

EXHIBIT 2C

Test Report Provided by Sanmina-SCI

Applicant: Nortel Networks

For Class II Permissive Change Certification on:

FCC: AB6NT1900SFRM IC: 332D-1900SFRM

This document contains Proprietary information of Nortel Networks. This information is considered to be confidential and should be treated appropriately.

Product Integrity Laboratory

5111-47th Street, N.E. Calgary, Alberta, T3J-3R2 Tel (403) 295-5117 Fax (403) 295-4091

RADIATED EMISSIONS 30MHz-20GHz REPORT

RE02-10M-2001-028 RE03-10M-2001-010 CDMA Outdoor Metrocell 1900MHz SFRM (20.4 Watts)

		Revision: 4.	0			
Prepared for:	Nortel I	ortel Networks				
Keywords:	Radiate Radiate	adiated Emissions 30MHz – 1GHz adiated Emissions 1GHz - 20GHz				
Abstract:	Electro	tromagnetic Compatibility testing report for FCC Part2 Rules for Equipment Authorization				
Author:	Jacky V	Vong				
Product tested	1:	November 26, 2001 – December 5, 200	1			
Report Prepared:		January 3, 2002				
Approved by:		Matthew Buxton Sanmina Product Integrity Laboratory M	lanager			
Customer:		Sanmina Design Solutions 6751-9 th Street NE Calgary, Alberta T2E 8R9	For:	Nortel Networks 5111 47 th Street NE Calgary, Alberta T3J-3R2		
Customer Contact:		Troy Williams				
Project Number: Laboratory Project Nu		PI 80053 mber : 01NOR009				

Confidentiality Statement: The information contained in this document is the property of Sanmina Canada ULC. Except as specifically authorized in writing by the Director of Sanmina Canada, the holder of this document shall keep all information contained herein confidential and shall protect the same, in whole or in part, from disclosure and dissemination to all third parties

1. Table of Contents

1	Table of Contents	1
2	Release Control Record	3
3	Measurement Equipment	3
4	Customer Agreements	5
5	Equipment Log	6
5.1	Equipment serial number and PEC	6
5.2	System Cables and Interconnect	9
6	Radiated Suprious Emissions Test	10
6.1	Test Basis	10
6.2	Test Specifications	10
6.3	Test Procedure	10
6.4	Measurement Uncertainty	10
6.5	Deviations from standard	10
6.6	Test Results	10
6.7	Signature	10
APP	PENDIX A: TEST DATA	11
APP	ENDIX B: PHOTOGRAPHS	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Sanmina Canada ULC

Product Integrity Laboratory 5111-47th Street, N.E., Calgary Alberta T3J 3R2

Test Report No:	RE02-10m-2001-028 RE03-10m-2001-010			
Customer:	Sanmina Design Solution 6751 – 9 th Street NE. Calgary, Alberta T2E 8R9 Tel: (403) 295-5100	For:	Nortel Networks 5111 47 th Street N.E. Calgary, Alberta T3J-3R2 Tel: (403) 769-2000	

EUT description:Metrocell CDMAModel:Metrocell Base Station Transceiver System (MCBTS) supports CDMA 1900MHz SFRMSTest Location:Sanmina PI Laboratory, Calgary Alberta

Test Basis	Standard	Test Case	Result
ANSI C63.4	FCC Rules Part 24	Radiated Emissions 30MHz – 1GHz Radiated Emissions 1GHz – 20GHz	PASS PASS

Test result:

The product presented for testing complied with test requirements shown above.

Tested by: Jacky Wong EMC Tool Developer

Date, Signature

Additional information:

Appendix A: Appendix B: Test Data Photographs Checked by: Duane Friesen Technical Advisor

035an 02 Date, Signature

06 Pages 02 Pages

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

2. <u>Release Control Record</u>

Release #	Release authors	Reason for Change	Date of Issue
1.0	Jacky Wong	Original Release	December 12, 2001
2.0	Jacky Wong	Combined RE02-10m-2001-028 and RE03- 10m-2001-010	December 17, 2001
3.0	Jacky Wong	Included Correction Factors in Peak Scan Data	December 18, 2001
4.0	Jacky Wong	Corrected equipment list of 1GHz – 20GHz	January 3, 2002

* Please note that Revision (change) bars are not used.

