

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Type:	Emissions [X] Immunity []			
Product Type:	Wireless Headphones			
Product Name/Number:	Model Number(s): BMD0010 FCC ID: A94BMD0010			
Prepared For:	IC: 3232A-BMD0010 Product Assurance Engineering Department Bose Corporation			
Test Results:	Pass [X] Fail []			
Applicable Standards:	FCC CFR 47 PART 15 SUBPART C Industry Canada RSS-247 Issue 2 Industry Canada RSS-GEN Issue 5			
Report Number:	EMC.431151.20.170.2			

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for model BMD0010

	Print Name	Signature	Date
Prepared By:	Karl Klemm	Xe Yu	6/26/2020
Electrical Engineer Review* By:	Bryan Cerqua	Bryon H Cerque	6/24/2020

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

BIJ-SE

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
6dB Bandwidth	5
99% Bandwidth	10
Conducted Output Power	15
Power Spectral Density	20
Conducted Spurious Emissions	24

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Report Summary

Product Information:

Description

The EUT is a wireless headphone that contains DSS/DTS transceivers, manufactured by Qualcomm Technologies, QCC5127. The EUT uses Adaptive Frequency Hopping (AFH) mode, using a reduced hop set if interference is detected in band, however a minimum of 20 channels is always maintained.

Setup (Cables and Accessories)

For radio tests the radio was configured with Qualcomm Blue Suite software (details provided in SOFTWARE AND FIRMWARE section).

EUT Antenna Description

The antenna is an internal PIF variant with antenna gain of -1.3 dBi formed by printed circuit board etch.

SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was version 0.2.114 The test utility software used during testing was Polycomm, version 2.6.0 and Blue Suite version 3.2.3.

Scope:

This report covers EMC requirements. FCC CFR 47 PART 15 SUBPART C, Industry Canada RSS-247 Issue 2, and Industry Canada RSS-GEN Issue 5.

All measurements in this report were made with a direct connection to the antenna terminal, with the antenna disconnected.

Test Objective:

Verify product meets all applicable EMC requirements.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards selected in section 2 of this report.

[] does not meet all test standards selected in section 2 of this report.

Affirmation of Test Results:

	Print Name	Signature	Date
Testing Engineer/Technician	Karl Klemm	Je ju	6/26/2020

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Standards

Emissions:

	Standard
[X]	FCC Part 15C
[X]	Canada RSS-247
<u> </u>	

[X] Canada RSS-GEN

Environmental Conditions

Ambient:

Temperature:	22±4°C
Humidity:	30-60%RH
Mains Voltage:	[X] 5 Vdc

FCC Test Site Accreditation.

Firm Name	Location	Accreditation	MRA	Designation Number	Expiration Date	<u>Contact</u>	Contact Title
Bose Corporation	1 New York Avenue, Framingham, MA	American Association for Laboratory Accreditation	N/A	US1088	09/30/2020	Carole Park	Quality Manager

Canadian Test Site Registration.

Organization	CAB identifier	Scope / Recognition Date (yyyy-mm-dd)	Expiration (yyyy-mm-dd)
BOSE CORPORATION 1 New York Avenue Framingham, MA 01701 UNITED STATES Website: https://www.bose.com/en_us/index.html ISED#: 3232A Contact: Benjamin Cerretani benjamin_cerretani@bose.com	US0210	RSS-GEN (2019-02-11) RSS-210 (2019-02-11) RSS-247 (2019-02-11)	RECOGNIZED UNTIL: 2020-07-31 A2LA ISO/IEC 17025:2005 Expires: 2020-07-31

FCC ID: A94BMD0010 IC: 3232A-BMD0010

6dB Bandwidth Requirement:

FCC 15.247(a)(2); IC RSS-247 5.2 (1) The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Results:

DTS Bandwidth Summary Table (BLE 1M)						
Channel	Frequency (MHz)	Mode	DTS BW (kHz)	Limit (kHz)	Margin (kHz)	Result
Low	2402	BLE 1M	726.7	500	-226.7	Pass
Middle	2440	BLE 1M	720.0	500	-220.0	Pass
High	2480	BLE 1M	723.3	500	-223.3	Pass

