3 T

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 22 & 24 / IC RSS-132/RSS-133

Applicant Name:

NEC Corporation of America Radio Communications Systems Division 6535 N. State Highway 161 Irving, TX 75039-2402 USA Date of Testing: July 18-26, 2010 Test Site/Location:

PCTEST Lab., Columbia, MD, USA

Test Report Serial No.: 0Y1007151183.A98

FCC ID: A98-DDD0625

APPLICANT: NEC CORPORATION OF AMERICA

Application Type: Certification

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §22(H), §24(E)

IC Specification(s): RSS-132 Issue 2; RSS-133 Issue 5

EUT Type: 1900 GSM/GPRS and 850 WCDMA Phone with RFID

Model(s): KMP7N2V1-1A

Tx Frequency Range: 826.40 - 846.60MHz (Cell. WCDMA) / 1850.20 - 1909.80MHz (PCS GSM)

Max. RF Output Power: 1.538 W EIRP PCS GSM (31.87 dBm)

0.18 W ERP Cell. WCDMA (22.56 dBm)

242KGXW (PCS GSM)

Emission Designator(s): 4M34F9W (Cellular WCDMA)

Test Device Serial No.: identical prototype [S/N: 004401200570188]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22 and EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		raye i Ul 30
C COLLO DOTTOTE : : !				DEV 4 00/4/0E

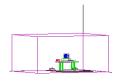


TABLE OF CONTENTS

FCC F	PART 2	22 & 24 MEASUREMENT REPORT	3
1.0	INTR	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH	6
	3.3	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.4	CELLULAR - MOBILE FREQUENCY BLOCKS	7
	3.5	PCS - BASE FREQUENCY BLOCKS	7
	3.6	PCS - MOBILE FREQUENCY BLOCKS	7
	3.7	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	7
	3.8	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	
	3.9	PEAK-AVERAGE RATIO	8
	3.10	FREQUENCY STABILITY / TEMPERATURE VARIATION	8
4.0	TES	T EQUIPMENT CALIBRATION DATA	9
5.0	SAM	PLE CALCULATIONS	10
6.0	TES	T RESULTS	11
	6.1	SUMMARY	11
	6.2	EFFECTIVE RADIATED POWER OUTPUT DATA	12
	6.3	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	13
	6.4	CELLULAR WCDMA RADIATED MEASUREMENTS	14
	6.5	PCS GSM RADIATED MEASUREMENTS	17
	6.6	CELLULAR WCDMA FREQUENCY STABILITY MEASUREMENTS	20
	6.7	PCS GSM FREQUENCY STABILITY MEASUREMENTS	22
	6.8	RECEIVER SPURIOUS EMISSIONS	24
7.0	PLO [°]	TS OF EMISSIONS	25
8.0	CON	ICLUSION	36

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Faye 2 01 30

MEASUREMENT REPORT

FCC Part 22 & 24

§2.1033 General Information

APPLICANT: **NEC Corporation of America**

APPLICANT ADDRESS: Radio Communications Systems Division

6535 N. State Highway 161, Irving, TX 75039-2402 USA

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §22(H), §24(E)

IC SPECIFICATION(S): RSS-132 Issue 2; RSS-133 Issue 5

BASE MODEL: KMP7N2V1-1A FCC ID: A98-DDD0625

FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

EMISSION DESIGNATOR(S): 242KGXW (PCS GSM)

4M34F9W (Cellular WCDMA)

MODE: GSM/WCDMA

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

Test Device Serial No.: 004401200570188 ☐ Production ☐ Engineering

DATE(S) OF TEST: July 18-26, 2010 **TEST REPORT S/N:** 0Y1007151183.A98

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO PS,

Street Street Street Street Street		vices and for Over-the-Air (OTA) Antenna P //, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1		•
FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1007151183.A98	Test Dates: July 18-26, 2010	EUT Type: 1900 GSM/GPRS and 850 WCDMA Phone with RFID		Page 3 of 36

INTRODUCTION

Scope 1.1

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

Testing Facility 1.2

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area, (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 28, 2009.

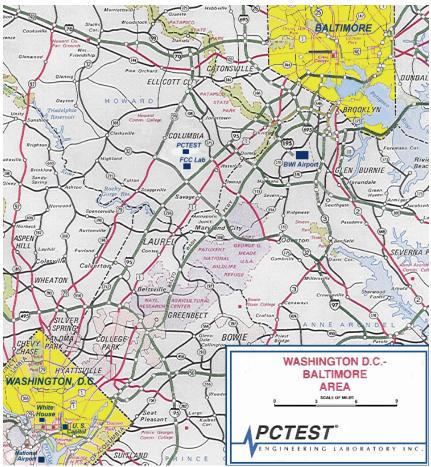


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 4 of 26
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Page 4 of 36
2010 PCTEST Engineering Laboratory, Inc.				