3. Measurement Equipment

Radiated Emissions Test Equipment, 30MHz – 1GHz

Manufacturer	Description	Model Number	Asset or Identification Number	Calibration Due
Rhode & Schwarz	EMI Receiver	ESMI	DE23037	March 09,2002
Chase-Schaffner	Biconilog Antenna	2701	40500566	Oct 11, 2002
EMCO	Mast Controller	2090	40500184	N/A
EMCO	Turntable Controller	2090	40500197	N/A
TDL	Switch Matrix Controller	SMC-002	40500189	N/A
Hewlett Packard	Low Noise Amplifier	8447 OPT H64	40500228	N/A
EMCO	RefRad	4630B	40500135	N/A
Sucoflex	Ferrite bead loaded cable	-	FBL-1	March 04, 2002
Sucoflex	RF Cable	106	9353/6	March 04, 2002
Sucoflex	RF Cable	104	115742	March 04, 2002
Sucoflex	RF Cable	104	116567/4	March 04, 2002
Sucoflex	RF Cable	104	11576/4	March 04, 2002

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Radiated Emissions Test Equipment, 1GHz – 20GHz

Manufacturer	Description	Model Number	Asset or Identification Number	Calibration Due
Rhode & Schwarz	Spectrum Analyzer 9KHz – 40GHz	FSEK	40500210	Feb 15, 2002
EMCO	Mast Controller	2090	40500184	N/A
EMCO	Turntable Controller	2090	40500197	N/A
TDL	Switch Matrix Controller	SMC-002	40500189	N/A
MITEQ	Low Noise Amplifier	JSD00121	838621	N/A
Sucoflex	Ferrite bead loaded cable	-	FBL-1	March 04, 2002
Sucoflex	RF Cable	106	9353/6	March 04, 2002
Sucoflex	RF Cable	104	115742	March 04, 2002
Sucoflex	RF Cable	104	116567/4	March 04, 2002
Sucoflex	RF Cable	104	11576/4	March 04, 2002
Rhode & Schwarz	Signal Generator 10MHz-40GHz	SMP	40500125	March 27, 2003
EMC	Quick Box	QBOX-ESD1	N/A	N/A
HP	Attenuation/Switch Driver	11713A	40500014	N/A
Electro-metrics	Antenna	EM6952-314	40500395	June 21, 2002
EMCO	Horn Antenna 1GHz- 18GHz	3115	40500087	Nov 19, 2002
Standard Gain Horn	Horn Antenna 13GHz- 18GHz	3160-08	N/A	N/A
Standard Gain Horn	Horn Antenna 18GHz- 20GHz	3160-09	N/A	N/A

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

4. <u>Customer Agreements</u>

The Radiated Emissions test was performed according to the test plan "CDMA Metrocell 1900MHz SFRM (20.7 Watts)", Revision 02; November 21, 2001, authored by Sam Jayashankar, under Design Project Number PI 80053 and Lab project number 01NOR009.

The test and measurements were made to detect spurious emissions that might be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. The test was performed under FCC Rules Part 2 section 2.1053 and 2.1057.

The test was performed to enable Nortel's CDMA 1900MHz SFRM system to comply with the FCC Rules and Regulations for Type Certification prior to market deployment.

