

EXHIBIT 2B

Test Report Provided by NTS Calgary

Applicant: Nortel Networks

For Original Equipment Certification on:

FCC: AB6NT1030VBTS

IC: 332D-VBTS1030

Product Integrity Laboratory

5151-47th Street, NE Calgary, Alberta T3J 3R2 Tel: (403) 568-6605 Fax: (403) 568-6970

Emissions Test Report Project Code CG-04-0059-3

Nortel vBTS -48VDC Beta 1 FCC Part 22 Report

Revision: 2

May 19, 2005

Prepared for: Nortel Networks

Author: Eric Warkentin

EMC Specialist

Approved by: Nick Kobrosly

Director of Operations

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Report Summary NTS Canada

Product Integrity Laboratory

5151-47th Street, N.E. Calgary Alberta T3J 3R2

Accreditation Numbers: FCC 101386

IC 46405-3978 File # IC3978-2

Standards Council of Canada Accredited Laboratory No. 440

Performed For: Nortel Networks Inc.

Nortel Networks Inc. 5050-40th Street, N.E. Calgary Alberta T3J 4P8 Phone (403) 769-2425

Customer Representative: Thomas Wong

CDMA / TDMA Regulatory Prime

EUT Description:

EUT	Name	Model	Revision	Serial Number
vBTS	vBTS Beta 1 -48VDC	See	e equipment list in	Section 2.1.1

Nortel vBTS -48VDC Beta 1 FCC Part 22 Report

Test Summary

ndix	Stand	dards	Description & Range	Deviations* from:			Pass /	Criteria
Appendix	Base	Test Basis	Description & Range	Base Standard	Test Basis	NTS Procedure	Fail	Criteria
Α	FCC CFR 47 Part 22	ANSI C63.4-2001	Radiated Emissions 30 MHz – 10 GHz	No	No	No	PASS	Subpart H

^{*}Deviation details are outlined in the applicable appendix of this report

Nortel vBTS -48VDC Beta 1 FCC Part 22 Report

Test Log and Signatures

Appendix	Test Case	Start	End	Tester / Date
A	Radiated Emissions - 30 MHz – 10 GHz FCC Part 22	April 15, 2005	April 15, 2005	Stephen Ching, EMC Technician

The test outlined may not be inclusive of all testing required by the Base Standards or fulfill the applicable regulatory requirements in their entirety.

Test Result:	The product presented for testing complied with test requirements as shown above.
Prepared By:	Eric Warkentin EMC Specialist
Checked By:	Glen Moore EMC Manager

Table of Contents

REPOF	RT SUMMARY	2
TEST S	SUMMARY	
TEST L	OG AND SIGNATURES	
	TER OF REVISIONS	
1.0	INTRODUCTION	6
1.1	PURPOSE	6
1.2	ABBREVIATIONS AND DEFINITIONS	
1.3	REFERENCES	8
2.0	EUT	
2.1	Configuration	
2.1.1	SET UP CONFIGURATION	11
2.1.2	TEST PLAN CONFIGURATION DEVIATIONS	13
2.1.3	EUT POWER	13
2.1.4	TEST PLAN POWER DEVIATIONS	14
2.2	CABLES	14
2.2.1	TEST PLAN CABLE LIST DEVIATIONS	
2.3	Frequencies	
2.3.1	TEST PLAN FREQUENCY LIST DEVIATIONS	
2.4	EUT SOFTWARE	
2.5	MODE OF OPERATION	
2.5.1	TEST PLAN MODE OF OPERATION DEVIATION	
2.6	Pass / Fail Criteria	
3.0	SUPPORT EQUIPMENT	17
3.1	Configuration	
3.2	Cables	
3.3	FREQUENCIES	
	IDICES	
APPEN	IDIX A: RADIATED E-FIELD EMISSIONS 30 GHZ – 10 GHZ (ERP MEASUREMENT)	19
	IDIX B: TEST PLAN	
APPEN	IDIX C: SUPPLEMENTARY INFORMATION	31
	F DOCUMENT	20

REGISTER OF REVISIONS

Revision	Date	Description of Revisions
0	May 12, 2005	Draft release for review
1	May 12, 2005	Release to customer following internal review
2	May 19, 2005	Corrected incorrect calibration date for spectrum analyzer

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to describe the tests applied by NTS Canada to demonstrate compliance of Nortel Network's Village BTS to the applicable Electromagnetic Compatibility (EMC) standards as outlined in section 1.3.

The test outlined may not be inclusive of all testing required by the Base Standards or fulfill the applicable regulatory requirements in their entirety.

The client directed the operation and configuration of the system under test and was responsible for its monitoring and proper operation during the testing,

1.2 ABBREVIATIONS AND DEFINITIONS

The following are the abbreviations and definitions that may be relevant to this document.

