematic 4.

Schematic4 : Test configuration for Frequency Stability

8. MEASUREMENT EQUIPMENT LIST

Equipment description	Manufacturer	Model	Serial No.	V/A date
Power Meter	Giga-tronics	8542C	522393	24/10/07
Spectrum Analyser	R&S	FSEA	520564	16/01/06
Spectrum Analyser	R&S	FSEM	517751	01/03/07
Signal Generator	R&S	SMT 03	509923	09/06
30 dB attenuator 100 W	Spinner		25483	
20 dB attenuator 80 W	Radiall		R417720118	

List of all of the measurement equipment used in this report.

9. EXHIBIT 2 : UPDATED EQUIPMENT LIST

Description Base Cabinet	Hardware code	Comment
CPCMI T1	NTQA66AA	
CMCF	NTQA66CB	
CBCF	NTQA66GA	

• <u>PCS 1900 Radio Modules used with the 60W High Power Amplifier configuration</u>

Radio Modules GSM 1900		7
GSM 1900 eDRX	NTQA88PA	EDRX PCS1900 (GMSK / 8PSK)
GSM 1900 High Power Amplifier	NTQA50RA	HePA (60 W GMSK / 45W 8PSK)
GSM 1900 DRX ND (*)	NTQA01DA	DRX ND / ND2 PCS1900 (GMSK)
GSM 1900 High Power Amplifier	NTQA50RA	HePA (60 W GMSK)
GSM 1900 Duplexer	NTQA51DA NTQA51FA	Without TOS meter With TOS meter
GSM1900 Tx Filter	NTQA52CA NTQA52CB	Without TOS meter With TOS meter
GSM 1900 Two Ways Hybrid	NTQA38KA	Without TOS meter
Duplexer (60W Power handling)	NTQA38LA	With TOS meter
GSM 1900 Four Ways Hybrid	NTQA52BA	Without TOS meter
Duplexer	NTQA52BB	With TOS meter
GSM 1900 Splitter	NTQA10AA	Rx Splitter for Rx way only

(*) New software release introduction allow the functionality of HePA1900 with DRX ND/ND2 in GMSK modulation.

Power limitation to comply to Adjacent Band spurious at antenna connector :

	System Power limitation	System Power limitation
Coupling configuration	GMSK modulation	8 PSK modulation
Diplexer	Power Limitation :	Power Limitation :
Tx Filter	$\mathbf{Pmax} - 6 \mathbf{dB} = 40.5 \mathrm{dBm}$	$\mathbf{Pmax} - 2 \mathbf{dB} = 43.8 \mathrm{dBm}$
H2D	Power Limitation :	
	$\mathbf{Pmax} - 2 \mathbf{dB} = 41 \mathrm{dBm}$	Pmax = 42 dBm
H4D	Pmax = 40 dBm	Pmax = 39 dBm

• <u>PCS1900 Radio Modules used with 30W Power Amplifier configuration</u>

Description	Hardware code	Comment
		_
Radio Modules GSM 1900		
GSM 1900 DRX	NTQA01DA	DRX ND / ND2 PCS1900 (GMSK)
GSM 1900 Power Amplifier	NTQA50DB	PA GMSK 30W
GSM 1900 eDRX	NTQA88PA	EDRX PCS1900 (GMSK / 8PSK)
GSM 1900 Power Amplifier	NTQA50GA	eSCPA (GMSK / 8PSK) 30W
GSM 1900 Diplexer	NTQA51DA	Without TOS meter
	NTQA51FA	With TOS meter
GSM1900 Tx Filter	NTQA52CA	Without TOS meter
	NTQA52CB	With TOS meter
GSM 1900 Two Ways Hybrid	NTQA51AA	Without TOS meter
Duplexer	NTQA51BA	With TOS meter
GSM 1900 Four Ways Hybrid	NTQA52BA	Without TOS meter
Duplexer	NTQA52BB	With TOS meter
GSM 1900 Splitter	NTQA10AA	Rx Splitter for Rx way only