- The Metrocell Base Station Transceiver System (MCBTS) is an existing Nortel Network's product that supports CDMA 1900MHz SFRM's.
- The EUT, a CDMA Outdoor Metrocell 1900MHz SFRM system Cabinet, consisted of a fully loaded system with 9-1900MHz SFRM's. (3-TRIPLEXERS & 3 DUPLEXERS)
- The EUT power configuration was 208VAC, 2-phase.
- The CDMA Outdoor Metrocell 1900MHz SFRM system Cabinet was positioned on the center of the turntable of the 10m AFC. 10 meters was measured between the tip of the receive antenna and the center of the turntable.
- Power and signal distribution, ground, interconnects cabling, and physical placement simulated the typical application and operation of the unit. The unit was configured, installed and operated in a manner representative of the actual field installation and conditions of intended use.
- The CDMA Outdoor Metrocell 1900MHz SFRM system Cabinet was fully operational and contained all necessary hardware, software and firmware to perform the test.
- In order to maximize the emission levels radiating from the CDMA Outdoor Metrocell 1900MHz SFRM system Cabinet, the height of the receive antenna was varied between 1 and 4 meters and set to different heights in both, horizontal and vertical polarizations. The EUT was also rotated 360 degrees.
- Signal Substitution was used in accordance with the test method for field strength of Radiated Spurious Emissions to verify the final levels for compliance.
- EUT was tested with the all doors open.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

5. Equipment Log

EUT Dimensions:	1070mm(W) x 1820mm (H) x 760mm (D)		
EUT Weight:	2600 lbs		
Voltage:	Line 1A	208 VAC / Phase 1/ 60Hz	
	Line 2A	208 VAC / Phase 2/ 60Hz	
	Line 4A	Neutral	

5.1. Equipment serial number and PEC

Modules Description	PEC / Model	Serial Number
DE Enclosure	NTGS01AA 34	SNMN530099U2
Outer and Inner Heat Exchanger	NTGS15AA 02	EBMI0000378R
AUX PDP	NTGS94AA 10	SNMN5300JDT8
MASTER PDP	NTGS25AA 06	SNMN530099GX
CEM	NTGS63AA 05	NNTM535RK4XN
CEM	NTGS63AA 05	NNTM532VK5KC
CEM	NTGS63AA 05	NNTM5373G88D
CEM	NTGS63AA 05	NNTM532VDP7C
CEM	NTGS63AA 09	NNTM535V7W19
CEM	NTGS63AA 09	NNTM535V79K7
CEM	NTGS63AA 05	NNTM535RJCXW
CEM	NTGS63AA 09	NNTM532Y9DNG
CEM	NTGS63AA 09	NNTM532Y9C70
CEM	NTGS63AA 09	NNTM532Y9EFA
CEM	NTGS63AA 09	NNTM532Y9ERL
СЕМ	NTGS63AA 09	NNTM532Y9CLD

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Modules Description	PEC / Model	Serial Number
GPSTM	NTGS50AA 14	NNTM74TM3I1A
CM1	NTGS40AA DL	NNTM532YCFED
CM2	NTGS40AA DL	NNTM532YCFCB
CORE1	NTGS30AA 54	NNTM532Y9H1Y
CORE2	NTGS30AA 54	NNTM537U0Y26
MCBTS Radio Rack	NTGS03AA 15	NNTM536H23JH
DPM 1900-1	NTGS53GA 06	CLWVPP203MB3
TRM-1	NTGS58CA 50	NNTM53714PEL
PAM-1	NTGS56AA 04	EBMI000013TV
Cooling Unit-1	NTGS5651 01	NNTM53741U4E
TRIPLEXER 1900-2	NTGS5302 04	FORM01061072
TRM-2	NTGS58CA 50	NNTM5371487X
PAM-2	NTGS56AA 04	EBMI00000MH0
Cooling Unit-2	NTGS5651 01	NNTM5373WEMD
DPM 1900-3	NTGS53HA 06	CLWVPP203UZ2
TRM-3	NTGS58CA 50	NNTM537RXNUJ
PAM-3	NTGS56AA 04	EBMI00000RVY
Cooling Unit-3	NTGS5651 01	NNTM5374240L
TRIPLEXER 1900-4	NTGS5302 04	FORM01074191
TRM-4	NTGS58CA 65	NNTM537V988Y
PAM-4	NTGS56AA 04	EBMI00001JKD
Cooling Unit-4	NTGS5651 01	NNTM5373WNPP
TRM-5	NTGS58CA 65	NNTM537V97WK