	-
Abbreviation	Explanation
A	Amps
AC	Alternating Current
AE	Ancillary Equipment
AF	Antenna Factor
ANSI	American National Standards Institute
AWG	American Wire Gauge
BTS	Base Transceiver Station
C	Celsius
CAM	Customer Alarm Module
CDMA	Code Division Multiple Access
CEM	Channel Element Module
CF	Correction Factor
CFR	Code of Federal Regulations
CH	Channel
CISPR	Comite International Special des Perturbations
	Radioelectriques (The International Special Committee
	on Radio Interference)
CL	Cable Loss
cm	centimetre
CM	Control Module
dB	Decibel
dBm	Decibel relative to 1 milliwatt
dΒμV	Decibel relative to 1 microvolt
DC	Direct Current
DM	Digital Module
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EN	European Norms
EUT	Equipment Under Test
FCC	Federal Communications Commission
FRU	Flexible Radio Unit
GHz	Gigahertz
GPS	Global Positioning System
GPSTM	Global Positioning System Timing Module
OI OTIVI	Clobal Foodoming Cystem Finning Module

Nortel vBTS -48VDC Beta 1 FCC Part 22 Report

GR Generic Requirements
Hpol Horizontal Polarization
HSSL High Speed Serial Link

Hz Hertz

IC Industry Canada

kHz kilohertz

LNA Low Noise Amplifier

 $\begin{array}{ccc} m & & Metre \\ MHz & Megahertz \\ ms & Milli Second \\ \mu V & Microvolts \end{array}$

NTS National Technical Systems

NA Not Available
N/A Not Applicable
PA Power Amplifier
PI Product Integrity

PK Peak

P/N Part Number
PS Power Supply
PSU Power Supply Unit
QP Quasi-Peak
Qty Quantity

RE Radiated Emissions
RF Radio Frequency
RM Radio Module
Rx Receive

TDMA Time Division Multiple Access

TT Turn Table
Tx Transmit
V Volts

vBTS Village Base Transceiver Station VCAM Village Customer Alarm Module

VDC Volts Direct Current
Vpol Vertical Polarization
vPSU Village Power Supply Unit

W Watt

XCEM X Channel Element Module

Zt Transfer Impedance

Definitions:

Equipment Under Test (EUT): A representative ITE or functionally interactive group of ITE (that is a system), which includes one or more host units and is used for evaluation purposes.

Electromagnetic compatibility (EMC): The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

1.3 REFERENCES

US Code of Federal Regulations

47 CFR Part 22 Federal Communications Commission, Part 22 American National Standards Institute

ANSI C63.4-2001 American National Standards for Methods of Measurements of Radio-

Noise Emissions from Low Voltage Electrical and Electronic

Equipments in the range of 9 kHz to 40 GHz, June 6, 2001

ANSI C63.4-1992 American National Standards for Methods of Measurements of Radio-

Noise Emissions from Low Voltage Electrical and Electronic Equipments in the range of 9 kHz to 40 GHz, July 17, 1992

NTS Documentation

- NTS Radiated Emissions 30MHz 1GHz Automated Test Method E001R7
- NTS Radiated Emissions 1GHz 18 GHz Manual Test Method E006R4
- NTS Radiated Emissions Substitution 30 MHz 20 GHz Test Method 11.0

2.0 EUT

2.1 CONFIGURATION

Description of EUT

·	Name	Model	Revision	Serial Number		
EUT	vBTS Beta 1 -48VDC	See equipment list in Section 2.1.1				
Classification	Wall mount	Wall mount				
Size (m)	NA					
Weight	NA					
Power	-48VDC 15A					
Functional Description	Village BTS 1030 The Village BTS is a low cost, hi basestation solution for rural ma Compact BTS. It is cost and size mount indoor deployment. The Variant air interface, 18W of Tx procustomer alarms, and provisional The Village BTS consists of all in module or even a cable is reused However, the Village BTS SW at 12.1 SW with incremental improvemental improvemental modules and Breaker Interface Parel, combining the Compact BTS GP three Radio Modules into single sector Duplexer, reducing the Parameter	rkets. Its architecture optimized for 1 carvillage BTS supports ower per sector, -1 al AC power (not us also assemblies - it is defined by the CDMA Mand BSSM SW are because the sector of the compact BTS Custo and into Village Custo and interfaces.	re and design are rrier 3 sector wall, a total of 128 chall 24.0 dBm Rx sensed in this test). It is 100% new design are defended on the Compet cost and size are dCM-2 into a singular, three Duplex 25W, removing the latest and simpler Villages of the infrastructor, removing the bar a one IS95 carries (Tx 878.49MHz).	based on the floor and rack annel elements, sitivity, 6 gn (not a single pact BTS). pact BTS NBSS e achieved by alle Digital Module, are sinto single 3 are Breaker le, T1 Interface dule, and ge Fan Tray cture and physical backplane,		

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

The Village BTS consists of the following modules and assemblies that are also considered the Village BTS FRUs:

- Cover
- Fan Tray
- Provisional AD/DC Rectifier
- Digital Module (mounted on the Radio Module)
- Radio Module
- Village Customer Alarm Module
- 3 Sector Duplexer
- Mounting Bracket

The Village BTS also consists of a number of cable assemblies that are not listed above.

