

Test Type: Emissions

Product Type: Wireless Earbud

Product Name/Number: Model BL3R

FCC ID: A94BL3R

IC: 3232A-BL3R

Prepared For: Product Assurance Engineering Department,

Bose Corporation

Name of manufacturing Bose Corporation

agency applying for equipment type approval

Postal Address of The Mountain

manufacturing Agency Framingham MA 01701

USA

Test Results: Pass

Applicable Standards: FCC 47 CFR PART 15 SUBPART B

FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Report Number: EMC.BL3R.2020.125.1

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for Enter product and any special modifications or test conditions.

	Print Name	Signature	Date
Prepared By:	Chad Bell	Chad Beld	May 4, 2020
Electrical Engineer Review* By:	Bryan Cerqua	Bryon H Cerqua	May 6, 2020

^{*} Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements. If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.125.1

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
Test Results Summary	4
Environmental Conditions	
FCC Test Site Accreditation:	4
Canadian Test Site Registration:	4
RF Conducted Measurements	5
On Time and Duty Cycle	5
99% Occupied Bandwidth	7
20dB Occupied Bandwidth	10
Hopping Frequency Separation	13
Number of Hopping Channels	15
Average Time of Occupancy	18
Output Power	20
Conducted Spurious Emissions	24
RF Conducted Emissions – AC Mains	28
Radiated Measurements	34
RF Radiated Emissions 30MHz -1GHz	34
Radiated Spurious Emissions 1-25GHz	40
Radiated Band Edge	47

Test Report Summary

Product Information:

Description

Wireless Earbud. The antenna is an inverted L with a maximum gain of 1.35dBi formed by Laser Direct Sequence on the inside of the top cover of the earbud.

EUT Condition

Product was as built in the factory. And for the conducted measurements the antenna was removed, and coaxial cable was installed in its place. Where necessary USB debug wires were added to allow control of the Radio. Worst case data rate was determined to be 1Mbps.

Setup (Cables and Accessories)

Support Equipment List										
Description Manufacturer Model Serial Number FCC I										
AC Adapter	Bose	S008VU0500160	068170Z50403725AE	N/A						

	I/O Cable List										
		# of		Cable							
Cable		Identical		Length							
No.	Port	Ports	Cable Type	(m)	Remarks						
1	AC In	1	N/A	0	Wall-wart adapter						
2	USB	1	Shielded	0.3	Output of AC adapter						

Test Objective:

Verify product meets all applicable EMC requirements.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards on page 1 of this report.

Affirmation of Test Results:

Report Number: EMC.BL3R.2020.125.1

	Print Name	Signature	Date
Testing Engineer/Technician	Chad Bell	Chad Belo	May 4, 2020

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA
Tel: (508) 766-6000 Fax: (508) 766-1145
Without written permission of laboratory, this report shall not be reproduced except in full.

Test Results Summary

TEST NAME	TEST RESULT PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	· · · · · · · · · · · · · · · · · · ·
99% Occupied Bandwidth	N/A	
20dB Occupied Bandwidth	Pass	
Hopping Frequency Separation	Pass	
Number of Hopping Channels	Pass	
Average Time of Occupancy	Pass	
Output Power	Pass	
Conducted Spurious Emissions	Pass	
RF Conducted Emissions – AC Mains	Pass	
RF Radiated Emissions 30MHz -1GHz	Pass	
Radiated RF Emissions 1-25GHz	Pass	
Radiated Band Edge	Pass	

Environmental Conditions

Ambient:

Temperature: 22±4°C Humidity: 30-60%RH

Mains Voltage: 120VAC, 5VDC USB

FCC Test Site Accreditation:

Firm Name	Location	Accreditation	MRA Designation Number	Expiration Date	Contact	Contact Title	Address		Mail Stop	City	<u>State</u>	<u>Zip</u>	Country		Phone Number
Bose Corporation	1 New York Avenue, Framingham, MA	American Association for Laboratory Accreditation	N/A US1088	07/31/2020	Carole Park	Quality Manager	Mail Stop 450 The Mountain	N/A	450	Framingham	Massachusett	s 01701	United States	Carole_Park@bose.com	508- 1766- 6084

Canadian Test Site Registration:

Organization	CAB identifier	Scope / Recognition Date (yyyy-mm-dd)	Expiration (yyyy-mm-dd)
BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2020-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701			A2LA
UNITED STATES			ISO/IEC
Website: https://www.bose.com/en_us/index.html			17025:2005 Expires: 2020-07-31
ISED#: 3232A			
Contact: Benjamin Cerretani <u>benjamin_cerretani@bose.com</u>			

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.125.1

Form FL300959 Rev 06 BOSE CONFIDENTIAL

RF Conducted Measurements

On Time and Duty Cycle

Project code name:		Marketing name:		Mode	el number:	BL3R			
Project number (Integrity):	BL3R	Build Phase:	C2.5						
Tested by:	Chad Bell		Date:	April 10, 20	20				
Requirements Standard(s):	Referenced Standard(s):								
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:				
Test equipment used TN's:	2408								
EUT Serial number(s):	Model BL3R cor	nducted #1							
EUT Software installed:	0.3.8	0.3.8							
EUT Modification(s):	Product was tes installed.	roduct was tested as built except the antenna was disconnected and a coaxial cable was							

Conclusion:

This test is for information only.

Limits:

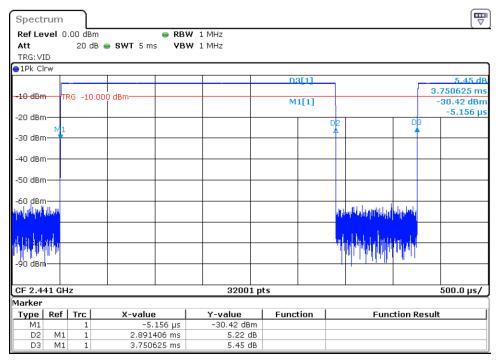
None; for reporting purposes only.

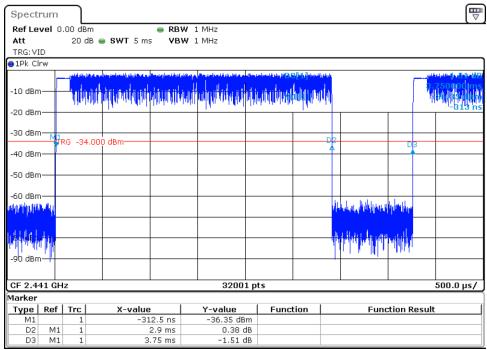
Procedure:

ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	25-Mar-2020	25-Mar-2021		


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.BL3R.2020.125.1



Data Collection:

Mode	ON Time (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
Bluetooth DH5	2.89	3.75	0.771	77.1	2.26
Bluetooth 3DH5	2.9	3.75	0.773	77.3	2.23

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

99% Occupied Bandwidth

Project code name:		Marketing name:		Mode	l number:	BL3R				
Project number (Integrity):	BL3R	Build Phase:	C2.5							
Tested by:	Chad Bell	Chad Bell Date: February 13, 2020								
Requirements			Referenced Standard(s):							
Standard(s):			Neierenceu 3	tanuaru(s).						
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locati	i on: Brau	ın Room				
Test equipment used TN's:	2408									
EUT Serial number(s):	Model BL3R cor	nducted #1								
EUT Software installed:	0.3.8									
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was								
	installed.									

Conclusion:

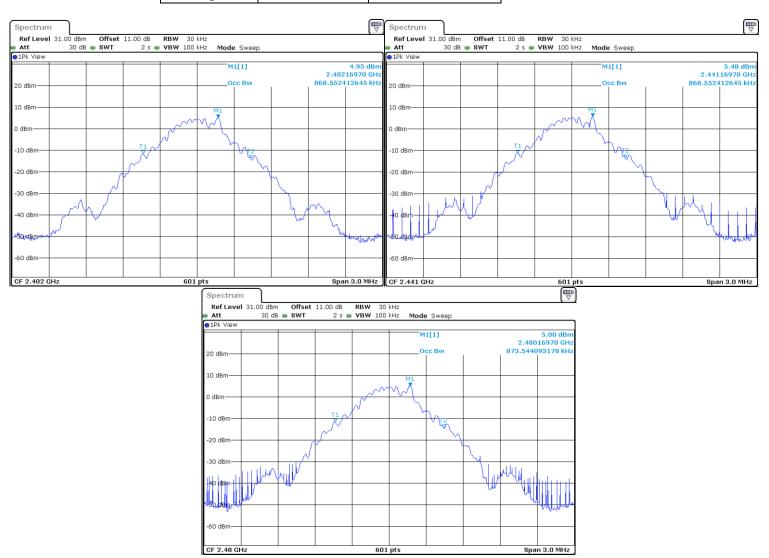
This test is for information only.