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the NEC 1900 GSM/GPRS and 850 WCDMA Phone with RFID FCC ID: A98-DDD0625. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
NEC / Model: KMP7N2V1-1A	A98-DDD0625	1900 GSM/GPRS and 850 WCDMA Phone with RFID

Table 2-1. EUT Equipment Description

2.2 **EMI Suppression Device(s)/Modifications**

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 **Labeling Requirements**

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 3 01 30

DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

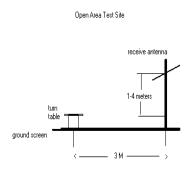


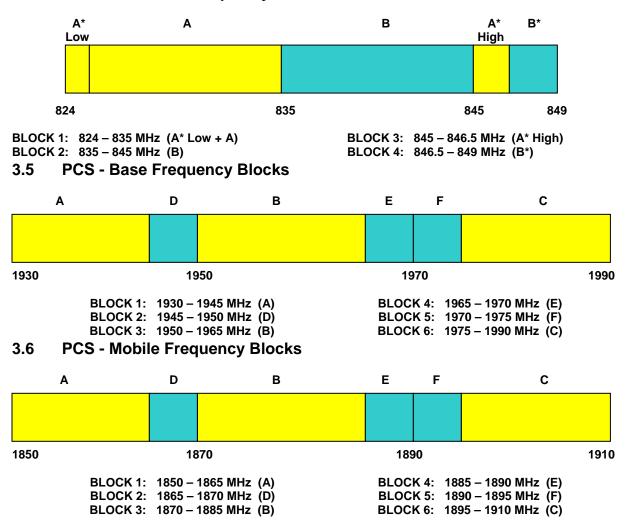
Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure......None

3.2 Occupied Bandwidth §2.1049, RSS-Gen (4.6.1)

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points. beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

3.3 Cellular - Base Frequency Blocks


BLOCK 1: 869 - 880 MHz (A* Low + A) BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B) BLOCK 4: 891.5 - 894 MHz (B*)

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage o or so

3.4 Cellular - Mobile Frequency Blocks

3.7 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a)(b); RSS-132 (4.5.1), RSS-133 (6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A98-DDD0625	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage / or 50

3.8 Radiated Power and Radiated Spurious Emissions §2.1053, 22.913(a)(2), 22.917(a), 24.232(c), 24.238(a), RSS-132 (4.5.1), RSS-133 (6.5.1)

Radiated power and radiated spurious emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1" and in GPRS mode while transmitting with one slot active.

3.9 Peak-Average Ratio §24.232(d); RSS-133 (6.4)

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth.

3.10 Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235; RSS-132 (4.3) / RSS-133 (6.3)

The frequency stability of the transmitter is measured by:

- Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an a.) environmental chamber.
- Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal b.) value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 0 01 30
O COLLO DOTEOT E : : !				DEVIAGONO

TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	11713A	Attenuation/Switch Driver	12/2/2009	Annual	12/2/2010	3439A02645
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2009	Annual	12/2/2010	3008A00985
Agilent	85650A	Quasi-Peak Adapter	12/2/2009	Annual	12/2/2010	3303A01872
Agilent	85650A	Quasi-Peak Adapter	3/30/2010	Annual	3/30/2011	2043A00301
Agilent	8566B	(100Hz-22GHz) Spectrum Analyzer	12/2/2009	Annual	12/2/2010	3638A08713
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	3/30/2010	Annual	3/30/2011	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	9/10/2009	Annual	9/10/2010	US40053896
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/1/2009	Annual	10/1/2010	US42510244
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	9/29/2009	Biennial	9/29/2011	US42340152
Agilent	N9020A	MXA Signal Analyzer	10/22/2009	Annual	10/22/2010	US46470561
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	146
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	147
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Emco	3115	Horn Antenna (1-18GHz)	4/8/2010	Biennial	4/8/2012	9205-3874
Espec	ESX-2CA	Environmental Chamber	4/1/2010	Annual	4/1/2011	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/17/2009	Biennial	7/17/2011	A051107
Rohde & Schwarz	CMU200	Base Station Simulator	6/17/2010	Annual	6/17/2011	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	9/19/2009	Annual	9/19/2010	200452
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/25/2009	Annual	8/25/2010	100976
Anritsu	ML2495A	Power Meter	10/12/2009	Annual	10/12/2010	941001

Table 4-1. Test Equipment

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		raye a ul au
C COLLO DOTTOTE : : !				