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 04 BOSE CONFIDENTIAL

BDSE

FCC ID: A94BMD0010 IC: 3232A-BMD0010

DTS Bandwidth Summary Table (BLE 2M)						
Channel	Frequency (MHz)	Mode	DTS BW (kHz)	Limit (kHz)	Margin (kHz)	Result
Low	2402	LE 2M	1273.3	500	-773.3	Pass
Middle	2440	LE 2M	1266.7	500	-766.7	Pass
High	2480	LE 2M	1266.7	500	-766.7	Pass

BLE 2M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Form FL300959 Rev 04 BOSE CONFIDENTIAL

FCC ID: A94BMD0010 IC: 3232A-BMD0010

99% Bandwidth Requirement:

None; for reporting purposes, only. Test per FCC 15.247(a)(1); IC RSS-247 5.1 (1), RSS-Gen 6.6.

Test Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

_6/0/5/2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Results:

99% Bandwidth Summary Table (BLE 1M)					
Channel Frequency (MHz) Mode 99% Band (kHz					
Low	2402	BLE 1M	1033.3		
Middle	2440	BLE 1M	1033.3		
High	2480	BLE 1M	1033.3		

BLE 1M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Form FL300959 Rev 04 BOSE CONFIDENTIAL

BOSE

FCC ID: A94BMD0010 IC: 3232A-BMD0010

99% Bandwidth Summary Table (BLE 2M)					
Channel	Frequency (MHz)	99% Bandwidth (kHz)			
Low	2402	LE 2M	2046.6		
Middle	2440	LE 2M	2056.6		
High	2480	LE 2M	2046.6		

BLE 2M on 2402 MHz

Page 13 of 45

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Form FL300959 Rev 04 BOSE CONFIDENTIAL

BDSE

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Conducted Output Power Requirements:

FCC 15.247 (b) (3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 5.4 (4)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

Test setup details:

The EUT is controlled via the USB port with Blue Suite software which is used to set the test modes of the Bluetooth device. The EUT antenna is disconnected. A temporary test connector is mounted to the PCB. An 8 inch SMA adapter cable with 0.7 dB loss and a 10 dB pad were used for all conducted measurements. To compensate for the cable loss and pad attenuation, the reference level offset feature of the spectrum analyzer was used. The EUT is programmed to operate on fixed frequencies at the low, middle, and high end of the authorized frequency band. The spectrum analyzer resolution bandwidth is set to 3 MHz (higher than the occupied bandwidth), peak detector and max hold. The maximum output power is recorded for each of the three frequencies.

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Test Results:

	Output Power Summary Table (BLE 1M)											
Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result						
Low	2402	9.30	0	30	20.70	Pass						
Middle	2440	9.70	0	30	20.30	Pass						
High	2480	8.40	0	30	21.60	Pass						

BLE 1M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

9.65 dBm
400290 GHz
1
\sim
1.00
1.00
-

BLE 1M on 2440 MHz

BLE 1M on 2480 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

	Output Power Summary Table (BLE 2M)												
Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result							
Low	2402	8.61	0	30	21.39	Pass							
Middle	2440	9.34	0	30	20.66	Pass							
High	2480	8.03	0	30	21.97	Pass							

Spectrum			
Ref Level 30.70 dBm Att 30 dB	Offset 10.70 dB = RBW SWT 1 ms = VBW	3 MHz 10 MHz Mode Sweep	
●1Pk View			
		M1[1]	8,61 dBm 2,4019000 GHz
20 dBm			
10 dBm		MI	
0 dBm			
-10 dBm			
-20 dBm-			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.402 GHz		601 pts	Span 10.0 MHz

BLE 2M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Att 30 dB	SWT 1 ms 🖷 ۷	BW 10 MHz Mode Sweep	
9 1Pk View			
		MI[1]	9.34 dBn 2.4400000 GH
20 dBm			
		Mi	
10 dBm-			
0 dBm			
U UBIII		terrar i de la completencia a	
-10 dBm			
-20 dBm			
30 d9m			
-30 0011			
-40 dBm			
		and the second second	
-50 dBm-			
co dem			1.0.1.0.0.0.000000000000000000000000000
-00 000			

_805E

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Power Spectral Density

Requirements:

FCC 15.247 (e) and IC RSS-247 5.2 (2)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Results:

	Power Spectral Density Summary Table (BLE 1M)										
Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)	Result						
Low	2402	-6.20	8	14.20	Pass						
Middle	2440	-5.30	8	13.30	Pass						
High	2480	-6.60	8	14.60	Pass						

BLE 1M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 04 BOSE CONFIDENTIAL

BIJ-SE

_6/0/5/E

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Power Spectral Density Summary Table (BLE 2M)											
Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)	Result						
Low	2402	-8.82	8	16.82	Pass						
Middle	2440	-9.03	8	17.03	Pass						
High	2480	-9.40	8	17.40	Pass						

BLE 2M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Form FL300959 Rev 04 BOSE CONFIDENTIAL

B05/E

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Conducted Spurious Emissions

Requirements:

FCC 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Note: Antenna gain outside of the wanted band was assumed to be zero. The conducted spurious readings are for additional information as the radiated readings take precedence.

_805E

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Spurious Band-edge Emissions

	Lower Band Edge (BLE)											
Channel	Frequency (MHz)	Mode Case (dBc)		Limit (dBc)	Margin (dB)	Result						
Low	2402	BLE 1M	55.49	20	35.49	Pass						
Low	2402	LE 2M	31.25	20	11.25	Pass						

BLE 1M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BLE 2M on 2402 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Upper Band Edge (BLE) (Peak Detector)											
Channel	Frequency (MHz)	Mode	Mode Case (dBc)		Margin (dB)	Result					
High	2480	BLE 1M	55.02	20	35.02	Pass					
High	2480	LE 2M	54.99	20	34.99	Pass					

BLE 1M on 2480 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BLE 2M on 2480 MHz

FCC ID: A94BMD0010 IC: 3232A-BMD0010

Spurious Emissions

	Spurious Summary Table (BLE 1M)													
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result			
Low	30 To 1000	BLE 1M	-75.2	0.7	10.0	0.0	-64.5	30.71	74	43.29	Pass			
Low	2483.5 To 25000	BLE 1M	-65.4	0.7	10.0	0.0	-54.7	40.57	74	33.43	Pass			
Mid	30 To 1000	BLE 1M	-73.7	0.7	10.0	0.0	-63.0	32.24	74	41.76	Pass			
Mid	2483.5 To 25000	BLE 1M	-62.2	0.7	10.0	0.0	-51.5	43.73	74	30.27	Pass			
High	30 To 1000	BLE 1M	-74.0	0.7	10.0	0.0	-63.3	31.90	74	42.10	Pass			
High	2483.5 To 25000	BLE 1M	-66.7	0.7	10.0	0.0	-56.0	39.22	74	34.78	Pass			

	Spurious Summary Table (BLE 1M)													
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result			
Low	30 To 1000	BLE 1M	-78.4	0.7	10.0	0.0	-67.7	27.57	54	26.43	Pass			
Low	2483.5 To 25000	BLE 1M	-75.0	0.7	10.0	0.0	-64.3	30.89	54	23.11	Pass			
Mid	30 To 1000	BLE 1M	-77.4	0.7	10.0	0.0	-66.7	28.54	54	25.46	Pass			
Mid	2483.5 To 25000	BLE 1M	-72.9	0.7	10.0	0.0	-62.2	32.99	54	21.01	Pass			
High	30 To 1000	BLE 1M	-78.2	0.7	10.0	0.0	-67.5	27.73	54	26.27	Pass			
High	2483.5 To 25000	BLE 1M	-75.8	0.7	10.0	0.0	-65.1	30.16	54	23.84	Pass			

	Spurious Summary Table (BLE 2M)													
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result			
Low	30 To 1000	LE 2M	-75.6	0.7	10.0	0.0	-64.9	30.31	74	43.69	Pass			
Low	2483.5 To 25000	LE 2M	-66.1	0.7	10.0	0.0	-55.4	39.81	74	34.19	Pass			
Mid	30 To 1000	LE 2M	-74.2	0.7	10.0	0.0	-63.5	31.68	74	42.32	Pass			
Mid	2483.5 To 25000	LE 2M	-66.6	0.7	10.0	0.0	-55.9	39.36	74	34.64	Pass			
High	30 To 1000	LE 2M	-73.9	0.7	10.0	0.0	-63.2	31.99	74	42.01	Pass			
High	2483.5 To 25000	LE 2M	-67.5	0.7	10.0	0.0	-56.8	38.43	74	35.57	Pass			

