FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC ID\#AB6S12000BTS

Document number:	PCS/BTS/DJD/017461
Document issue:	V01.01/EN
Document status:	Approved
Date:	$15 / 12 / 2005$

RF Tests concerning FCC Part are performed by RF GSM Department In laboratory 007 - Nortel Networks, 38 Bd Paul Cezanne, 78280 Guyancourt - France.

Author:	A. CAILLE
Approved by:	R. JACQUES

Copyright ${ }^{\circ}$ 2005-2006 Nortel Networks, All Rights Reserved
Printed in France

NORTEL CONFIDENTIAL

The information contained in this document is the property of Nortel Networks. Except as specifically authorized in writing by Nortel Networks, the holder of this document shall keep the information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to third parties and use same for evaluation, operation and maintenance purposes only.

The content of this document is provided for information purposes only and is subject to modification. It does not constitute any representation or warranty from Nortel Networks as to the content or accuracy of the information contained herein, including but not limited to the suitabitity and performances of the product or its intended application.

This is the Way. This is Nortel, Nortel, the Nortel logo, and the Globemark are trademarks of Nortel Networks. All other trademarks are the property of their owners.

PUBLICATION HISTORY

15/Dec/2005
Issue V01.01 / EN
Status: Approved
Alain CAILLE

FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC

CONTENTS

1. INTRODUCTION5
1.1. OBJECT 5
1.2. SCOPE 6
1.3. PRODUCT CONFIGURATIONS 6
2. RELATED DOCUMENTS 7
2.1. APPLICABLE DOCUMENTS 7
2.2. REFERENCE DOCUMENTS 7
3. ABBREVIATIONS \& DEFINITIONS9
3.1. ABbREVIATIONS 9
3.2. DEFINITIONS 10
4. EXHIBIT 1 : TEST REPORT - HEPA PCS1900 11
4.1. InTRODUCTION 11
4.2. MEASUREMENT RESULTS 11
4.3. NAME OF TEST: RF POWER OUTPUT. 12
4.3.1. FCC REQUIREMENTS - FCC PART 24.232 12
4.3.2. TEST RESULTS 12
4.3.3. Test procedure 15
4.4. NAME OF TEST : OCCUPIED BANDWIDTH 16
4.4.1. FCC REQUIREMENTS 16
4.4.2. TEST RESULTS 16
4.4.3. Test procedure. 17
4.5. NAME OF TEST: SPURIOUS EMISSIONS AT ANTENNA TERMINALS 19
4.5.1. FCC requirements LIMITS - FCC Part 24.238 19
4.5.2. Test results with Duplexer Configuration 20
4.5.3. Test results with H2D Duplexer Configuration 30
4.5.4. Test results with H4D Duplexer Configuration 35
4.5.5. CONCLUSION 39
4.5.5. CONCLUSION 40
4.5.6. Test procedure 41
4.6. NAME OF TEST: FREQUENCY STABILITY 43
5. EXHIBIT 2: TEST REPORT FOR PA30W PCS1900/GSM850 45
5.1. INTRODUCTION 45
5.2. MEASUREMENT RESULTS. 45
5.3. TEST NAME: 2.1046 RF OUTPUT POWER 46
FCC Requirements 46
Test Results gsm 850. 46
Test Results pcs 1900 47
5.4. TEST NAME: 2.1049 OCCUPIED BANDWIDTH 48
FCC Requirements. 48
Test Results gsm 850. 48
Test Results pcs 1900 49
Test Procedure. 50
5.5. TEST NAME: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS. 51
fcc requirements. 51
Test Results gsm 850. 52
Test Results pcs 1900 63
Test Procedure. 75
5.6. TEST NAME: 2.1055 FREQUENCY STABILITY 77
FCC Requirements. 77
Test Results gsm 850 77
Test Results pcs 1900 78
6. EXHIBIT 4: TEST REPORT - HEPA60W GSM850 81
6.1. INTRODUCTION 81
6.2. MEASUREMENTS RESULTS 81
6.3. NAME OF TEST: 2.1046 RF POWER OUTPUT 82
fcc requirements. 82
test results 82
test procedure 83
6.4. NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH 84
fcc requirements. 84
test results 84
test procedure 85
6.5. NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS 86
6.5.1 FCC REQUIREMENTS 86
6.5.2 TEST RESULTS WITH DUPLEXER CONFIGURATION 87
6.5.3 TEST RESULTS WITH H2D CONFIGURATION 101
6.5.4 TEST PROCEDURE 104
6.6. NAME OF TEST: 2.1055 FREQUENCY STABILITY 106
fcc requirements. 106
fcc rESULTS: 106
7. MEASUREMENT EQUIPMENT LIST 109
8. EXHIBIT 2 : UPDATED EQUIPMENT LIST 110

1. INTRODUCTION

1.1. OBJECT

This report presents the test data in accordance with FCC Part 24 Subpart E for the S12000 Indoor and Outdoor Base-stations in PCS1900 band configured with:

- HePA (GMSK 60W / Edge 45W) 1900,

HePA1900 has been tested with eDRX1900 association during the last certification (FCC ID AB6S12000).
New Software release allows the functionality of HePA1900 with old DRX version (DRX ND, DRX ND2) with GMSK functionality only (Permissive Change Class1).

- PA (GMSK 30W / Edge 30W) 1900

These results can be applied for mixed BTS configuration 1900 Band PA (GMSK 30W / Edge 30W) and HePA (GMSK 60W / Edge 45W)

This report presents also the test data in accordance with FCC Part 22, Subpart H, for the S12000 Indoor and Outdoor Base-stations in 850 Band configured with:

- PA (GMSK 30W / Edge 30W) GSM850
- New module introduction: HePA (GMSK 60W / Edge 45W) GSM850.

These results can be applied for 1900 / 850 Dual Band BTS configurations with different mixed power amplifier type PA (GMSK 30W / Edge 30W) and HePA (GMSK 60W / Edge 45W).

This report presents test data for GMSK modulation and 8PSK modulation (EDGE functionality).

1.2. SCOPE

This document applies to the GSM850 / PCS1900 Outdoor and Indoor S12000 BTS versions.
This report introduces a new module introduction: HePA (GMSK 60W / Edge 45W) GSM850.
eDRX1900 and DRX ND 1900 radio module have equivalent radio performances and equivalent thermal behaviour. DRX ND have been tested during old FCC certification with PA1900 30W.

Radio performances with eDRX1900/HePA1900 can be applied to DRX ND, DRX ND2 associated with HePA1900. Only the GMSK functionality is ensured with DRX ND.

The last certification with eDRX1900 / HePA1900 ensures the FCC compliance of DRX ND/HePA1900 association.

1.3. PRODUCT CONFIGURATIONS

As the RF transmit paths are identical in both the Outdoor system and Indoor system, testing has been conducted on the Indoor or Outdoor version.

As we use same modules eDRX, HePA and duplexer in S8000/S12000 BTS, measurements available in this document can be applied to S12000 BTS and S8000 BTS.

Measurements were taken with all available coupling configurations including with duplexer involve the compliance with H2D (two input coupler with 3dB loss coupling associated with duplexer) and the H4D configuration (four input coupler with 7 dB loss coupling associated with duplexer).

The systems use both GMSK modulation and 8PSK, testing was done with both modulation types.

2. RELATED DOCUMENTS

2.1. APPLICABLE DOCUMENTS

[A1]	CFR 47-Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS
[A2]	CFR 47- Part 24	PERSONAL SERVICES
[A3] COMMUNICATIONS		

2.2. REFERENCE DOCUMENTS

[R1] PE/BTS/DJD/0222
[R2] PCS/BTS/DJD/0234
[R3] PCS/BTS/DJD/0730
[R4] PCS/BTS/DJD/0743
[R5] PCS/BTS/DJD/0746

FCC Part 24 Type Acceptance Filing for Nortel's S8000 Outdoor BTS AB6OUDS8000

AB6OUDS8000: FCC Part 24 Class II Permissive Change Application : S8000 Indoor BTS

AB6OUDS8000: FCC Part 24 Class II Permissive Change Application : S8000 Indoor BTS

S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000

S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000
[R6] PCS/BTS/DJD/04574
S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000
[R7] PE/BTS/DJD/002630 S8000 Outdoor and Indoor BTS eGSM 850 FCC Part 22 : exhibits documents
[R8] PE/BTS/DJD/4233 S12000 Indoor BTS GSM 850 / PCS 1900:
FCC Part 22 / FCC Part 24 Certification Filing for Nortel AB6INDS12000 exhibits document
[R9] PE/BTS/DJD/4248 S12000 Outdoor BTS GSM 850 / PCS 1900: FCC Part 22 / FCC Part 24 Certification Filing for Nortel AB6OUTS12000 exhibits document
[R10] PCS/BTS/DJD/5653 FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC ID\#AB6S12000
[R11] 60039646-539500- Radio Test report in extreme condition for the R-TR-FCC introduction of HePA 850 on GSM S8000/S12000

3. ABBREVIATIONS \& DEFINITIONS

3.1. ABBREVIATIONS

DRX	Driver Receiver Unit
e-DRX	EDGE DRX
BCF	Base Common Function
BTS	Base Transceiving Station
GSM	Global System for Mobile Communications
GPRS	General Packet Radio Service
EDGE	Enhanced Data for GSM Evolution
PDTCH	Packet Data Logical Channel
PA	Power Amplifier
e-SCPA	EDGE Single Carrier PA
HePA	Edge High Power Amplifier
LNA	Low Noise Amplifier
OMC	Operation and Maintenance Center
TCU	Trans-Coding Unit
MSC	Mobile Switching Center
RF	Radio Frequency
Tx	Transmitter

3.2. DEFINITIONS

PCS1900 Frequency Band and Channels

PCS 1900		C512	C661
F Tx (MHz)	1930.2	1960	1989.8
F Rx (MHz)	1850.2	1880	1909.8

For $512<\mathrm{n}<810$
$\mathrm{F}_{\mathrm{Rx}}(\mathrm{n})=1850.2+0.2 *(\mathrm{n}-512)$
$\mathrm{F}_{\mathrm{Tx}}(\mathrm{n})=\mathrm{F}_{\mathrm{Rx}}(\mathrm{n})+80$
IF frequencies on Radio Board: For Tx path 299 MHz
For Rx path 211 MHz
Clock frequency on the Radio Board 13MHz created from 4.096 MHz coming from the Digital board.
> GSM850 Frequency Band and Channels

GSM 850	C128	C189	C251
Short	B	M	T
F Tx (MHz)	869.2	881.4	893.8
F Rx (MHz)	824.2	836.4	848.8

For $128<\mathrm{n}<251$
$\mathrm{F}_{\mathrm{Rx}}(\mathrm{n})=824.2+0.2 *(\mathrm{n}-128)$
$\mathrm{T}_{\mathrm{Tx}}(\mathrm{n})=\mathrm{F}_{\mathrm{Rx}}(\mathrm{n})+45$

IF frequencies on Radio Board: For Tx path 133 MHz
For Rx path $\quad 71 \mathrm{MHz}$
Clock frequency on the Radio Board 13 MHz created from 4.096 MHz coming from the Digital board.