5.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz
F = Frequency Modulation
9 = Composite Digital Info
W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission - PCS Band

Example: GSM Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80) = 50.3 dBc.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 10 01 30

TEST RESULTS

Summary 6.1

Company Name: **NEC Corporation of America**

FCC ID: A98-DDD0625

PCS Licensed Transmitter Held to Ear (PCE) FCC Classification:

Mode(s): GSM/WCDMA

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference				
TRANSMITTER	TRANSMITTER MODE (TX)									
2.1049, 22.917(a), 24.238(a)	RSS-Gen (4.6.1) RSS-133 (2.3)	Occupied Bandwidth	N/A		PASS	Section 7.0				
2.1051, 22.917(a), 24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Band Edge / Conducted Spurious Emissions	< 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS	Section 7.0				
24.232(d)	RSS-133 (6.4)	Peak-Average Ratio	< 13 dB	COMBOOTED	PASS	Section 7.0				
2.1046	RSS-132 (4.4) RSS-133 (4.1)	Transmitter Conducted Output Power	N/A		PASS	RF Exposure Report				
22.913(a)(2)	RSS-132 (4.4) [SRSP-503(5.1.3)]	Effective Radiated Power	< 7 Watts max. ERP		PASS	Section 6.2				
24.232(c)	RSS-133 (6.4) [SRSP-510 (5.1.2)]	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.3				
2.1053, 22.917(a), 24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Undesirable Emissions	< 43 + log ₁₀ (P[Watts]) for all out- of-band emissions		PASS	Sections 6.4, 6.5				
2.1055, 22.355, 24.235	RSS-132 (4.3) RSS-133 (6.3)	Frequency Stability	Frequency Stability < 2.5 ppm		PASS	Sections 6.6, 6.7				
RECEIVER MOD	DE (RX) / DIGITAL EN	MISSIONS								
N/A	RSS-132 (4.6) RSS-133 (6.6)	Receiver Spurious Emissions Limits	< RSS-Gen limits [Section 6; Table 1]	RADIATED	PASS	Section 6.8				

Table 6-1. Summary of Test Results

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 11 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage II of 30

6.2 Effective Radiated Power Output Data

§22.913(a)(2); RSS-132 (4.4) [SRSP-503(5.1.3)]

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	GSM1900	-9.850	23.87	8.00	Н	31.87	1.538	Standard
1880.00	GSM1900	-10.980	22.74	8.00	Н	30.74	1.186	Standard
1909.80	GSM1900	-11.130	22.59	8.00	Н	30.59	1.146	Standard

Table 6-2. Effective Radiated Power Output Data (GSM)

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Faye 12 01 30

Equivalent Isotropic Radiated Power Output Data 6.3 §24.232(c); RSS-133 (6.4) [SRSP-510 (5.1.2)]

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
826.40	WCDMA850	-16.310	22.56	0.00	Н	22.56	0.180	Standard
836.60	WCDMA850	-18.110	20.76	0.00	Н	20.76	0.119	Standard
846.60	WCDMA850	-19.260	19.61	0.00	Н	19.61	0.091	Standard

Table 6-3. Equivalent Isotropic Radiated Power Output Data (WCDMA)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 13 01 30

6.4 Cellular WCDMA Radiated Measurements §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 826.40 MHz

CHANNEL: 4132

MEASURED OUTPUT POWER: 22.560 dBm = 0.180 W

MODULATION SIGNAL: WCDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 (W) = 35.56$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1652.80	-63.55	6.42	-57.13	Н	79.7
2479.20	-63.20	6.74	-56.46	Н	79.0
3305.60	-96.86	7.55	-89.31	Н	111.9
4132.00	-94.27	7.60	-86.67	Н	109.2
4958.40	-93.95	9.05	-84.90	Н	107.5

Table 6-4. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4132)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Faye 14 01 30

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.60 MHz

CHANNEL: 4183

MEASURED OUTPUT POWER: 22.560 dBm = 0.180 W

MODULATION SIGNAL: WCDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 (W) = ____ 35.56$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1673.20	-61.96	6.42	-55.54	Н	78.1
2509.80	-63.24	6.76	-56.49	Н	79.0
3346.40	-96.75	7.55	-89.20	Н	111.8
4183.00	-94.46	7.78	-86.69	Н	109.2
5019.60	-93.73	9.04	-84.69	Н	107.3

Table 6-5. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4183)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 15 01 50

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a); RSS-132 (4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 846.60 MHz

CHANNEL: 4233

MEASURED OUTPUT POWER: 22.560 dBm = 0.180 W

MODULATION SIGNAL: WCDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log 10 (W) = 35.56$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1693.20	-63.10	6.43	-56.66	Н	79.2
2539.80	-63.40	6.82	-56.58	Н	79.1
3386.40	-96.60	7.55	-89.05	Н	111.6
4233.00	-94.71	8.01	-86.70	Н	109.3
5079.60	-93.29	8.93	-84.36	Н	106.9

Table 6-6. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4233)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	Page 16 of 36	

6.5 **PCS GSM Radiated Measurements**

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: MHz 1850.20

> CHANNEL: 512

MEASURED OUTPUT POWER: 31.870 dBm 1.538

MODULATION SIGNAL: GSM (Internal)

DISTANCE:

LIMIT: $43 + 10 \log_{10} (W) =$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-54.09	9.49	-44.59	Н	76.5
5550.60	-55.40	10.41	-45.00	Н	76.9
7400.80	-89.93	11.08	-78.85	Н	110.7
9251.00	-88.91	12.26	-76.65	Н	108.5
11101.20	-87.07	13.19	-73.88	Н	105.8

Table 6-7. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	Page 17 01 30	

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: _____ 1880.00 MHz

CHANNEL: 661

MEASURED OUTPUT POWER: _____ 31.870 ____ dBm = ____ 1.538 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 44.87$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-54.02	9.43	-44.59	Н	76.5
5640.00	-55.98	10.24	-45.74	Н	77.6
7520.00	-89.82	11.12	-78.70	Н	110.6
9400.00	-89.11	12.32	-76.78	Н	108.7
11280.00	-86.39	13.17	-73.22	Н	105.1

Table 6-8. Radiated Spurious Data (PCS GSM Mode – Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	raye 10 01 30	

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1909.80 MHz

CHANNEL: 810

MEASURED OUTPUT POWER: _____ 31.870 ____ dBm = ____ 1.538 _ W

MODULATION SIGNAL: GSM (Internal)

DISTANCE: _____ meters

LIMIT: $43 + 10 \log_{10} (W) = 44.87$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-52.94	9.37	-43.57	Н	75.4
5729.40	-54.54	10.08	-44.46	Н	76.3
7639.20	-89.77	11.21	-78.56	Н	110.4
9549.00	-89.15	12.38	-76.77	Н	108.6
11458.80	-85.73	13.15	-72.57	Н	104.4

Table 6-9. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	Fage 19 01 30	

6.6 Cellular WCDMA Frequency Stability Measurements §2.1055, 22.355; RSS-132 (4.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: 4183

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	836,599,995	-5	-0.000001
100 %		- 30	836,599,989	-11	-0.000001
100 %		- 20	836,599,996	-4	0.000000
100 %		- 10	836,599,994	-6	-0.000001
100 %		0	836,600,000	0	0.000000
100 %		+ 10	836,600,001	1	0.000000
100 %		+ 20	836,600,013	13	0.000002
100 %		+ 30	836,600,014	14	0.000002
100 %		+ 40	836,600,023	23	0.000003
100 %		+ 50	836,600,025	25	0.000003
115 %	4.37	+ 20	836,600,021	21	0.000003
BATT. ENDPOINT	3.40	+ 20	836,600,030	30	0.000004

Table 6-10. Frequency Stability Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	F age 20 01 30	

Cellular WCDMA Frequency Stability Measurements (Cont'd) §2.1055, 22.355; RSS-132 (4.3)

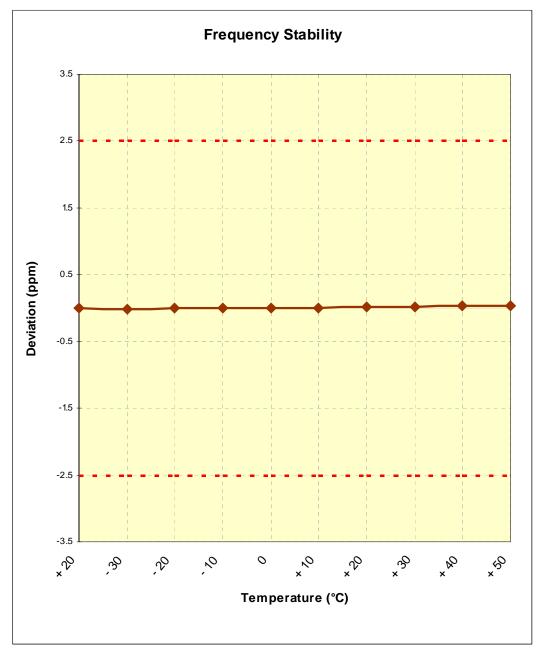


Figure 6-1. Frequency Stability Graph (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	Fage 21 01 36	

6.7 PCS GSM Frequency Stability Measurements §2.1055, 24.235; RSS-133 (6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 661

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,880,000,004	4	0.000000
100 %		- 30	1,880,000,007	7	0.000000
100 %		- 20	1,880,000,012	12	0.000001
100 %		- 10	1,880,000,004	4	0.000000
100 %		0	1,880,000,000	0	0.000000
100 %		+ 10	1,879,999,997	-3	0.000000
100 %		+ 20	1,879,999,993	-7	0.000000
100 %		+ 30	1,879,999,996	-4	0.000000
100 %		+ 40	1,880,000,013	13	0.000001
100 %		+ 50	1,880,000,015	15	0.000001
115 %	4.37	+ 20	1,880,000,016	16	0.000001
BATT. ENDPOINT	3.40	+ 20	1,880,000,008	8	0.000000

Table 6-11. Frequency Stability Data (PCS GSM Mode - Ch. 661)