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Modules Description	PEC / Model	Serial Number
PAM-5	NTGS56AA 04	EBMI00000MH1
Cooling Unit-5	NTGS5651 01	NNTM5373WEPF
TRIPLEXER 1900-6	NTGS5302 05	FORM01181996
TRM-6	NTGS58CA 65	NNTM536FXY9X
PAM-6	NTGS56AA 04	EBMI000013R9
Cooling Unit-6	NTGS5651 01	NNTM53741UJV
DPM 1900-7	NTGS53IA 05	CLWVPP203HXX
TRM-7	NTGS58CA 50	NNTM53714EPT
PAM-7	NTGS56AA 04	EBMI000013R8
Cooling Unit-7	NTGS5651 01	NNTM53741U2C
DPM 1900-8	NTGS53IA 05	CLWVPP202TRV
TRM-8	NTGS58CA 31	NNTM53712NGK
PAM-8	NTGS56AA 04	EBMI00001J02
Cooling Unit-8	NTGS5651 01	NNTM5373W66N
DPM 1900-9	NTGS53IA 05	CLWVPP203HXY
TRM-9	NTGS58CA 50	NNTM537RXR4X
PAM-9	NTGS56AA 04	EBMI00000TND
Cooling Unit-9	NTGS5651 01	NNTM5373WDJ9

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

5.2. System Cables and Interconnect

Cable	Description	Length	Manufacture	S/N & Type
Power	3 Conductors, shielded	2.18	N/A	N/A
T1	NTGS0134 (2 Cables X 6 Pairs, 24 AWG) Shielded	15.5	N/A	N/A
RF	Coaxial from GPS antenna through bulkhead to GPS input (DE)	9.0	Times Microwave	LMR-400
RF	Coaxial – SFRM's Antennas to antenna lightning protection brackets through bulkhead to attenuator	9.0	Times Microwave	LMR-400
Ground	From DE chassis to turntable ground	1.92	N/A	N/A
Ground	From shielded power cable (end close to hubble) to turntable ground.	0.74	N/A	N/A

Note: The EUT cabling configuration was under Nortel Network's control. Cable specifications and set-up was the responsibility of Nortel Networks.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

6. Radiated Suprious Emissions Test

6.1 Test Basis

FCC Rules Part 2 section 2.1053 and 2.1057

6.2 Test Specifications

FCC Part 24.238

6.3 Test Procedure

Laboratory Test Method No. 2.0 - Radiated Emissions 30MHz-1GHz Test Procedures Rev. 6.0 Laboratory Test Method No. 2.0A - Radiated Emissions 30MHz – 1GHz Test Procedures Rev. 2.0 Laboratory Test Method No. 29 - Radiated Emissions 1GHz- 20GHzTest Procedures Rev. 1.0 Laboratory Test Method No.11 – Substitution Measurement

6.4 Measurement Uncertainty

The estimated uncertainty for the radiated spurious emissions (substitution method) is not defined.

6.5 Deviations from standard

None.

6.6 Test Results

Radiated Emission 30MHz – 1GHz: Peak Scan Data (Refer to pages 13 and 14 for results). Radiated Emission 30MHz – 1GHz: PASS: Substitution Data (Refer to page 16). Radiated Emission 1GHz – 20GHz: Peak Scan Data (Refer to pages 17 and 18 for results). Radiated Emission 1GHz – 20GHz: PASS: Substitution Data (Refer to page 19).

With the exception of emission at 3897.80MHz (horizontal scan) all tabular data presented represents the noise floor measured in each band.

6.7 Signature

This testing was conducted in accordance with ISO 17025: 1999 scope of accreditation, table 1; Quality Manual.