Physical Description

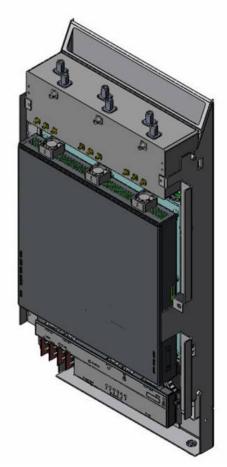


Figure 1 vBTS - No Cover

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

2.1.1 <u>SET UP CONFIGURATION</u>

Description	PEC	Serial #	Release	Manufacturer
VILLAGE BTS 800 MHZ	NTDV20AA			
VILLAGE, DUPLEXER 800 MHZ A BAND	NTDV40AA			ANDREW
VILLAGE, CUSTOMER ALARM MODULE	NTDV21AA			IDT
(VCAM)				
VILLAGE, FAN MODULE	NTDV22AA		Production/01	GDNT
VILLAGE SUPPORT FRAME	N0014583			FLEXTRONICS
CONN 2MM 5 X 22 STR PCB MALE WITH	N0014878			FCI
EXTENDED GROUNDS				
VILLAGE, TOP VENT COVER	N0017164			FLEXTRONICS
VILLAGE, DIGITAL THUMB SCREW	N0014592			HONGIYIN
VILLAGE, COVER	NTDV33AA			
VILLAGE, RADIO MODULE 800 MHZ	NTDV30AA	RM09		
VILLAGE, PA PALLET 800 MHZ - ALPHA	NTDV38AA		P6	CELESTICA
VILLAGE, PA PALLET 800 MHZ - BETA	NTDV38AA		P6	CELESTICA
VILLAGE, PA PALLET 800 MHZ -	NTDV38AA		P6	CELESTICA
GAMMA	110044505			
VILLAGE, HEATSINK - QTY 3	N0014595		NO	
VILLAGE, PSU (DC-DC)	NTDV32AA		N3	AcBel
VILLAGE, MONITOR & CONTROL	NTDV36AA		P7	CELESTICA
(VMAC) PCP				AMPLIENOL
CABLE RIBBON, RADIO DIGITAL TO VMAC	NTDV2036			AMPHENOL
VILLAGE, SHIELD, MIDDLE	N0014601			
VILLAGE, SHIELD, MIDDLE VILLAGE, RADIO PCP 800 MHZ	NTDV31AA		P5	
VILLAGE, RADIO PCP 800 WI12 VILLAGE, SHIELD, TOP	N0014602		F3	
VILLAGE, DIGITAL MODULE	NTDV25AA			
VILLAGE, DIGITAL MODULE VILLAGE, DIGITAL PCP	NTDV26AA		P5	SOLECTRON
VILLAGE, GPSTC	NTDV27AA		1.0	COLLOTROIN
VILLAGE, DIGITAL CHASSIS	N0014584		Prototype	FLEXTRONICS
VILLAGE, DIGITAL COVER	N0014589		Prototype	FLEXTRONICS
VILLAGE, 9 PIN D-SUB, FOIL OVER	N0014585		Prototype	TENNRICH
FOAM GASKET	110011000		1.10101,750	12111111011
VILLAGE, 15 PIN D-SUB, FOIL OVER	N0014587		Prototype	TENNRICH
FOAM GASKET				
VILLAGE, 25 PIN D-SUB, FOIL OVER	N0014588		Prototype	TENNRICH
FOAM GASKET - QTY 2				
(R0120766) CHASSIS EMI GASKET,	N0018574			TENNRICH
15.22" - REAR OF COVER				
(R0120766) CHASSIS EMI GASKET,	A0896301			TENNRICH
14.97"- EACH SIDE OF CHASSIS				
(R0120766) CHASSIS EMI GASKET, 0.72"	N0018572			TENNRICH
- BOTTOM FRONT COVER				
VILLAGE, EMI GASKET, Z-PACK, FOIL	N0016678			TENNRICH
OVER FOAM				
TEST PORT CCOVER TAPE	R0113108			VARIOUS
VILLAGE, DIGITAL LIGHT PIPE, RIGHT	N0014590		Prototype	PACIFIC
VILLAGE, DIGITAL LIGHT PIPE, LEFT	N0014591		Prototype	PACIFIC
VILLAGE, SYSTEM LABEL	N0014594		Prototype	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Description	PEC	Serial #	Release	Manufacturer
Cables				
CABLE POWER, VCAM TO PSU	NTDV2030		Prototype	AMPHENOL
CABLE POWER, PSU TO RADIO			Prototype	AMPHENOL
ANALOG	NTDV2031			
CABLE POWER, PSU TO RADIO DIGITAL	NTDV2032		Prototype	AMPHENOL
CABLE POWER, PSU TO DIGITAL	NTDV2033		Prototype	AMPHENOL
CABLE DATA, PSU TO VCAM	NTDV2034		Prototype	AMPHENOL
CABLE T1/E1, VCAM TO DIGITAL	NTDV2035		Prototype	AMPHENOL

The setup of the EUT on the 10m chamber turn table is shown in Figure 2 through Figure 3. Setup of the EUT was conducted by the customer.