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation (If 8PSK is supported by modules)
Diplexer Tx Filter	Power Limitation : Pmax – 4 dB = 40 dBm	Pmax = 44 dBm
H2D	Pmax = 41 dBm	Pmax= 41 dBm
H4D	Pmax = 37 dBm	Pmax = 37 dBm

• <u>GSM850 Radio Modules used with 30W Power Amplifier configuration</u>

Description	Hardwa code	re	Comment		
Radio Modules GSM 850					
GSM 850 DRX	NTQA88HA	eDF	X		
GSM 850 Splitter	NTQA88XA				
GSM 850 Power Amplifier	NTQA37AA	eSC	PA		
Full Band coupling (Tx Band 869-894 MHz)					
GSM 850 Duplexer	NTQA38GA NTQA38FA	Wit Wit	hout TOS meter h TOS meter		
GSM 850 Tx Filter	NTQA39CA NTQA39DA	Wit	Without TOS meter h TOS meter		
GSM 850 Two Ways Hybrid Duplexer	NTQA38JA NTQA38HA	Wit Wit	hout TOS meter h TOS meter		
Part Band coupling (Tx Band 869- 891.5 MHz)					
GSM 850 Duplexer	NTQA38CA NTQA38DA	Wit Wit	hout TOS meter h TOS meter		
GSM 850 Tx Filter	NTQA39AA NTQA39BA	Wit	Without TOS meter h TOS meter		
GSM 850 Two Ways Hybrid Duplexer	NTQA38BA NTQA38AA	Wit Wit	hout TOS meter h TOS meter		

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation (If 8PSK is supported by modules)
Diplexer Tx Filter	Power Limitation : Pmax – 2 dB = 42 dBm Except ARFCN 238, 241 : Pmax	Power Limitation : Pmax – 2 dB = 42 dBm Except ARFCN 238, 241 : Pmax
H2D	Pmax = 41 dBm	Pmax= 41 dBm

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2dB in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, maximum power (44dBm) is allowed to meet spurious emission requirement.

• <u>GSM850 Radio Modules used with 60W Power Amplifier configuration</u>

Description	Hard co	ware de	Comment			
Radio Modules GSM 850						
GSM 850 DRX	NTQA88H	A eDF	XX			
GSM 850 Splitter	NTQA88X	А				
GSM 850 High Power Amplifier	NTQA50U	A GSN	M850 HePA (GMSK 60W / 8PSK 45W)			
Full Band coupling (Tx Band 869-894 MHz)						
GSM 850 Duplexer	NTQA38G	A Wit	hout TOS meter			
	NTQA38F	A Wit	h TOS meter			
GSM 850 Tx Filter	NTQA39C	А	Without TOS meter			
	NTQA39D	A Wit	h TOS meter			
GSM 850 Two Ways Hybrid	NTQA38J	A Wit	hout TOS meter			
Duplexer	NTQA38H	A Wit	h TOS meter			
Part Band coupling (Tx Band 869- 891.5 MHz)						
GSM 850 Duplexer	NTQA38C	A Wit	hout TOS meter			
	NTQA38D	A Wit	h TOS meter			
GSM 850 Tx Filter	NTQA39A	A	Without TOS meter			
	NTQA39B	A Wit	h TOS meter			
GSM 850 Two Ways Hybrid	NTQA38B	A Wit	hout TOS meter			
Duplexer	NTQA38A	A Wit	h TOS meter			

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation
Diplexer Tx Filter	Power Limitation : Pmax – 6 dB = 40.4 dBm Except ARFCN 238, 241 : Pmax	Power Limitation : Pmax – 4 dB = 41.9 dBm Except ARFCN 238, 241 : Pmax
H2D	Power Limitation : Pmax – 2 dB = 41.2 dBm Except ARFCN 238, 241 : Pmax	Pmax= 42.6 dBm

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by <u>6dB (GMSK) or 4dB(8PSK)</u> in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, maximum power has allowed to meet spurious emission requirement.

രു End of DOCUMENT മാ