Signature/Date: Name:

Jacky Wong, EMC Tool Developer

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

APPENDIX A: TEST DATA

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Sanmina Canada ULC Design Solution, 6751 9th St NE T2E 8R9, Tel: 403-295-5100

Confidential

RE02-10m-2001-028 RE03-10m-2001-010

Scan Result 30MHz – 1GHz (Horizontal)

Poduct Integrity Laboratory V2.5	Proje Co	ct Name: Model: mments:	Equipment Authorization FCC Part24 Tester: Jacky Wong Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE02-10M-2001-028 System included 3 -Triplexers & 3 Duplexers - Horizontal Polarization						
Standard	FCC Part 24		Measurement	Distance	10	meters			
Antenna	Frequency	AF	CF	Detector	Measured Value	Corrected Value	Limit	Margin	
1	MHz	dB/m	dB		dBuV	dBuV/m	dBuV/m	dB	
2261 RX BiCon Hpol	314.72	13.20	-22.82	Peak	52.72	43.10	73.90	30.80	
2261 RX BiCon Hpol	319.64	13.30	-22.76	Peak	56.43	46.97	73.90	26.93	
2261 RX BiCon Hpol	422.96	16.85	-23.12	Peak	51.19	44.91	73.90	28.99	
2261 RX BiCon Hpol	550.78	18.75	-23.07	Peak	44.08	39.76	73.90	34.14	
2261 RX BiCon Hnol	958.61	24.99	-20.81	Peak	42.13	46.31	73.90	27.59	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Scan Result 30MHz – 1GHz (Vertical)

Poduct likegity laboratory V2.5	Proje Co	ct Name: Model: omments:	Equipment A Metrocell Out System inclu	uthorization FCC tdoor CDMA SFR ded 3 -Triplexers	Tester: Jac Test ID: RE tical Polarizat	ky Wong 02-10M-200 ion	1-028		
Standard	FCC Part 24		Measuremen	t Distance	10	meters			
Antenna	Frequency	AF	CF	Detector	Measured Value	Corrected Value	Limit	Margin	
	MHz	dB/m	dB		dBu∨	dBuV/m	dBuV/m	dB	
2261 RX Bicon Vpol	157.45	10.40	-24.21	Peak	49.82	36.01	73.90	37.89	
2261 RX Bicon Vpol	220.23	10.10	-23.47	Peak	52.64	39.27	73.90	34.63	
2261 RX Bicon Vpol	319.64	13.88	-22.76	Peak	54.45	45.57	73.90	28.33	
2261 RX Bicon Vpol	393.40	16.07	-23.04	Peak	50.69	43.72	73.90	30.18	
2261 RX Bicon Vpol	958.73	24.72	-20.81	Peak	39.21	43.12	73.90	30.78	
Corrected Value: Measured Value + AF + CF AF: Antenna Factors & CF: Correction Factors (LNA Gain + Cable Loss) Notes: Positive Margin indicates a pass									

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Substitution Data 30MHz – 1GHz

Product integrity Laboratory V2.5	Project Name: Model: Comments:		Equipment Authorization FCC Part24 Tester: Jacky Wong Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE02-10M-2001-028 System included 3 -Triplexers & 3 Duplexers								
Frequency (MHz)	Polarization (V/H)	Peak Measure level	Signal Generator level (source)	Cable factor	Antenna Gain	Effective Radiated Power (E.R.P.)	E.R.P Limit	margin			
		dBuV/m	dBm	dB	dB	dBm	dBm	dB			
314.72	Н	52.72	-50.00	-0.27	2.10	-48.17	-13	35.17			
319.64	Н	56.43	-46.00	-0.28	2.10	-44.18	-13	31.18			
422.96	Н	51.19	-47.00	-0.32	2.70	-44.62	-13	31.62			
550.78	Н	44.08	-54.00	-0.36	3.00	-51.36	-13	38.36			
958.61	Н	42.13	-51.00	-0.50	2.00	-49.50	-13	36.50			
157.45	V	49.82	-57.00	-0.19	1.34	-55.85	-13	42.85			
220.23	V	52.64	-51.00	-0.21	1.20	-50.01	-13	37.01			
319.64	V	54.45	-54.00	-0.28	1.30	-52.98	-13	39.98			
393.40	V	50.69	-50.00	-0.30	1.00	49.30	-13	36.30			
958.73	V	39.21	-54.00	-0.50	1.10	-53.40	-13	40.40			