Limits:

None; for reporting purposes only.

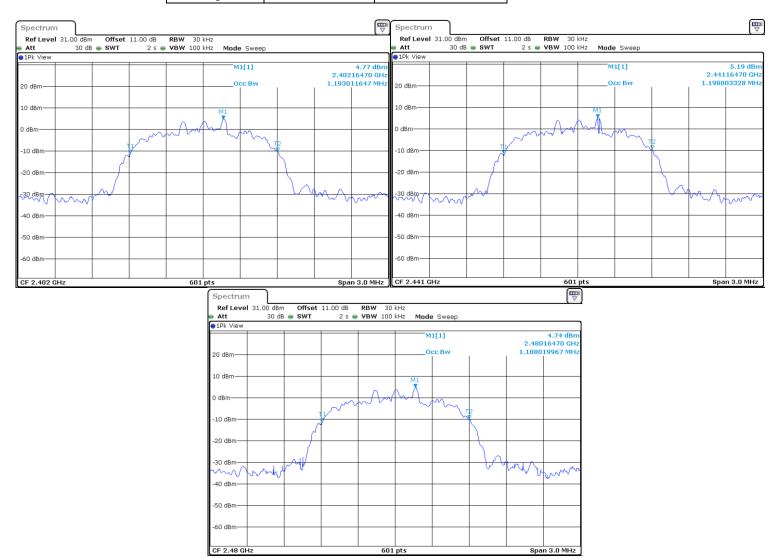
Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA
Tel: (508) 766-6000 Fax: (508) 766-1145
Without written permission of laboratory, this report shall not be reproduced except in full.
Report Number: EMC.BL3R.2020.99.1

Basic Rate (DH5) Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	0.8686
Middle	2441	0.8686
High	2480	0.8735



Enhanced Data Rate (3DH5) Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.193
Middle	2441	1.198
High	2480	1.188

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

20dB Occupied Bandwidth

Project code name:		Marketing name:		Mode	el number: BL3R		
Project number (Integrity):	BL3R	Build Phase:	C2.5				
Tested by:	Chad Bell	Chad Bell Date: February 13, 2020					
-							
Requirements	FCC §15.247 (2)	Pafarancad S	tandard(e):	ANSI 63.10:2013 - 6.9.2		
Standard(s):	RSS-247 5.2 (a))	Referenced Standard(s): ANSI 63.10:2013 -				
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location:				
Test equipment used TN's:	2408						
EUT Serial number(s):	Model BL3R cor	nducted #1					
EUT Software installed:	0.3.8						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.	·					

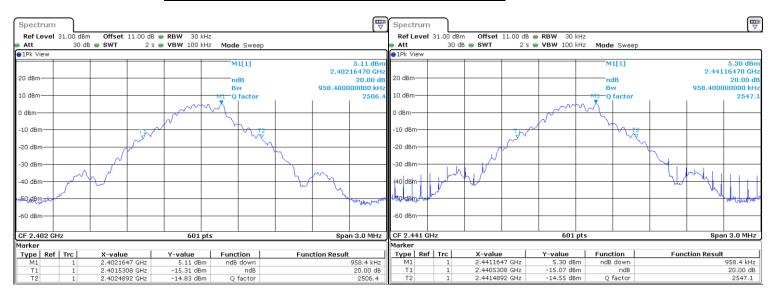
Conclusion:

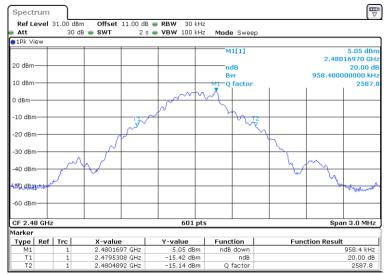
This test is for information only.

Limits:

None; for reporting purposes only.

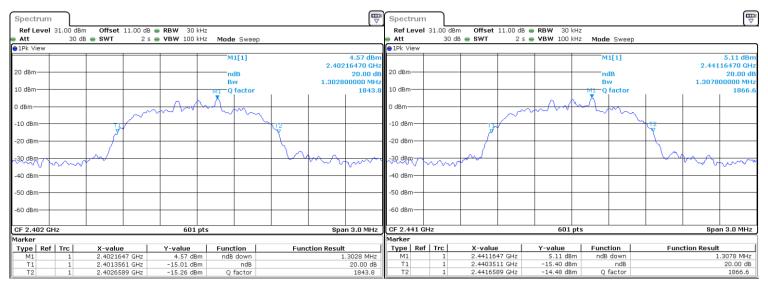
Procedure:

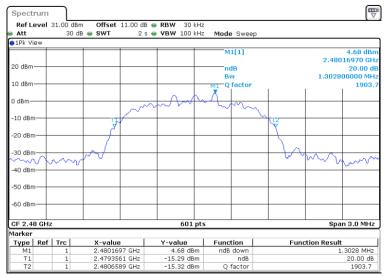

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 20dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.



Basic Rate (DH5) Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	0.958
Middle	2441	0.958
High	2480	0.958





Enhanced Data Rate (3DH5) Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.193
Middle	2441	1.198
High	2480	1.188

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

Hopping Frequency Separation

Project code name:		Marketing name:		Mode	l number:	BL3R		
Project number (Integrity):	BL3R	Build Phase:	C2.5					
Tested by:	Chad Bell		Date:	February 13	, 2020			
Requirements	FCC 15.247 (a)	(1),	Deferenced St	andord(s).				
Standard(s):	IC RSS-247 5.1	(2)	Referenced Sta					
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locati	ion:			
Test equipment used TN's:	2408							
EUT Serial number(s):	Model BL3R cor	nducted #1						
EUT Software installed:	0.3.8							
EUT Modification(s):	Product was tes	oduct was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.							

Conclusion:

Hopping frequencies are separated by 1MHz which is more than the required minimum of 25kHz and more than 2/3 of the 20dB bandwidth of the hopping channel which would be 795kHz.

Limits:

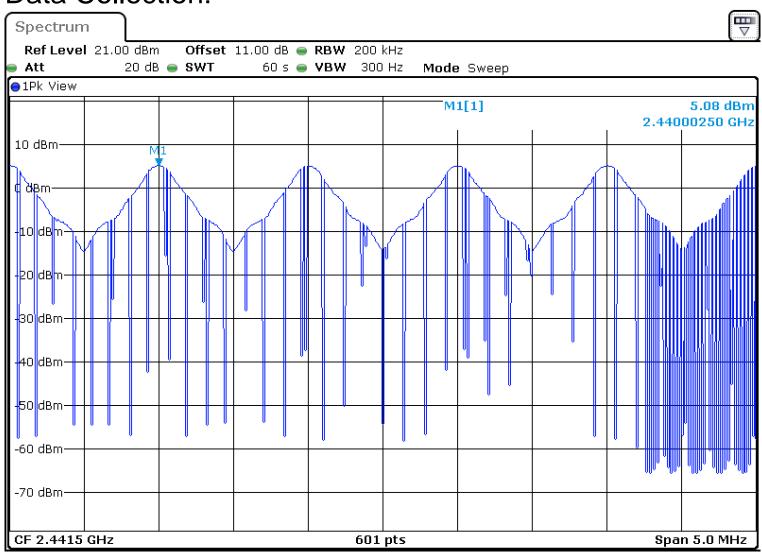
FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Procedure:


The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz (approx. 30% of the channel spacing) and the VBW is set to 300 kHz. The sweep time is coupled.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA
Tel: (508) 766-6000 Fax: (508) 766-1145
Without written permission of laboratory, this report shall not be reproduced except in full.
Report Number: EMC.BL3R.2020.99.1

Data Collection:

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

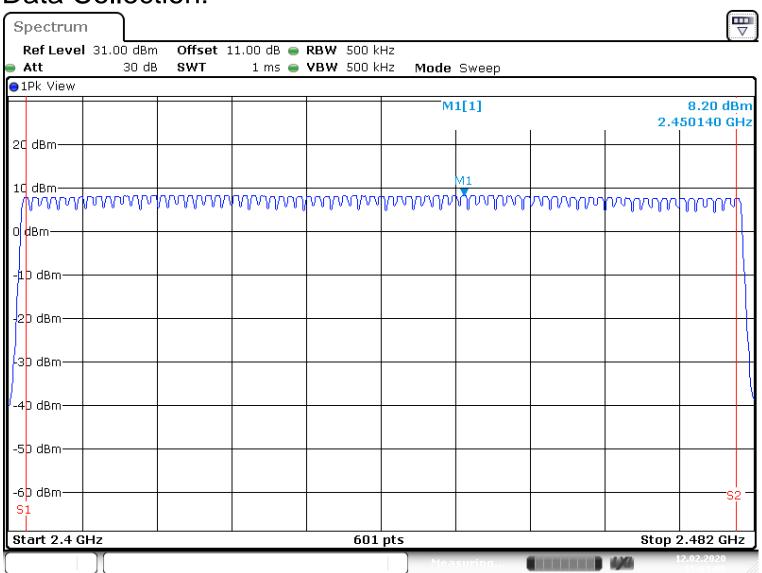
Number of Hopping Channels

Project code name:		Marketing name:		Mode	el number:	BL3R	
Project number (Integrity):	BL3R	Build Phase:	C2.5				
Tested by:	Chad Bell		Date:	February 13	3, 2020		
-							
Requirements	FCC 15.247 (a)		Poforoncod S	tandard(e):			
Standard(s):	IC RSS-247 5.1	(4)	Referenced Standard(s):				
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:		
Test equipment used TN's:	2408						
EUT Serial number(s):	Model BL3R cor	nducted #1					
EUT Software installed:	0.3.8						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.	·					

Conclusion:

Bose Model BL3R uses 79 hopping channels in normal operation and always uses at least 20, both of which are more than the required 15.

Limits:


FCC 15.247 (a) (1) (iii), IC RSS-247 5.1 (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

Data Collection:

Plot1 79 Hopping Frequency DH5

Date: 12.FEB.2020 15:01:08

Limits:

FCC §15.247 (2)

RSS-247 5.2 (a)

ANSI 63.10:2013 - 6.9.2

The minimum 6 dB bandwidth shall be at least 500 kHz.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.BL3R.2020.99.1

Form FL300959 Rev 06 BOSE CONFIDENTIAL

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

Average Time of Occupancy

Project code name:		Marketing name:		Mode	el number:	BL3R	
Project number (Integrity):	BL3R	Build Phase:	C2.5				
Tested by:	Chad Bell		Date:	Date: February 13, 2020			
Requirements	FCC 15.247 (a)		Referenced S	tandard(s):			
Standard(s):	IC RSS-247 5.1	(4)	Referenced 3	tanuaru(s).			
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location:				
Test equipment used TN's:	2408						
EUT Serial number(s):	Model BL3R cor	nducted #1					
EUT Software installed:	0.3.8						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.						

Conclusion:

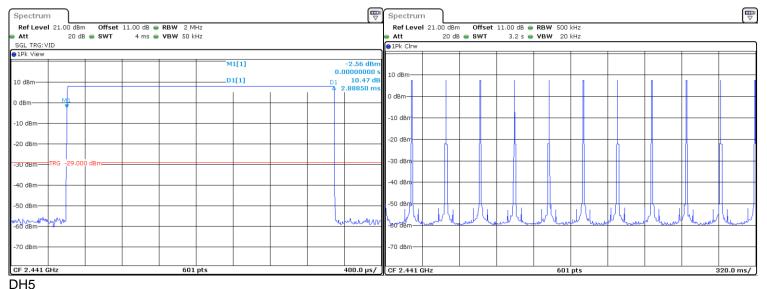
The highest time of occupancy in any mode is 318.5mS which passes the 400mS limit by 81.53mS.

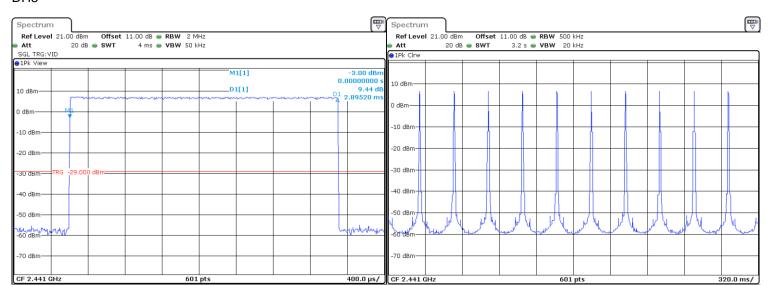
Limit:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA
Tel: (508) 766-6000 Fax: (508) 766-1145
Without written permission of laboratory, this report shall not be reproduced except in full.
Report Number: EMC.BL3R.2020.99.1



Data Collection:

Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 3.16 S	Number of pulses in 31.6 S (X 10)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
Middle	2441	DH5	2.889	11	110	317.7	400	82.26	Pass
Middle	2441	2-DH5	2.895	11	110	318.5	400	81.53	Pass
Middle	2441	3-DH5	2.895	11	110	318.5	400	81.53	Pass

3DH5

Output Power

Project code name:		Marketing name:		Model n	umber:	BL3R			
Project number (Integrity):	BL3R	Build Phase:	C2.5						
Tested by:	Chad Bell		Date:	February 13	3, 2020				
Requirements	FCC §15.247	' (b) (3)	Defended 6	4 a m al a m al / a \ .					
Standard(s):	RSS-247 5.4		Referenced S	tandard(s):					
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion: E	Braun Room			
	ı								
Test equipment used TN's:	2408								
EUT Serial number(s):	Model BL3R	Model BL3R conducted #1							
EUT Software installed:	0.3.8								
EUT Modification(s):	Product was installed.	Product was tested as built except the antenna was disconnected and a coaxial cable was							

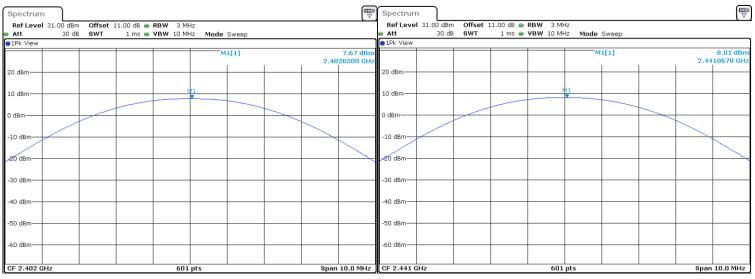
Conclusion:

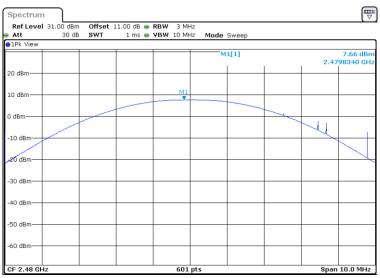
The Bose Model BL3R passes output power by 18.63dB.

Limits:

FCC §15.247 (b) (3)

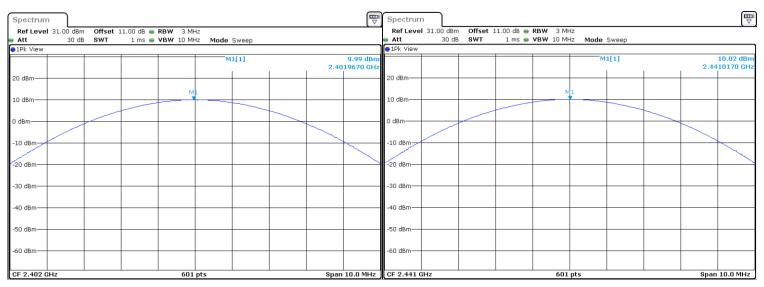
RSS-247 5.4 (d)

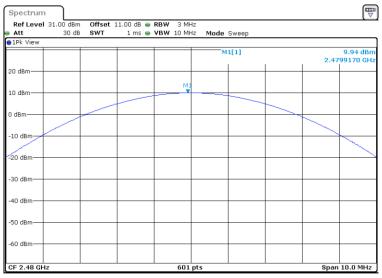

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.



