

EXHIBIT 2A Rev 1

TEST REPORT 1 (Nortel)

Applicant: Nortel Networks
For original Equipment
Application on:

FCC: AB6NT2100V3231

IC: 332D-2G1V3231

Restricted

Test Report for FCC Equipment Authorization FCC Test Report

Dataset Name: AB6NT2100V3231
Document Status: Approved

Stream 01, Issue 01

Issue Date: 22 February 2008

Author: Tamim Alkhalfah

Security Status: Nortel Confidential

The master of this document is stored on an electronic database and is "write protected"; it may be altered only by authorized persons. While copies may be printed, it is not recommended. Viewing of the master document electronically ensures access to the current issue. Any hardcopies must be regarded as uncontrolled copies.

© 2008 Nortel

The information disclosed herein is proprietary to Northern Telecom or others and is not to be used by or disclosed to unauthorized persons without the written consent of Northern Telecom. The recipient of this document shall respect the security status of the information.

Blank Page

Table of Contents

Publication History	11
List of Consultants	
Table 1: Decision Maker	11
Table 2: Decision Ratifier	11
Table 3: Revision History	12
Acronyms and Abbreviations	13
1 Introduction	15
1.1 Required Tests	15
2 Engineering Declaration	16
3 Equipment Authorization Application Requirements	17
3.1 Standard Test Conditions and Test Equipment	
3.2 EUT Identification List	
3.3 Test Equipment List	18
4 Transmitter Tests	19
4.1 Certification Requirements	
4.1.1 Application for certification	
4.1.1 FCC Part 2.1033 Application for certification	
4.1.2 Test Method	
4.1.3 Test Setup	19
4.1.4 Test Results	19
4.2 RF Power Output	20
4.2.1 RF Power Output Requirements	20
4.2.1 FCC Part 2.1046	20
4.2.2 Test Method	20
4.2.3 Test Setup	20
4.2.4 DOM	20
4.2.5 RF Output Power Test Results	22
4.3 Occupied Bandwidth	
4.3.1 Occupied Bandwidth Requirements	24
4.3.1 FCC Part 2.1049	
4.3.2 Test Method	
4.3.3 Test Setup	24
4.3.4 Test Result	
4.4 Spurious Emissions at Antenna Terminals	
4.4.1 Spurious Emissions Requirements	
4.4.1 FCC Part 2.1051	
4.4.1 FCC Part 2.1057 - Frequency Spectrum to be investigated	
4.4.1 FCC Part 27.53 Limit	
4.4.2 Test Method	
4.4.2.1 Noise Floor	
4.4.2.2 Adjacent 1MHz to indicated suband (Upper and Lower)	34

4.4.2.3 All other Spurious Emissions up to 5 GHz	36
4.4.2.4 Spurious Emissions from 5 GHz to 20 GHz	
4.4.3 Test Setup	
4.4.4 Test Results IS95	39
4.4.5 Test Results IS856	41
4.5 Frequency Stability	43
4.5.1 Frequency Stability Requirements	43
4.5.1 FCC Part 2.1055	43
4.5.1 FCC Part 27.54 Limit	43
4.5.2 Test Procedure	44
4.5.3 Frequency Results	44
References	47

List of Figures

Figure 1: Test Setup for RF Power Output Measurement	21
Figure 2: Test Setup for Occupied Bandwidth Measurement	25
Figure 3: Occupied Bandwidth, Single Carrier, Channel 25 IS-95	27
Figure 4: Occupied Bandwidth, 2 Carrier, Channels 25, 50 IS-95	28
Figure 5: Occupied Bandwidth, 3 Carrier, Channels 25, 50, 75, IS-95	29
Figure 6: Occupied Bandwidth, 1 Carrier, Channels 25, IS-856	30
Figure 7: Occupied Bandwidth, 3 Carrier, Channels 25, 50, 75, IS-856	31
Figure 8: Occupied Bandwidth, 3 Carrier, Channels 25 (IS-95), 50 (IS-856), & 75 (IS-856)	32
Figure 9: Test Setup for Spurious Emissions Measurement	38
Figure 10: Test configuration for Frequency Stability	44
Figure 11: Conducted Spurious Emissions - 1 Carrier, Ch. 25, IS95 (9kHz to Lower Adjacent 1MHz)	
Figure 12: Conducted Spurious Emissions - 1 Carrier, Ch. 25, IS95 (9kHz to Lower Adjacent 1MHz) Verification	
Figure 13: Conducted Spurious Emissions - 1 Carrier, Ch. 25, IS95 (Lower Adjacent 1MHz).	51
Figure 14: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (Upper Adjacent 1MHz):	52
Figure 15: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (Upper Adjacent 1MHz t 5GHz)	
Figure 16: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (Upper Adjacent 1MHz t 5GHz) Verification	
Figure 17: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (5GHz to 22GHz)	55
Figure 18: Conducted Spurious Emissions - 2 Carrier, Ch. 25, 50, IS95 (9kHz to Lower Adjacet 1MHz)	
Figure 19: Conducted Spurious Emissions - 2 Carrier, Ch. 25, 50, IS95 (9kHz to Lower Adjaces 1MHz) Verification	
Figure 20: Conducted Spurious Emissions - 2 Carrier, Ch. 25, 50, IS95 (Lower Adjacent 1MH 58	(z)
Figure 21: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875 IS95 (Upper Adjacent 1MH 59	(z)
Figure 22: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875, IS95 (Upper Adjacent 1MH to 5GHz)	
Figure 23: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875, IS95 (Upper Adjacent 1MF to 5GHz) Verification	

Figure 24: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875, IS95 (5GHz to 22GHz)62
Figure 25: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75, IS95 (9kHz to Lower Adjacent 1MHz)
Figure 26 : Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75, IS95 (9kHz to Lower Adjacent 1MHz) Verification
Figure 27: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75, IS95 (Lower Adjacent 1MHz)
Figure 28: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (Upper Adjacent 1MHz)
Figure 29: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (Upper Adjacent 1MHz to 5GHz)
Figure 30 : Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (Upper Adjacent 1MHz to 5GHz) Verification
Figure 31: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (5GHz to 22GHz) 69
Figure 32 : Conducted Spurious Emissions - 1 Carrier, Ch. 25, QPSK (9kHz to Lower Adjacent 1MHz)
Figure 33 : Conducted Spurious Emissions - 1 Carrier, Ch. 25, QPSK (9kHz to Lower Adjacent 1MHz) Verification
Figure 34 : Conducted Spurious Emissions - 1 Carrier, Ch. 25, QPSK (Lower Adjacent 1MHz) 72
Figure 35 : Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (Upper Adjacent 1MHz). 73
Figure 36: Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (Upper Adjacent 1MHz to 5GHz)74
Figure 37: Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (Upper Adjacent 1MHz to 5GHz) Verification
Figure 38: Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (5GHz to 22GHz)76
Figure 39: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75 8-PSK(9kHz to Lower Adjacent 1MHz)
Figure 40 : Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75 8-PSK (9kHz to Lower Adjacent 1MHz) Verification
Figure 41: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75 8-PSK (Lower Adjacent 1MHz)79
Figure 42: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (Upper Adjacent 1MHz)80
Figure 43: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (Upper Adjacent 1MHz to 5GHz)

Figure 44: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (Upper Adjacent 1MHz to 5GHz) Verification
Figure 45 : Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (5GHz to 22GHz) 83
Figure 46: Conducted Spurious Emissions - 3 Carrier, Ch. 25 IS95, Ch. 50 IS856, Ch. 75 IS856 (9kHz to Lower Adjacent 1MHz)
Figure 47: Conducted Spurious Emissions - 3 Carrier, Ch. 25 IS95, Ch. 50 IS856, Ch. 75 IS856 (9kHz to Lower Adjacent 1MHz) Verification
Figure 48: Conducted Spurious Emissions - 3 Carrier, Ch. 25 IS95, Ch. 50 IS856, Ch. 75 IS856 (Lower Adjacent 1MHz)
Figure 49: Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 (Upper Adjacent 1MHz)
Figure 50: Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 (Upper Adjacent 1MHz to 5GHz)
Figure 51: Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 (Upper Adjacent 1MHz to 5GHz) Verification
Figure 52 : Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 , (5GHz to 22GHz)90

List of Tables

Table 1:	Consultants	11
Table 2:	Decision maker	11
Table 3:	Ratifier	12
Table 4:	History	12
Table 5:	Required Tests as per Part 2, Subpart J, for Equipment Authorization	15
Table 6:	EUT Identification List	17
Table 7:	Test Equipment List	18
Table 8:	Average Current Values @ Pout = 48.67 dBm	19
Table 9:	RF Output Power of the 3231 BTS Radio Module 1-Carrier IS95	22
Table 10:	RF Output Power of the 3231 BTS Radio Module 2-Carrier IS95	22
Table 11:	RF Output Power of the 3231 BTS Radio Module 3-Carrier IS95	22
Table 12:	RF Output Power of the 3231 BTS Radio Module 1-Carrier IS856 (QPSK)	22
Table 13:	RF Output Power of the 3231 BTS Radio Module 3-Carrier IS856 (8-PSK)	23
Table 14:	RF Output Power of the 3231 BTS Radio Module 3-Carrier IS856 (16-QAM)2	23
Table 15:	RF Output Power of the 3231 BTS Radio Module / Combination 3-Carrier: IS856 and IS	9
	23	
Table 16:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 1-Carrier IS95 2	25
Table 17:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 2-Carrier IS95 2	25
Table 18:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS95 2	26
Table 19:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 1-Carrier IS856 QPSk	(
T-11- 00	26	
Table 20:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS856 16-QA	۱I۷
Table 04:	26 Management Opening and Department to the 2024 DTC Dedic Medicle 2 Corrier ISSES 45 OA	
Table 21:	Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS856 16-QA & IS95 26	
Table 22:	Spectrum Analyzer Noise Floor Level	
Table 23:	Adjacent 1MHZ Spectrum Analyze Settings	
Table 24:	All other Emission up to 5 GHz Spectrum Analyzer Settings	36
Table 25:	Spurious Emissions from 5 GHz to 20 GHz Spectrum Analyzer Settings	
Table 26:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port one Carrier IS95 3	
Table 27:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port two Carrier IS95 3	
Table 28:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier IS-95	
Table 29:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port One Carrier Band IS85 (QPSK) 41	6
Table 30:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier IS856 (8PS 41	K
Table 31:	Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier Combine IS-95 & IS-856 (16QAM) 42	d
Table 32:	Test results for Frequency Stability versus Power supply Voltage	45
Table 33:	Test results for Frequency Stability versus Temperature at -48V operation	

Publication History

The latest controlled release of this document is located in Livelink at the following location:

http://livelink2.ca.nortel.com/livelink/livelink.exe?func=ll&objId=19691834&objAction=browse&sort=name&viewType=1

All other soft and hard copies are uncontrolled. It is the responsibility of the reader to ensure that the latest release of this document is being used.