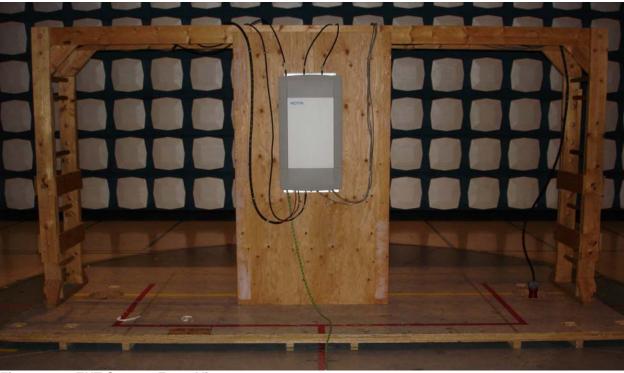


Figure 2 EUT Setup – Front View

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Figure 3 EUT Setup – Rear View

2.1.2 <u>TEST PLAN CONFIGURATION DEVIATIONS</u>

Deviations:

- System level
 - o D-sub filter SCI 56-715-030 mounted at the input of the Digital Module power input
 - Copper tapped over the seams of the PA heatsinks from the vMAC area to the end (towards to the vPSU).
 - Foam rope gasket placed on top and across of the vPSU and contacted with radio metal base. Put foam rope gasket on the edge of the PA heatsink at the vMAC area to contact with the radio metal base.
- Radio Module
 - o Grounded P3 and P4 DC power connectors to board ground.
- Digital Module
 - Put direct jumper wires from J69 (T1 connector) to T4 (T1 isolated transformer).
- VCAM had the following configuration and modifications:
 - o P7 layout with decoupling capacitors increased to 330uF

2.1.3 EUT POWER

Voltage	-48VDC
Number of Feeds	1 (1 Hot, 1 Return)
Gauge of cable	8 AWG
Current Draw	15 A

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Special	The power (1 hot and 1 return) was supplied through one shielded 2/8 (2 conductor 8
Requirements	AWG) power cords into the EUT.

2.1.4 TEST PLAN POWER DEVIATIONS

None.

2.2 CABLES

EUT Cable List

Quantity	Model	Routing		Shielded /		Cable
		From	То	Unshielded	Description	Length (m)
1	NA	Hubble B	Power Input	Shielded	2/8 AWG DC Power Cables	10.3
3	LMR400	RM	Chamber Bulkhead	Shielded	N Male – N Male Cable	6.09
1	LMR400	Chamber Bulkhead	GPS Distribution Block	Shielded	N Male – N Male Cable	6.09
1	8 pair 24 AWG	VCAM	Looped back	Shielded	T1 / E1 Cable	16
1	8 pair 24 AWG	VCAM	Looped back	Unshielded	Alarm Cable	16

2.2.1 TEST PLAN CABLE LIST DEVIATIONS

None.

2.3 FREQUENCIES

EUT Frequency List

Module	Frequency (MHz)	Description
	0.100	Microwire Communication
	0.100	I2C Communication
	0.308	DMI Communication (RS-422)
	4.9152	BCN Communicaion; H2 CORE (4*fc)
	19.6608	TxCH (FP) (16*fc)
RM Digital	31.9488	Digital LO Reference Clock (26*fc)
	31.949	Microprocessor Clock
	39.3216	Rx ADCs, RxCH, TxCH, H2 (32*fc)
	63.8976	SERDES, H2 (52*fc)
	78.6432	BBPD_FPGA, RxCH, TxCH, PRE_D ADCs, TxDAC (64*fc)
	638.976	SERDES HSSL (520*fc)
	0.008	
	0.2048	CM-2+ Side
	2.048	CM-2+ Side
	4.096	CM-2+ Side
	5.0	CM-2+ Side
	8.192	Oscillator and an External PLL
	9.8304	8*fc from GPS Board
DM Digital Circuit Pack	25.0	CM-2+ Side and XCEM Side, Ethernet Clock
	33.0	XCEM Side ASIC Bus Clock
	33.25	XCEM Side PCI Clock
	39.3216	CM-2+ Side and XCEM Side
	63.8976	CM-2+ Side and XCEM Side
	66.6666	CM-2+ Side Main Bus Clock
	133.00	XCEM Side Main Bus Clock
	638.976	CORE (520*fc)
	4.9154	
	9.8304	
	10.0	
DM GPST-C	22.1184	Processor Clock
	58.9824	(8*fc)
	117.9648	(12*fc)
	1575.42	GPS L1
	0.020	Fan
vCAM	0.040	PS
_		
-	32.0	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Module	Frequency (MHz)	Description		
	19.2	Reference LO		
	57.6	BBPD Rx IF		
RM Analog	88.5	Rx IF		
Kivi Alialog	735.54 – 760.47	RxLO (Channel Dependant (RxRF – 88.5MHz))		
	869.04 - 894.0	TxLO (Channel Dependant (TxLO=TxRF))		
	908.04 – 951.6	BBPD LO (Channel Dependant (TxRF + 57.6 MHz))		