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Scan Result 1GHz – 20GHz (Horizontal)

Pr	Project Name: Equipment Authorization FCC Part24 Tester: Jacky Wong Model: Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE03-10M-2001-010 Comments: System included 3 -Triplexers & 3 Duplexers - Horizontal Polarization									
FCC PART 24		Measurement [Distance	10	meters					
Frequency	AF	CF	Detector	Measured Value	Corrected Value	Limit	Margin			
MHz	dB/m	dB		dBuV	dBuV/m	dBuV/m	dB			
3897.43	38.41	-59.95	Peak	75.03	53.50	73.90	20.40			
5846.25	42.79	-57.84	Peak	71.96	56.91	73.90	16.99			
7794.55	44.27	-55.08	Peak	71.34	60.53	73.90	13.37			
9743.19	44.95	-52.81	Peak	67.80	59.93	73.90	13.97			
leasured Value + indicates a pass was measured	AF + CF	AF: Ante	enna Factors 8	CF: Correction Fa	ctors (LNA G	ain + Cable	Loss)			
	Pr FCC PART 24 Frequency MHz 3897.43 5846.25 7794.55 9743.19 Ieasured Value + indicates a pass was measured	Project Name: Model: Comments: FCC PART 24 Frequency AF MHz dB/m 3897.43 38.41 5846.25 42.79 7794.55 44.27 9743.19 44.95 44.95 Ieasured Value + AF + CF indicates a pass awas measured	Project Name: Equipment Aut Model: Metrocell Outde Comments: System include FCC PART 24 Measurement I Frequency AF CF MHz dB/m dB 3897.43 38.41 -59.95 5846.25 42.79 -57.84 7794.55 44.95 -52.81 Measured Value + AF + CF AF: Ante indicates a pass awas measured	Project Name: Model: Equipment Authorization FCC Metrocell Outdoor CDMA SFR System included 3 - Triplexers FCC PART 24 Measurement Distance Frequency AF CF Detector MHz dB/m dB 3897.43 38.41 -59.95 Peak 5846.25 42.79 -57.84 Peak 2794.55 44.95 -52.81 Peak 9743.19 44.95 -52.81 Peak 44.95 -52.81 Peak Ieasured Value + AF + CF AF: Antenna Factors & 8 andicates a pass an	Project Name: Equipment Authorization FCC Part24 Model: Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W System included 3 - Triplexers & 3 Duplexers - Hor FCC PART 24 Measurement Distance 10 Frequency AF CF Detector Measured Value MHz dB/m dB dBuV 3897.43 38.41 -59.95 Peak 75.03 5846.25 42.79 -57.84 Peak 71.96 7794.55 44.27 -55.08 Peak 71.34 9743.19 44.95 -52.81 Peak 67.80 Ieasured Value + AF + CF AF: Antenna Factors & CF: Correction Factors apass CF: Correction Factors apass indicates a pass awas measured apass awas measured	Project Name: Model: Comments: Equipment Authorization FCC Part24 Tester: Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE System included 3 -Triplexers & 3 Duplexers - Horizontal Polari FCC PART 24 Measurement Distance 10 meters Frequency AF CF Detector Measured Value Corrected Value MHz dB/m dB dBuV dBuV/m 3897.43 38.41 -59.95 Peak 75.03 53.50 5846.25 42.79 -57.84 Peak 71.34 60.53 9743.19 44.95 -52.81 Peak 67.80 59.93 Ieasured Value + AF + CF AF: Antenna Factors & CF: Correction Factors (LNA G indicates a pass ewas measured	Project Name: Model: Comments: Equipment Authorization FCC Part24 Tester: Jacky Wong Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE03-10M-200 System included 3 -Triplexers & 3 Duplexers - Horizontal Polarization FCC PART 24 Measurement Distance 10 meters Frequency AF CF Detector Measured Value Corrected Limit MHz dB/m dB dBuV dBuV/m dBuV/m dBuV/m 3897.43 38.41 -59.95 Peak 75.03 53.50 73.90 5846.25 42.79 -57.84 Peak 71.34 60.53 73.90 7794.55 44.27 -55.08 Peak 67.80 59.93 73.90 9743.19 44.95 -52.81 Peak 67.80 59.93 73.90 Ieasured Value + AF + CF AF: Antenna Factors & CF: Correction Factors (LNA Gain + Cable indicates a pass ewas measured			

with all factors loaded

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Peak Scan 1GHz - 20GHz (Vertical)