4. EXHIBIT 1 : TEST REPORT - HEPA PCS1900

4.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband PCS Base Station for Northern Telecom, Inc., in accordance with FCC Part 24, Subpart E and Part 2, Subpart J of the FCC Rules and Regulations.
The measurement procedures were in accordance with the requirements of Part 2.

4.2. MEASUREMENT RESULTS

Table 1 is a summary of the measurement results for this update.
Table 1 : Measurement Results Summary

FCC Measurement Specification	IC Limit Specification	Description	Result	Note
$2.1046(a)$, $2.1033(c)(8)$ 24.232	6.2	RF Power Output	Complies	
2.1049		Occupied Bandwidth	Complies	
$2.1051,2.1057$ 24.238	6.3	Spurious Emissions at Antenna Terminals	Complies	With power reduction at band edge channels
2.1055	7.0	Frequency Stability	Complies	
24.235	6.4			

4.3. NAME OF TEST: RF POWER OUTPUT

4.3.1. FCC REQUIREMENTS - FCC PART 24.232

Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 100 watts.

4.3.2. TEST RESULTS

Table 2 shows the test results of RF Output Power for GMSK modulation with several coupling configurations:

Radio Channel	$\begin{gathered} \hline \text { Frequency } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { Duplexer } \\ \text { Power (dBm) } \end{gathered}$	$\begin{gathered} \hline \text { H2D } \\ \text { Power (dBm) } \end{gathered}$	H4D Power (dBm)	HePA Output Power (dBm) (dBm)	Limit (dBm)
512	1930,2	45.8	42.2	39.3	GMSK$(60 \mathrm{~W})$47.8 dBm$+/-0.5 \mathrm{~dB}$	50 dBm
548	1937,4	46.1	42.4	39.6		
585	1944,8	46.3	42.6	39.8		
587	1945,2	46.3	42.6	39.8		
598	1947,4	46.2	42.6	39.8		
610	1949,8	46.3	42.6	39.8		
612	1950,2	46.3	42.6	39.8		
648	1957,4	46.5	42.9	39.9		
685	1964,8	46.5	42.8	39.9		
687	1965,2	46.5	42.8	39.9		
698	1967,4	46.5	42.9	39.9		
710	1969,8	46.5	42.9	39.9		
712	1970,2	46.5	42.9	39.9		
723	1972,4	46.5	42.8	39.9		
735	1974,8	46.5	42.8	39.8		
737	1975,2	46.5	42.8	39.8		
773	1982,4	46.5	42.7	39.9		
810	1989,8	46.6	42.9	39.9		

Table 3 shows the test results of RF Output Power for 8PSK modulation supported by eDRX/HePA 1900 with several coupling configurations :

Radio Channel	Frequency (MHz)	Duplexer Power (dBm)	$\begin{gathered} \text { H2D } \\ \text { Power (dBm) } \end{gathered}$	H4D Power (dBm)	HePA Output Power (dBm) (dBm)	Limit (dBm)
512	1930,2	45	41.9	38.5	$\begin{aligned} & \text { 8PSK } \\ & (45 \mathrm{~W}) \end{aligned}$	50 dBm
548	1937,4	45.3	41.6	38.8		
585	1944,8	45.5	41.8	39		
587	1945,2	45.5	41.8	39		
598	1947,4	45.4	41.8	39		
610	1949,8	45.5	41.8	39		
612	1950,2	45.5	41.8	39		
648	1957,4	45.7	42	39.1		
685	1964,8	45.7	42	39.1	$\begin{aligned} & 46.5 \mathrm{dBm} \\ & +/-0.5 \mathrm{~dB} \end{aligned}$	
687	1965,2	45.7	42	39.1		
698	1967,4	45.7	42	39.1		
710	1969,8	45.7	42	39.1		
712	1970,2	45.7	42	39.1		
723	1972,4	45.7	42	39.1		
735	1974,8	45.7	42	39		
737	1975,2	45.7	42	39.1		
773	1982,4	45.7	41.9	39.1		
810	1989,8	45.8	42.1	39.2		

Table 4 shows the HePA Output RF Power reduction available

- For GMSK modulation
- For 8PSK modulation supported by eDRX/HePA 1900

Power reduction available	HePA (60W) output Power for GMSK modulation (dBm)	HePA (45W) output Power for 8PSK modulation (dBm)
Pmax $P \max -1 d B$	$\mathbf{4 7 . 8}$	$\mathbf{4 6 . 5}$
Pmax $-\mathbf{2 ~ d B}$ $P \max -3 d B$	45.8	44.5
Pmax $-\mathbf{4 ~ d B}$ $P \max -5 d B$	43.8	42.5
Pmax $-\mathbf{6 ~ d B}$ $P \max -7 d B$	41.8	40.5

4.3.3. TEST PROCEDURE

The equipment was configured as shown in schematic 1.

Schematic 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

Measurements were made at frequencies which are the bottom, middle and top of each of the licensed blocks.

The output power was measured using the power meter which has the following settings :

Mode :
Reference Level Offset :

Average
Corrected to account for cable(s) and attenuator losses

4.4. NAME OF TEST : OCCUPIED BANDWIDTH

4.4.1. FCC REQUIREMENTS

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.4.2. TEST RESULTS

The maximum occupied bandwidth was found to be:
320.6 kHz , measured on channel 661, $\mathrm{f}=1960 \mathrm{MHz}$ in GMSK modulation, 317 kHz , measured on channel 661, $\mathrm{f}=1960 \mathrm{MHz}$ in 8PSK modulation.

Figure 1: Sample plot for occupied bandwidth in GMSK modulation

Figure 2: Sample plot for occupied bandwidth in 8PSK modulation

4.4.3. TEST PROCEDURE

The equipment was configured as shown in schematic 2 .
Schematic 2 : Test configuration for Occupied bandwidth

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer had the following settings :

Detector :
Trace:
Resolution bandwidth :
Video bandwidth :
Span :
Reference Level Offset :

Level range :
Sweep time :

Sample
Average
10 kHz
30 kHz
1 MHz
Corrected to account for cable(s) and attenuator losses
100 dB
25 ms

4.5. NAME OF TEST: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

4.5.1. FCC REQUIREMENTS LIMITS - FCC PART 24.238

(a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
(b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
(d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

4.5.2. TEST RESULTS WITH DUPLEXER CONFIGURATION

The reference level for spurious emissions at the antenna terminals is taken from the measured output power ($46.3 \mathrm{dBm}=42.63$ Watts).

Therefore the spurious emissions must be attenuated by at least $43+10 * \log (42.63)=59.3 \mathrm{~dB}$ The measured output power was 46.3 dBm ; therefore the limit is $46.3-59.3=-13 \mathrm{dBm}$.

Spurious measurement is performed with the worst configuration with Duplexer coupling and 60 W High Power amplifier .

The Nominal power at antenna connector : PD $\max =46.5 \mathrm{dBm}$.
The test compliance with duplexer involves the compliance with H2D (two input coupler with 3 dB loss coupling associated with duplexer) and the compliance with H4D configuration (four input coupler with 7 dB loss coupling associated with duplexer).

Tables 5 and 6 show the results for Spurious Emissions at Antenna Terminals.

Table 5 : Spurious emissions with the diplexer for GMSK modulation

	Channel	Power emission level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax-4	-16.2	-13	3.2
A	585	Pmax-4	-14.7	-13	1.7
D	587	Pmax-4	-15.4	-13	2.4
D	610	Pmax-4	-14.3	-13	1.3
B	612	Pmax-4	-15.1	-13	2.1
B	685	Pmax-4	-14.1	-13	1.1
E	687	Pmax-4	-15	-13	2
E	710	Pmax-4	-14.6	-13	1.6
F	712	Pmax-4	-15.2	-13	2.2
F	735	Pmax-4	-14.5	-13	1.5
C	737	Pmax-4	-14.6	-13	1.6
C	810	Pmax-4	-13.9	-13	0.9

Tables 6: Spurious emissions with the diplexer for 8PSK modulation

	Channel	Power emission level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax-2	-16.3	-13	3.3
A	585	Pmax-2	-16.8	-13	3.8
D	587	Pmax-2	-15.8	-13	2.8
D	610	Pmax-2	-16.2	-13	3.2
B	612	Pmax-2	-15.4	-13	2.4
B	685	Pmax-2	-15.8	-13	2.8
E	687	Pmax-2	-15.2	-13	2.2
E	710	Pmax-2	-16	-13	3
F	712	Pmax-2	-14.6	-13	1.6
F	735	Pmax-2	-16.1	-13	3.1
C	737	Pmax-2	-15.3	-13	2.3
C	810	Pmax-2	-15.2	-13	2.2

Notes :

GMSK modulation measurements:
Figures from 3 to 6 show sample plots for the case when the transmitter was tuned with the power reduced by 4 dB in diplexer configuration for differents Edge Channel 512, 585, 737, 810.

8PSK modulation measurements:
Figures from 7 to 10 show sample plots for the case when the transmitter was tuned at the power reduced by 2 dB in diplexer configuration.

Out of band measurement in GMSK modulation:
Figures from 11 to 20 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 810 at maximum power with diplexer configuration.