	Spurious Summary Table (BLE 2M)													
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result			
Low	30 To 1000	LE 2M	-79.9	0.7	10.0	0.0	-69.2	26.01	54	27.99	Pass			
Low	2483.5 To 25000	LE 2M	-77.9	0.7	10.0	0.0	-67.2	28.03	54	25.97	Pass			
Mid	30 To 1000	LE 2M	-78.6	0.7	10.0	0.0	-67.9	27.30	54	26.70	Pass			
Mid	2483.5 To 25000	LE 2M	-74.9	0.7	10.0	0.0	-64.2	31.00	54	23.00	Pass			
High	30 To 1000	LE 2M	-78.6	0.7	10.0	0.0	-67.9	27.31	54	26.69	Pass			
High	2483.5 To 25000	LE 2M	-75.9	0.7	10.0	0.0	-65.2	29.99	54	24.01	Pass			

FCC ID: A94BMD0010 IC: 3232A-BMD0010

_805E

BLE 1M, 2402 MHz Peak Band 1

BLE 1M, 2402 MHz Peak Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BLE 1M, 2402 MHz Average Band 1

BLE 1M, 2402 MHz Average Band 2

B/15/E

FCC ID: A94BMD0010 IC: 3232A-BMD0010

_805E

Spectrum		(The second seco	Spectrum			
Ref Level -10.00	dBm RBW 100 kHz 0 dB SWT 30 ms VBW 300 kHz Mode Sweep		Ref Level -10.00 dBm	RBW 100 kHz SWT 226 ms VBW 300 kHz	Mode Sweep	
1Pk View			1Pk View			
	M1[1]	-73,69 dBm 1.2210440 GHz			M1[1]	-62,20 dBm 9.767210 GHz
-20 dBm			-20 dBm-			
-30 dBm			-30 dBm			
-40 dBm			-40 dBm			
-50 dBm			-50 dBm			
-60 dBm			-60 dBm	MI		
-70 dBm	Ma		-70 dBm			
-80 dBm			-80 d&m		A. 1	
-92,dBm			and a state of the	and the second second second second	and the second second second second	a har and a second second second
-100 dBm	a the foreign to be the part of the standard stands and standards the best foreign and the standard part of the	Minister and a second	-100 dBm	and a shear the shear a second and the second se		A second s
Start 30.0 MHz	30000 pts	Stop 2.4 GHz	Start 2.4835 GHz	30000	pts	Stop 25.0 GHz

BLE 1M, 2442 MHz Peak Band 1

BLE 1M, 2442 MHz Peak Band 2

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 04 BOSE CONFIDENTIAL

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 1M, 2442 MHz Average Band 1

BLE 1M, 2442 MHz Average Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 1M, 2480 MHz Peak Band 1

BLE 1M, 2480 MHz Peak Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 1M, 2480 MHz Average Band 1

BLE 1M, 2480 MHz Average Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

B/15/E

BLE 2M, 2402 MHz Peak Band 1

BLE 2M, 2402 MHz Peak Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 2M, 2402 MHz Average Band 1

BLE 2M, 2402 MHz Average Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

_805E

BLE 2M, 2442 MHz Peak Band 1

BLE 2M, 2442 MHz Peak Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 2M, 2442 MHz Average Band 1