List of Consultants

The following people have reviewed this document prior to its release and have recommended its approval:

Table 1: Consultants

Printed Name	Function	Department
Rahim Nathoo	System Prime	2M40
Peter Goussev	System Design	2M40
James Loo	Systems Design	2M40
Igor Acimovic	Systems Design	2M40
Hossein Yektaii	Systems Design	2M40
Brian Racey	Systems Design	2M40
Mark Willetts	Systems Manager	2M40
Marin Sampaleanu	CDMA/TDMA Regulatory Prime	2U20

Decision Maker

Table 2: Decision maker

Ratifier's Name	Signature	Date
Marin Sampaleanu		Feb 21, 2008

Decision Ratifier

The release of this document has been reviewed and approved for distribution and use by the fol-

lowing:

Table 3: Ratifier

Ratifier's Name	Signature	Date
Rick Kerslake		Feb 22, 2008

Revision History

Table 4: History

Stream/Issue	Revision Date	Reason for Change	Author (Dept.)
00/01	Feb 12, 2008	Added FCC Test results	Tamim Alkhalfah (2M40)
00/02	Feb 19, 2008	Added PA average currents Updated references list Updated list of equipment and instruments	Tamim Alkhalfah (2M40)
01/01	Feb 22, 2008	Document Approved	Tamim Alkhalfah (2M40)

Acronyms and Abbreviations

ASIC Application Specific Integrated Circuit

AWS Advanced Wireless Service

BBW Breathing, Blossoming and Wilting

BPF Bandpass Filter

BTS Base Station Transceiver Subsystem

BW Bandwidth

CDMA Code Division Multiple Access

CR Cost Reduced

dBFS dB relative to Full Scale

DDS Direct Digital Synthesizer

DPM Duplexer Preselector Module

EEPROM Electrically Erasable and Programmable ROM

EC Engineering Change

ERLCE Excess Reverse Link Capacity Estimate

HSSPC High-Speed Serial Protocol Controller

HW Hardware

IF Intermediate Frequency

IIC Inter-Integrated Circuit Bus

IS Interim Standard
LO Local Oscillator

LPF Lowpass Filter

MFRM-3 Multi-Carrier Flexible Radio Module

NF Noise Figure

OCNS Orthogonal Channel Noise Source

OH OverHead

PA Power Amplifier
PC Personal Computer

PPR Peak Power Reduction

PSA Product Specification Agreement

RBW Resolution BandWidth

Test Report for FCC Equipment Authorization: 3231 BTS

RF Radio Frequency

Rx Receive

SA Spectrum Analyzer

SFRM Single Carrier Flexible Radio Module

SW Software

TBD To Be Determined

TDM Tri-sector Duplexer Module

TM Triplexer Module

TPTL Transmit Power Tracking Loop

TRM Transmitter Receiver Module

Tx Transmit

1 Introduction

This test report supports FCC filing for the 3231 BTS. This filing includes single, two, and three carrier modes for the 2100MHz AWS band. The following tests were performed: RF Power Output, Occupied Bandwidth, Spurious Emissions at Antenna Terminals, and Transmitter Test (CDMA Mode Transmitter). Frequency over voltage and temperature test results are included. Emissions testing was conducted at -48VDC at room temperature. Both IS95 and IS856 modulation schemes are included in this report.

This test report will be submitted in accordance with the FCC Rules and Regulations, Part 2, Subpart J, Sections 2.1046 through 2.1057 for equipment authorization of Nortel Networks' CDMA 3231 BTS.

The 3231 BTS is intended for use in the Domestic Public Cellular Radio Telecommunications Service and is designed in accordance with the following standards:

- CFR 47, Part 27, Subpart L, 1710-1755 MHz, 2110-2155 MHz, 2160-2180 MHz Bands [1]
- CFR 47, Part 2, Subpart J, Equipment Authorization Procedures [2]
- TIA/EIA-97-E, Recommended Minimum Performance Standards for Base Stations Supporting Dual Mode Spread Spectrum Systems [3]
- Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Network C.S0032-0, Version 2.0 [4]

The 3231 Radio Module (RM) is capable of transmitting simultaneously on three sectors. Data collected on all sectors are combined together.

1.1 Required Tests

Table summarizes the required tests for the CDMA 3231 BTS.

Table 5: Required Tests as per Part 2, Subpart J, for Equipment Authorization

FCC Measurement Specification	FCC Limit Specification	Description	Test to be Performed?
2.1033		PA current specification	Yes
2.1046		RF Power Output	Yes
2.1049		Occupied Bandwidth	Yes
2.1051, 2.1057	27.53	Spurious Emissions at Antenna Terminals	Yes

Table 5: Required Tests as per Part 2, Subpart J, for Equipment Authorization

FCC Measurement Specification	FCC Limit Specification	Description	Test to be Performed?
2.1053, 2.1057		Field Strength of Spurious Emissions	Yes
2.1055	27.54	Frequency Stability	Yes

2 Engineering Declaration

The CDMA 3231 BTS Radio Module has been tested in accordance with the requirements contained in the Federal Communications Commission Rules and Regulations Part 2 and 27.

To the best of my knowledge, these tests were performed in accordance with good engineering practices using measurement procedures consistent with industry or commission standards or previous Commission correspondence or guidance and demonstrate that this equipment complies with the appropriate standards. All tests were conducted on a representative sample of the equipment for which equipment authorization is sought.

INSERT SIGNATURES HERE

3 Equipment Authorization Application Requirements

3.1 Standard Test Conditions and Test Equipment

The 3231 BTS was tested under the following standard test conditions unless otherwise noted:

Ambient Temperature: 20 to 35 degrees C

• Ambient Humidity: 20 to 40%

• DC Supply Voltage: -48 Vdc (nominal)

• Input modulation: IS-95 and IS-856 (QPSK, 8PSK, 16QAM)

3.2 EUT Identification List

Table shows the identification of the components required for testing.

Table 6: EUT Identification List

Equipment Description	Model / Part Number	Release Number	Serial Number
3231 BTS	NTDV60DA	B1	NNTMEE6W101B
DOM rel A Modem	NTBW89DA	01	NNTM536G3VRH
DOM rel A Modem	NTBW89DA	N6	NNTM536G3VPF
DOM rel A Modem	NTBW89DA	R1	NNTM536G3YMG
XCEM-192 Modem	NTRZ80BA	02	NNTM74X0VC6M

Approved Stream 01 Issue 01 Page 17

3.3 Test Equipment List

Table shows the identification of the test equipment required.

Table 7: Test Equipment List

Description	Manufacturer	Model	Serial Number	Cal. Due Date
3 Hz - 26.5 GHz PSA Series Spectrum Analyzer	Agilent	E4440A	MY46187461	25-Dec-08
RF Power Meter	Agilent	HP4417A	MY45100369	24-May-08
RF Power Sensor Head	Agilent	8481A	MY41097851	01-Jun-08
30dB Attenuator (>100W)				
RF Cables				

4 Transmitter Tests

4.1 Certification Requirements

4.1.1 Application for certification

FCC Part 2.1033 Application for certification.

- (c) Applications for equipment other than that operating under parts 15 and 18 of the rules shall be accompanied by a technical report containing the following information:
- (8) The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

4.1.2 Test Method

This information required for this section is available from:

https://livelink-ott.ca.nortel.com/livelink/livelink.exe/Open/27211667

Title: MFRM-3 AWS (2.1 GHz) Power Amplifier (PA) Assembly Verification Notice

Dataset Name: VNGZ74EA Document Status: Released

Stream: 01 Issue: 01

Document Prime: Phil Khoury

4.1.3 Test Setup

See above document.

4.1.4 Test Results

The 3231 BTS Radio Module has three PA pallets. Each pallet has 2 transistors (connected in parallel) comprising the final gain block. The average current below is identical for all PA pallets.

Table 8: Average Current Values @ Pout = 48.67 dBm

Average Current Values @ Pout = 48.67 dBm		
	Radio Module Ambient Temperature 25 °C	
	Q1 (Amps) Q2 (Amps)	
Mean	5.25 1.65	

4.2 RF Power Output

4.2.1 RF Power Output Requirements

FCC Part 2.1046

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in Sec. 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

4.2.2 Test Method

Setup the 3231 BTS Radio Module to transmit at the rated power for each of the carrier configurations in each of the Baseband modulation formats IS-95 and IS-856. Measurements were made on channels ranging from the bottom to the top of the operator bands with the 3231 BTS Radio Module operating with -48Vdc. The RF output power was measured using the power meter at the sector's output. The measured power was maintained within +/- 0.25 dB.