2.3.1 TEST PLAN FREQUENCY LIST DEVIATIONS

None.

2.4 EUT SOFTWARE

Software Name	Software Release Number	Software Configuration	
Vortex 12.1C	121ddva		

2.5 MODE OF OPERATION

As defined by Nortel Networks, the EUT was operated in a typical manner. During testing, the customer monitored the system operation. See Section 2.4 for software mode of operation information. For all configurations the village 1030 was set up in a one IS95 carrier and three sector configuration. The Tx channel number used was 283 (Tx 878.49MHz and Rx 833.49MHz). The output power per sector was 25W which was the rated maximum power.

2.5.1 TEST PLAN MODE OF OPERATION DEVIATION

None.

2.6 PASS / FAIL CRITERIA

The pass/fail criteria are defined by the emission limits outlined in each reference base standard. The specific limits are described in each test appendices of this report.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

All support equipment information was supplied by the client and was not verified by NTS.

Co-Located Support Equipment/Assemblies

Position	Qty	Description	P/N	Serial Number		
No co-located support equipment						

Offsite Support Equipment/Assemblies

Position Qty Description		Description	P/N	Serial Number
10m Support Room	3	50 Ohm RF Loads	NA	NA

3.2 CABLES

Support Cable List

		Routing			Cable	
Quantity	Model	From	То	Description	Length (m)	
4	NA	Chamber Bulkhead	Support Room Bulkhead	N Male – N Male Cable	2.14	
3	NTMY00CL-SF	Support Room Bulkhead	RF Loads	N Male – N Male Cable	8	

3.3 FREQUENCIES

Support Frequency List

Assembly	Signal	Frequency (MHz)
	NA	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDICES

APPENDIX A: RADIATED E-FIELD EMISSIONS 30 GHZ – 10 GHZ (ERP MEASUREMENT)

A.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC		
Dase Standard	Part 22 – Public Mobile Services – Subpart H – Cellular Radiotelephone Service		
	CFR Title 47 – Telecommunications, Chapter I - FCC		
	Part 24 – Personal Communication Services – Subpart E – Broadband PCS		
	ANSI C63.4-2001		
Test Basis	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical		
	and Electronic Equipment in the Range of 9 kHz to 40 GHz		
	NTS Radiated Emissions Test Method E006R4		
Test Method	NTS Radiated Emissions Signal Substitution Method 30MHz - 20GHz. EMC Test		
	Method 11.0, Revision 01		

A.2. Specifications

Frequency	\boxtimes	47 CFR FCC Part 22				
		47 CFR FCC Part 24				
		Theoretical Peak @ 3m ¹ ERP ²				
MHz		dBμV/m dBm				
1000 - 10000	84.3 -13					

Note 1: Calculated using: Pd-(43 + 10 log(Pw)

where Pd is the EUT power in dBm and Pw is the EUT power in watts

Note 2: Calculated using: 120+20log(SQRT(49.2*Pw)/3)

where Pw is the EUT power in watts

A.3. Measurement Uncertainty

Frequency Range	Measurement Uncertainty (dB)	Expanded Uncertainty (K=2) (dB)
30 MHz – 1 GHz	+2.32/-2.36	+4.65/-4.72
1 GHz – 10 GHz	+3.48/-3.51	+6.96/-7.02

A.4. Deviations

Deviation	Time &	Description and	De	eviation Referen	ce	
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
None						