Figure 3 :
-1 MHz adjacent band (Channel 512, Pmax-4),
Diplexer only, GMSK modulation

Figure 4 :
+1 MHz adjacent band (Channel 585, Pmax-4),
Diplexer only, GMSK modulation

Figure 5 :
-1 MHz adjacent band (Channel 737, Pmax-4),
Diplexer only, GMSK modulation

Figure 6:
+1 MHz adjacent band (Channel 810, Pmax-4),
Diplexer only, GMSK modulation

Figure 7:
-1 MHz adjacent band (Channel 512, Pmax-2),
Diplexer only, 8PSK modulation

Figure 8:
+1 MHz adjacent band (Channel 585, Pmax-2),
Diplexer only, 8PSK modulation

Figure 9:
-1 MHz adjacent band (Channel 737, Pmax-2),
Diplexer only, 8PSK modulation

Figure 10:
+1 MHz adjacent band (Channel 810, Pmax-2),
Diplexer only, 8PSK modulation

Out-of-block emissions (Channel 810, Pmax),

Diplexer, GMSK modulation

Figure 11:
$100 \mathrm{kHz}-50 \mathrm{MHz}$

(*) Note: spectrum line at 100 kHz is internal DC spectrum line of analyser $_{\text {ser }}$

Figure 12:
$50 \mathrm{MHz}-500 \mathrm{MHz}$

Out-of-block emissions (Channel 810, Pmax), Diplexer, GMSK modulation

Figure 13 : $500 \mathrm{MHz}-1970.2 \mathrm{MHz}$
Figure 14: 1970.2-1974 MHz

Figure 15: 1974-1975 MHz

Out-of-block emissions (Channel 810, Pmax),

 Diplexer, GMSK modulationFigure 16: 1991-1994.8 MHz

Figure 17: $1994.8 \mathrm{MHz}-4 \mathrm{GHz}$

Out-of-block emissions (Channel 810, Pmax), Diplexer, GMSK modulation

Figure 18: $4-8 \mathrm{GHz}$

Figure 19: 8-12 GHz

Figure 20: $12-20 \mathrm{GHz}$

4.5.3. TEST RESULTS WITH H2D DUPLEXER CONFIGURATION

Table 7: Spurious emissions with the H2D for GMSK modulation

	Channel	Power level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax	-15.1	-13	2.1
A	585	Pmax	-14.1	-13	1.1
D	587	Pmax	-14.9	-13	1.9
D	610	Pmax	-14.1	-13	1.1
B	612	Pmax	-15.2	-13	2.2
B	685	Pmax	-13.7	-13	0.7
E	687	Pmax	-14.4	-13	1.4
E	710	Pmax	-14.1	-13	1.1
F	712	Pmax	-14.4	-13	1.4
F	735	Pmax	-13.9	-13	0.9
C	737	Pmax	-14.3	-13	1.3
C	810	Pmax	-13.5	-13	0.5

GMSK modulation measurements:
Figures from 21 to 24 show sample plots for the case when the transmitter was tuned with the maximum power in H2D diplexer configuration for different Edge Channel $512,585,737,810$.

Table 8: Spurious emissions with the H2D for 8PSK modulation

	Channel	Power level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax	-16.9	-13	3.9
A	585	Pmax	-17.7	-13	4.7
D	587	Pmax	-16.5	-13	3.5
D	610	Pmax	-17.2	-13	4.2
B	612	Pmax	-16.8	-13	3.8
B	685	Pmax	-17	-13	4
E	687	Pmax	-16.2	-13	3.2
E	710	Pmax	-17.4	-13	4.4
F	712	Pmax	-16.2	-13	3.2
F	735	Pmax	-17.1	-13	4.1
C	737	Pmax	-16.2	-13	3.2
C	810	Pmax	-16.5	-13	3.5

8PSK modulation measurements:
Figures from 25 to 28 show sample plots for the case when the transmitter was tuned at the maximum power in H2D diplexer configuration.

Figure 21:
-1 MHz adjacent band (Channel 512, Pmax), H2D, GMSK modulation

Figure 22 :
+1 MHz adjacent band (Channel 585, Pmax), H2D, GMSK modulation

Figure 23 :
-1 MHz adjacent band (Channel 737, Pmax), H2D, GMSK modulation

Figure 24 :
+1 MHz adjacent band (Channel 810, Pmax), H2D, GMSK modulation

Figure 25 :
-1 MHz adjacent band (Channel 512, Pmax), H2D, 8PSK modulation

Figure 26 :
+1 MHz adjacent band (Channel 585, Pmax), H2D, 8PSK modulation

Figure 27 :
-1 MHz adjacent band (Channel 737, Pmax), H2D, 8PSK modulation

Figure 28 :
+1 MHz adjacent band (Channel 810, Pmax),
H2D, 8PSK modulation

4.5.4. TEST RESULTS WITH H4D DUPLEXER CONFIGURATION

Table 9: Spurious emissions with the H4D for GMSK modulation

	Channel	Power level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax	-17.8	-13	4.8
A	585	Pmax	-17.1	-13	4.1
D	587	Pmax	-18	-13	5
D	610	Pmax	-16.3	-13	3.3
B	612	Pmax	-18.1	-13	5.1
B	685	Pmax	-16.4	-13	3.4
E	687	Pmax	-17.6	-13	4.6
E	710	Pmax	-16.6	-13	3.6
F	712	Pmax	-17.1	-13	4.1
F	735	Pmax	-16.6	-13	3.6
C	737	Pmax	-17.7	-13	4.7
C	810	Pmax	-16.3	-13	3.3

GMSK modulation measurements:
Figures from 29 to 32 show sample plots for the case when the transmitter was tuned with the maximum power in H4D diplexer configuration for different Edge Channel $512,585,737,810$.

Table 10: spurious emissions with the H4D for 8PSK modulation

	Channel	Power level	Spurious emissions level (dBm)	Limit (dB)	Margin (dB)
A	512	Pmax	-20.2	-13	7.2
A	585	Pmax	-20.3	-13	7.3
D	587	Pmax	-19.2	-13	6.2
D	610	Pmax	-20.5	-13	7.5
B	612	Pmax	-18.9	-13	5.9
B	685	Pmax	-20.1	-13	7.1
E	687	Pmax	-18.8	-13	5.8
E	710	Pmax	-20	-13	7
F	712	Pmax	-19	-13	6
F	735	Pmax	-19.9	-13	6.9
C	737	Pmax	-19.4	-13	6.4
C	810	Pmax	-19.9	-13	6.9

8PSK modulation measurements:
Figures from 33 to 36 show sample plots for the case when the transmitter was tuned at the maximum power in H4D diplexer configuration.

Figure 29:
-1 MHz adjacent band (Channel 512, Pmax), H4D, GMSK modulation

Figure 30 :
+1 MHz adjacent band (Channel 585, Pmax),
H4D, GMSK modulation

Figure 31 :
-1 MHz adjacent band (Channel 737, Pmax), H4D, GMSK modulation

Figure 32 :
+1 MHz adjacent band (Channel 810, Pmax),
H4D, GMSK modulation

Figure 33:
-1 MHz adjacent band (Channel 512, Pmax), H4D, 8PSK modulation

Figure 34 :
+1 MHz adjacent band (Channel 585, Pmax), H4D, 8PSK modulation

Figure 35:
-1 MHz adjacent band (Channel 737, Pmax), H4D, 8PSK modulation

Figure 36 :
+1 MHz adjacent band (Channel 810, Pmax),
H4D, 8PSK modulation

4.5.5. CONCLUSION

- GMSK modulation:

Coupling Configuration	Antenna Output power (dBm)	Power reduction Measurement (qualification modules)	System Power limitation GMSK modulation
Diplexer	46.5	Pmax $-4 \mathrm{~dB}=42.5 \mathrm{dBm}$	Pmax - 6 dB $=\mathbf{4 0 . 5} \mathbf{~ d B m}$
H2D	43	Pmax $=43 \mathrm{dBm}$	Pmax - 2 dB $=\mathbf{4 1} \mathbf{~ d B m}$
H4D	40	Pmax $=40 \mathrm{dBm}$	Pmax $\quad=\mathbf{4 0} \mathbf{d B m}$

For system limit, 2 dB power reduction margin is taken to ensure the compliance for the case of diplexer and H2D due to eDRX/HePA products tolerances.

Performances measured with eDRX/HePA can be applied to DRX ND/HePA association (with GMSK modulation only).

In order to comply with the emission limits in the 1 MHz bands immediately outside and adjacent to the frequency block, the absolute transmit power level of the block edge channels has been done at $\mathbf{P m a x}-\mathbf{6 d B}=\mathbf{4 0 . 5} \mathbf{~ d B m}$ for the worst case in diplexer configuration.

- 8PSK modulation:
eDRX and HePA 1900 support 8 PSK modulation.

Coupling	Antenna port Output power $(\mathbf{d B m})$	Power reduction measurement	System Power limitation 8 PSK modulation	
Diplexer	45.8	Pmax $-2 \mathrm{~dB}=43.8 \mathrm{dBm}$	Pmax $-\mathbf{2} \mathbf{~ d B}=\mathbf{4 3 . 8} \mathbf{~ d B m}$	
H2D	42	Pmax $=42 \mathrm{dBm}$	Pmax	$=\mathbf{4 2} \mathbf{~ d B m}$
H4D	39	Pmax $=39 \mathrm{dBm}$	Pmax	$=\mathbf{3 9} \mathbf{d B m}$

In the worst configuration (Diplexer), the maximum power emission with 2 dB reduced (Pmax-2dB) allows to be compliant with the spurious emission limits (-13 dBm) in the 1 MHz bands immediately outside and adjacent to the frequency block for 8PSK modulation .

4.5.6. TEST PROCEDURE

The equipment was configured as shown in schematic 3 .

Schematic 3 : Test configuration for Spurious emissions at antenna terminals

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 512 and 810 are those channels which are at the lower and upper edges of the PCS band respectively.

The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

For these measurements, the resolution bandwidth of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was closed to 300 kHz . Therefore, the resolution bandwidth was set to 3 kHz .

The spectrum analyzer had the following settings for adjacent band:

Resolution bandwidth :	3 kHz
Video bandwidth :	10 kHz
Span :	1 MHz
Reference Level Offset :	
	Corrected to account for cable(s),
Level range :	filter and attenuator losses
Sweep time :	100 dB
Detector :	Coupled
Trace :	Sample
Sweep count :	Average
	200

For all other measurements the BTS carrier frequency was adjusted to Channel 810.
The spectrum analyzer had the following settings for out of block emissions.
Resolution bandwidth :
1 MHz
Video bandwidth :
1 MHz

The emissions were investigated up to the tenth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

4.6. NAME OF TEST: FREQUENCY STABILITY

Table 6 shows the Frequency Stability for channel 661 ($\mathrm{F}=1960 \mathrm{MHz}$) in BTS 12000 OUTDOOR configuration (8 HePA) under extreme conditions.