Basic Rate (DH5) Data Collection:

	Output Power Summary Table										
Channel	Frequency	Output Power	Directional Gain	Limit	Margin	Result					
	(MHz)	(dBm) (dBi)		(dB)	(dB)						
Low	2402	7.67	1.35	30	20.98	Pass					
Middle	2440	8.01	1.35	30	20.64	Pass					
High	2480	7.66	1.35	30	20.99	Pass					





Enhanced Data Rate (3DH5) Data Collection:

	Output Power Summary Table									
Channel	Frequency	Output Power	·		Margin	Result				
	(MHz)	(dBm) (dBi)		(dB)	(dB)					
Low	2402	9.99	1.35	30	18.66	Pass				
Middle	2440	10.02	1.35	30	18.63	Pass				
High	2480	9.94	1.35	30	18.71	Pass				

Limits:

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

Conducted Spurious Emissions

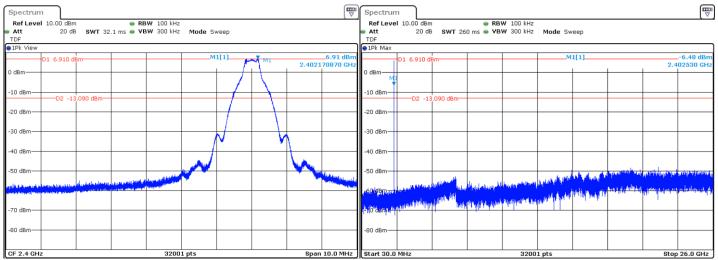
Project code name:		Marketing name:		Model n	umber:	BL3R	
Project number (Integrity):	BL3R	Build Phase:	C2.5				
Tested by:	Chad Bell		Date:	March 19, 2	020		
Requirements	FCC §15.247	' (d)	Deferenced 6	· · · · · · · · · · · · · · · · · · ·	A N I C I C	20 40 (44 40 0)	
Standard(s):			Referenced S	tandard(s):	ANSI 63.10 (11.10.2)		
EUT powered with:	5V USB	5V USB Temp / Humidity:		Test locat	Test location:		
	1						
Test equipment used TN's:	2408						
EUT Serial number(s):	Model BL3R	conducted #1					
EUT Software installed:	0.3.8						
EUT Modification(s):	Product was installed.	roduct was tested as built except the antenna was disconnected and a coaxial cable was					

Conclusion:

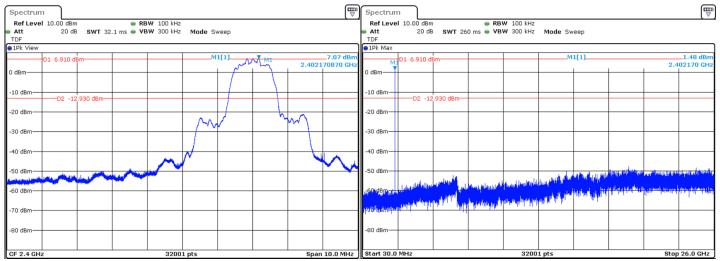
The Bose Model BL3R passes Conducted Spurious Emissions by more than 20dB.

Limits

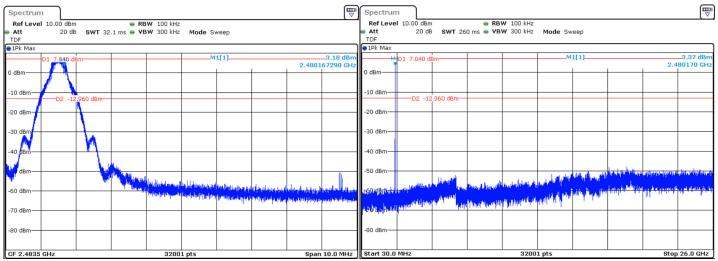
FCC §15.247 (d)


RSS-247 5.5

Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.



Data Collection:


DH5 low channel band-edge

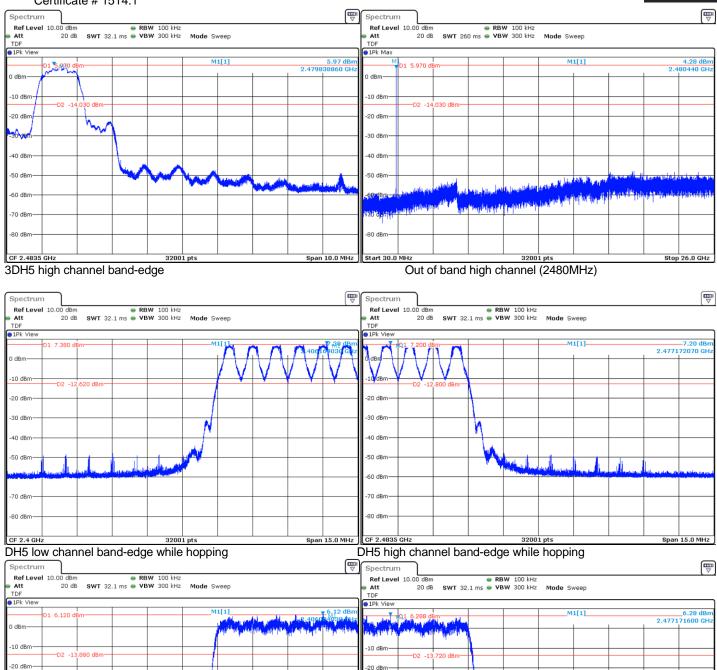
Out of band low channel (2402MHz)

3DH5 low channel band-edge

Out of band low channel (2402MHz)

DH5 high channel band-edge

Out of band high channel (2480MHz)


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

-50 dBr

-70 dBr

Span 15.0 MHz

3DH5 low channel band-edge while hopping

-30 dBm

3DH5 high channel band-edge while hopping

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		

RF Conducted Emissions – AC Mains

Project code name:		Marketing name:		Mode	el number:	BL3R	
Project number (Integrity):	BL3R	Build Phase:	C2.5	·			
Tested by:	Chad Bell		Date:	March 20, 2	March 20, 2020		
					•		
Requirements Standard(s):	FCC Part15B, EN	55032, EN301489	Referenced S	tandard(s):			
EUT powered with:	Bose Power P/T 722809-0010	Temp / Humidity:	N/A	Test locat	i on: Heni	y Room	
		-					
Test equipment used TN's:	2247,1380,2236						
EUT Serial number(s):	C2.5 sample #2						
EUT Software installed:	0.3.8						
EUT Modification(s):	Product was tested	d as built					

Conclusion:

The Bose Model BL3R passes RF Conducted Emissions on the AC Mains by 18.1dB.

Limits:

AC MAINS PORTS

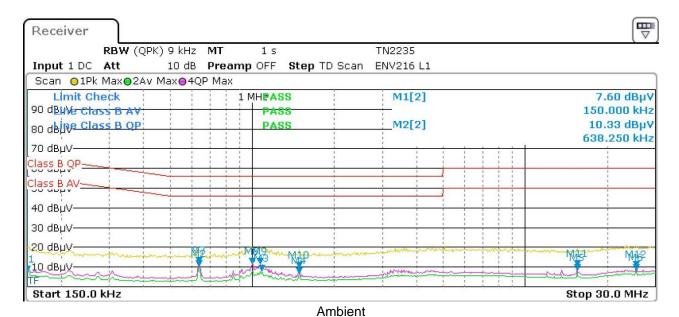
AC MAINS P	OKIS				
		Freq	Limits (dΒμV)	Comments
Standard	Class	Class Range (MHz) QP AVG 0.15 - 0.5 79 66 -Ensure bandwidth set to -EUT must pass both Ql 0.5 - 30 73 60 These Limits decrease frequency.			
	Α	0.15 - 0.5	79	66	-Ensure bandwidth set to 9 kHzEUT must pass both QP and AVG Limits.
FCC 15B/ CISPR32 based Class B		0.5 - 30	73	60	¹ These Limits decrease linearly with the log of the frequency.
		0.15 - 0.5	66-56 ¹	56-46¹	CISPR32 based standards: EN55032, AS/NZS CISPR32
only	В	0.5 - 5	56	46	CIOI NOZ
		5 - 30	60	50	