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID	Page 22 01 30	

PCS GSM Frequency Stability Measurements (Cont'd) §2.1055, 24.235; RSS-133 (6.3)

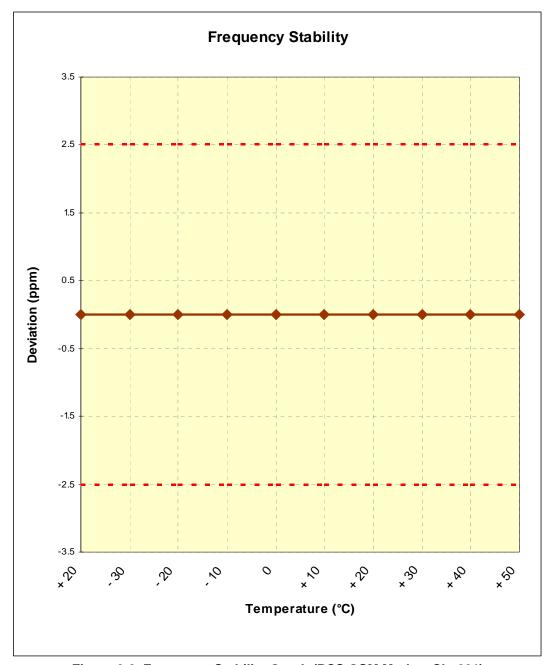


Figure 6-2. Frequency Stability Graph (PCS GSM Mode – Ch. 661)

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 23 01 30
© 2010 PCTEST Engineering Laboratory, Inc.				REV 1.2GWCFI

6.8 **Receiver Spurious Emissions** RSS-132 (4.6), RSS-133 (6.6)

Frequency [MHz]	Level [dBm]	AFCL [dB]	Pol [H/V]	Height [m]	Azimuth [degrees]	Field Strength [dB _µ V/m]	Limit [dB _µ V/m]	Margin [dB]
54.30	-96.26	11.67	Н	1.4	25	22.41	40.00	-17.59
194.90	-100.22	12.19	٧	1.5	60	18.97	43.52	-24.55
236.10	-97.76	11.21	V	1.3	120	20.45	46.02	-25.57
325.90	-95.50	14.56	V	1.3	35	26.06	46.02	-19.96
369.50	-100.89	17.13	Н	1.5	60	23.24	46.02	-22.78
561.10	-102.31	23.24	V	1.6	25	27.93	46.02	-18.09

Table 6-12. Radiated Measurements at 3-meters

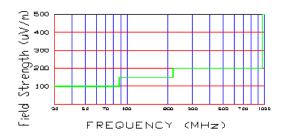
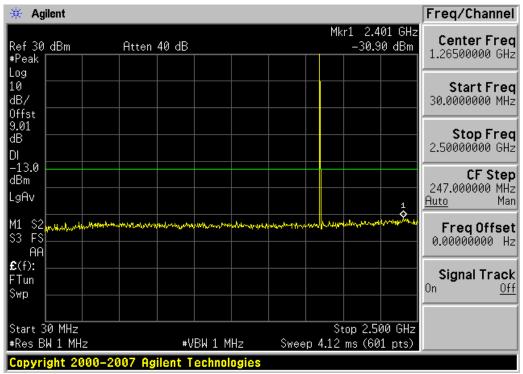


Figure 6-3. 3-Meter Limits

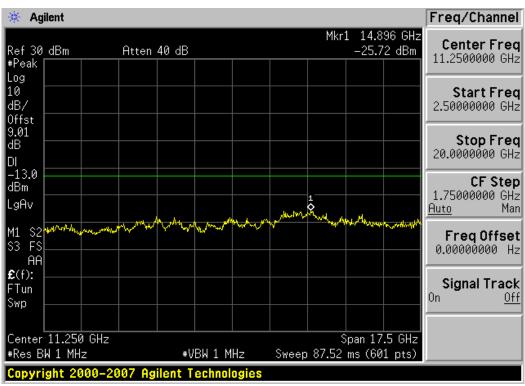
NOTES:

- 1. All modes of operation were investigated and the worst-case emissions are reported.
- 2. The EUT was set to receive mode in the middle channel of operation.
- 3. Radiated emissions were measured from 30MHz to three times that of the highest tunable frequency or local oscillator.
- 4. The radiated limits are shown on Figure 6-3. Above 960MHz the limit is $500\mu V/m$.

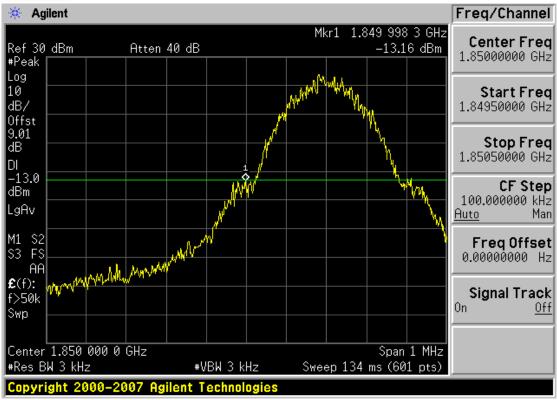
^{3.} Measurements are made using CISPR quasi-peak mode. Average measurements are recorded above 1GHz.