Performances measured with eDRX/HePA can be applied to DRX ND/HePA association.

Table 11: Frequency Stability in BTS S12000 Outdoor configuration - Channel 661

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Maximum Carrier Frequency Deviation (Hz)		
	85% Nominal Supply voltage 195 V AC	Nominal Supply voltage 230 V AC	115% Nominal Supply voltage 264 V AC
	50.3	56.8	47.4
-20	56.9	56.5	45.4
-10	57.7	56.6	43.7
0	62.3	49.2	61.5
10	49.7	54.6	48.0
20	49.2	58.7	56.3
30	56.5	49.4	53.9
40	58.7	71.0	63.0
50	60.7	61.0	56.6

The maximum frequency deviation allowed is 90 Hz .
The maximum deviation measured $(71 \mathrm{~Hz})$ is sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Outdoor BTS complies with the requirement.
Thermal tests have been performed with OUTDOOR BTS S12000.
The BTS S12000 must operate under the following external extreme temperatures:

$$
\text { - BTS S12000 Outdoor: } \quad-30^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}
$$

Frequency stability test is performed under following extreme conditions:

- Temperature from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ at intervals of 10 degrees.
- With AC power supply variations: 195 VAC , 230 VAC, 264 VAC.

All Modules (eDRX and HePA) run with nominal power regulation at maximum power (60W) in GMSK modulation. The eDRX/HePA were configured to transmit at maximum power (Static level 0).

BTS S12000 is equipped with eDRX/HePA in slots $0,1,2,3,6,7,8,9$ with following emission configuration :

$$
\begin{array}{ll}
\text { slot } 0: \mathrm{BCCH} \rightarrow & \text { C542 } \\
\text { slot } 1: \mathrm{TCH} \rightarrow & \mathrm{C} 661 \\
\text { slot } 2: \mathrm{BCCH} \rightarrow & \mathrm{C} 572 \\
\text { slot 3: BCCH } \rightarrow & \text { C602 } \\
\text { slot } 6: \mathrm{BCCH} \rightarrow & \mathrm{C} 632 \\
\text { slot 7: BCCH } \rightarrow & \mathrm{C} 692 \\
\text { slot } 8: \mathrm{BCCH} \rightarrow & \mathrm{C} 722 \\
\text { slot } 9: \mathrm{BCCH} \rightarrow & \mathrm{C} 752
\end{array}
$$

Frequency deviation is measured in slot 1 on channel C661.

A period of at least one hour was allowed prior to measurement to ensure that all the components of the oscillator circuit was stabilized at each temperature.

The equipment was configured as shown in figure 16.

Figure 16: Test configuration for Frequency Stability

5. EXHIBIT 2: TEST REPORT FOR PA30W PCS1900/GSM850

5.1. INTRODUCTION

The following information is submitted to introduce a Certification of a Broadband PCS Base Station for Northern Telecom, Inc:

- According to FCC Part 24, Subpart E and Part 2,
- According to FCC Part 22, Subpart H and Part 2,

Subpart J of the FCC Rules and Regulations. The measurement procedures were in accordance with the requirements of Part 2.999.

5.2. MEASUREMENT RESULTS

Tables 1, 2 are a summary of the measurement results performed in this report.
Table 1: PCS 1900 Measurement Results Summary

FCC Measurement Specification	$\begin{gathered} \text { IC } \\ \text { Limit } \\ \text { Specification } \end{gathered}$	Description	Results	Note
2.1046, 24.232	6.2	RF Power Output	Compliant	Reference to [R5] [R8] [R9]
2.1047		Modulation characteristics		
2.1049		Occupied Bandwidth		
$\begin{gathered} \hline 2.1051,2.1057, \\ 24.238 \end{gathered}$	$6.3,6.4$	Spurious Emissions at Antenna Terminals		
2.1055, 24.235	7.0	Frequency Stability		

Table 2: GSM 850 Measurement Results Summary

FCC Measurement Specification	IC Limit Specification RSS 128 Section	Description	Results	Note
2.1046	7.1	RF Power Output		Reference to
2.1047	7.2	Modulation characteristics	Occupied Bandwidth	
2.1049		RT]		
2.1051	$7.4,7.5$	Spurious Emissions at Antenna Terminals		[R8]
2.1055	$8.1,8.2$	Frequency Stability		

Measurements in GSMK modulation for GSM 850 Band are available in document [R7].
Additional GMSK tests are performed for the Edge channel of sub-band A", A, B, A', B'. Additional Tests are also performed in 8PSK modulation.

5.3. TEST NAME: 2.1046 RF OUTPUT POWER

FCC REQUIREMENTS

FCC Limit (Part 22.913) Effective radiated power limits

The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

FCC Limit (Part 24.232) Power and antenna hight limits

Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 100 watts.

TEST RESULTS GSM 850

Table 3: measured RF Output Power in GSM 850 band

Sub band	Radio Channel	$\begin{aligned} & \text { Frequency } \\ & \text { (MHz) } \end{aligned}$	RF Output Power (dBm) GMSK	RF Output Power (dBm) 8PSK	Maximum Rated Power (dBm)	Limit (dBm)
A"	128	869.2	43.5	44.0	44,8 (30 W)	50
	131	869.8	43.5	44.1		
A	133	870.2	43.6	44.1		
	181	879.8	43.7	44.3		
B	183	880.2	43.6	44.3		
	231	889.8	43.5	44.2		
A'	233	890.2	43.4	44.2		
	238	891.2	43.4	44.1		
B'	241	891.8	43.4	44.2		
	251	893.8	43.2	44.0		

TEST RESULTS PCS 1900

Table 4 : measured RF Output Power in PCS 1900 band

Band	Radio Channel	Frequency (MHz)	Measured RF Output Power (dBm)	Measured RF Output Power (dBm) 8PSK	Maximum Rated Power (dBm)	Limit (dBm)
A	512	1930,2	42.9	43		
A	548	1937,4	43.0	43.2		
A	585	1944,8	43.2	43.5		
D	587	1945,2	43.2	43.5		
D	598	1947,4	43.2	43.5		
D	610	1949,8	43.2	43.5		
B	612	1950,2	43.2	43.5		
B	648	1957,4	43.4	43.5		
B	685	1964,8	43.4	43.6	44.8	
E	687	1965,2	43.3	43.5		
E	698	1967,4	43.3	43.5		
E	710	1969,8	43.4	43.7		
F	712	1970,2	43.4	43.7		
F	723	1972,4	43.4	43.7		
F	735	1974,8	43.5	43.8		
C	737	1975,2	43.5	43.8		
C	773	1982,4	43.5	43.8		
C	810	1989,8	43.3	43.6		

5.4. TEST NAME: 2.1049 OCCUPIED BANDWIDTH

FCC REQUIREMENTS

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated of at least 26 dB .

TEST RESULTS GSM 850

Figure 1: sample plot for occupied bandwidth, @ M (GSM 850 band)

GMSK modulation

8PSK Modulation

The maximum occupied bandwidth was found 320 kHz for GMSK modulation
The maximum occupied bandwidth was found 314 kHz for 8PSK modulation

TEST RESULTS PCS 1900

Figure 2: sample plot for occupied bandwidth @ M (PCS 1900 band)

GMSK modulation

8PSK Modulation

The maximum occupied bandwidth was found to be:
320 kHz , measured on channel 661, $\mathrm{f}=1960.0 \mathrm{MHz}$ GMSK modulation. 318 kHz , measured on channel 661, $\mathrm{f}=1960.0 \mathrm{MHz}$ 8PSK modulation.

TEST PROCEDURE

The equipment was configured as shown in Schematic1.

The BTS was configured to transmit at maximum power (Static Level 0). Measurements were performed at middle frequency of the transmit band.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated of at least 26 dB .

The spectrum analyzer had the following settings:

Resolution bandwidth:	10 kHz
Video bandwidth:	30 kHz
Span:	1 MHz and 2.2 MHz
Sweep time:	25 ms
Reference Level Offset:	Corrected to take into account cables and attenuator losses

5.5. TEST NAME: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

FCC REQUIREMENTS

(c) At any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
(d) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(e) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
(f) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

TEST RESULTS GSM 850

The reference level for spurious emissions at the antenna terminals is taken from the measured output power ($43.9 \mathrm{dBm}=24.5$ Watts).
Therefore the spurious emissions must be attenuated by at least $43+10 * \log (24.5)=56.9 \mathrm{~dB}$. The measured output power was 43.9 dBm ; therefore the limit is $43.9-56.9=-13 \mathrm{dBm}$.

Spurious measurement is performed in the following coupling configuration with 30W Power amplifier and with duplexer .

The nominal power at antenna connector : Pduplexer max $=44 \mathrm{dBm}$

Tables 5 and 6 show the results for Spurious Emissions at Antenna Terminals.

Table 5: Test results for Spurious Emissions in GMSK modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBm}) \end{aligned}$	Margin (dB)
A"	128	Pmax - 2 dB	-13.4	-13	0.4
A"	131	Pmax - 2 dB	-13.4	-13	0.4
A	133	Pmax - 2 dB	-13.6	-13	0.6
A	181	Pmax - 2 dB	-13.2	-13	0.2
B	183	Pmax - 2 dB	-13.9	-13	0.9
B	231	Pmax - 2 dB	-13.7	-13	0.7
A^{\prime}	233	Pmax - 2 dB	-14.3	-13	1.3
A'	238	Pmax	-35.8	-13	22.8
B'	241	Pmax	-34	-13	21
B'	251	Pmax - 2 dB	-13.5	-13	0.5

Table 6: Test results for Spurious Emissions in 8PSK Modulation

	Channel	Power emission level	Spurious Emissions Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
A'	128	Pmax -2 dB	-14.8	-13	1.8
$\mathrm{~A}^{\prime}$	131	Pmax -2 dB	-14.9	-13	1.9
A	133	Pmax -2 dB	-14.0	-13	1.0
A	181	Pmax -2 dB	-14.9	-13	1.9
B	183	Pmax -2 dB	-14.4	-13	1.4
B	231	Pmax -2 dB	-14.8	-13	1.8
A'	233	Pmax -2 dB	-14.3	-13	1.3
A $^{\prime}$	238	Pmax	-31.5	-13	18.5
B'	241	Pmax	-33.6	-13	20.6
B' $^{\prime}$	251	Pmax -2 dB	-14.8	-13	1.8

Table 7 : Spurious Out of Tx band - GMSK modulation

Frequency (MHz)	Spurious Emissions $(\mathbf{d B m})$	Margin (dB)	Limit $(\mathbf{d B m})$
$0.1-50$	-37.7	24.7	
$50-500$	-36.9	23.9	
$500-880.4$	-28.8	15.8	
$882 . .8-1000$	-28.2	15.2	-13
$1000-2000$	-29	16	
$2000-40000$	-28	15	
$4000-120000$	-25.5	12.5	
$12000-20000$	-25.7	12.7	

Notes :

Figures $3,4,5$ show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures $6,7,8$ show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure $9,10,11$ show sample plots for frequency spans from 0 to 20 GHz with emission on channel 190 at $\mathrm{Pmax}=44 \mathrm{dBm}$ with Duplexer module.