BLE 2M, 2442 MHz Average Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

_805E

BLE 2M, 2480 MHz Peak Band 1

BLE 2M, 2480 MHz Peak Band 2

FCC ID: A94BMD0010 IC: 3232A-BMD0010

BOSE

BLE 2M, 2480 MHz Average Band 1

BLE 2M, 2480 MHz Average Band 2

DESIGN ASSURANCE ENGINEERING COMPLIANCE EMC TEST REPORT

_/	://	<i>F</i> 7	E

Spurious Harmonic Emissions

	Spurious Harmonics Summary Table (BLE 1M)													
Channel	Frequency (MHz)	Harmonic	Harmonic Frequency (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result	
Low	2402	1	2402	BLE 1M	-75.1	0.7	10.0	0.0	-64.4	30.80	-	-	-	
Low	2402	2	4804	BLE 1M	-79.9	0.7	10.0	0.0	-69.2	26.01	74	47.99	Pass	
Low	2402	3	7206	BLE 1M	-65.5	0.7	10.0	0.0	-54.8	40.41	74	33.59	Pass	
Low	2402	4	9608	BLE 1M	-62.6	0.7	10.0	0.0	-51.9	43.34	74	30.66	Pass	
Low	2402	5	12010	BLE 1M	-67.4	0.7	10.0	0.0	-56.7	38.58	74	35.42	Pass	
Low	2402	6	14412	BLE 1M	-65.2	0.7	10.0	0.0	-54.5	40.76	74	33.24	Pass	
Low	2402	7	16814	BLE 1M	-76.5	0.7	10.0	0.0	-65.8	29.38	74	44.62	Pass	
Low	2402	8	19216	BLE 1M	-81.7	0.7	10.0	0.0	-71.0	24.28	74	49.72	Pass	
Low	2402	9	21618	BLE 1M	-85.9	0.7	10.0	0.0	-75.2	20.01	74	53.99	Pass	
Low	2402	10	24020	BLE 1M	-86.5	0.7	10.0	0.0	-75.8	19.48	74	54.52	Pass	
Mid	2440	1	2440	BLE 1M	-67.6	0.7	10.0	0.0	-56.9	38.38	-	-	-	
Mid	2440	2	4880	BLE 1M	-83.0	0.7	10.0	0.0	-72.3	22.93	74	51.07	Pass	
Mid	2440	3	7320	BLE 1M	-63.9	0.7	10.0	0.0	-53.2	42.02	74	31.98	Pass	
Mid	2440	4	9760	BLE 1M	-61.6	0.7	10.0	0.0	-50.9	44.35	74	29.65	Pass	
Mid	2440	5	12200	BLE 1M	-68.7	0.7	10.0	0.0	-58.0	37.21	74	36.79	Pass	
Mid	2440	6	14640	BLE 1M	-66.2	0.7	10.0	0.0	-55.5	39.71	74	34.29	Pass	
Mid	2440	7	17080	BLE 1M	-79.6	0.7	10.0	0.0	-68.9	26.32	74	47.68	Pass	
Mid	2440	8	19520	BLE 1M	-80.9	0.7	10.0	0.0	-70.2	24.99	74	49.01	Pass	
Mid	2440	9	21960	BLE 1M	-86.4	0.7	10.0	0.0	-75.7	19.54	74	54.46	Pass	
Mid	2440	10	24400	BLE 1M	-86.7	0.7	10.0	0.0	-76.0	19.20	74	54.80	Pass	
High	2480	1	2480	BLE 1M	-68.5	0.7	10.0	0.0	-57.8	37.40	-	-	-	
High	2480	2	4960	BLE 1M	-82.2	0.7	10.0	0.0	-71.5	23.75	74	50.25	Pass	
High	2480	3	7440	BLE 1M	-69.9	0.7	10.0	0.0	-59.2	35.99	74	38.01	Pass	
High	2480	4	9920	BLE 1M	-62.5	0.7	10.0	0.0	-51.8	43.40	74	30.60	Pass	
High	2480	5	12400	BLE 1M	-68.0	0.7	10.0	0.0	-57.3	37.93	74	36.07	Pass	
High	2480	6	14880	BLE 1M	-64.1	0.7	10.0	0.0	-53.4	41.83	74	32.17	Pass	
High	2480	7	17360	BLE 1M	-80.3	0.7	10.0	0.0	-69.6	25.62	74	48.38	Pass	
High	2480	8	19840	BLE 1M	-81.2	0.7	10.0	0.0	-70.5	24.78	74	49.22	Pass	
High	2480	9	22320	BLE 1M	-86.7	0.7	10.0	0.0	-76.0	19.19	74	54.81	Pass	
High	2480	10	24800	BLE 1M	-86.4	0.7	10.0	0.0	-75.7	19.54	74	54.46	Pass	