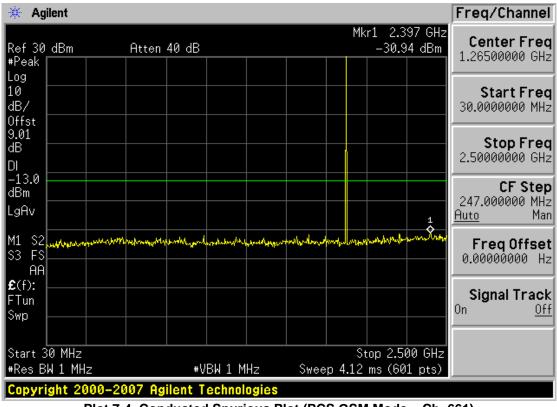

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 24 01 30

^{1.} All readings are calibrated by a Signal Generator with accuracy traceable to the National Institute of Standards and Technology (NIST).

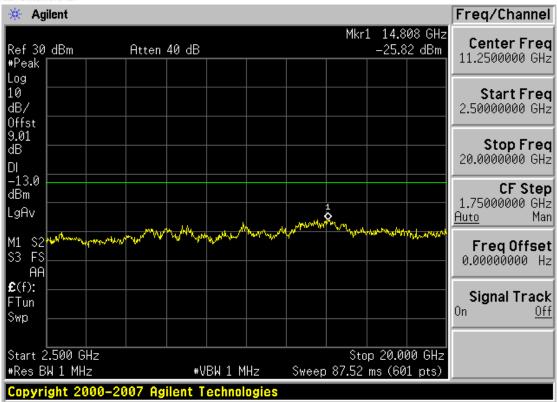

^{2.} AFCL = Antenna Factor and Cable Loss

7.0 PLOTS OF EMISSIONS


Plot 7-1. Conducted Spurious Plot (PCS GSM Mode – Ch. 512)

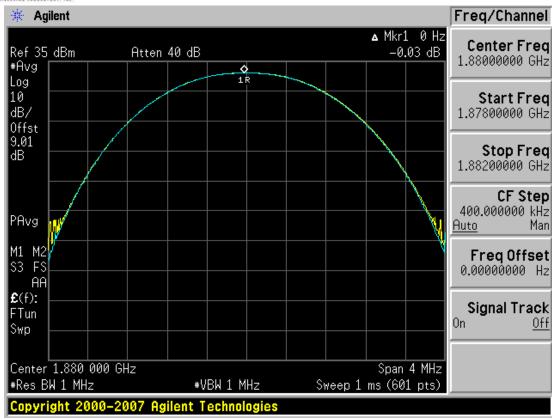

Plot 7-2. Conducted Spurious Plot (PCS GSM Mode – Ch. 512)

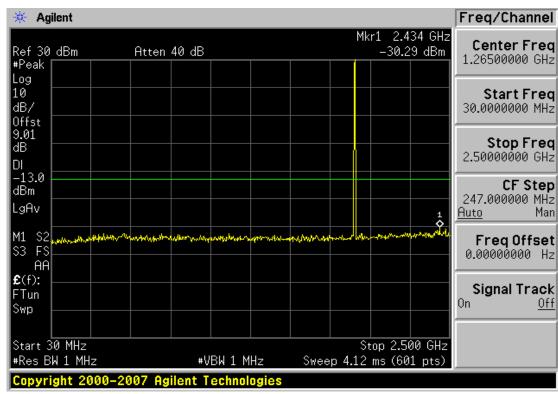
FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 23 01 30


Plot 7-3. Band Edge Plot (PCS GSM Mode - Ch. 512)

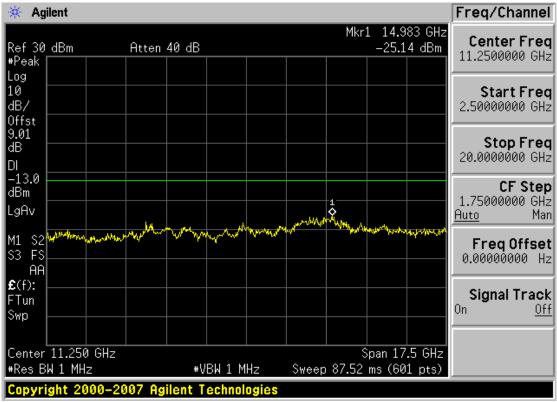
Plot 7-4. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