Figure 3 : 1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Power limitation :Pmax - 2 dB

Channel 128

Channel 133

Channel 131

Channel 181

Figure 4 : 1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Power limitation :Pmax - 2 dB

Channel 183

Channel 231

Figure 5: 1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Channel 233
-1 MHz adjacent band,
Power limitation Pmax - 2dB

Channel 238
+1 MHz adjacent band
Power limitation: Pmax

-1 MHz adjacent band
Channel 241
Power limitation P Max

+1 MHz adjacent band
Channel 251
Pmax - 2 dB

Figure 6:1 MHz adjacent band
8PSK MODULATION - Duplexer configuration
Power limitation :Pmax-2dB

Channel 128

Channel 133

Channel 131

Channel 181

Figure 7: 1 MHz adjacent band
8PSK MODULATION - Duplexer configuration
Power limitation :Pmax-2 dB

Channel 183

Channel 231

Figure $8: 1 \mathrm{MHz}$ adjacent band 8PSK MODULATION - Duplexer configuration

Channel 233

-1 MHz adjacent band,
Power limitation Pmax -2dB

-1 MHz adjacent band

Channel 241

Power limitation P Max

Channel 238
+1 MHz adjacent band
Power limitation: Pmax

+1 MHz adjacent band
Channel 251
Pmax - 2 dB

Figure 9: Out of block emissions (channel 190, Pmax)
$100 \mathrm{kHz}-50 \mathrm{Mhz}$

Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser
$50 \mathrm{Mhz}-500 \mathrm{MHz}$
500 MHz-880.4 MHz

FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC ID\#AB6S12000BTS

Figure 10: Out of block emissions (channel 190, Pmax)
882.8 MHz-1000 MHz

2 GHz-4 GHz

$1000 \mathrm{MHz}-2000 \mathrm{MHz}$

4 GHz-12 GHz

Figure 11 : Out of block emissions (channel 190, Pmax)
$12 \mathrm{GHz}-20 \mathrm{GHz}$

Conclusion :

For both modulation GMSK and 8PSK, the worst case is the Duplexer configuration and it has been done at PD max $-2 \mathrm{~dB}=42 \mathrm{dBm}$.

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2 dB in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, the maximum power (44dBm) has allowed to meet spurious emission requirement.

The H2D configuration has been done at maximum power $\operatorname{PH2Dmax}=44 \mathrm{dBm}$.

TEST RESULTS PCS 1900

Spurious measurement is performed with the worst configuration with Duplexer coupling and 30W Power amplifier . The Nominal power at antenna connector : PD max = 44dBm. The test compliance with duplexer involves the compliance with H2D (two input coupler with 3 dB loss coupling associated with duplexer) and the compliance with H4D configuration (four input coupler with 7 dB loss coupling associated with duplexer).

Table 8: Test results for Spurious Emissions at Antenna Terminals

- Duplexer configuration - In band - GMSK modulation

Band	Channel	Emission Level(dBm)	Spurious (dBm)	Margin (dB)	Limit (dBm)
A	512	Pmax	-13.4	0.4	-13
		Pmax-2	-15	2	
A	585	Pmax	-13	0	
		Pmax-2	-13.7	0.7	
D	587	Pmax	-12.8	-0.2	-13
		Pmax-2	-15	2	
D	610	Pmax	-11.3	-1.7	
		Pmax-2	-12.6	-0.4	
		Pmax-4	-15	2	
B	612	Pmax	-12.5	-0.5	-13
		Pmax-2	-14.5	1.5	
B	685	Pmax	-11.3	-1.7	
		Pmax-2	-12.6	-0.4	
		Pmax-4	-15	2	
E	687	Pmax	-12.4	-0.6	-13
		Pmax-2	-14.4	1.4	
		Pmax-4	-15.3	2.3	
E	710	Pmax	-10.8	-2.2	
		Pmax-2	-12.8	-0.2	
		Pmax-4	-14.5	1.5	
F	712	Pmax	-12.4	-0.6	-13
		Pmax-4	-16.3	3.3	
F	735	Pmax	-11.5	-1.5	
		Pmax-4	-14.6	1.6	
C	737	Pmax	-12.2	-0.8	-13
		Pmax-4	-16	3	
C	810	Pmax	-11.5	-1.5	
		Pmax-4	-15.5	2.5	

Tables 9: Spurious emissions with the diplexer for 8PSK modulation

	Channel	Power emission level	Spurious Emissions Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
A	512	P max	-14.9	-13	1.9
A	585	P max	-13.3	-13	0.3
D	587	P max	-15.1	-13	2.1
D	610	P max	-13.8	-13	0.8
B	612	P max	-14.9	-13	1.9
B	685	P max	-13.3	-13	0.3
E	687	P max	-14.6	-13	1.6
E	710	P max	-13.5	-13	0.5
F	712	P max	-14.5	-13	1.5
F	735	P max	-13.8	-13	0.8
C	737	P max	-14.6	-13	1.6
C	810	P max	-14.1	-13	1.1

Notes :

GMSK modulation measurements:
Figures from 12 to 14 show sample plots for the case when the transmitter was tuned with the power reduced by 4 dB in diplexer configuration for differents Edge Channel from 512 to 810 .

8PSK modulation measurements:
Figures from 15 to 16 show sample plots for the case when the transmitter was tuned at the maximum power in diplexer configuration.

Out of band measurement in GMSK modulation:
Figures from 17 to 19 show sample plots for frequency spans from 0 to 20 GHz with emission on channel 810 at maximum power with diplexer configuration.

Table 10: Spurious emissions Out of Tx band - GMSK modulation

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin (dB)	Limit (dBm)
$0.1-50$	-34.2	21.2	
$50-500$	-33	20	
$500-1970.2$	-33.7	20.7	
$1970.2-1974$	-40	27	-13
$1974-1975$	-55	42	
$1991-1994.8$	-34	21	22
$1994.8-4000$	-35	22	
$4000-8000$	-35	22.2	
$8-12 \mathrm{GHz}$	-35.2	21	
$12-20 \mathrm{GHz}$	-34		

Figure 12 :
GMSK modulation
-1 MHz adjacent band (Channel 512)

Pmax

Pmax-2dB

+1 MHz adjacent band (Channel 585)

Pmax

Pmax-2dB

Figure 13 :
GMSK modulation

- 1 MHz adjacent band (Channel 687)

Pmax

+1 MHz adjacent band (Channel 710)

Pmax

Pmax-4dB

Figure 14:
GMSK modulation
-1 MHz adjacent band (Channel 737)

Pmax

Pmax-4dB

+1 MHz adjacent band (Channel 810)

Pmax

Pmax-4dB

Figure 15:
-1 MHz adjacent band (Channel 512, Pmax)
Diplexer only, 8PSK modulation

+1 MHz adjacent band (Channel 585, Pmax),
Diplexer only, 8PSK modulation

Figure 16

-1 MHz adjacent band (Channel 737, Pmax)

Diplexer only, 8PSK modulation

+1 MHz adjacent band (Channel 810, Pmax),
Diplexer only, 8PSK modulation

FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC ID\#AB6S12000BTS

Figure 17: Out of block emissions (Channel 810, Pmax) for GMSK modulation
$100 \mathrm{kHz}-50 \mathrm{MHz}$

Note : spectrum lines at 100 kHz is internal DC spectrum line of Analyzer.
$50 \mathrm{MHz}-500 \mathrm{MHz}$

FCC Part 24/Part22 Test Report for S12000 Indoor and Outdoor Base stations FCC ID\#AB6S12000BTS

Figure 18: Out of block emissions (Channel 810, Pmax)
1970.2-1974 MHz

1991 MHz-1994.8 MHz

1974 MHz-1975 MHz

1994.8 MHz-4 GHz

Figure 19: Out of block emissions (Channel 810, Pmax)

$4-8 \mathrm{GHz}$

$\mathbf{8 - 1 2} \mathbf{~ G H z}$

12-20 GHz

Conclusion :

- GMSK modulation:

The worst case is the Duplexer configuration and emission power has been done at PD max $-4 \mathrm{~dB}=40 \mathrm{dBm}$

In order to comply with the emission limits in the 1 MHz bands immediately outside and adjacent to the frequency block, the absolute transmit power level of the block edge channels is set to $\mathbf{4 0} \mathbf{~ d B m}$ for GMSK modulation.

- 8PSK modulation:
eDRX and eSCPA 1900 support 8 PSK modulation.
In the worst configuration (Diplexer), maximum emission power $\mathbf{P}=\mathbf{4 4} \mathbf{~ d B m}$ allows to be compliant with the spurious emission limits $(-13 \mathrm{dBm})$ in the 1 MHz bands immediately outside and adjacent to the frequency block for 8PSK modulation.

TEST PROCEDURE

The equipment was configured as shown in schematic2.
Schematic2 : Test configuration for Spurious emissions at antenna terminals

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

The transmitter was set to operate to maximum power in Tx activation mode GMSK no synchro.

Initially the transmitter was set to operate to maximum power. Then in case of out of limits, the power has been decreased by 2 or 4 dB .

The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

For these measurements, the resolution bandwidth was of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was near 300 kHz . Therefore, the resolution bandwidth was set to 3 kHz .