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

A.5. Radiated Emissions Measurement Equipment

Radiated Emissions 30 MHz - 1 GHz Measurement Equipment

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date							
10m ANECHOIC CHAMBER												
Bilog Antenna	☐ Chase	CBL 6111B	260301	09JULY05	09JULY04							
Dilog Antonia		CBL6112B	260398	03002103	03002104							
RF Cable	Suhner Succoflex	Ferrite bead loaded cable	260388	07JAN06	07JAN04							
CONTROL ROOM												
Test Receiver	Rohde & Schwarz	ESMI	260424 / 260423	02FEB06	02FEB05							
rest Neceiver	Rohde & Schwarz	ESAI	260110 / 260111	021 LB00								
Mast Controller	EMCO	2090	260166	N/A	N/A							
Multi Device Controller TT1 (Turntable)	EMCO	2090	260165	N/A	N/A							
RF 10m East site Link												
- Cable 1	Suhner Succoflex	NA	263191									
- Cable 2	Suhner Succoflex	NA	263135									
- Cable 3	Suhner Succoflex	NA	263161	07JAN06	07JAN04							
- Cable 4	Suhner Succoflex	NA	263162									
- Switch Matrix Controller	TDL	SMC-002	260162									
- Amplifier	Hewlett Packard	8447F	260164									

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Nortel vBTS -48VDC Beta 1 FCC Part 22 Report

Radiated Emissions 1 GHz – 10 GHz Measurement Equipment

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date							
10m ANECHOIC CHAMBER												
Horn Antenna (Rx) 1 G – 18 G		3115	260092	16JUN05	16JUN04							
Standard Gain Horn (Rx) 5.95 G – 8.2G	☐ EMCO	3160-06	260090	N/A	27NOV01							
Standard Gain Horn (Rx) 8.2G – 12.5 G	☐ EMCO	3160-07	260089	N/A	27NOV01							
Standard Gain Horn (Rx) 12.5G – 18 G	□ ЕМСО	3160-08	260074	N/A	27NOV01							
High pass filter	K&L	11SH10- 3860	263124	08JAN06	08JAN04							
High frequency Link												
Step Attenuator/Switch (0dB & 10 dB)	HP	11713A	260048 260097	07JAN06	07JAN04							
LNA	Miteq	JSD000121	260477	07071100	070741404							
Cable from LNA to SA	Succoflex	101PEA	263187									
Spectrum Analyzer 9k- 40GHz	Rohde & Schwarz	FSEK	260104	05ARP05	05APR05							
LNA DC Power Supply	Xantrex	LXO 30-2	260483	NA	NA							
HPIB Extender	HP	37204	260096	N/A	N/A							
10dB Attenuator	Wiltron	41KC-10	260449	05APR06	05APR04							
	CONT	ROL ROOM										
PC with FSEK Manual ctrl S/W	N/A	N/A	N/A	N/A	N/A							
HPIB Extender	HP	37204	260168	N/A	N/A							
Mast Controller	EMCO	2090	260166	N/A	N/A							
Multi Device Controller TT1	EMCO	2090	260165	N/A	N/A							
		ION EQUIPMEN	NT .									
Horn Antenna (Tx)		3115	260088	N/A	N/A							
	Rohde & Schwarz	SMP-04	260425	N/A	N/A							
Signal Generator	Rohde & Schwarz	SMIQ		N/A	N/A							
		68369B	Serial 691006	N/A	N/A							
Cable RX antenna to 3M center bulk head	Succoflex	104	263136	N/A	N/A							
Cable 3M center bulk head to Control room	Succoflex	104	263188	N/A	N/A							
Cable Control room bulk head to Signal Generator	Succoflex	104	263134	N/A	N/A							

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Nortel vBTS -48VDC Beta 1

FCC Part 22 Report

Substitution Measurement Equipment

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date							
SUBSTITUTION EQUIPMENT												
Horn Antenna (Tx) 1 G – 18 G		3115	260091	08NOV05	08NOV04							
Signal Generator	⊠ Rohde & Schwarz	SMP-04	260425	19MAR06	19MAR03							
Cable RX antenna to 3M center bulk head	Succoflex	104	263136	N/A	N/A							
Cable 3M center bulk head to Control room	Succoflex	104	263188	N/A	N/A							
Cable Control room bulk head to Signal Generator	Succoflex	104	263134	N/A	N/A							

A.6. **Special Considerations**

None.

A.7. Test Results

Compliance Scan Summary

Project Name: CG-04-0059 Nortel

Model: vBTS Beta 1 with VCAM Fix -48 VDC

Test ID: RE03-10m-04-0059

Product Integrity Comments: Conf13: Flinflon; RM09; M3 PSU; T1 / E1 Fix; Cu tape under VMAC and PSU; Cover On; New Digital module power filter