4.2.3 Test Setup

The set-up required for the BTS 3231 Radio Module RF output power test is illustrated in Figure 1. RF output power measurements were referenced to the antenna port of the 3231 BTS.

4.2.4 **DOM**

The conducted spurious emissions of the 3231 BTS Radio Module, with IS-856 (1xEVDO) waveforms were tested at maximum power. All supported modulations of EVDO (QPSK, 8-PSK, 16QAM) results are grouped together.

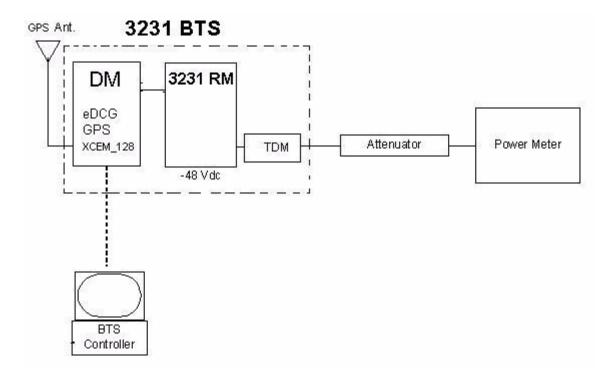


Figure 1: Test Setup for RF Power Output Measurement

4.2.5 RF Output Power Test Results

Table 9: RF Output Power of the 3231 BTS Radio Module 1-Carrier IS95

Channel Number	Frequency (MHz)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
25	2111.25	48.92	48.80
875	2153.75	48.80	48.80

Table 10: RF Output Power of the 3231 BTS Radio Module 2-Carrier IS95

Channel Number	Frequency (MHz)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
350, 375	2127.50, 2128.75	48.84	48.80
625, 650	2141.25, 2142.50	48.93	48.80

Table 11: RF Output Power of the 3231 BTS Radio Module 3-Carrier IS95

Channel Number	Frequency (MHz) (centre channel)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
25, 50, 75	2112.50	48.89	48.80
125, 150, 175	2117.50	48.91	48.80

Table 12: RF Output Power of the 3231 BTS Radio Module 1-Carrier IS856 (QPSK)

Channel Number	Frequency (MHz)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
575	2138.75	48.80	48.80
625	2141.25	48.87	48.80

Table 13: RF Output Power of the 3231 BTS Radio Module 3-Carrier IS856 (8-PSK)

Channel Number	Frequency (MHz) (centre channel)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
225, 250, 275	2122.50	48.78	48.80

Table 14: RF Output Power of the 3231 BTS Radio Module 3-Carrier IS856 (16-QAM)

Channel Number	Frequency (MHz) (centre channel)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
425, 450, 475	2132.50	48.88	48.80
525, 550, 575	2137.50	48.87	48.80

Table 15: RF Output Power of the 3231 BTS Radio Module / Combination 3-Carrier: IS856 and IS95

Channel Number	Frequency (MHz) (centre channel)	Measured RF Output Power (dBm)	Typical Maximum Rated Power (dBm)
725*, 750**, 775***	2147.50	48.95	48.80
825*, 850**, 875***	2152.50	48.94	48.80

^{*} IS-95 Carrier.

^{**} IS-856 Carrier (8-PSK)

^{***} IS-856 Carrier (16-QAM)

4.3 Occupied Bandwidth

4.3.1 Occupied Bandwidth Requirements

FCC Part 2.1049

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

- (g) Transmitter in which the modulating baseband comprises not more than three independent channels when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.
- (h) Transmitters employing digital modulation techniques when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

4.3.2 Test Method

Setup the BTS controller to enable the 3231 BTS Radio Module to transmit at maximum rated power for each of the carrier configurations and in each of the Baseband modulation formats IS-95 and IS-856 (16 QAM). Measurements were made on channels at the bottom and top of each of the sub bands.

The Occupied Bandwidth was measured using the 99% channel power feature of the spectrum analyzer.

4.3.3 Test Setup

The set-up required for the 3231 Radio Module Occupied bandwidth test is illustrated in Figure 2.

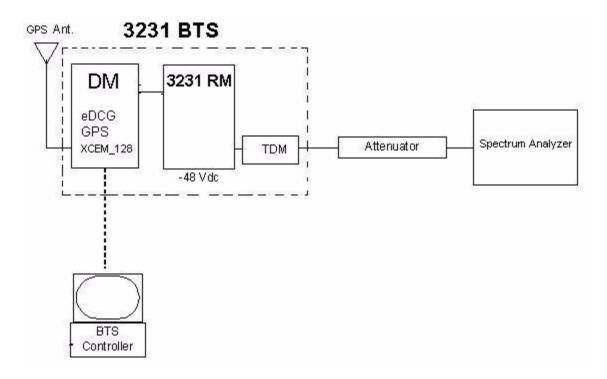


Figure 2: Test Setup for Occupied Bandwidth Measurement

4.3.4 Test Result

Table 16: Measured Occupied Bandwidth of the 3231 BTS Radio Module 1-Carrier IS95

Channel Number	Frequency (MHz)	Measured Occupied Bandwidth (MHz) (1-Carrier)
25	2111.25	1.2657
875	2153.75	1.2655

Table 17: Measured Occupied Bandwidth of the 3231 BTS Radio Module 2-Carrier IS95

Channel Number	Frequency (MHz)	Measured Occupied Bandwidth (MHz)
25, 50	2111.25, 2112.50	2.4877
850, 875	2152.50 2153.75	2.4856

February 27, 2008 Nortel

Table 18: Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS95

Channel Number	Frequency (MHz) (centre channel)	Measured Occupied Bandwidth (MHz)
25, 50, 75	2112.50	3.7179
825, 850, 875	2152.50	3.7189

Table 19: Measured Occupied Bandwidth of the 3231 BTS Radio Module 1-Carrier IS856 QPSK

Channel Number	Frequency (MHz)	Measured Occupied Bandwidth (MHz)
25	2111.25	1.267535
875	2153.75	1.267535

Table 20: Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS856 16-QAM

Channel Number	Frequency (MHz) (centre channel)	Measured Occupied Bandwidth (MHz)
25, 50, 75	2112.50	3.7079
825, 850, 875	2152.50	3.7111

Table 21: Measured Occupied Bandwidth of the 3231 BTS Radio Module 3-Carrier IS856 16-QAM & IS95

Channel Number	Frequency (MHz) (centre channel)	Measured Occupied Bandwidth (MHz)
25*, 50***, 75***	2112.50	3.7195
825*, 850***, 875***	2152.50	3.7160

^{*} IS-95 Carrier.

^{***} IS-856 Carrier (16-QAM)