	Spurious Harmonics Summary Table (BLE 1M)													
Channel	Frequency (MHz)	Harmonic	Harmonic Frequency (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result	
Low	2402	1	2402	BLE 1M	-75.2	0.7	10.0	0.0	-64.5	30.73	-	-	-	
Low	2402	2	4804	BLE 1M	-79.8	0.7	10.0	0.0	-69.1	26.18	54	27.82	Pass	
Low	2402	3	7206	BLE 1M	-66.2	0.7	10.0	0.0	-55.5	39.76	54	14.24	Pass	
Low	2402	4	9608	BLE 1M	-63.4	0.7	10.0	0.0	-52.7	42.57	54	11.43	Pass	
Low	2402	5	12010	BLE 1M	-68.5	0.7	10.0	0.0	-57.8	37.42	54	16.58	Pass	
Low	2402	6	14412	BLE 1M	-65.7	0.7	10.0	0.0	-55.0	40.20	54	13.80	Pass	
Low	2402	7	16814	BLE 1M	-77.0	0.7	10.0	0.0	-66.3	28.91	54	25.09	Pass	
Low	2402	8	19216	BLE 1M	-83.2	0.7	10.0	0.0	-72.5	22.76	54	31.24	Pass	
Low	2402	9	21618	BLE 1M	-87.1	0.7	10.0	0.0	-76.4	18.81	54	35.19	Pass	
Low	2402	10	24020	BLE 1M	-86.8	0.7	10.0	0.0	-76.1	19.11	54	34.89	Pass	
Mid	2440	1	2440	BLE 1M	-67.2	0.7	10.0	0.0	-56.5	38.71	-	-	-	
Mid	2440	2	4880	BLE 1M	-82.9	0.7	10.0	0.0	-72.2	23.03	54	30.97	Pass	
Mid	2440	3	7320	BLE 1M	-64.3	0.7	10.0	0.0	-53.6	41.62	54	12.38	Pass	
Mid	2440	4	9760	BLE 1M	-62.2	0.7	10.0	0.0	-51.5	43.76	54	10.24	Pass	
Mid	2440	5	12200	BLE 1M	-69.3	0.7	10.0	0.0	-58.6	36.68	54	17.32	Pass	
Mid	2440	6	14640	BLE 1M	-66.7	0.7	10.0	0.0	-56.0	39.23	54	14.77	Pass	
Mid	2440	7	17080	BLE 1M	-80.6	0.7	10.0	0.0	-69.9	25.32	54	28.68	Pass	
Mid	2440	8	19520	BLE 1M	-82.3	0.7	10.0	0.0	-71.6	23.58	54	30.42	Pass	
Mid	2440	9	21960	BLE 1M	-88.0	0.7	10.0	0.0	-77.3	17.89	54	36.11	Pass	
Mid	2440	10	24400	BLE 1M	-87.4	0.7	10.0	0.0	-76.7	18.52	54	35.48	Pass	
High	2480	1	2480	BLE 1M	-68.2	0.7	10.0	0.0	-57.5	37.69	-	-	-	
High	2480	2	4960	BLE 1M	-81.6	0.7	10.0	0.0	-70.9	24.32	54	29.68	Pass	
High	2480	3	7440	BLE 1M	-70.4	0.7	10.0	0.0	-59.7	35.48	54	18.52	Pass	
High	2480	4	9920	BLE 1M	-63.2	0.7	10.0	0.0	-52.5	42.76	54	11.24	Pass	
High	2480	5	12400	BLE 1M	-68.5	0.7	10.0	0.0	-57.8	37.45	54	16.55	Pass	
High	2480	6	14880	BLE 1M	-65.1	0.7	10.0	0.0	-54.4	40.87	54	13.13	Pass	
High	2480	7	17360	BLE 1M	-81.3	0.7	10.0	0.0	-70.6	24.67	54	29.33	Pass	
High	2480	8	19840	BLE 1M	-82.8	0.7	10.0	0.0	-72.1	23.18	54	30.82	Pass	
High	2480	9	22320	BLE 1M	-86.1	0.7	10.0	0.0	-75.4	19.79	54	34.21	Pass	
High	2480	10	24800	BLE 1M	-87.3	0.7	10.0	0.0	-76.6	18.60	54	35.40	Pass	