The spectrum analyzer had the following settings for adjacent band:	
Resolution bandwidth:	3 kHz
Video bandwidth:	10 kHz
Span:	1 MHz
Reference Level Offset:	Corrected to take into account cables and attenuator losses
Sweep time:	Coupled
Detector:	Sample
Trace:	Average
Sweep count:	200

For all other measurements the BTS carrier frequency was adjusted to Channel 190 in GSM850 and Channel 810 in PCS 1900.

The spectrum analyzer had the following settings for out of block emissions.

$$
\begin{array}{ll}
\text { Resolution bandwidth: } & 1 \mathrm{MHz} \\
\text { Video bandwidth: } & 1 \mathrm{MHz}
\end{array}
$$

The emissions were investigated up to the twentieth harmonic of the fundamental emission $(20 \mathrm{GHz})$.

The measured level of the emissions was recorded and compared to the -13 dBm limit.

5.6. TEST NAME: 2.1055 FREQUENCY STABILITY

FCC REQUIREMENTS

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST RESULTS GSM 850

Table 11 shows the Frequency Stability for channel $190(\mathrm{~F}=881.6 \mathrm{MHz})$ in BTS 12000 OUTDOOR configuration under extreme conditions.

Table 11: Frequency Stability in BTS S12000 Outdoor configuration - Channel 190

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Maximum Carrier Frequency Deviation (Hz)		
	85% Nominal Supply voltage 195 V AC	Nominal Supply voltage 230 V AC	115% Nominal Supply voltage 264 V AC
	7.75	7.43	-7.43
-20	11.69	-11.56	10.46
-10	10.85	9.81	-11.24
0	15.56	13.11	12.53
10	-10.65	13.3	-11.75
20	8.33	13.04	8.85
30	11.69	10.65	-12.91
40	14.98	11.69	-8.78
50	10.2	-10.53	10.98

The maximum frequency deviation allowed is 45 Hz . The maximum deviation measured $(15.56 \mathrm{~Hz})$ is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Table 12 shows the Frequency Stability for channel $190(\mathrm{~F}=881.6 \mathrm{MHz})$ in BTS 12000 Indoor configuration under extreme conditions.

Table 12: Frequency Stability in BTS S12000 Indoor configuration - Channel 190

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Maximum Carrier Frequency Deviation (Hz)		
	Channel 190 @ DC supply voltage		
	40 V	48 V	57 V
-5	7.81	6.59	8.78
5	12.46	10.98	-12.20
15	9.56	8.91	-8.98
25	8.98	10.65	10.01
35	10.20	9.04	10.33
45	10.07	8.01	9.17

The maximum frequency deviation allowed is 40 Hz . The maximum deviation measured $(12.5 \mathrm{~Hz})$ is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST RESULTS PCS 1900

Table 13 shows the Frequency Stability for channel 661 ($\mathrm{F}=1960 \mathrm{MHz}$) in BTS 12000 OUTDOOR configuration under extreme conditions.

Table 13: Frequency Stability in BTS S12000 Outdoor configuration - Channel 661

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Maximum Carrier Frequency Deviation (Hz)		
	85% Nominal Supply voltage 195 V AC	Nominal Supply voltage 230 V AC	115% Nominal Supply voltage 264 V AC
	17.95	16.14	18.02
-20	14.72	-21.50	19.24
-10	17.56	-23.31	-23.70
0	-18.08	23.44	-19.24
10	22.79	20.86	-19.63
20	18.92	-22.34	16.14
30	17.37	19.31	-25.18
40	27.51	20.99	23.34
50	22.02	-19.05	22.86

The maximum frequency deviation allowed is 90 Hz .
The maximum deviation measured $(-25.2 \mathrm{~Hz})$ is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Outdoor BTS complies with the requirement.
Table 14 shows the Frequency Stability for channel 512 ($\mathrm{F}=1930.2 \mathrm{MHz}$) in BTS 12000 Indoor configuration under extreme conditions.

Table 14: Frequency Stability in BTS S12000 Indoor configuration - Channel 512

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Maximum Carrier Frequency Deviation (Hz)		
	Channel 512 @ DC supply voltage		
	-40 V	-48 V	-57 V
-5	13.2	11.2	17.7
5	22	22.6	21.4
15	12.6	16.2	15.2
25	15.3	12.7	15.1
35	13	12.6	13.9
45	13.9	15.6	16.5

The maximum frequency deviation allowed is 90 Hz .
The maximum deviation measured $(22,6 \mathrm{~Hz})$ is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Indoor BTS complies with the requirement.

TEST PROCEDURE

Thermal tests have been performed with S12000 BTS .
The BTS S12000 must operate under the following external extreme temperatures:

- BTS S12000 Outdoor :
$-30^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$
- BTS S12000 Indoor:
$-5^{\circ} \mathrm{C} /+45^{\circ} \mathrm{C}$

Frequency stability test is performed under following extreme conditions:
for outdoor S12000 BTS

- Temperature from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ at intervals of 10 degrees.
- With AC power supply variations: 195 VAC , 230 VAC, 264 VAC
for Indoor S12000 BTS
- Temperature from $-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ at intervals of 10 degrees.
- With DC power supply variations: $-40 \mathrm{~V},-48 \mathrm{~V},-57 \mathrm{~V}$.

The BTS S12000 must operate under the following external extreme temperatures:

Frequency stability test is performed under following extreme conditions:

Modules (eDRX and eSCPA) run with nominal power regulation at maximum power (30W) in GMSK modulation. The eDRX/eSCPA were configured to transmit at maximum power (Static level 0).
A period of at least one hour was allowed prior to measurement to ensure that all the components of the oscillator circuit was stabilized at each temperature.

The equipment was configured as shown in Schematic3.
Schematic3: Test configuration for Frequency Stability

6. EXHIBIT 4: TEST REPORT - HEPA60W GSM850

6.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband GSM Base Station for Nortel Networks, in accordance with FCC Part 22, Subpart H and Part 2, Subpart J of the FCC Rules and Regulations. The measurement procedures were in accordance with the requirements of Part 2.999.

6.2. MEASUREMENTS RESULTS

Table 1 is a summary of the measurement results for this update.

Table 1 : Measurement Results Summary

FCC Measurement Specification	IC Limit Specification RSS 128 Section	Description	Result
2.1046	7.1	RF Power Output	Complies
2.1047	7.2	Modulation characteristics	Complies
2.1049		Occupied Bandwidth	Complies
2.1051	$7.4,7.5$	Spurious Emissions at Antenna Terminals	Complies
2.1055	$8.1,8.2$	Frequency Stability	Complies

Measurements in GSMK modulation for GSM 850 Band are available in document [R7].
Additional GMSK tests are performed for the Edge channel of sub-band A", A, B, A', B'.
Additional Tests are also performed in 8PSK modulation.

6.3. NAME OF TEST: 2.1046 RF POWER OUTPUT
 FCC REQUIREMENTS

4.3.1.1. FCC PART 22.913

(a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 500 watts.
(b) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rmsequivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

TEST RESULTS

Table 2 shows the test results of BTS RF Output Power for GMSK modulation with several coupling configurations:

$\left.$| Radio
 Channel | Frequency
 (MHz) | RF Output
 Power (dBm)
 GMSK | RF Output
 Power (dBm)
 GMSK | Maximum
 modulation
 Duplexer | Rodulation Power
 (dBm)
 H2D |
| :---: | :---: | :---: | :---: | :---: | :---: | | Limit |
| :---: |
| (dBm) | \right\rvert\,

Table 3 shows the test results of BTS RF Output Power for 8PSK modulation supported by eDRX/HePA850 with several coupling configurations

Radio Channel	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	RF Output Power (dBm) 8PSK modulation Duplexer	RF Output Power (dBm) 8PSK modulation H2D	Maximum Rated Power (dBm)	Limit (dBm)
128	869.2	45.7	42.5	$\begin{gathered} 46.5(45 \mathrm{~W}) \\ 8 \text { PSK } \end{gathered}$	50
131	869.8	45.7	42.5		
133	870.2	45.7	42.6		
181	879.8	45.8	42.6		
183	880.2	45.9	42.6		
231	889.8	45.7	42.4		
233	890.2	45.7	42.4		
238	891.2	45.7	42.3		
241	891.8	45.6	42.3		
251	893.8	45.3	42.2		

TEST PROCEDURE

The equipment was configured as shown in schematic 1 .
Schematic 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0) :

- for GMSK modulation, in mode GMSK no synchro,
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5.

Measurements were made at frequencies which are the bottom and top of each of the licensed blocks.

The output power was measured using the power meter which has the following settings :

$$
\begin{array}{ll}
\text { Mode : } & \text { Average } \\
\text { Reference Level Offset : } & \begin{array}{l}
\text { Corrected to account for cable(s) and attenuator } \\
\text { losses }
\end{array}
\end{array}
$$

6.4. NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH FCC REQUIREMENTS

4.4.1.1. FCC PART 2.1049

The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

TEST RESULTS

Figure 1: sample plot for occupied bandwith

GMSK modulation

8PSK Modulation

The maximum occupied bandwidth was found 320 kHz for GMSK modulation
The maximum occupied bandwidth was found 314 kHz for 8PSK modulation

TEST PROCEDURE

The equipment was configured as shown in schematic 2 .
Schematic 2: Test configuration for Occupied bandwidth

The BTS was configured to transmit at maximum power (Static Level 0). Measurements were made at frequencies which were at the bottom and top of the transmit band.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer had the following settings :

Resolution bandwidth :	10 kHz
Video bandwidth :	30 kHz
Span :	1 MHz
Reference level :	40 dBm
Reference Level Offset :	Corrected to account for cable(s) and attenuator
	losses
Level range :	90 dB
Sweep time :	25 ms

6.5. NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

6.5.1 FCC REQUIREMENTS

(e) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$.
(f) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(g) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
(h) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

6.5.2 TEST RESULTS WITH DUPLEXER CONFIGURATION

The reference level for spurious emissions at the antenna terminals is taken from the measured output power ($46.4 \mathrm{dBm}=43.6$ Watts).
Therefore the spurious emissions must be attenuated by at least $43+10 * \log (43.6)=59.4 \mathrm{~dB}$. The measured output power was 46.4 dBm ; therefore the limit is $46.4-59.4=-13 \mathrm{dBm}$.

Spurious measurement is performed in the following coupling configuration with 30W Power amplifier and with duplexer.