Roduct Integrity Laboratory V2.5	Pr	oject Name: Model: Comments:	Equipment Authorization FCC Part24 Tester: Jacky Wong Metrocell Outdoor CDMA SFRM 1900MHz 20.7 W Test ID: RE03-10M-2001-010 System included 3 -Triplexers & 3 Duplexers - Vertical Polarization									
Standard	FCC PART 24		Measurement I	Distance	10	meters						
Antenna	Frequency	AF	CF	Detector	Measured Value	Corrected Value	Limit	Margin				
	MHz	dB/m	dB		dBuV	dBuV/m	dBuV/m	dB				
EM-6952 Vpol	3897.43	38.61	-59.95	Peak	75.61	54.28	73.90	19.62				
EM-6952 Vpol	5913.43	42.88	-57.84	Peak	72.13	57.16	73.90	16.74				
EM-6952 Vpol	7794.60	44.27	-55.08	Peak	70.59	59.78	73.90	14.12				
EM-6952 Vpol	9743.19	44.89	-52.81	Peak	69.80	61.88	73.90	12.02				
Corrected Value: M Notes: (1) Positive Margin	leasured Value + indicates a pass	AF + CF	AF: Ante	nna Factors &	CF: Correction Fac	ctors (LNA G	ain + Cable	Loss)				
(2) Corrected Value	was measured											

by FSEK Virtual Instrument with all factors loaded

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Substitution Data 1GHz – 20GHz

Roduct Integrity Laboratory V2.5	Project Name: Model: Comments:	Equipment Autho Metrocell Outdoo System included	Tester: Jacky Wong / Test ID: RE03-10M-2001-010						
Frequency (MHz)	Polarization	Peak Measure	Substitution measure	Signal	Cable	Antenna	Effective Radiated	E.R.P	Margin
	(V/H)	level	level	Generator	factor	Gain	Power (E.R.P.)	Limit	-
		dBuV/m	dBuV/m	dBm	dB	dB	dBm	dBm	dB
3897.52	Н	53.37	53.50	-52	-1.10	8.00	45.10	-13	32.10
5846.25	Н	55.96	56.91	-52	-1.30	8.95	-44.35	-13	31.35
7794.55	Н	60.53	60.56	-52	-1.58	10.20	43.38	-13	30.38
9743.19	Н	59.93	61.40	-52	-1.75	10.60	43.15	-13	30.15
3897.43	V	54.28	54.57	-47	-1.10	8.10	-40.00	-13	27.00
5913.43	V	57.16	57.40	-52	-1.36	9.20	-44.16	-13	31.16
7794.60	V	59.78	59.49	-52	-1.58	10.00	43.58	-13	30.58
9743.19	V	61.88	62.27	-48	-1.75	10.70	-39.05	-13	26.05
	Effective Radiate	d Power (E.R.P.) =	Signal Generator level	l + Cable Fa	ctor + Ante	nna Gain			

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

APPENDIX B: PHOTOGRAPHS

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Sanmina Canada ULC Design Solution, 6751 9th St NE T2E 8R9, Tel: 403-295-5100

Confidential

Figure 1. Front Face of EUT towards antenna

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

RE02-10m-2001-028 RE03-10m-2001-010

Figure 2. Left Side of EUT

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in part without permission of the testing body.

Sanmina Canada ULC Design Solution, 6751 9th St NE T2E 8R9, Tel: 403-295-5100

Confidential