Figure 3: Occupied Bandwidth, Single Carrier, Channel 25 IS-95

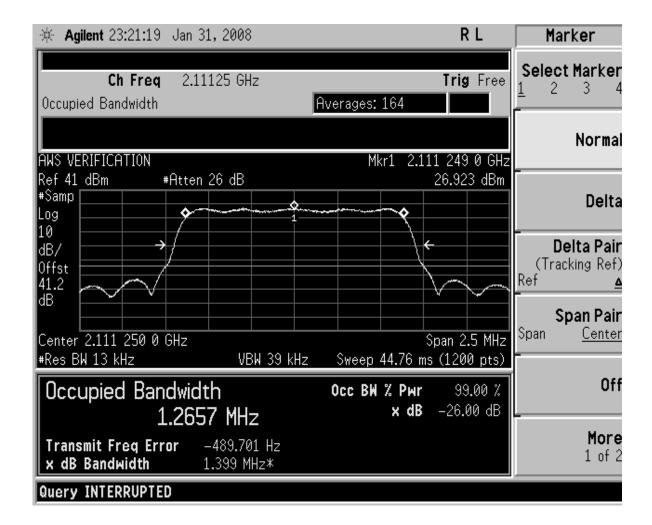


Figure 4: Occupied Bandwidth, 2 Carrier, Channels 25, 50 IS-95

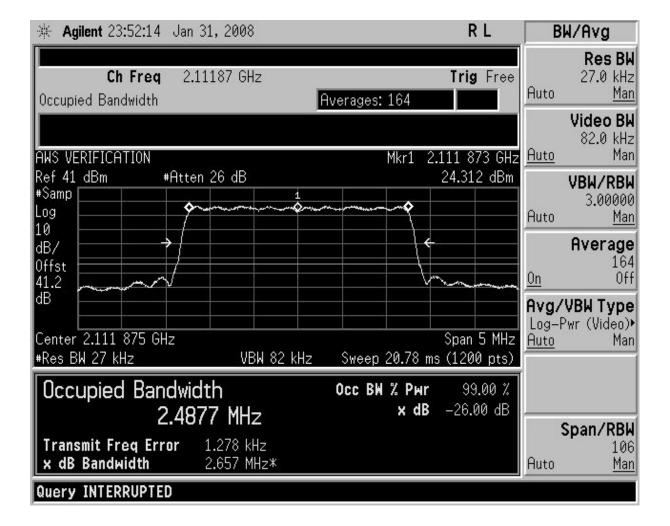


Figure 5: Occupied Bandwidth, 3 Carrier, Channels 25, 50, 75, IS-95

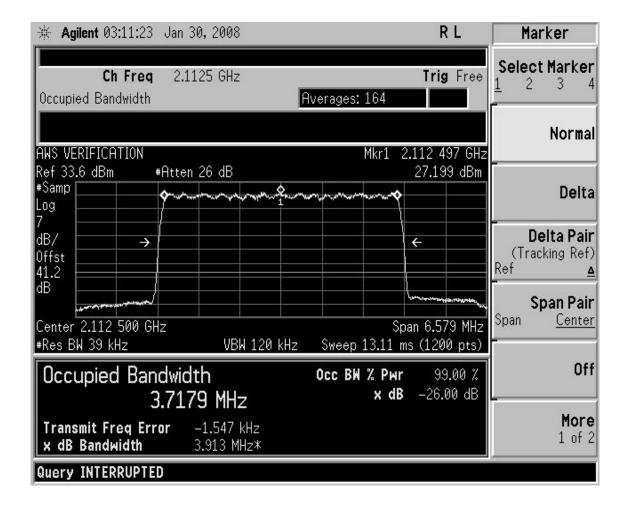


Figure 6: Occupied Bandwidth, 1 Carrier, Channels 25, IS-856

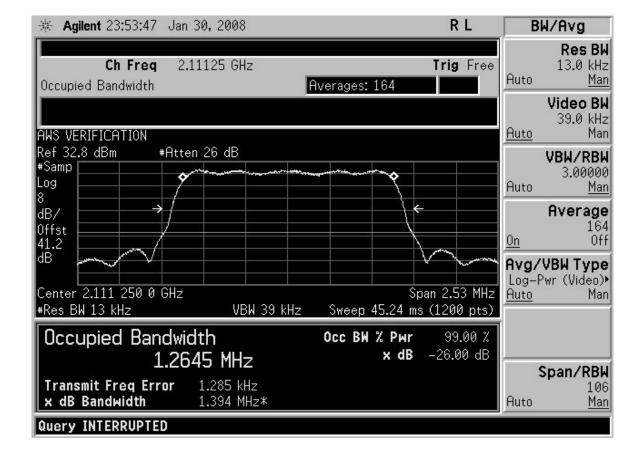


Figure 7: Occupied Bandwidth, 3 Carrier, Channels 25, 50, 75, IS-856

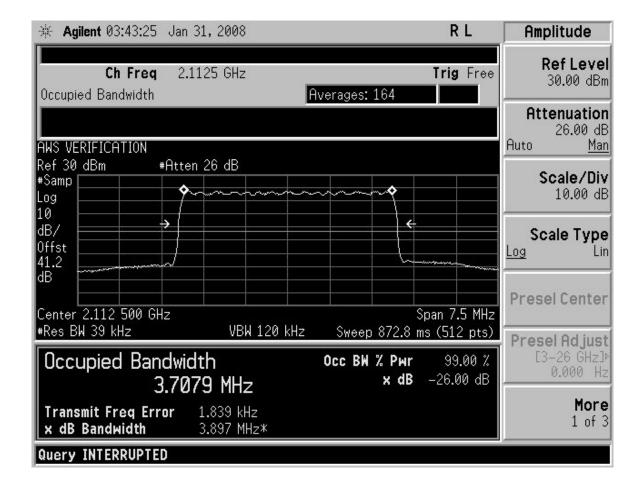
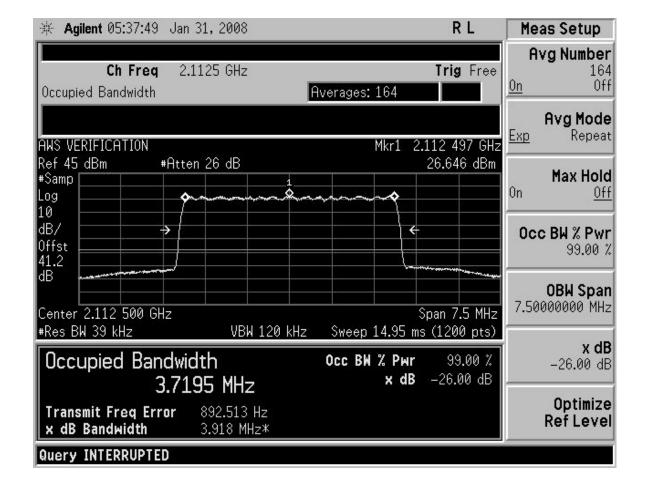



Figure 8: Occupied Bandwidth, 3 Carrier, Channels 25 (IS-95), 50 (IS-856), & 75 (IS-856)

4.4 Spurious Emissions at Antenna Terminals

4.4.1 Spurious Emissions Requirements

FCC Part 2.1051

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC Part 2.1057 - Frequency Spectrum to be investigated

- (a) In all of the measurements set forth in Sec. 2.1051, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC Part 27.53 Limit

- (g) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$.
- (1) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

February 27, 2008 Nortel
Approved Stream 01 Issue 01 Page 33

4.4.2 Test Method

Configure the BTS via the BTS controller to enable the 3231 BTS Radio Module to transmit at maximum rated power for each of the carrier configurations and each of the Baseband modulation formats IS-95, and IS-856 (16 QAM). Measurements were made on channels at the bottom and top of the operator bands. The following spectrum analyzer settings were used for the measurement of the antenna port spurious emissions:

4.4.2.1 Noise Floor

Page 34

Table 22 lists the noise floor of the measurement system with no signal present.

Table 22: Spectrum Analyzer Noise Floor Level

Frequency (Band)	Noise Floor Level (dBm)
9 kHz to lower adjacent 1MHz	-25.80
Lower adjacent 1 MHz	-45.30
Upper adjacent 1 MHz	-44.70
upper adjacent 1MHz to 5 GHz	-24.30
5 GHz to 22 GHz	-23.50

4.4.2.2 Adjacent 1MHz to indicated suband (Upper and Lower)

Table 23: Adjacent 1MHZ Spectrum Analyze Settings

Setting	1 Carrier	2 Carrier	3 Carrier
Resolution Bandwidth ^a :	13 kHz	27 kHz	39 kHz
Video Bandwidth (3x RBW) ^b	(3x RBW)	(3x RBW)	(3x RBW)
Video Average	10 Averages	10 Averages	10 Averages
Span	Set accordingly	Set accordingly	Set accordingly
Detector	RMS	RMS	RMS
Attenuation ^c	26 dB	26 dB	26 dB
Ref. Level	0 dBm	0 dBm	0 dBm
Ref. Offset	41.2 dB	41.2 dB	41.2 dB

- a. If the spectrum analyze cannot be set to the specified RBW the next highest RBW should be used and all measurements corrected to the specified RBW
- b. If the spectrum analyze cannot be set to the specified Video Bandwidth the next highest Video Bandwidth should be used.
- c. The lowest value of attenuator should be used to improve measurement accuracy, without overdriving the Spectrum Analyzer.

All spectrum analyzer settings were coupled as per the manufacturers recommendations to improve measurement time, without compromising data.

4.4.2.3 All other Spurious Emissions up to 5 GHz

Table 24: All other Emission up to 5 GHz Spectrum Analyzer Settings

Setting	1 Carrier	2 Carrier	3 Carrier
Resolution Bandwidth	1 MHz	1 MHz	1 MHz
Video Bandwidth (3x RBW)	30 MHz	30 MHz	30 MHz
Video Average	10 Averages	10 Averages	10 Averages
Span	Set accordingly	Set accordingly	Set accordingly
Detector	RMS	RMS	RMS
Attenuation ^a	26 dB	26 dB	26 dB
Ref. Level	Set accordingly	Set accordingly	Set accordingly
Ref. Level Offset (9kHz to Lower Adjacent 1MHz)	41.2 dB	41.2 dB	41.2 dB
Ref. Level Offset (Upper Adjacent 1MHz to 5GHz)	41.2 dB	41.2 dB	41.2 dB

a. The lowest value of attenuator should be used to improve measurement accuracy, without overdriving the Spectrum Analyzer.

The emissions will be investigated up to 20 GHz (the 10th harmonic of the fundamental emission) for all carrier configurations (1, 2, 3) as per FCC Part 27.

4.4.2.4 Spurious Emissions from 5 GHz to 20 GHz

Table 25: Spurious Emissions from 5 GHz to 20 GHz Spectrum Analyzer Settings

Setting	1 Carrier	2 Carrier	3 Carrier
Resolution Bandwidth	1 MHz	1 MHz	1 MHz
Video Bandwidth (3x RBW)	30 MHz	30 MHz	30 MHz
Video Average	10 Averages	10 Averages	10 Averages
Span	Set accordingly	Set accordingly	Set accordingly
Detector	RMS	RMS	RMS
Attenuation ^a	22 dB	22 dB	22 dB
Ref. Level	Set accordingly	Set accordingly	Set accordingly
Ref. Level Offset (9kHz to Lower Adjacent 1MHz)	38.9 dB	38.9 dB	38.9 dB

a. The lowest value of attenuator should be used to improve measurement accuracy, without over-driving the Spectrum Analyzer.

4.4.3 Test Setup

The set-up required for the 3231 BTS Antenna Port Spurious Emission test is illustrated in Figure 9.