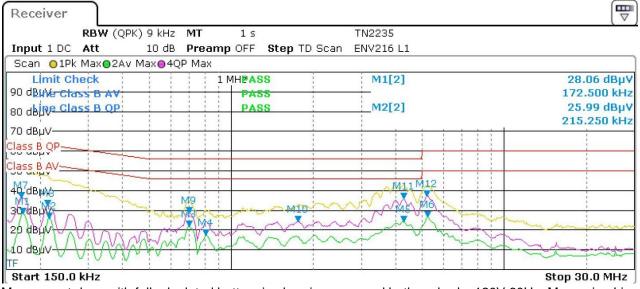
Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

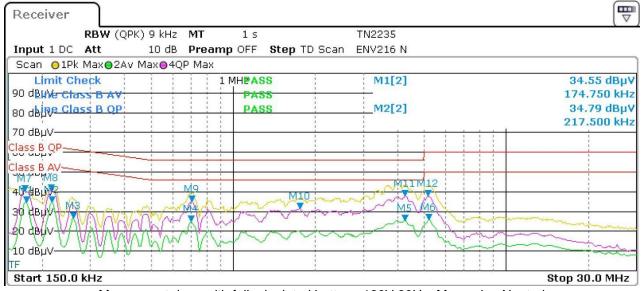
Page 28 of 53 Report Number: EMC.BL3R.2020.99.1

Test Checklist:


1 This checklist is intended to be a reminder of some highlights from the standards listed above, and not a step by step procedure. You must be familiar with the listed standards prior to using this checklist. 2 Check EUT performance prior to any testing. 3 awy from the soreen room walls and 280 cm from all other metal objects (including other walls). Other system components should have a ~10 cm spacing and should be ≥80 cm from any metal objects. 4 Connect cables, accessories, and loads that would be willized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. 4 For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. 5 Al least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane ((too)). 7 RF filter/bead all non-system component cables (external source) where necessary. 8 Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component systems with multiple line cords, each line cord shall be tested separately, all other system component somected to the second ('Other system components') LISN. A power strip can be used for multiple component synthem than the performed both with and without the EUT I/O ground/shell terminal connec	1 5	St Checklist.	
1 This checklist is intended to be a reminder of some highlights from the standards listed above, and not a step by step procedure. You must be familiar with the listed standards prior to using this checklist. 2 Check EUT performance prior to any testing. 2 Place the EUT on the table, with the rear of the unit aligned with the rear of the table. The EUT is to be 40 cm away from the screen room walls and ≥80 cm from all other metal objects (including other walls). Other system components should have a ≃10 cm spacing and should be ≥80 cm from any metal objects. 3 Connect cables, accessories, and loads that would be utilized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. 4 For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. 5 At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). 6 Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). 7 RF filler/bead all non-system component cables (external source) where necessary. 9 Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. 10 Provided the provided by the proper mains woltage and frequency f	No.		OK
2 Check EUT performance prior to any testing. Place the EUT on the table, with the rear of the unit aligned with the rear of the table. The EUT is to be 40 cm away from the screen room walls and ≥80 cm from all other metal objects (including other walls). Other system components should have a −10 cm spacing and should be ≥80 cm from any metal objects. Connect cables, accessories, and loads that would be utilized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. 4 • For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. 5 At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). 8 Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary, to keep them >40 cm above reference ground plane draped over rear edge of fabletop, bundled if necessary. 5 Perform this test is connected to the EUT. 6 MAINS PORT TESTING	1		√
Place the EUT on the table, with the rear of the unit aligned with the rear of the table. The EUT is to be 40 cm away from the screen room walls and 280 cm from all other metal objects (including other walls). Other system components should have a ~10 cm spacing and should be ≥80 cm from any metal objects. Connect cables, accessories, and loads that would be utilized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. *For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. *At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable impedance. *At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). *Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). *RE filter/bead all non-system component cables (external source) where necessary. *Verify the proper mains voltage and frequency for the EUT. **AC MAINS PORT TESTING.** **The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, such line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not tor the EUT LISN.) Unused LISN ports are terminated with 50 \(\text{cords}\), seach line cord shall be tested separately. All other system components shall be perfor	2		V
away from the screen room walls and ≥80 cm from all other metal objects (including other walls). Other system components should have a ~10 cm spacing and should be ≥80 cm from any metal objects. Connect cables, accessories, and loads that would be utilized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. 4 • For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. 5 • At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). 5 • Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). 7 • RF filter/bead all non-system component cables (external source) where necessary. 8 • Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING 7 • The EUT line cord under test is connected to the EUT LISN. For multiple components systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ('Other system components') LISN. A power strip can be used for multiple components connected to a second ('Other system components') LISN. A power strip can be used for multiple components connected to a second cust for the test of the cord shall be performed with with the console with 50 ohms in series. 8 • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT			V
Connect cables, accessories, and loads that would be utilized in a nominal configuration. Use judgment to determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that would force multiple earth grounds. For audio amplifier products that incorporate external speaker outputs with resistive loads equal to rated load impedance. At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). Ref filter/bead all non-system component cables (external source) where necessary. Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple components systems with multiple line cords, each line cord shall be tested separately. All other system components connected to the second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Joursed LISN ports are terminated with 50 of terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series. Perform this test for each line cord minic flow and neutral). A transient limiter MUST be used to protect receiver input.	3		,
determine minimum number of accessories required to achieve maximum level of emissions. If possible, avoid using peripheral components that twould force multiple earth grounds. For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). Ref filter/bead all non-system component cables (external source) where necessary. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 \(\textit{ terminators.}\) If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded. If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connected earth grounds which connected to earth ground. The same performed with the console grounded with the console grounded on the performed			
using peripheral components that would force multiple earth grounds. For audio amplifier products that incorporate external speaker outputs with resistive loads equal to rated load impedance. At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (filoor). Ref filter/bead all non-system component cables (external source) where necessary. Verify the proper mains voltage and frequency for the EUT. **AC MAINS PORT TESTING* The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connected to earth ground, measurements shall be performed with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary			
4 • For audio amplifier products that incorporate external speaker outputs, and are designed to connect to a variety of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. 5 At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). 8 Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). 7 RF filter/bead all non-system component cables (external source) where necessary. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminator to earth ground, with 150 ohms in series. Perform this test for each line cord which can be connected to an earth ground should be used to reach ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connected to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in ser			
of loudspeakers, it is recommended to terminate the speaker outputs with resistive loads equal to rated load impedance. At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). RE Filter/bead all non-system component cables (external source) where necessary. RF Filter/bead all non-system component cables (external source) where necessary. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second (1SN (but not for the EUT LISN). Unused LISN ports are terminated with 50 cu termination to earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. Performed with the console grounded, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. Performed with 150 ohms in series, and ungrounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (le. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. (line and neutral). EUT measured in all typical operatio	4		
At least one of each type of EUT I/O port should have a customer intent cable connected to it. Document cable configuration used for the test (describe cables used and take picture). Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). RF filter/bead all non-system component cables (external source) where necessary. Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to a second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with t	4		
Sundie EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). 7 RF filter/bead all non-system component cables (external source) where necessary. 8 Verify the proper mains voltage and frequency for the EUT. 7 AC MAINS PORT TESTING 7 The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components connected to a second (1SN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. 8 If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. 9 Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the sonsole grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded with 150 ohms in series. The EUT is provided by the series of the EUT is generally recommended to us			
Bundle EUT mains cord into 30-40 cm bundle. Do not bundle peripheral components' mains cords. I/O cables are draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). 7 RF filter/bead all non-system component cables (external source) where necessary. 8 Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components connected to a second (other system components') LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, this console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 10 A transient limiter MUST be used to protect receiver input. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mod	5		V
draped over rear edge of tabletop, bundled if necessary, to keep them >40 cm above reference ground plane (floor). RF filter/bead all non-system component cables (external source) where necessary. Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring he bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. Vien measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. The performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. The performed with the antenna shell both ungrounded and grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessar	•		,
(floor). RF filter/bead all non-system component cables (external source) where necessary. Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measure	_		V
7 RF filter/bead all non-system component cables (external source) where necessary. 8 Verify the proper mains voltage and frequency for the EUT. AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 µ terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform me	6		
Verify the proper mains voltage and frequency for the EUT.	7		1
AC MAINS PORT TESTING The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components in cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to a second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode, if using spectrum analyzer mode for average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements on both sides of mains (l			V
The EUT line cord under test is connected to the EUT LISN. For multiple component systems with multiple line cords, each line cord shall be tested separately. All other system components ine cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement fo			, ,
cords, each line cord shall be tested separately. All other system component line cords are connected to a second ("other system components") LISN. A power strip can be used for multiple components connected to the second LISN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell both ungrounded and grounded, with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise			
USN (but not for the EUT LISN). Unused LISN ports are terminated with 50 Ω terminators. If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power			.,
If the EUT has I/O terminals which can be connected to an earth ground through peripheral equipment, the measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, h	9	("other system components") LISN. A power strip can be used for multiple components connected to the second	\ \ \
measurements shall be performed both with and without the EUT I/O ground/shell terminal connected to earth ground, with 150 ohms in series. • Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient			
earth ground, with 150 ohms in series. Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions at other volume/output levels were less). At each frequency where there is a signif			
Perform this test for each line cord which comprises the EUT (i.e. for a console/bass box type system, even when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
when measuring the bass box line cord, the console is still considered part of the EUT, so measurements are performed with the console grounded, with 150 ohms in series, and ungrounded). If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
performed with the console grounded, with 150 ohms in series, and ungrounded). • If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
 If the EUT has an unbalanced (coax) antenna input terminal as well as other I/O or mains terminals which connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). **Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. **CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable 	10		
connect to earth ground, measurements shall be performed with the antenna shell both ungrounded and grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). 11 A transient limiter MUST be used to protect receiver input. 12 Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. 13 For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. 14 Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
grounded, with 150 ohms in series. When measuring with the antenna shell grounded with 150 ohms in series, no other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
other earth grounds shall be connected per CISPR 32 (i.e. float safety grounds if necessary). A transient limiter MUST be used to protect receiver input. Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
Ensure correct frequency, amplitude, bandwidth, and transducer factors are set on receiver. For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable	11	A transient limiter MUST be used to protect receiver input.	
mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results. Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable	12		√
Perform measurements on both sides of mains (line and neutral). EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable	13		√
EUT measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			,
significant difference in spectral emissions. • Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable	14		1
 Amplifiers are exercised up to maximum power (though not a requirement for CISPR 32). We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable 			
 • We deem it acceptable to use pink noise instead of 1 kHz sine wave as the input signal (allowed by CISPR 32). • Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable 			
 CISPR 32). Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable 			
 Connecting cable positions are varied to obtain worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design. CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable 			
Cables are not positioned on top of, or under, the system components unless required by design. • CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable	15	,	
CISPR 32 specifies audio amps to be set to 1/8 power output during measurement, however if worst case emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
emissions are found to be at another output level and are passing, it is sufficient to capture just the worst case emissions (i.e. passing worst case results can be used for CISPR 32 as for FCC with a statement that emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
emissions at other volume/output levels were less). At each frequency where there is a significant emission, maximize each emission by changing the EUT cable		emissions are found to be at another output level and are passing, it is sufficient to capture just the worst	
At each frequency where there is a significant emission, maximize each emission by changing the EUT cable			
orientation. Record the worst-case frequency, amplitude, mains conductor.	16		
		orientation. Record the worst-case frequency, amplitude, mains conductor.	'