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 06 BOSE CONFIDENTIAL

DESIGN ASSURANCE ENGINEERING COMPLIANCE EMC TEST REPORT

						Spurious Hai	rmonics Summa	ary Table (BLE 2M)					
Channel	Frequency (MHz)	Harmonic	Harmonic Frequency (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result
Low	2402	1	2402	LE 2M	-75.3	0.7	10.0	0.0	-64.6	30.67	-	-	-
Low	2402	2	4804	LE 2M	-80.2	0.7	10.0	0.0	-69.5	25.73	54	28.27	Pass
Low	2402	3	7206	LE 2M	-66.5	0.7	10.0	0.0	-55.8	39.46	54	14.54	Pass
Low	2402	4	9608	LE 2M	-63.8	0.7	10.0	0.0	-53.1	42.13	54	11.87	Pass
Low	2402	5	12010	LE 2M	-68.7	0.7	10.0	0.0	-58.0	37.27	54	16.73	Pass
Low	2402	6	14412	LE 2M	-66.4	0.7	10.0	0.0	-55.7	39.53	54	14.47	Pass
Low	2402	7	16814	LE 2M	-78.7	0.7	10.0	0.0	-68.0	27.18	54	26.82	Pass
Low	2402	8	19216	LE 2M	-82.8	0.7	10.0	0.0	-72.1	23.15	54	30.85	Pass
Low	2402	9	21618	LE 2M	-87.1	0.7	10.0	0.0	-76.4	18.84	54	35.16	Pass
Low	2402	10	24020	LE 2M	-88.0	0.7	10.0	0.0	-77.3	17.91	54	36.09	Pass
Mid	2440	1	2440	LE 2M	-67.6	0.7	10.0	0.0	-56.9	38.37	-	-	-
Mid	2440	2	4880	LE 2M	-83.1	0.7	10.0	0.0	-72.4	22.84	54	31.16	Pass
Mid	2440	3	7320	LE 2M	-64.8	0.7	10.0	0.0	-54.1	41.15	54	12.85	Pass
Mid	2440	4	9760	LE 2M	-62.9	0.7	10.0	0.0	-52.2	42.99	54	11.01	Pass
Mid	2440	5	12200	LE 2M	-69.6	0.7	10.0	0.0	-58.9	36.38	54	17.62	Pass
Mid	2440	6	14640	LE 2M	-67.1	0.7	10.0	0.0	-56.4	38.79	54	15.21	Pass
Mid	2440	7	17080	LE 2M	-80.2	0.7	10.0	0.0	-69.5	25.73	54	28.27	Pass
Mid	2440	8	19520	LE 2M	-82.2	0.7	10.0	0.0	-71.5	23.76	54	30.24	Pass
Mid	2440	9	21960	LE 2M	-87.4	0.7	10.0	0.0	-76.7	18.51	54	35.49	Pass
Mid	2440	10	24400	LE 2M	-87.9	0.7	10.0	0.0	-77.2	18.04	54	35.96	Pass
High	2480	1	2480	LE 2M	-68.5	0.7	10.0	0.0	-57.8	37.39	-	-	-
High	2480	2	4960	LE 2M	-82.9	0.7	10.0	0.0	-72.2	23.07	54	30.93	Pass
High	2480	3	7440	LE 2M	-70.5	0.7	10.0	0.0	-59.8	35.44	54	18.56	Pass
High	2480	4	9920	LE 2M	-63.7	0.7	10.0	0.0	-53.0	42.22	54	11.78	Pass
High	2480	5	12400	LE 2M	-68.7	0.7	10.0	0.0	-58.0	37.25	54	16.75	Pass
High	2480	6	14880	LE 2M	-64.8	0.7	10.0	0.0	-54.1	41.10	54	12.90	Pass
High	2480	7	17360	LE 2M	-81.9	0.7	10.0	0.0	-71.2	24.01	54	29.99	Pass
High	2480	8	19840	LE 2M	-82.9	0.7	10.0	0.0	-72.2	23.03	54	30.97	Pass
High	2480	9	22320	LE 2M	-87.9	0.7	10.0	0.0	-77.2	18.02	54	35.98	Pass
High	2480	10	24800	LE 2M	-88.4	0.7	10.0	0.0	-77.7	17.58	54	36.42	Pass