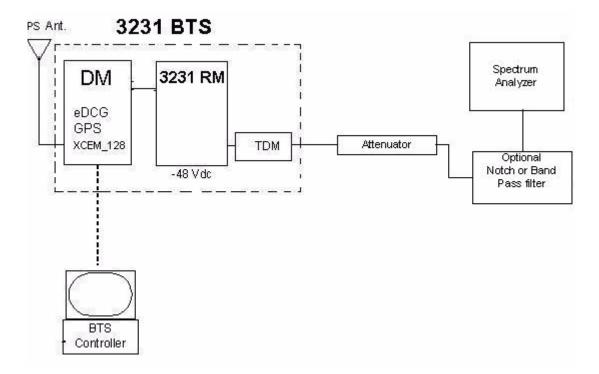


Figure 9: Test Setup for Spurious Emissions Measurement

4.4.4 Test Results IS95

Table 26: Spurious Emissions at the 3231 BTS Radio Module Ant. Port one Carrier IS95

Frequency	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25	-26.92	13.92
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 875	-25.11	12.11
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-21.89	8.89
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-19.52	6.52
5 GHz to 22 GHz (RBW=1MHz)	-23.93	10.93

Table 27: Spurious Emissions at the 3231 BTS Radio Module Ant. Port two Carrier IS95

Frequency (Band)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25, 50	-24.30	11.30
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 850, 875	-21.69	8.69
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-19.01	6.01
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-17.69	4.69
5 GHz to 22 GHz (RBW=1MHz)	-23.80	10.80

Table 28: Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier IS-95

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25, 50, 75	-23.07	10.07
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 825, 850, 875	-19.43	6.43

Table 28: Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier IS-95

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-18.60	5.60
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-17.07	4.07
5 GHz to 22 GHz (RBW=1MHz)	-23.90	10.90

4.4.5 Test Results IS856

Table 29: Spurious Emissions at the 3231 BTS Radio Module Ant. Port One Carrier Band IS856 (QPSK)

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25	-27.38	14.38
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 875	-26.39	13.39
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-20.65	7.65
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-19.69	6.69
5 GHz to 22 GHz (RBW=1MHz)	-23.66	10.66

Table 30: Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier IS856 (8PSK)

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
	3Carrier	3Carrier
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25, 50, 75	-25.61	12.61
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 825, 850, 875	-21.05	8.05
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-20.07	7.07
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-17.12	4.12
5 GHz to 22 GHz (RBW=1MHz)	-23.80	10.80

Table 31: Spurious Emissions at the 3231 BTS Radio Module Ant. Port Three Carrier Combined IS-95 & IS-856 (16QAM)

Frequency (MHz)	Spurious Emissions Level (dBm)	Margin to FCC Limit of -13 dBm (dB)
(IVIIIZ)	3Carrier IS95 16QAM	3Carrier
2109 to 2110 MHz (lower adjacent 1 MHz); Channel 25, 50, 75	-24.66	11.66
2155 to 2156 MHz (upper adjacent 1 MHz); Channel 825, 850, 875	-21.15	8.15
9 kHz to lower adjacent 1MHz (RBW=1MHz)	-18.87	5.87
upper adjacent 1MHz to 5 GHz (RBW=1MHz)	-17.14	4.14
5 GHz to 22 GHz (RBW=1MHz)	-23.74	10.74

4.5 Frequency Stability

4.5.1 Frequency Stability Requirements

FCC Part 2.1055

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30 to +50 centigrade for all equipment except that specified in subparagraphs (2) and (3) of this paragraph.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

FCC Part 27.54 Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.5.2 Test Procedure

The test equipment was configured as shown in figure 11.

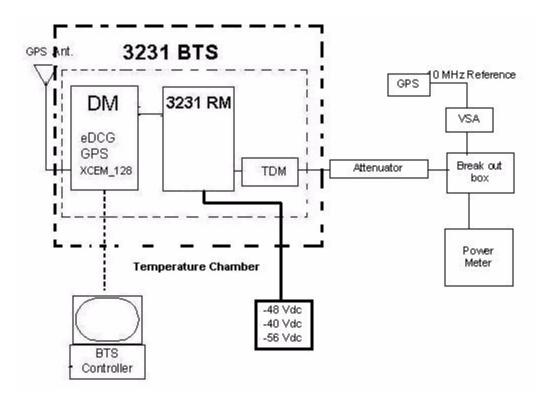


Figure 10: Test configuration for Frequency Stability

4.5.3 Frequency Results

The test results for Frequency stability provided in this section were measured with the BTS configured with channels 425, 450, 475. All carriers were IS-95 modulated. The BTS was configured to transmit at maximum transmit power.

Table 32: Test results for Frequency Stability versus Power supply Voltage

Voltage (Vdc)	Maximum Carrier Frequency Deviation (PPM)	Maximum Carrier Frequency Deviation (Hz)
-40	0.001988	4.24
-48 nominal	0.003503	7.47
-56	0.004366	-9.31

Table 33: Test results for Frequency Stability versus Temperature at -48V operation

Temperature (°C)	Maximum Carrier Frequency Deviation (PPM)	Maximum Carrier Frequency Deviation (Hz)
-40	0.000324	0.69
-30	0.000975	2.08
-20	0.001594	-3.40
-10	0.000708	1.51
0	0.000581	-1.24
10	0.000075	0.16
20	0.001712	3.65
30	0.000764	1.63
40	0.000427	0.91
50	0.001749	-3.73

References

- [1] FCC Part 22 Subpart L, "1710-1755 MHz, 2110-2155 MHz1 2160-2180 MHz Bands"
- [2] FCC Part 2 Subpart J, "Equipment Authorization Procedures"
- [3] TIA/EIA-97-E "Recommended Minimum Performance Standards for Base Stations Supporting Dual Mode Spread Spectrum Systems",
- [4] Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Network, C.S0032-0, Version 2.0, 12 December 2003

Approved Stream 01 Issue 01 Page 47

APPENDIX PLOTS

Figure 11: Conducted Spurious Emissions - 1 Carrier, Ch. 25, IS95 (9kHz to Lower Adjacent 1MHz)

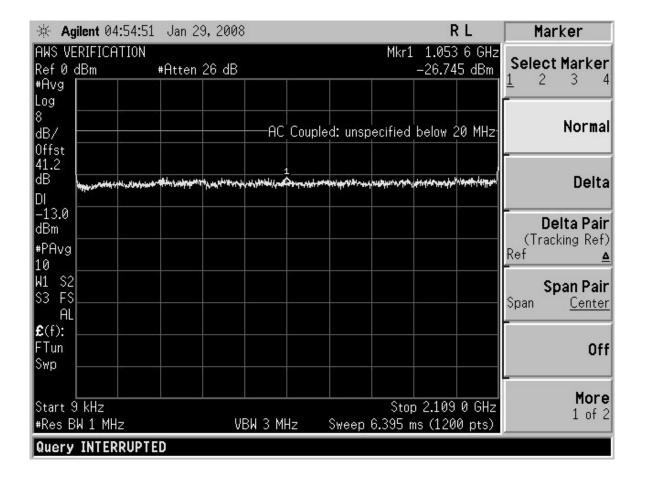


Figure 13: Conducted Spurious Emissions - 1 Carrier, Ch. 25, IS95 (Lower Adjacent 1MHz)

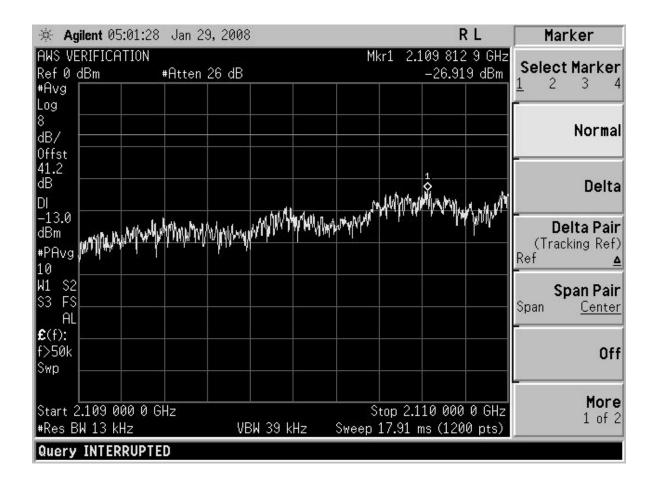


Figure 14: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (Upper Adjacent 1MHz)

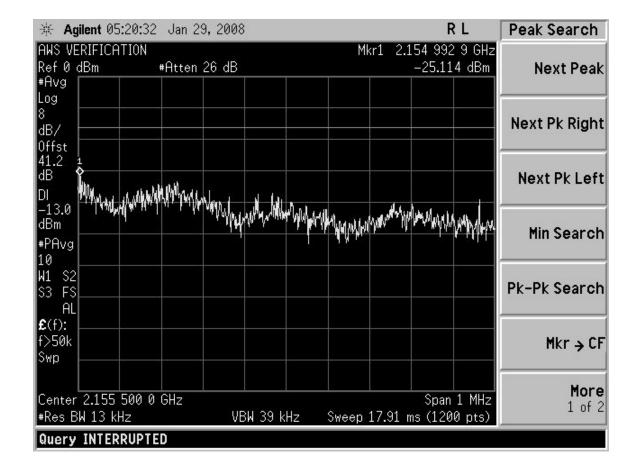


Figure 15: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (Upper Adjacent 1MHz to 5GHz)

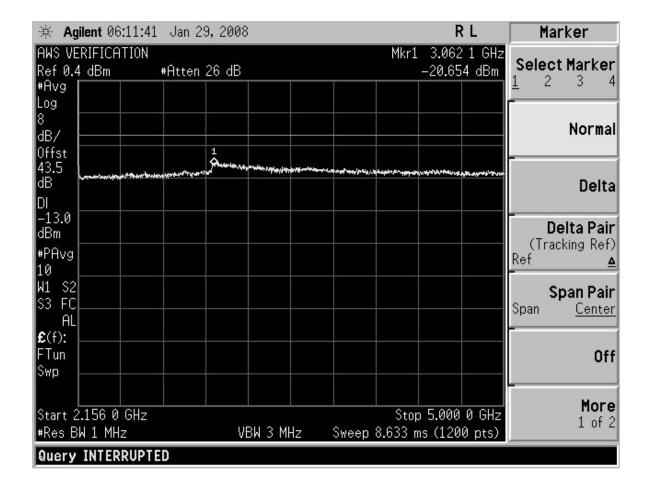
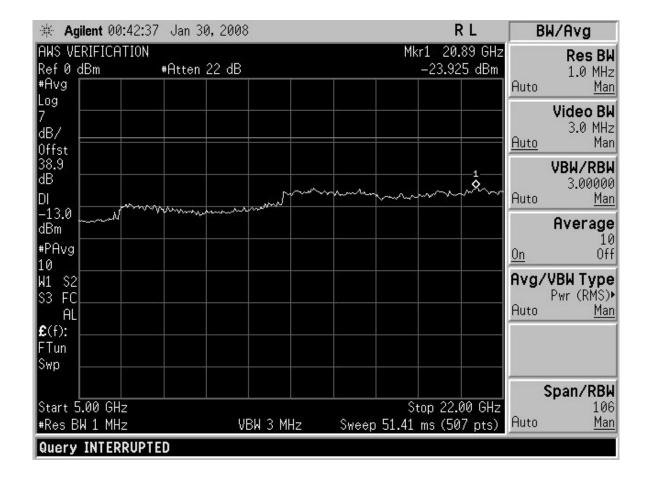