Laboratory V2.5

Stand	Standard FCC Part 22																			
olarization	est Distance (m)	Rx Antenna	Tx Antenna	Frequency	E-Field Peak Emission Level	Substituted Measured Rx Level	Rx AF	Rx Link	Rx FL	Total Rx CF	Det	Substituted Rx E-Field Emission		Tx Ant Num Gain	Tx Cable Loss	Total Tx CF	Effective Radiated Power (ERP)	ERP Limit	ERP Margin	Mast Height
ш	ĭ			MHz	dBuV/m	dBuV	dB/m	dB	dB	dB		dBuV/m	dBm	dB	dB	dB	dBm	dBm	dB	cm
Hpol	3	9711-5362	9711-5361	1757.07	72.37	65.36	26.43	-19.37	0.00	7.06	PK	72.42	-27.70	7.07	6.74	0.33	-27.37	-13.00	14.37	151.6
Vpol	3	9711-5362	9711-5361	1757.07	72.79	65.86	26.38	-19.37	0.00	7.01	PK	72.87	-27.10	7.07	6.74	0.33	-26.77	-13.00	13.77	156.60
Vpol	3	9711-5362	9711-5361	2635.50	65.41	54.74	28.93	-18.07	0.00	10.86	PK	65.60	-35.30	9.46	8.47	0.99	-34.31	-13.00	21.31	143.90
Vpol	3	9711-5362	9711-5361	6146.60	60.23	48.25	34.30	-22.49	0.24	12.05	PK	60.30	-36.50	14.81	13.24	1.57	-34.93	-13.00	21.93	169.30

AF: Antenna Factors Ant: Antenna Link: Link Loss FL: Filter Loss CF: Correction Factor Det: Detector Type Rx: Receive Tx: Transmit Link = Attenuator Loss+Cable Loss + Amplifier Loss Rx E-Field Emission = Measured Rx Level + AF + Link + FL. ERP = Signal Generator + Tx Num Gain - Tx Cable

E-Field Peak Emissions Level: Corrected level measured from the system
Substituted Measured Rx Level: Uncorrected level measured from substitution transmit antenna
Substituted Rx E-Field Emission: Corrected level measured from the substitution transmit antenna

The EUT is in compliance with the limits as specified above.

Notes:

• Frequencies chosen from compliance are radio harmonics, all other emissions are digital harmonics and fall under Part 15 Subpart B for Digital Equipment tests (See report CG-04-0059-2).

A.8. Observations

None

A.9. Deviations from Normal Operating Mode During Test

None

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

A.10. Sample Calculation

3m Limit = 10m Limit - 20 * log (3/10)

Emission Level = Measured Level + Correction Factors

Margin = Limit - Emission Level

ERP Limit (dBm) = Pd-(43 + 10 log(Pw)

where Pd is the EUT power in dBm and Pw is the EUT power in watts

Theoretical ERP Limit (dBuV/m) 120+20log(SQRT(49.2*Pw)/3)

where Pw is the EUT power in watts

A.11. Test Data & Photographs

The test data and photographs collected during this test appear following this page.

A.12. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Stephen Ching Function: EMC Technician

Figure 4 RE 30 MHz - 10 GHz EUT Configuration

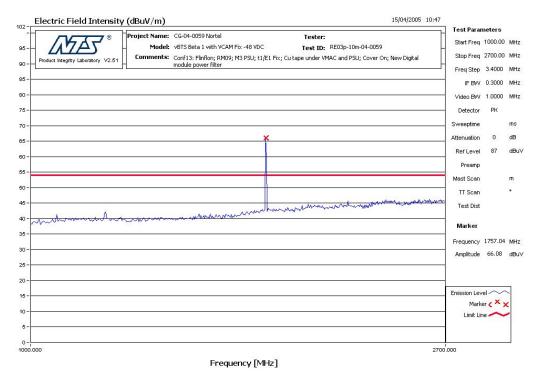


Figure 5 RE - Horizontal – 1 GHz – 2.7 GHz Pre-scan Note: Limit line shown is for Part 15 Class A, not Part 22

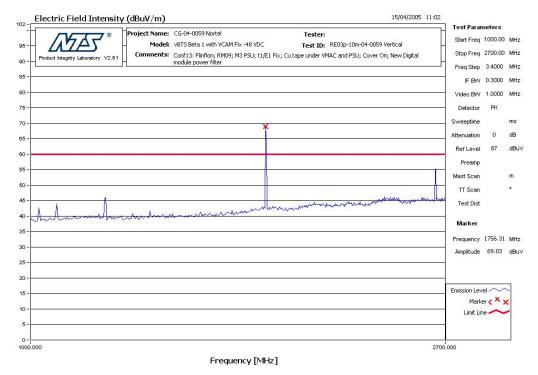


Figure 6 RE - Vertical – 1 GHz – 2.7 GHz Pre-Scan Note: Limit line shown is for Part 15 Class A, not Part 22

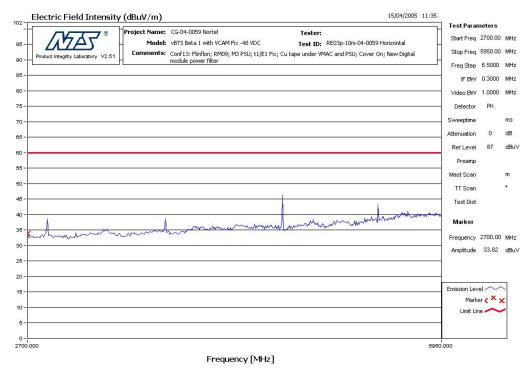


Figure 7 RE - Horizontal – 2.7 GHz – 5.95 GHz Pre-scan Note: Limit line shown is for Part 15 Class A, not Part 22