17	Document test results and test equipment using test template.	$\sqrt{}$
18	Take picture(s) of worst-case test set up.	

Data Collection:



Max current draw with fully depleted battery in charging case and both earbuds, 120V 60Hz, Measuring Line

	FCC 15B and CISPR 32 Class B Product											
Mk	Frequency	MEASURED		LI	MIT	MARGIN						
#	MHz	dBµV QP	dBµV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	Notes				
1	4.2945	35.70	24.30	56.0	46.0	20.3	21.7					
2	4.3013	35.70	24.30	56.0	46.0	20.3	21.7					
3	5.2283	37.10	26.30	60.0	50.0	22.9	23.7					
4	5.2598	37.00	26.50	60.0	50.0	23.0	23.5					
5	0.7035	28.60	22.00	56.0	46.0	27.4	24.0					
6	0.7013	28.60	22.00	56.0	46.0	27.4	24.0					
7	0.1725	36.20	28.10	64.8	54.8	28.6	26.7					
8	0.2153	32.30	26.00	63.0	53.0	30.7	27.0					
9	0.1703	36.30	27.50	64.9	54.9	28.6	27.4					
10	0.2130	32.30	25.20	63.1	53.1	30.8	27.9					
11	0.8093	24.20	17.40	56.0	46.0	31.8	28.6					
12	1.7588	24.40	16.70	56.0	46.0	31.6	29.3					

Max current draw with fully depleted battery, 120V 60Hz, Measuring Neutral

	FCC 15B and CISPR 32 Class B Product											
Mk	Frequency	MEASURED		LI	MIT	MARGIN						
#	MHz	dBµV QP	dBμV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	Notes				
1	0.2175	40.60	34.80	62.9	52.9	22.3	18.1					
2	4.2540	37.70	25.50	56.0	46.0	18.3	20.5					
3	4.2585	37.70	25.50	56.0	46.0	18.3	20.5					
4	0.2153	40.60	34.50	63.0	53.0	22.4	18.5					
5	0.1748	40.00	34.50	64.7	54.7	24.7	20.2					
6	0.1725	40.20	34.50	64.8	54.8	24.6	20.3					
7	0.7058	35.10	24.70	56.0	46.0	20.9	21.3					
8	0.7035	35.00	24.80	56.0	46.0	21.0	21.2					
9	5.1810	37.80	25.60	60.0	50.0	22.2	24.4					
10	5.2193	37.70	25.90	60.0	50.0	22.3	24.1					
11	0.2603	33.20	26.80	61.4	51.4	28.2	24.6					
12	1.7565	31.40	19.80	56.0	46.0	24.6	26.2					

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2247	EMI Test Receiver, 7GHZ	ESR7	101263	Rohde & Schwarz	27-Mar-2019	26-Mar-2020		
1380	Conducted Comb Generator	CGC- 510	311559	Com-Power Corporation			15-Mar-2019	14-Mar-2020
2236	2-LINE V- NETWORK	ENV216	101193	Rohde & Schwarz	21-Jan-2020	20-Jan-2022		

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

Form FL300959 Rev 06 BOSE CONFIDENTIAL

Uncertainty:

Uncertainty Bud	lget (AC main	s measureme	nts)					
Title:	Conducted	RF Emissions	(Mains)					
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty				
	units:± dB			(± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	1.0	Rect	1.73	0.58				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
LISN impedance	2.6	Triang.	2.45	1.06				
LISN insertion loss	0.6	Norm.	2.00	0.30				
Cable correction factor	0.1	Norm.	2.00	0.05				
	ity (RSS):	1.30						
	2 sigma):	2.00						
Ext	ended uncert	ainty (95% coi	nfidence):	2.60				

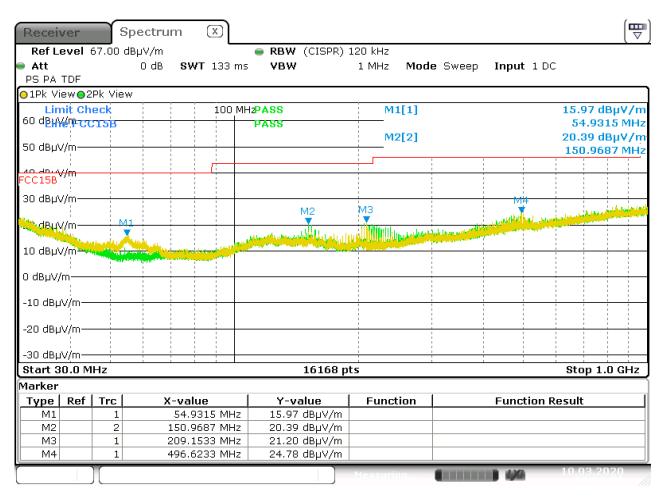
Radiated Measurements

RF Radiated Emissions 30MHz -1GHz

Project code name:		Marketing name:		Model nu	mber: BL3R			
Project number (Integrity):	BL3R	Build Phase:	C2.5					
Tested by:	Chad Bell		Date: March 10, 2020					
Requirements Standard(s):	FCC Part15B	FCC Part15B Referenced Standard(s):						
EUT powered with:	Bose Power P/T 722809- 0010	Temp / Humidity:	N/A	Test location:	n: Maxwell House			
	T							
Test equipment used TN's:	1375,2319,1541,3062,2077							
EUT Serial number(s):	C2.5 sample #2							
EUT Software installed:	Special software to enable 900mA charging in the charging case.							
EUT Modification(s):	None							

Conclusion:

Tested while playing audio and while charging, charging mode was found to be worst case and therefore what is represented in the report. The Bose Model BL3R passes Radiated Emissions from 30MHz-1GHz by 12.3dB.