Figure 17: Conducted Spurious Emissions - 1 Carrier, Ch. 875, IS95 (5GHz to 22GHz)

Stream 01 Issue 01 Page 55

Figure 18: Conducted Spurious Emissions - 2 Carrier, Ch. 25, 50, IS95 (9kHz to Lower Adjacent 1MHz)

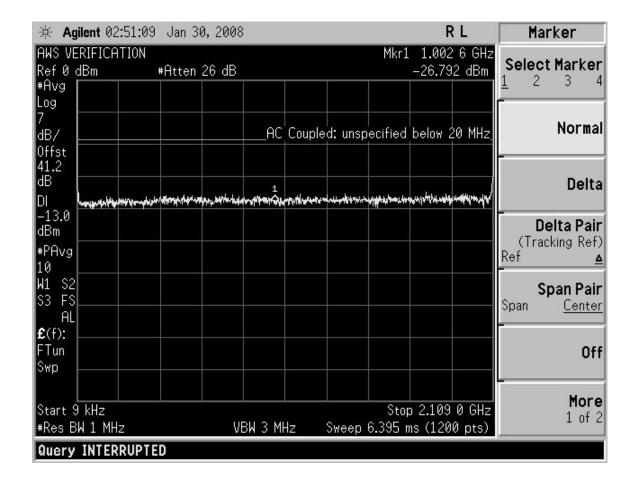


Figure 20 : Conducted Spurious Emissions - 2 Carrier, Ch. 25, 50, IS95 (Lower Adjacent 1MHz)

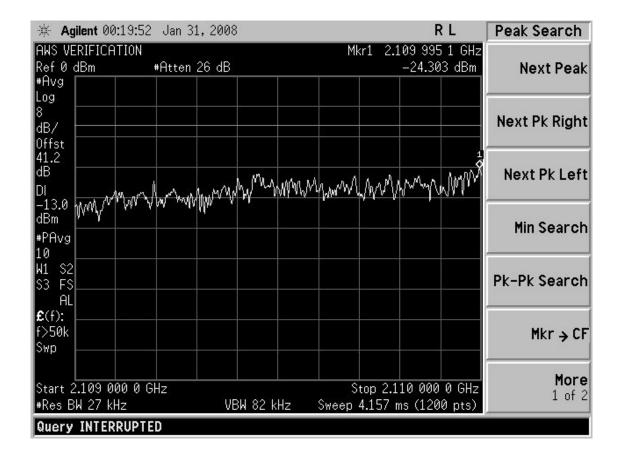


Figure 21: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875 IS95 (Upper Adjacent 1MHz)

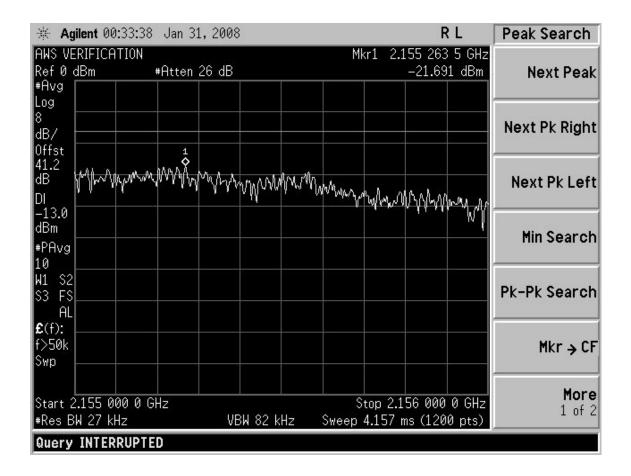


Figure 22: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875, IS95 (Upper Adjacent 1MHz to 5GHz)

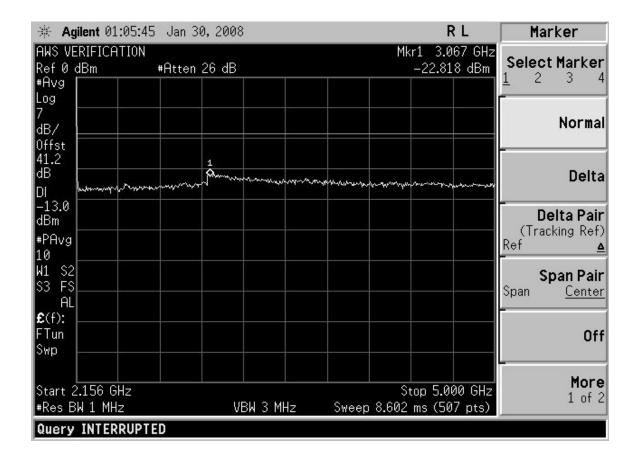


Figure 24: Conducted Spurious Emissions - 2 Carrier, Ch. 850, 875, IS95 (5GHz to 22GHz)

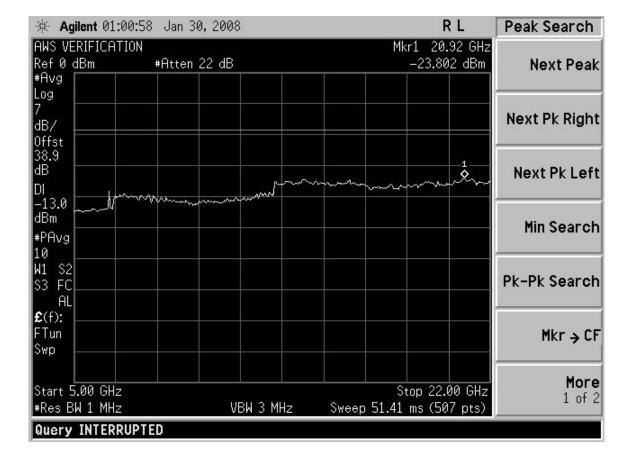
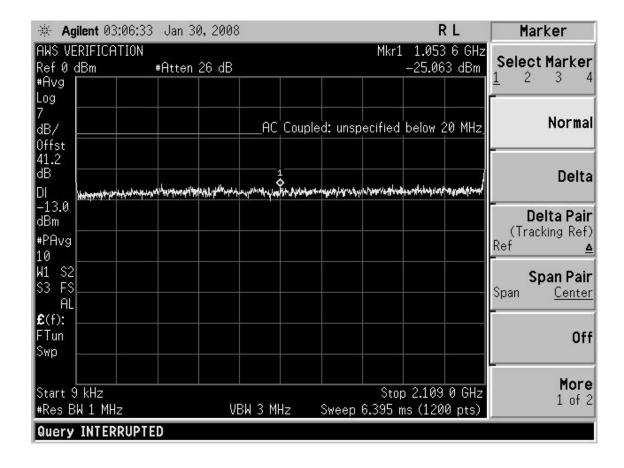



Figure 25 : Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75, IS95 (9kHz to Lower Adjacent 1MHz)

Approved Stream 01 Issue 01 Page 63

Figure 27: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75, IS95 (Lower Adjacent 1MHz)

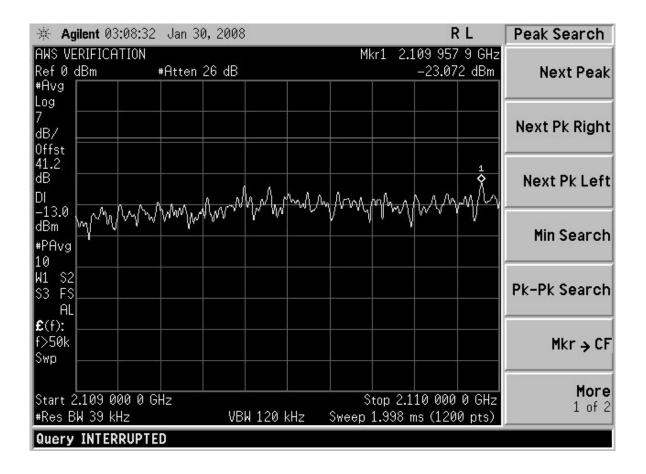


Figure 28: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (Upper Adjacent 1MHz)

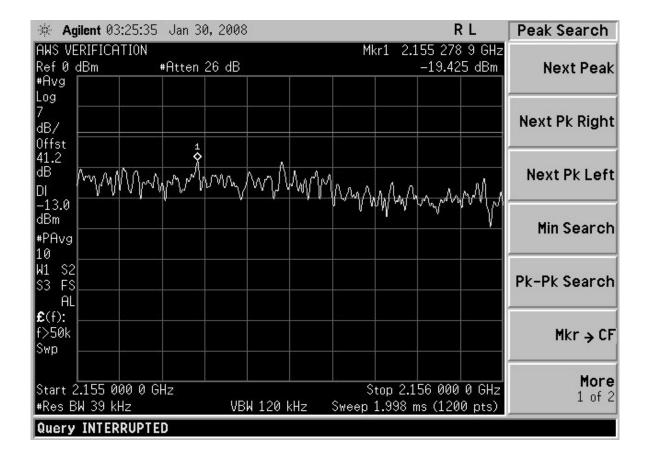


Figure 29: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (Upper Adjacent 1MHz to 5GHz)