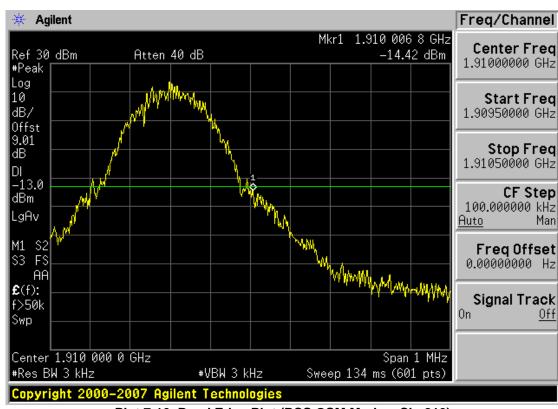
FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		F age 20 01 30


Plot 7-5. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

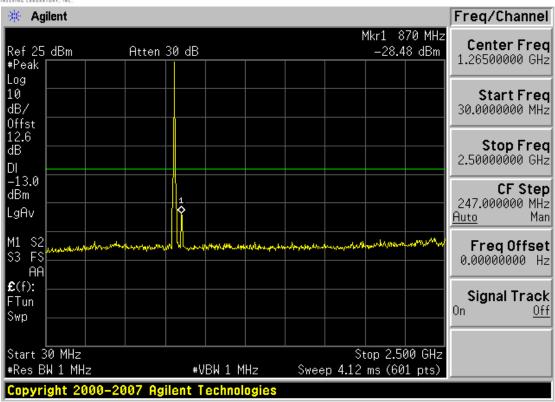

Plot 7-6. Occupied Bandwidth Plot (PCS GSM Mode - Ch. 661)

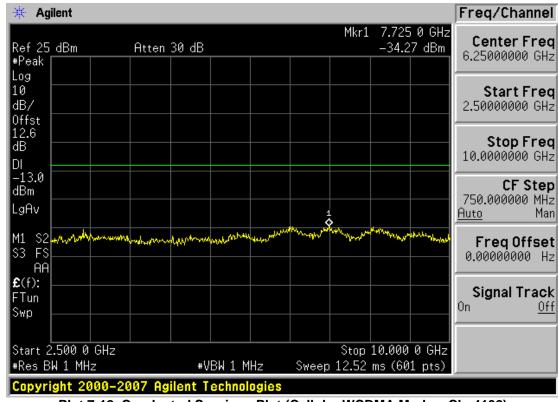
FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 27 01 30


Plot 7-7. Peak-Average Ratio Plot (PCS GSM Mode - Ch. 661)

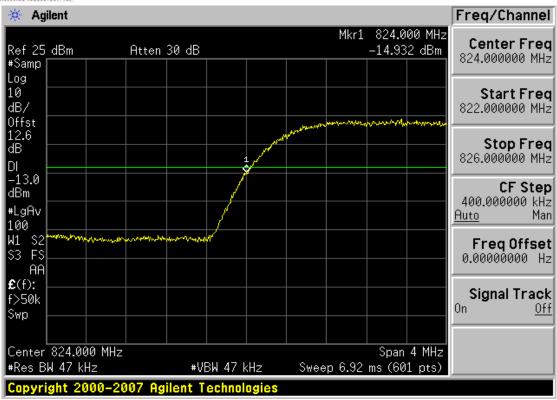

Plot 7-8. Conducted Spurious Plot (PCS GSM Mode - Ch. 810)

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 20 01 30


Plot 7-9. Conducted Spurious Plot (PCS GSM Mode – Ch. 810)

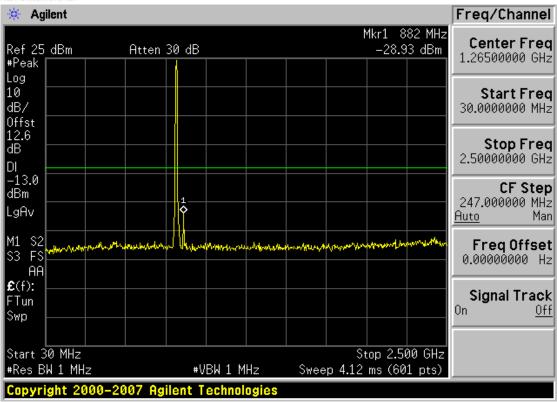

Plot 7-10. Band Edge Plot (PCS GSM Mode - Ch. 810)

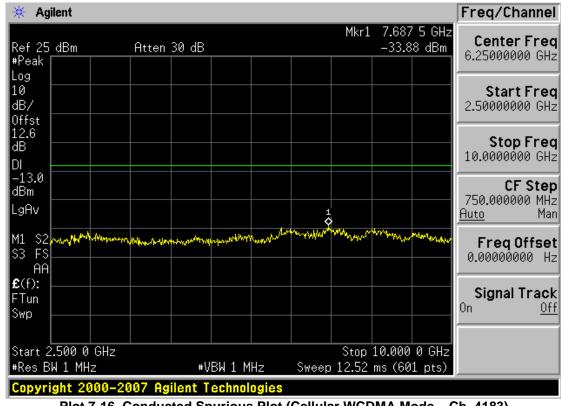
FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 29 01 30