The nominal GMSK power at antenna connector: Pduplexer max $=47 \mathrm{dBm}$ The nominal 8PSK power at antenna connector: Pduplexer $\max =45.7 \mathrm{dBm}$

Tables 3 and 4 show the results for Spurious Emissions at Antenna Terminals.

Table 3: Test results For GMSK Modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	$\begin{aligned} & \hline \text { Limit } \\ & \text { (dBm) } \end{aligned}$	Margin (dB)
A"	128	Pmax-4dB	-14.3	-13	1.3
A"'	131	Pmax - 6 dB	-15	-13	2
A	133	Pmax-4dB	-14.3	-13	0.3
A	181	Pmax-6 dB	-15.3	-13	2.3
B	183	Pmax - 4 dB	-14	-13	1
B	231	Pmax-4dB	-13.7	-13	0.7
A^{\prime}	233	Pmax - 4 dB	-14.1	-13	1.1
A ${ }^{\prime}$	238	Pmax	-33.3	-13	20.3
B'	241	Pmax	-31.5	-13	18.5
B'	251	Pmax - 6 dB	-14.8	-13	1.8

Table 4: Test results For 8PSK Modulation

	Channel	Power emission level	Spurious Emissions Level (dBm)	$\begin{aligned} & \text { Limit } \\ & \text { (dBm) } \end{aligned}$	Margin (dB)
A'	128	Pmax-4 dB	-13.7	-13	0.7
A"	131	Pmax - 4 dB	-14.3	-13	1.3
A	133	Pmax - 4 dB	-14.1	-13	1.1
A	181	Pmax - 4 dB	-14.4	-13	1.4
B	183	Pmax - 4 dB	-13.5	-13	0.5
B	231	Pmax - 4 dB	-14.6	-13	1.6
A^{\prime}	233	Pmax - 4 dB	-14.2	-13	1.2
A'	238	Pmax	-28.8	-13	15.8
B'	241	Pmax	-30.6	-13	17.6
B'	251	Pmax - 4 dB	-15.1	-13	2.1

Table 5: Test results for Spurious Emissions at Antenna Terminals

Frequency MHz	Spurious Emissions Level Duplexer (dBm)	Margin (dB) Duplexer
$100 \mathrm{kHz}-50 \mathrm{MHz}$	-45	32
$50 \mathrm{MHz}-500 \mathrm{MHz}$	-42.9	29
$500 \mathrm{MHz}-880.2 \mathrm{MHz}$	-27.6	14
$882.6 \mathrm{MHz}-1994.8 \mathrm{MHz}$	-36.3	23
$1994.8 \mathrm{MHz}-4 \mathrm{GHz}$	-35.7	22
$4 \mathrm{GHz}-12 \mathrm{GHz}$	-35.2	22
$12 \mathrm{GHz}-20 \mathrm{GHz}$	-34.8	22

Notes:

Figures 2,3,4 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures $5,6,7$ show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure $8,9,10$ show sample plots for frequency spans from 0 to 20 GHz with emission on channel 189 at $\operatorname{Pmax}=46.4 \mathrm{dBm}$ with Duplexer module.

Conclusion:

In GMSK modulation, power has to be reduced by $6 \mathrm{~dB}(\mathbf{P} \max \mathbf{- 6 d B})$ for Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251 in order to meet spurious emission requirement.
In 8PSK modulation, the power has to be reduced by 4 dB (\mathbf{P} max $\mathbf{- 4 d B}$) on these channels.

For Edge Channel ARFCN 238, 241, the maximum power (47dBm) has allowed to meet spurious emission requirement.

Figure 2:1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Channel 128 (Pmax - 4 dB)

Channel 131 (Pmax - 6 dB)

Channel 181 (Pmax-6 dB)

Figure 3:1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Channel 183 (Pmax - 4 dB)

Channel 231 (Pmax-4dB)

Figure 4: 1 MHz adjacent band GMSK MODULATION - Duplexer configuration

Channel 233

(-1 MHz adjacent band)
Pmax - 4 dB

Channel 238
(+1 MHz adjacent band)

Pmax

Channel 241
-1MHz adjacent band
P Max

Channel 251
+1 MHz adjacent band
Pmax - 6 dB

Figure 5: 1 MHz adjacent band 8PSK MODULATION - Duplexer configuration Power limitation: Pmax-4dB

Channel 128

Channel 133

Channel 131

Channel 181

Figure 6:1 MHz adjacent band
8PSK MODULATION - Duplexer configuration
Power limitation :Pmax-4 dB

Channel 183

Channel 231

Figure 7 : 1 MHz adjacent band 8PSK MODULATION - Duplexer configuration

Channel 233

- 1 MHz adjacent band,

Power limitation: Pmax -4dB

Channel 238
+1 MHz adjacent band
Power limitation: Pmax

-1MHz adjacent band

Channel 241
Power limitation: P Max

+1 MHz adjacent band

Figure 8 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band $100 \mathrm{kHz}-50 \mathrm{Mhz}$

Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser

Band $50 \mathrm{Mhz}-500 \mathrm{MHz}$

Band 500 Mhz - 880.2 MHz

Figure 9 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 882.6 Mhz-1970.2 MHz

Band 1970.2 Mhz - 1994.8 MHz
Band 1994.8 Mhz-4 GHz

Figure 10 : Out of block emissions (channel 189, Pmax) with Duplexer GMSK modulation

Band 4 GHz - $\mathbf{1 2} \mathbf{~ G H z}$

Band 12 GHz - 20 GHz

Figure 8 : Out of block emissions (channel 189, Pmax) with Duplexer 8PSK modulation

Band $100 \mathrm{kHz}-50 \mathrm{Mhz}$

Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser

Band $50 \mathrm{Mhz}-500 \mathrm{MHz}$

Band 500 Mhz - 880.2 MHz

Figure 9 : Out of block emissions (channel 189, Pmax) with Duplexer 8PSK modulation

Band 882.6 Mhz-1970.2 MHz

Band 1970.2 Mhz - 1994.8 MHz
Band 1994.8 Mhz-4 GHz

Figure 10 : Out of block emissions (channel 189, Pmax) with Duplexer 8 PSK modulation

Band 4 GHz - $\mathbf{1 2 ~ G H z ~}$

Band 12 GHz - 20 GHz

6.5.3 TEST RESULTS WITH H2D CONFIGURATION

Spurious measurement is performed in the H2D combiner coupling configuration with HePA 60W Power amplifier.

The nominal GMSK power at antenna connector: PH2D max $=44 \mathrm{dBm}$. For H2D configuration, spurious have been measured for channels which have the worst results in Duplexer coupling.

Tables 6 and 7 show the results for Spurious Emissions for GMSK and 8PSK modulation at Antenna Terminals.

Table 6 : Test results For GMSK Modulation with H2D combiner

	Channel	Power emission level	Spurious Emissions Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
A''	128			-13	
A' $^{\prime}$	131	Pmax -2 dB	-14.4	-13	1.4
A	133			-13	
A	181	Pmax -2 dB	-13.9	-13	0.9
B'	241	Pmax -2 dB	-13.1	-13	
B'	251	Pmax	-13	0.1	

Table 7 : Test results For 8PSK Modulation with H2D combiner

	Channel	Power emission level	Spurious Emissions Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
A''	128			-13	
A'' $^{\prime}$	131	Pmax	-14.4	-13	1.4
A	133			-13	
A	181	Pmax	-13.9	-13	0.9
B'	241			-13	
B'	251	Pmax	-14.8	-13	1.8

Notes :

Figures 11 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for GMSK modulation.

Figures 12 show sample plots for the case when the transmitter was respectively tuned to edge channels in Tx band for 8PSK modulation.

Figure 11:1 MHz adjacent band GMSK MODULATION - H2D configuration Power limitation :Pmax - $\mathbf{2 d B}$

Channel 131

Channel 181

Channel 251

Figure 12: 1 MHz adjacent band 8PSK MODULATION - H2D configuration Power limitation :Pmax

Channel 131

Channel 181

Channel 251

Conclusion: .

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2 dB in order to meet spurious emission requirement in GMSK modulation with H2D configuration.

For Edge Channel ARFCN 238, 241, the maximum power (44dBm) has allowed to meet spurious emission requirement.

6.5.4 TEST PROCEDURE

The equipment was configured as shown in schematic3.
Schematic3: Test configuration for Spurious emissions at antenna terminals

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 128 and 251 are those channels which are at the lower and upper edges of the eGSM 850 band respectively.

The BTS was configured to transmit at maximum power (static level 0) or a reduced power :

- for GMSK modulation, in mode GMSK no synchro
- for 8PSK modulation, in mode logical PDCH, Type GPRS, coding MCS5 .

Initially the transmitter was set to operate to maximum power. Then in case of out of limits, the power has been decreased by 2 dB .

For these measurements, the resolution bandwidth was of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was closed to 300 kHz . Therefore, the resolution bandwidth was set to 3 kHz .

The spectrum analyzer had the following settings for adjacent band:	
Resolution bandwidth :	3 kHz
Video bandwidth :	10 kHz
Span :	1 MHz
Reference level :	30 dBm
Reference Level Offset :	Corrected to account for cable(s), filter and
	attenuator losses
Level range :	100 dB
Sweep time :	Coupled
Detector:	Sample
Trace:	Average
Sweep count:	200

The spectrum analyzer had the following settings for out of block emissions.
Resolution bandwidth :
1 MHz
Video bandwidth : $\quad 1 \mathrm{MHz}$

The emissions were investigated up to the twentieth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

6.6. NAME OF TEST: 2.1055 FREQUENCY STABILITY

FCC REQUIREMENTS

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

FCC RESULTS:

$>$ BTS S12000 Outdoor :

For Outdoor BTS, the worst thermal case for HePA850 module is S12000 BTS. So frequency stability is measured in the BTS S12000 OUTDOOR with AC supply voltage.

Table 8: Frequency Stability in BTS S12000 Outdoor configuration - Channel 189

	Maximum Carrier Frequency Deviation (Hz)		
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	85% Nominal Supply voltage	Nominal Supply voltage	115% Nominal Supply voltage
	195 V AC	230 V AC	264 V AC
	$-12,3$	8,8	9,8
-30	$-7,8$	$-7,8$	$-9,9$
-20	8,5	$-8,9$	$-11,4$
-10	12,2	9,7	$-9,3$
0	$-8,9$	10,7	$-9,1$
10	$-10,1$	8,1	$-9,6$
20	12,2	$-8,5$	$-11,4$
30	15,2	$-8,5$	$-8,7$
40	$-8,8$	$-7,1$	11,4
50	$-8,3$	$-9,8$	8,46

The maximum deviation measured $(\mathbf{1 5} \mathbf{~ H z})$ is fully compliant to FCC to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Outdoor BTS complies with the requirement.