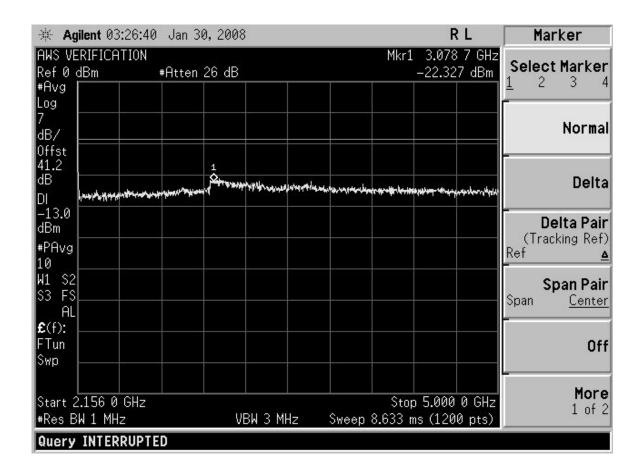


Figure 31: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875, IS95 (5GHz to 22GHz)

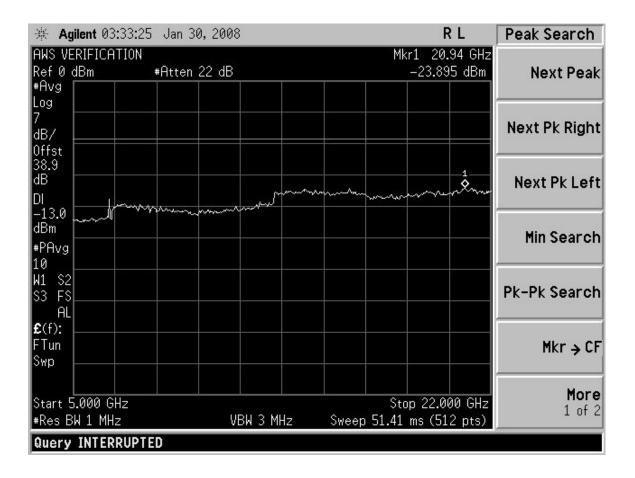


Figure 32 : Conducted Spurious Emissions - 1 Carrier, Ch. 25, QPSK (9kHz to Lower Adjacent 1MHz)

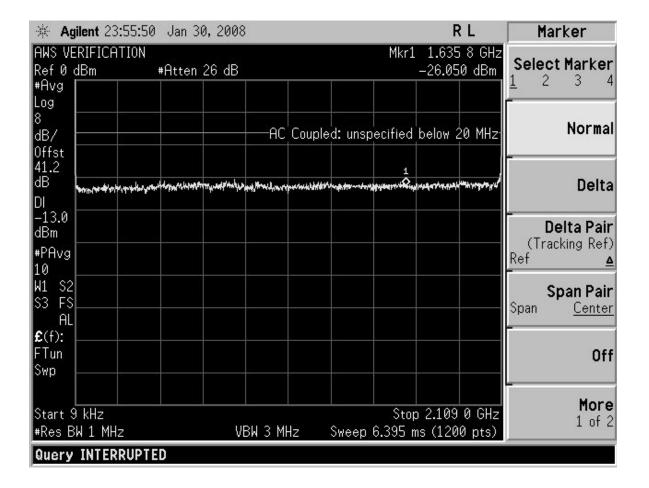


Figure 34: Conducted Spurious Emissions - 1 Carrier, Ch. 25, QPSK (Lower Adjacent 1MHz)

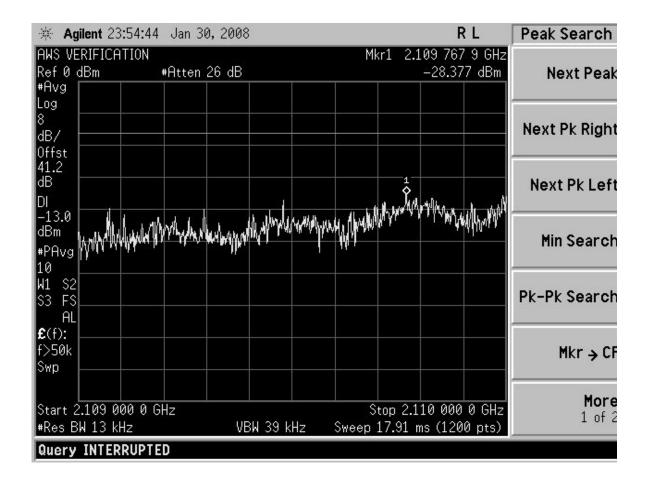


Figure 35 : Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (Upper Adjacent 1MHz)

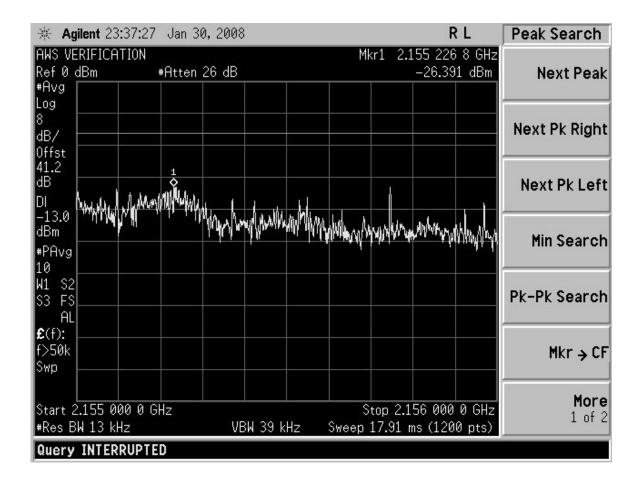
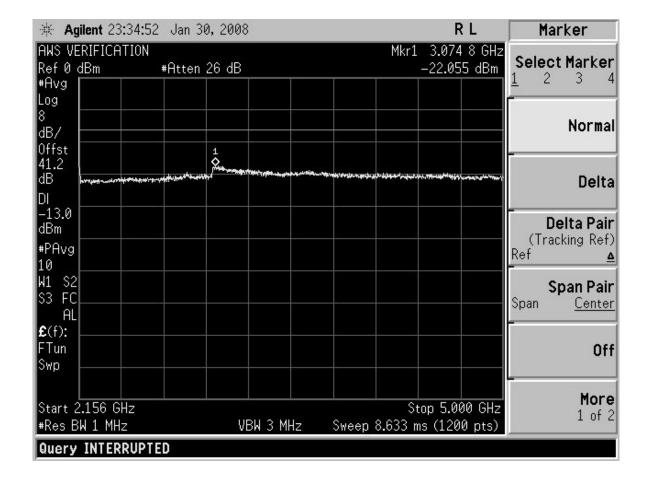



Figure 36 : Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (Upper Adjacent 1MHz to 5GHz)

Page 76

Figure 38: Conducted Spurious Emissions - 1 Carrier, Ch. 875, QPSK (5GHz to 22GHz)

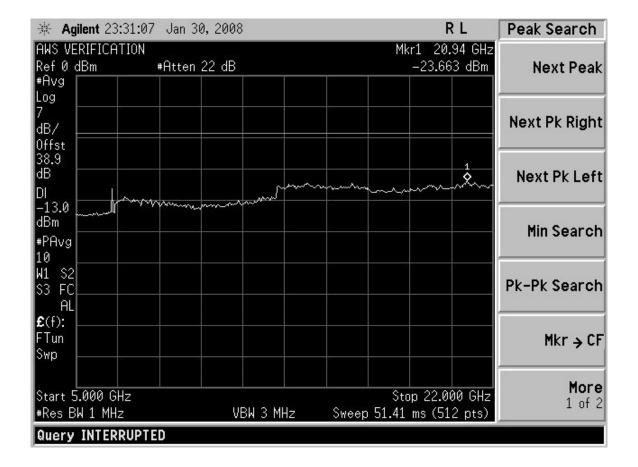


Figure 39 : Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75 8-PSK(9kHz to Lower Adjacent 1MHz)

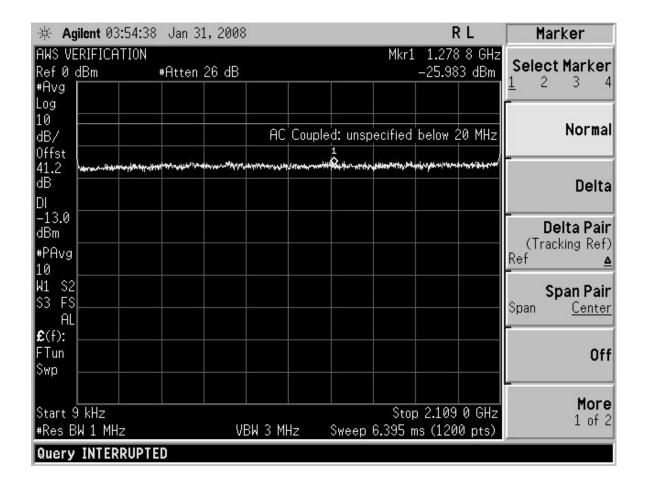


Figure 41: Conducted Spurious Emissions - 3 Carrier, Ch. 25, 50, 75 8-PSK (Lower Adjacent 1MHz)

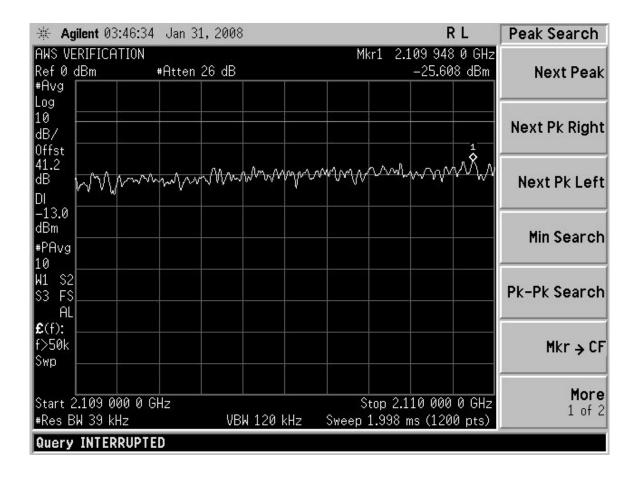


Figure 42 : Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (Upper Adjacent 1MHz)