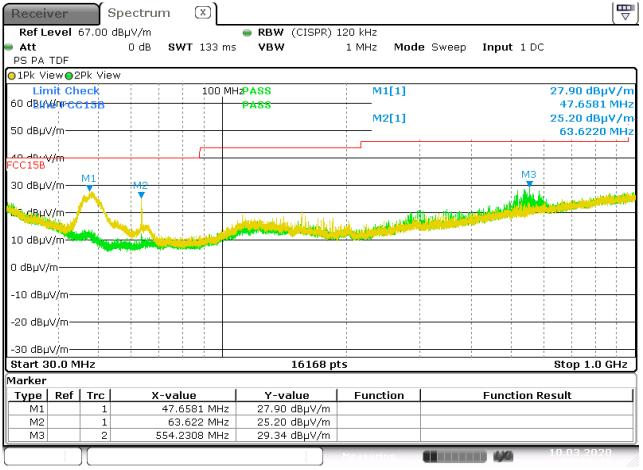

Test Checklist:

No.	ITEM $(\sqrt{\text{or n/a}}) \rightarrow$	OK
1	This checklist is intended to be a reminder of some highlights from the standards listed above, and not a step by step procedure. You must be familiar with the listed standards prior to using this checklist.	√
2	Check EUT performance, confirm proper mains voltage prior to testing.	√
3	If dimensions of EUT are greater than 1 meter in any direction, measurements performed at 3 meters may not be accurate,	√ √
	especially at lower frequencies.	
4	Remove all non-essential items from the Maxwell House chamber.	√
5	Place comb generator field site source in reference location on turntable. Sweep source, verify results against established reference plot. Verification plot should be recorded in test setup verification section of this document.	√
6	Place EUT on turntable with the rear of the unit aligned with the table edge closest to the antenna (maintain ~10 cm spacing between components). Connect the cables, accessories, and loads that would be utilized in a nominal configuration (judgmer can be used to determine the minimum number of accessories required to achieve the maximum level of emissions). Telescoping antennas should be fully extended and vertical. If this is an initial test of a system, decide what nominal configuration setup should be, bundle cables, and take a picture to ensure future tests are performed using same configuration. For formal reports record type and length of cables used.	t √
7	At least one of each type of EUT I/O port shall have a customer intent cable connected to it. If more than one cable of any cable type measurably increases emissions, those cables shall be maintained in the test setup. Investigate all surfaces (top bottom, sides, and front) for I/O ports not in the main cluster. Examples of ports that may not be in the main cluster of jacks are: • Headphone, HDMI, USB, jacks or other convenience jacks on the front of the EUT. Document cable configuration used for the test (describe cables used and take picture).	V
8	Whenever practical, all cables will be terminated in a representative load both with respect to impedance matching and paths to earth via power connections.	1
9	Dress mains cord according to standard (see below). Drape all other cables over the edge of the table at the rear of the EUT, and bundle the excess in the center to ensure ~40 cm above the ground plane (floor). Bundles should be ~30-40 cm in length	
10	Verify appropriate test antenna is being used. The central point of the EUT arrangement shall be positioned at the center of the turntable. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna.	ne √
11	Ensure proper correction factors and limit lines are selected on receiver.	√
12	Ensure highest clock frequency used in EUT is known and taken into account to determine required frequency range. (Less than 108 MHz: 1 GHz, 108-500 MHz: 2 GHz, 500-1000 MHz: 5 GHz, greater than 1 GHz: 5 x fundamental up to 40 GHz for FCC and 6 GHz for CISPR22.) Above 1 GHz, average and peak Limits exist.	√ √
13	For average measurements, it is recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results.	√
14	For all measurements, it may be necessary to investigate individual emissions for periodic nature and insure adequate dwell time to obtain an accurate reading.	√
15	Since broadband emissions sources can at times look like the noise floor, when making measurements of these types of emission sources, be extra careful in making sure the signals to be measured have sufficient S/N ratio to provide valid measurements.	V
16	 EUT is measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power. Consider ports that may require active loads or signal sources to properly exercise the port and produce electrical traffic and emissions. Ports may need to be activated (source selected) to "wake up" electrical signals and produce emissions. 	V
17	Vary antenna height, antenna polarization, turn-table position, user controls, and connecting cable positions to obtain the work case emissions, within the range of anticipated end user configurations. Cables are not positioned on top of, or under, the system components unless required by design.	st √
18	Document the six worst case test result peaks using instrument software and or test template. Exclusions include peaks 20 d or more below the limit and or system noise floor measurements.	3 √
19	Document all equipment used during the test. If tripod mounted antennas are used in the multi-GHz range, document the antenna positioning method and height scan range in the report.	√
	Take picture(s) of worst case test set up.	√

Data Collection:

Date: 10.MAR.2020 10:12:01

	CISPR 32&11 @ 3 Meters and FCC B Class B @ 3 Meters										
MK	Emission	Measured	Measured	CISPR	CISPR 32&11		FCC B		Receiving Antenna		Notes / Mode
#	Frequency	Amplitude	Amplitude	Limit	Margin	Limit	Margin	Azimuth	Pol	Height	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dB)	(0°closest	(H/V)	(Meters)	
		QP	Peak	QP	QP	QP	QP	to ant)			
1	54.932	9.60	26.50	40.0	30.4	40.0	30.4	251	V	1.00	Fully depleted batteries in earbud and charging case.
2	150.969	10.80	17.80	40.0	29.2	43.5	32.7	0	Н	1.49	Fully depleted batteries in earbud and charging case.
3	209.153	15.60	22.30	40.0	24.4	43.5	27.9	67	V	1.00	Fully depleted batteries in earbud and charging case.
4	496.623	15.60	22.40	47.0	31.4	46.0	30.4	359	V	1.00	Fully depleted batteries in earbud and charging case.


Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.BL3R.2020.99.1

Date: 10.MAR.2020 12:10:44

	CISPR 32&11 @ 3 Meters and FCC B Class B @ 3 Meters										
MK	Emission	Measured	Measured	CISPR	CISPR 32&11		FCC B		Receiving Antenna		Notes / Mode
#	Frequency	Amplitude	Amplitude	Limit	Margin	Limit	Margin	Azimuth	Pol	Height	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dB)	(0°closest	(H/V)	(Meters)	
		QP	Peak	QP	QP	QP	QP	to ant)			
1	47.920	24.50	27.90	40.0	15.5	40.0	15.5	360	V	1.00	Long amazon cable resistive loads installed in earbuds to ensure max charging rate
2	63.587	27.70	29.80	40.0	12.3	40.0	12.3	0	V	1.00	Long amazon cable resistive loads installed in earbuds to ensure max charging rate
3	554.231	19.60	26.50	47.0	27.4	46.0	26.4	256	Н	1.00	Long amazon cable resistive loads installed in earbuds to ensure max charging rate

Limits:

	Freq Range	Lim	nits (dBuV QF	P ¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m ²	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC 15B	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
FCC 15B	216-960	46.5	56.5	46	Limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average Limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	Limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average Limits.
CISPR 32	Freq Range				*Not included in CISPR 11
	(GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
E	Bandwidth and De	etector Setting	s:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	VBW (kHz) Detector		
30 – 1000	120	>300			
> 1000	1000	>1000			

Equipment Used:

coax, 26 feet, 312 Microwave[2] "N" connectors	TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
Receiver	1375	•	SC99V						
1541 30MHz - JB6 A050807 Corp 2019 2020 RF Cable DC- 18GHz, low 3062 loss LL142 SCE18110505- coax, 26 feet, 312 N/A Fairview N" connectors N/A Bose 13-Aug-2019 10-Dec- 2019 2020 11-Dec- 2019 2020 13-Aug-2019 13-Aug-2019 13-Aug-2019	2319		ESR26	101276					
18GHz, low loss LL142 SCE18110505- N/A Fairview 26-Jul-2018 13-Aug-2019 N/N Sconnectors Bose 13-Aug-2019	1541	30MHz -	JB6	A050807					
7077 PreAmplitier N/A N/A N/A 13-Aug-2019	3062	18GHz, low loss LL142 coax, 26 feet, "N"		N/A		26-Jul-2018		13-Aug-2019	12-Aug- 2020
	2077	PreAmplifier	N/A	N/A				13-Aug-2019	12-Aug- 2020