BTS S12000 Indoor :

For Indoor BTS, the worst thermal case for HePA850 module is S 8000 BTS .

So frequency stability is measured in the BTS S8000 INDOOR in DC supply voltage. The compliance for S8000 Indoor BTS ensures S12000 Indoor BTS compliance.

Table 9: Frequency Stability in quick test bench configuration - Channel 189

$\begin{gathered} \text { Module } \\ \text { Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ \hline \hline \end{gathered}$	Maximum Carrier Frequency Deviation (Hz)		
	$\begin{gathered} \text { DC Voltage } \\ -40 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { DC Voltage } \\ -48 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { DC Voltage } \\ -57 V \end{gathered}$
-5	-10.98	-10.46	-11.62
5	-14.08	-8.52	-10.53
15	15.5	-10.85	-10.4
25	-12.07	-9.36	10.65
35	-13.3	-17.24	11.49
45	-16.72	-14.92	-12.53

The maximum frequency deviation allowed is 45 Hz .

The maximum deviation measured $\mathbf{(- 1 7} \mathbf{~ H z})$ is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S12000 Indoor BTS still complies with the requirement

TEST PROCEDURE

Thermal tests have been performed with OUTDOOR S12000 BTS / INDOOR S8000 BTS.
The BTS must operate under the following external extreme temperatures:

- BTS S12000/S8000 Outdoor:
$-40^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$
- BTS S12000 /S8000 Indoor:
$-5^{\circ} \mathrm{C} /+45^{\circ} \mathrm{C}$

Frequency stability test is performed under following extreme conditions for Outdoor BTS:

- Temperature from $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ at intervals of 10 degrees.
- With AC power supply variations: 195 VAC, 230 VAC, 264 VAC.

Frequency stability test is performed under following extreme conditions for Indoor BTS:

- Temperature from $-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ at intervals of 10 degrees.
- With DC power supply variations: -40.5 VDC, -48 VDC, -57 VDC.

All Modules (eDRX and HePA) run with nominal power regulation at maximum power (60W) in GMSK modulation. The eDRX/HePA were configured to transmit at maximum power (Static level 0).

A period of at least one hour was allowed prior to measurement to ensure that all of the components of the oscillator circuit had stabilized at each temperature.

The equipment was configured as shown in schematic 4 .

Schematic 4 : Test configuration for Frequency Stability

7. MEASUREMENT EQUIPMENT LIST

List of all of the measurement equipment used in this report.

Equipment description	Manufacturer	Model	Serial No.	V/A date
Power Meter	Giga-tronics	8542C	522393	$24 / 10 / 07$
Spectrum Analyser	R\&S	FSEA	520564	$16 / 01 / 06$
Spectrum Analyser	R\&S	FSEM	517751	$01 / 03 / 07$
Signal Generator	R\&S	SMT 03	509923	$09 / 06$
30 dB attenuator 100 W	Spinner		25483	
20 dB attenuator 80 W	Radiall		R417720118	

8. EXHIBIT 2 : UPDATED EQUIPMENT LIST

Description Base Cabinet	Hardware code	Comment
CPCMI T1	NTQA66AA	
CMCF	NTQA66CB	
CBCF	NTQA66GA	

- PCS1900 Radio Modules used with the 60W High Power Amplifier configuration

Radio Modules GSM 1900		
GSM 1900 eDRX	NTQA88PA	EDRX PCS1900 (GMSK / 8PSK)
GSM 1900 High Power Amplifier	NTQA50RA	HePA (60 W GMSK / 45W 8PSK)
GSM 1900 DRX ND	NTQA01DA	DRX ND / ND2 PCS1900 (GMSK)
GSM 1900 High Power Amplifier	NTQA50RA	HePA (60 W GMSK)
GSM 1900 Duplexer	NTQA51DA NTQA51FA	Without TOS meter With TOS meter
GSM1900 Tx Filter	NTQA52CA NTQA52CB	Without TOS meter With TOS meter
GSM 1900 Two Ways Hybrid Duplexer (60W Power handling)	NTQA38KA NTQA38LA	Without TOS meter With TOS meter
GSM 1900 Four Ways Hybrid Duplexer	NTQA52BA NTQA52BB	Without TOS meter With TOS meter
GSM 1900 Splitter	NTQA10AA	Rx Splitter for Rx way only

(*) New software release introduction allow the functionality of HePA1900 with DRX
ND/ND2 in GMSK modulation.
Power limitation to comply to Adjacent Band spurious at antenna connector:

Coupling configuration	System Power limitation GMSK modulation	System Power limitation $\mathbf{8 ~ P S K ~ m o d u l a t i o n ~}$	
Diplexer Tx Filter	Power Limitation : Pmax $-\mathbf{6 ~ d B ~}=40.5 \mathrm{dBm}$	Power Limitation : Pmax $-\mathbf{2 ~ d B}=43.8 \mathrm{dBm}$	
H2D	Power Limitation : Pmax $-\mathbf{2 ~ d B ~}=41 \mathrm{dBm}$	Pmax	$=42 \mathrm{dBm}$
H4D	Pmax $=40 \mathrm{dBm}$	Pmax	$=39 \mathrm{dBm}$

- PCS1900 Radio Modules used with 30W Power Amplifier configuration

Description	Hardware code	Comment

Radio Modules GSM 1900		
GSM 1900 DRX	NTQA01DA	DRX ND PCS1900 (GMSK only)
GSM 1900 Power Amplifier	NTQA50DB	PA GMSK 30W
GSM 1900 eDRX	NTQA88PA	EDRX PCS1900 (GMSK / 8PSK)
GSM 1900 Power Amplifier	NTQA50GA	eSCPA (GMSK / 8PSK) 30W
GSM 1900 Diplexer	NTQA51DA NTQA51FA	Without TOS meter With TOS meter
GSM1900 Tx Filter	NTQA52CA	Without TOS meter NTQA52CB
With TOS meter		

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation (If 8PSK is supported by modules)
Diplexer Tx Filter	Power Limitation : Pmax $-\mathbf{4 ~ d B ~}=\mathbf{4 0} \mathbf{~ d B m}$	Pmax $=44 \mathrm{dBm}$
H2D	Pmax $=41 \mathrm{dBm}$	Pmax $=41 \mathrm{dBm}$
H4D	Pmax $=37 \mathrm{dBm}$	Pmax $=37 \mathrm{dBm}$

- GSM850 Radio Modules used with 30W Power Amplifier configuration

Description	Hardware code	Comment

Radio Modules GSM 850		
GSM 850 DRX	NTQA88HA	eDRX
GSM 850 Splitter	NTQA88XA	
GSM 850 Power Amplifier	NTQA37AA	eSCPA
Full Band coupling (Tx Band 869-894 MHz)		
GSM 850 Duplexer	NTQA38GA NTQA38FA	Without TOS meter With TOS meter
GSM 850 Tx Filter	NTQA39CA NTQA39DA	Without TOS meter With TOS meter
GSM 850 Two Ways Hybrid Duplexer	NTQA38JA NTQA38HA	Without TOS meter With TOS meter
Part Band coupling (Tx Band 869- 891.5 MHz)		
GSM 850 Duplexer	NTQA38CA NTQA38DA	Without TOS meter With TOS meter
GSM 850 Tx Filter	NTQA39AA NTQA39BA	Without TOS meter With TOS meter
GSM 850 Two Ways Hybrid Duplexer	NTQA38BA NTQA38AA	Without TOS meter With TOS meter

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation (If 8PSK is supported by modules)
Diplexer Tx Filter	Power Limitation : Pmax $-\mathbf{2 ~ d B ~}=\mathbf{4 2 ~ d B m}$ Except	Power Limitation : Pmax $-\mathbf{2 ~ d B = 4 2 ~ d B m ~}$ Except
H2D	ARFCN 238, 241 : Pmax	ARFCN 238, 241: Pmax

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 2 dB in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, maximum power (44dBm) has allowed to meet spurious emission requirement.

- GSM850 Radio Modules used with 60W Power Amplifier configuration

Description	Hardware code	Comment

Radio Modules GSM 850		
GSM 850 DRX	NTQA88HA	eDRX
GSM 850 Splitter	NTQA88XA	
GSM 850 High Power Amplifier	NTQA50UA	GSM850 HePA (GMSK 60W / 8PSK 45W)
Full Band coupling (Tx Band 869-894 MHz)		
GSM 850 Duplexer	NTQA38GA NTQA38FA	Without TOS meter With TOS meter
GSM 850 Tx Filter	NTQA39CA NTQA39DA	Without TOS meter With TOS meter
GSM 850 Two Ways Hybrid Duplexer	NTQA38JA NTQA38HA	Without TOS meter With TOS meter
Part Band coupling (Tx Band 869- 891.5 MHz)		
GSM 850 Duplexer	NTQA38CA NTQA38DA	Without TOS meter With TOS meter
GSM 850 Tx Filter	NTQA39AA NTQA39BA	Without TOS meter With TOS meter
GSM 850 Two Ways Hybrid Duplexer	NTQA38BA NTQA38AA	Without TOS meter With TOS meter

Power limitation to comply to Adjacent Band spurious at antenna connector :

Coupling configuration	System Power limitation GMSK modulation	System Power limitation 8 PSK modulation
Diplexer Tx Filter	Power Limitation : Pmax $-\mathbf{6 ~ d B}=40.4 \mathrm{dBm}$ Except ARFCN 238, 241 : Pmax	Power Limitation: Pmax $-\mathbf{4 ~ d B}=41.9 \mathrm{dBm}$ Except
H2D	Power Limitation : Pmax $-\mathbf{2 d B}=41.2 \mathrm{dBm}$ Except ARFCN 238, 241: Pmax	
	ARFCN 238, 241 : Pmax	

For Edge Channel ARFCN 128, 131, 133, 181, 183, 231, 233, 251, power has to be reduced by 6 dB (GMSK) or 4 dB (8 PSK) in order to meet spurious emission requirement.

For Edge Channel ARFCN 238, 241, maximum power has allowed to meet spurious emission requirement.