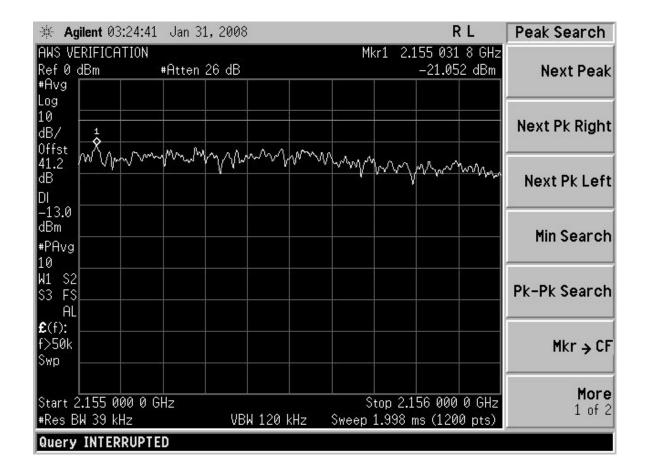


Figure 43: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (Upper Adjacent 1MHz to 5GHz)

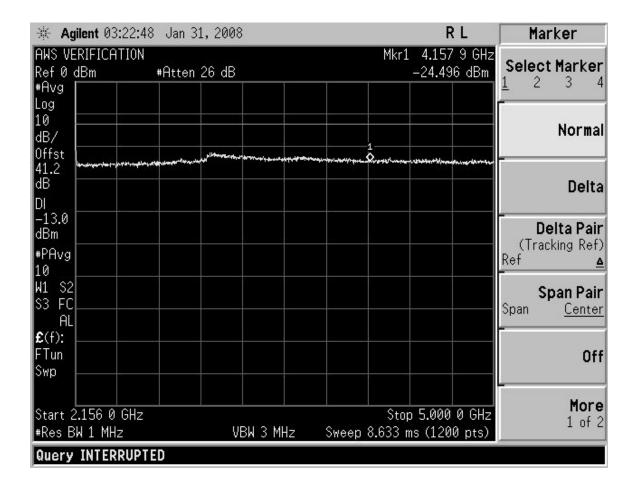


Figure 45: Conducted Spurious Emissions - 3 Carrier, Ch. 825, 850, 875 8-PSK (5GHz to 22GHz)

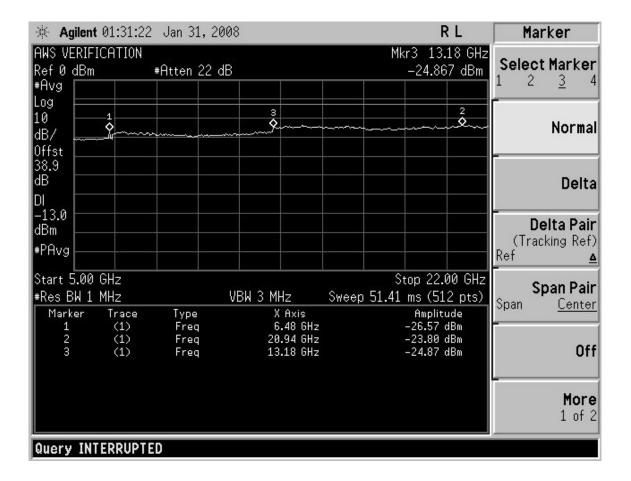


Figure 46: Conducted Spurious Emissions - 3 Carrier, Ch. 25 IS95, Ch. 50 IS856, Ch. 75 IS856 (9kHz to Lower Adjacent 1MHz)

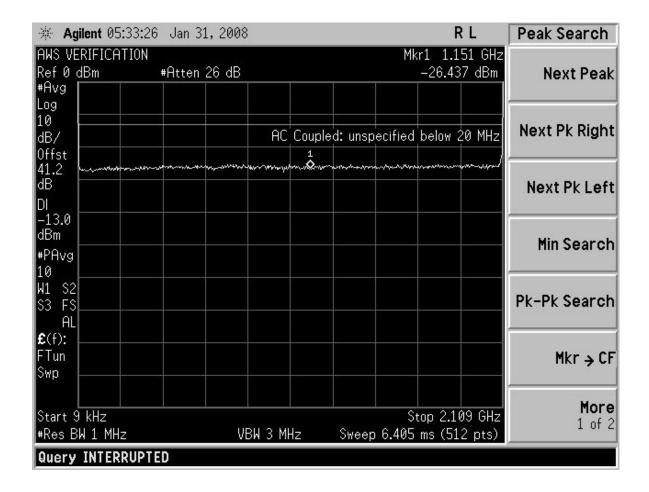


Figure 48 : Conducted Spurious Emissions - 3 Carrier, Ch. 25 IS95, Ch. 50 IS856, Ch. 75 IS856 (Lower Adjacent 1MHz)

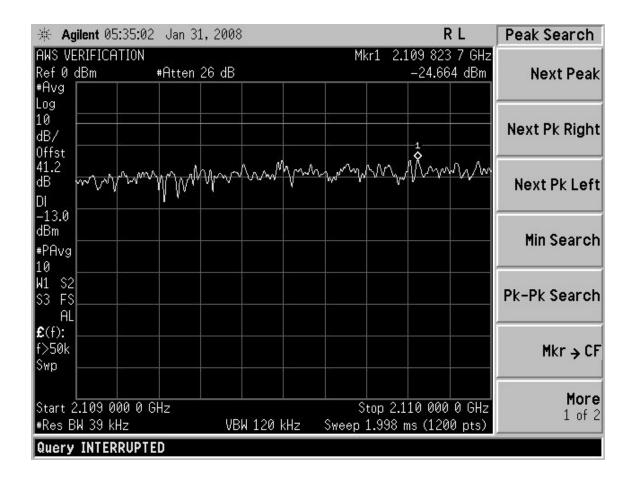


Figure 49: Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 (Upper Adjacent 1MHz)

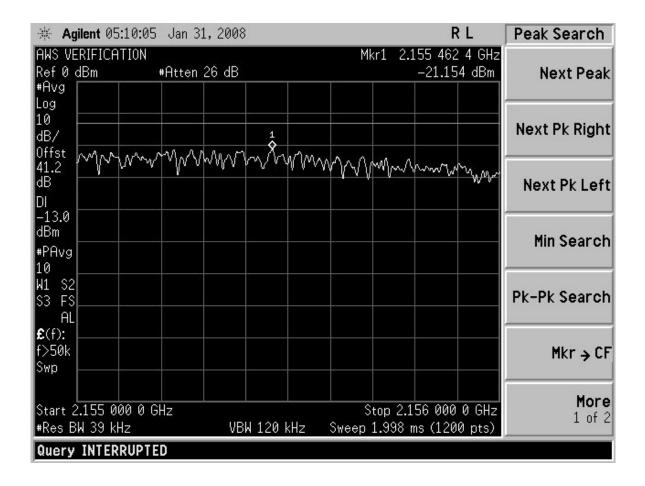


Figure 50 : Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856 (Upper Adjacent 1MHz to 5GHz)

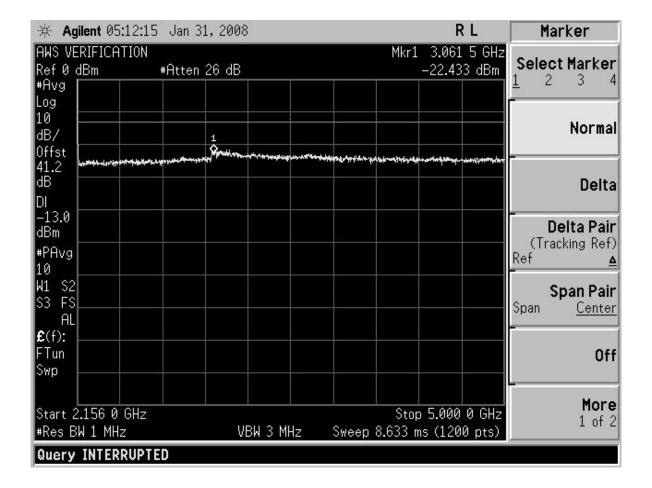
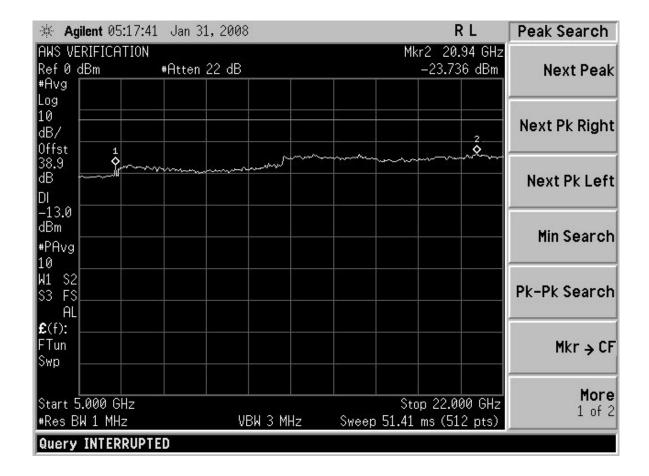



Figure 52: Conducted Spurious Emissions - 3 Carrier, Ch. 825 IS95, Ch. 850 IS856, Ch. 875 IS856, (5GHz to 22GHz)