	Spurious Harmonics Summary Table (BLE 2M)												
Channel	Frequency (MHz)	Harmonic	Harmonic Frequency (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result
Low	2402	1	2402	LE 2M	-74.9	0.7	10.0	0.0	-64.2	31.00	-	-	-
Low	2402	2	4804	LE 2M	-81.6	0.7	10.0	0.0	-70.9	24.29	74	49.71	Pass
Low	2402	3	7206	LE 2M	-65.8	0.7	10.0	0.0	-55.1	40.18	74	33.82	Pass
Low	2402	4	9608	LE 2M	-63.1	0.7	10.0	0.0	-52.4	42.85	74	31.15	Pass
Low	2402	5	12010	LE 2M	-67.7	0.7	10.0	0.0	-57.0	38.19	74	35.81	Pass
Low	2402	6	14412	LE 2M	-65.2	0.7	10.0	0.0	-54.5	40.71	74	33.29	Pass
Low	2402	7	16814	LE 2M	-78.3	0.7	10.0	0.0	-67.6	27.61	74	46.39	Pass
Low	2402	8	19216	LE 2M	-81.8	0.7	10.0	0.0	-71.1	24.10	74	49.90	Pass
Low	2402	9	21618	LE 2M	-85.5	0.7	10.0	0.0	-74.8	20.41	74	53.59	Pass
Low	2402	10	24020	LE 2M	-85.7	0.7	10.0	0.0	-75.0	20.20	74	53.80	Pass
Mid	2440	1	2440	LE 2M	-67.8	0.7	10.0	0.0	-57.1	38.08	-	-	-
Mid	2440	2	4880	LE 2M	-83.1	0.7	10.0	0.0	-72.4	22.86	74	51.14	Pass
Mid	2440	3	7320	LE 2M	-64.0	0.7	10.0	0.0	-53.3	41.91	74	32.09	Pass
Mid	2440	4	9760	LE 2M	-61.8	0.7	10.0	0.0	-51.1	44.13	74	29.87	Pass
Mid	2440	5	12200	LE 2M	-69.2	0.7	10.0	0.0	-58.5	36.75	74	37.25	Pass
Mid	2440	6	14640	LE 2M	-66.1	0.7	10.0	0.0	-55.4	39.79	74	34.21	Pass
Mid	2440	7	17080	LE 2M	-79.3	0.7	10.0	0.0	-68.6	26.62	74	47.38	Pass
Mid	2440	8	19520	LE 2M	-80.8	0.7	10.0	0.0	-70.1	25.13	74	48.87	Pass
Mid	2440	9	21960	LE 2M	-86.5	0.7	10.0	0.0	-75.8	19.48	74	54.52	Pass
Mid	2440	10	24400	LE 2M	-86.9	0.7	10.0	0.0	-76.2	18.98	74	55.02	Pass
High	2480	1	2480	LE 2M	-68.3	0.7	10.0	0.0	-57.6	37.64	-	-	-
High	2480	2	4960	LE 2M	-82.1	0.7	10.0	0.0	-71.4	23.80	74	50.20	Pass
High	2480	3	7440	LE 2M	-69.9	0.7	10.0	0.0	-59.2	36.00	74	38.00	Pass
High	2480	4	9920	LE 2M	-62.8	0.7	10.0	0.0	-52.1	43.13	74	30.87	Pass
High	2480	5	12400	LE 2M	-67.7	0.7	10.0	0.0	-57.0	38.19	74	35.81	Pass
High	2480	6	14880	LE 2M	-64.6	0.7	10.0	0.0	-53.9	41.38	74	32.62	Pass
High	2480	7	17360	LE 2M	-79.2	0.7	10.0	0.0	-68.5	26.77	74	47.23	Pass
High	2480	8	19840	LE 2M	-81.0	0.7	10.0	0.0	-70.3	24.90	74	49.10	Pass
High	2480	9	22320	LE 2M	-86.3	0.7	10.0	0.0	-75.6	19.68	74	54.32	Pass
High	2480	10	24800	LE 2M	-86.8	0.7	10.0	0.0	-76.1	19.17	74	54.83	Pass

BOLDed frequencies are in the restricted bands.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 06 BOSE CONFIDENTIAL

DESIGN ASSURANCE ENGINEERING COMPLIANCE EMC TEST REPORT

BOSE

Conducted Measurements Resources Used

TN	Description	Model	S/N	Manufacturer	Most Recent Service	Service Due Date	
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Apr-2020	22-Apr-2021	
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	10-Apr-2020	10-Apr-2021	

Date(s) of test: 18-MAY-2020 to 05-JUN-2020

End of Report

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.431151.20.170.2 Form FL300959 Rev 06 BOSE CONFIDENTIAL