Plot 7-11. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4132)

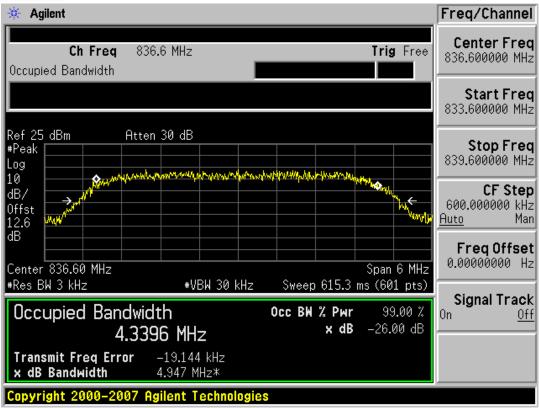
Plot 7-12. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4132)

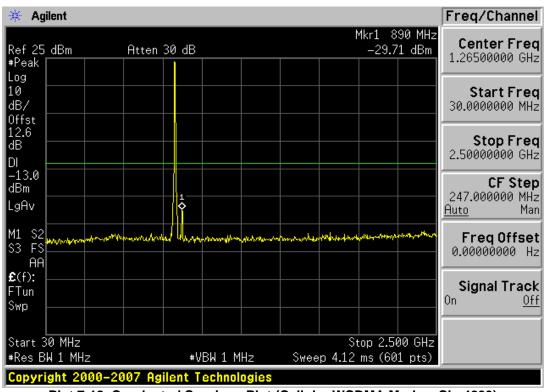
FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		F age 30 01 30


Plot 7-13. Band Edge Plot (Cellular WCDMA Mode - Ch. 4132)

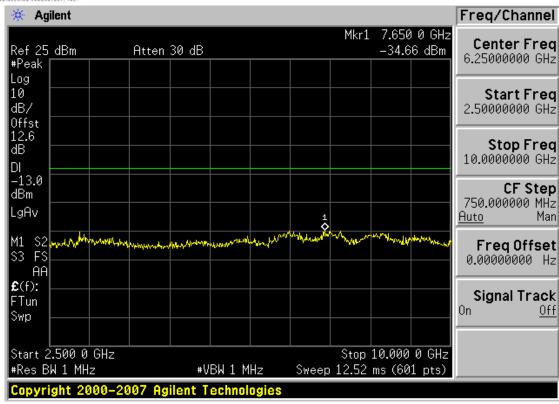

Plot 7-14. 4MHz Span Plot (Cellular WCDMA Mode – Ch. 4132)

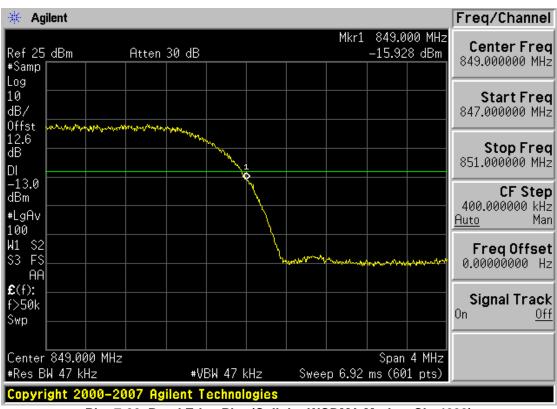
FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 31 01 30


Plot 7-15. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4183)


Plot 7-16. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4183)

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 32 01 30


Plot 7-17. Occupied Bandwidth Plot (Cellular WCDMA Mode - Ch. 4183)


Plot 7-18. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4233)

	A mention minutes, at	(CERTIFICATION)	NEC	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 36
0Y1007151183.A98 J	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		raye 33 01 30


Plot 7-19. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4233)

Plot 7-20. Band Edge Plot (Cellular WCDMA Mode - Ch. 4233)

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 36		
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		rage 34 01 30		

Plot 7-21. 4MHz Span Plot (Cellular WCDMA Mode - Ch. 4233)

FCC ID: A98-DDD0625	PCTEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 36
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 33 01 30
0.4444.00000000000000000000000000000000				5 5 1 1 1 5 6 1 1 1 6 1

CONCLUSION

The data collected relate only to the item(s) tested and show that the NEC 1900 GSM/GPRS and 850 WCDMA Phone with RFID FCC ID: A98-DDD0625 complies with all the requirements of Parts 2, 22, and 24 of the FCC rules and RSS-132 and RSS-133 of the Industry Canada rules.

FCC ID: A98-DDD0625	PETEST	FCC Pt. 22/24 GSM/WCDMA MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 36		
0Y1007151183.A98	July 18-26, 2010	1900 GSM/GPRS and 850 WCDMA Phone with RFID		Fage 30 01 30		