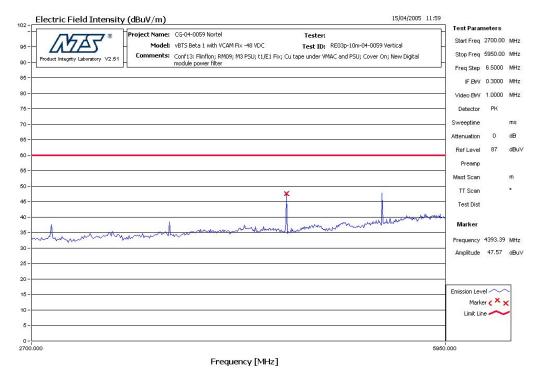


Figure 8 RE - Vertical – 2.7 GHz – 5.95 GHz Pre-Scan Note: Limit line shown is for Part 15 Class A, not Part 22

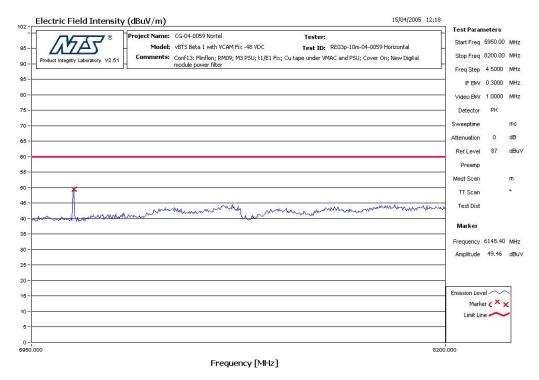


Figure 9 RE - Horizontal – 5.95 GHz – 8.2 GHz Pre-scan Note: Limit line shown is for Part 15 Class A, not Part 22

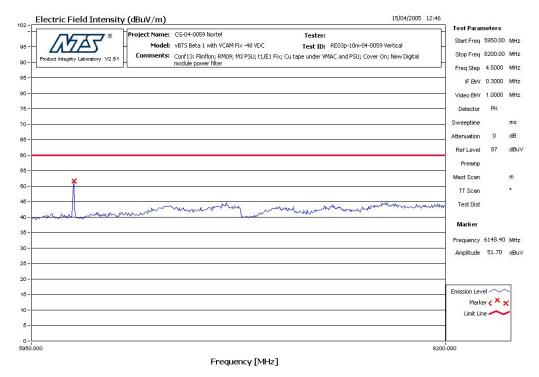


Figure 10 RE - Vertical - 5.95 GHz - 8.2 GHz Pre-Scan Note: Limit line shown is for Part 15 Class A, not Part 22

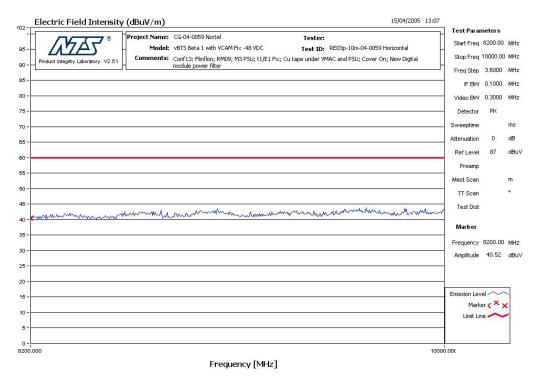


Figure 11 RE - Horizontal – 8.2 GHz – 10 GHz Pre-scan Note: Limit line shown is for Part 15 Class A, not Part 22

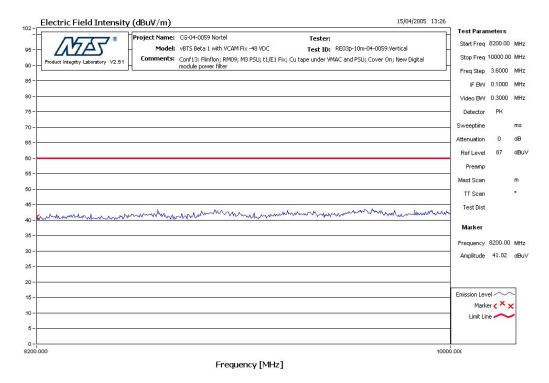


Figure 12 RE - Vertical - 8.2 GHz - 10 GHz Pre-Scan Note: Limit line shown is for Part 15 Class A, not Part 22

APPENDIX B: TEST PLAN

None Provided

APPENDIX C: SUPPLEMENTARY INFORMATION

None attached

END OF DOCUMENT