Uncertainty:

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Ur	ncertainty Bu	dget						
Title:	Radiat	Radiated RF Emissions (30MHz-1GHz)						
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	0.8	Rect.	1.73	0.46				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
Antenna factor	0.8	Norm.	2.00	0.38				
Antenna directivity	1.0	Norm.	2.00	0.50				
Preamp correction factor	0.5	Norm.	2.00	0.25				
Cable correction factor	0.5	Norm.	2.00	0.25				
Site imperfection - NSA	4.0	Triang.	2.45	1.63				
Test table impact	1.1	Rect.	1.73	0.64				
	Comb	ined uncertain	ity (RSS):	1.98				
	Co	verage factor (2 sigma):	2.00				
Exte	ended uncert	ainty (95% cor	nfidence):	3.97				

Radiated Spurious Emissions 1-25GHz

Project code name:		Marketing name:			Model#:	BL3R	
Project number (Integrity):	BL3R	Build Phase:	C2.5				
Tested by:	N. Sanford	N. Sanford		12Mar2020			
Requirements Standard(s):	CISPR32, FCC	CISPR32, FCC part 15B		tandard(s):			
EUT powered with:	Battery	Battery Temp / Humidity: 1		Test locati	ion: Marc	oni Manor	
Test equipment used TN's:	1663,2373,2479	,2357,2602,2349,241	4,2385,1757,159	96,2368			
EUT Serial number(s):	Right Earbud: R	3393					
EUT Software installed:	0.3.8	0.3.8					
EUT Modification(s):	USB Debug wire	es were attached to the	ne earbud to allow	w control of th	e radio.		

Conclusion:

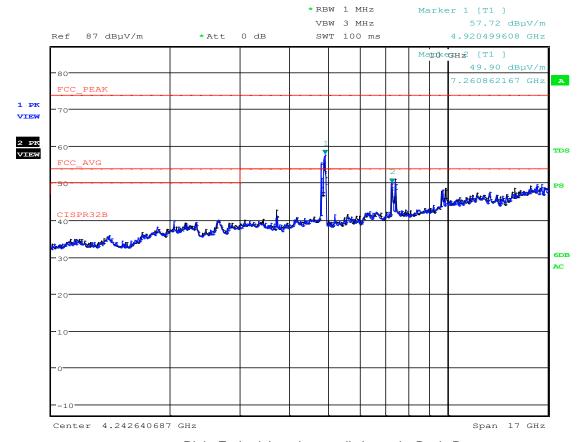
The Bose model BL3R passes radiated emissions from 1-25GHz by 1.6dB.

Transmit Settings

CFG TX POWER = 10
Basic Rate = CFG PKT 15/339
EDR = CFG PKT 31/1020
TX DATA1 set frequency

Test Checklist:

No.	ITEM $(\sqrt{\text{or n/a}}) \rightarrow$	OK
1	This checklist is intended to be a reminder of some highlights from the standards listed above, and not a step by step procedure. You must be familiar with the listed standards prior to using this checklist.	V
2	Check EUT performance, confirm proper mains voltage prior to testing.	
3	Using the Test Setup Verification section on this document perform verification check. Note: Six ferite panels placed under the six middle cones, check 3-meter distance horn to front edge of turntable. Remove all non-essential items from the 3m chamber. Check bore-site (tilt) option set to on in the mast controller.	V
4	If EUT has an intentional radiator at 2.4GHz or 5GHz notch filters should be placed before the pre-amp to prevent its overload. Modify correction factor set in the receiver to include notch filter used.	
5	Place EUT on turntable with the rear of the unit aligned with the table edge closest to the antenna (maintain ~10 cm spacing between components). Connect the cables, accessories, and loads that would be utilized in a nominal configuration (judgment can be used to determine the minimum number of accessories required to achieve the maximum level of emissions). Telescoping antennas should be fully extended and vertical. If this is an initial test of a system, decide what nominal configuration setup should be, bundle cables, and take a picture to ensure future tests are performed using same configuration. For formal reports record type and length of cables used.	1
6	At least one of each type of EUT I/O port shall have a customer intent cable connected to it. Investigate all surfaces (top, bottom, sides, and front) for I/O ports not in the main cluster. Examples of ports that may not be in the main cluster of jacks are headphone jacks or convenience jacks on the front of the EUT. Document cable configuration used for the test (describe cables used and take picture(s)).	√
7	Dress mains cord according to standard (see below). Drape all other cables over the edge of the table at the rear of the EUT, and bundle the excess in the center to ensure ~40 cm above the ground plane (floor). Bundles should be ~30-40 cm in length.	V
8	Ensure highest clock frequency used in EUT is known and taken into account to determine required frequency range. (Less than 108 MHz: 1 GHz, 108-500 MHz: 2 GHz, 500-1000 MHz: 5 GHz, greater than 1 GHz: 5 x fundamental up to 40 GHz for FCC and 6 GHz for CISPR22 and CISPR32.) For measurements above 1 GHz, both average and peak limits exist.	1
9	For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results.	1
10	EUT is measured in all typical operational modes. Give special attention to modes where there is a potentially significant difference in spectral emissions. Amplifiers are exercised up to maximum power. Vary, antenna polarization, turn-table position, user controls, and cable positions, to obtain the worst case emissions, within the range of likely configurations. Cables are not positioned on top of, or under, the system components unless required by design.	1
11	Document the six worst case test result peaks using instrument software and or test template. Exclusions include peaks 20 dB or more below the limit and or system noise floor measurements.	V
12	Document all equipment used during the test.	$\sqrt{}$
13	Take picture(s) of worst case test set up.	$\sqrt{}$


Data Collection:

			FCC 15F	3 Class B Pro	duct (Res	idential) @	0.3 Meters			
Emission	Measured	Measured	1 00 102	FCC 15E		idoritial) C	Table	Rece	eiving Ant	
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
(**** 12)	AVG	Peak	AVG	Peak	AVG	Peak	to ant)	(, ,	(14101010)	Notes/Mode
4804.000	52.40	57.40	54.0	74.0	1.6	16.6	243	V	1.8	BL3R, Basic Rate
7206.000	37.20	47.80	54.0	74.0	16.8	26.2	227	V	1.9	BL3R, Basic Rate
12001000		11100	0.110					-		
4882.000	51.70	56.70	54.0	74.0	2.3	17.3	245	V	1.8	BL3R, Basic Rate
7323.000	41.20	50.40	54.0	74.0	12.8	23.6	245	V	2.1	BL3R, Basic Rate
										,
4960.000	42.90	49.70	54.0	74.0	11.1	24.3	243	V	1.9	BL3R, Basic Rate
7440.000	41.00	50.20	54.0	74.0	13.0	23.8	240	V	1.6	BL3R, Basic Rate
										,
4804.000	49.70	58.00	54.0	74.0	4.3	16.0	243	V	1.8	BL3R, EDR
7206.000	35.20	47.70	54.0	74.0	18.8	26.3	227	V	1.9	BL3R, EDR
4882.000	48.50	56.20	54.0	74.0	5.5	17.8	245	V	1.8	BL3R, EDR
7323.000	39.00	50.20	54.0	74.0	15.0	23.8	245	V	2.1	BL3R, EDR
4960.000	40.60	49.90	54.0	74.0	13.4	24.1	243	V	1.9	BL3R, EDR
7440.000	39.50	50.70	54.0	74.0	14.5	23.3	240	V	1.6	BL3R, EDR
19216.000	34.80	47.00	54.0	74.0	19.2	27.0				Noise floor
21618.000	37.00	49.60	54.0	74.0	17.0	24.4				Noise floor
24020.000	39.40	52.50	54.0	74.0	14.6	21.5				Noise floor
19536.000	33.10	46.10	54.0	74.0	20.9	27.9				Noise floor
21978.000	36.20	49.20	54.0	74.0	17.8	24.8				Noise floor
24420.000	39.30	52.30	54.0	74.0	14.7	21.7				Noise floor
19840.000	34.30	46.50	54.0	74.0	19.7	27.5				Noise floor
22320.000	36.50	49.20	54.0	74.0	17.5	24.8				Noise floor
24800.000	39.00	52.80	54.0	74.0	15.0	21.2				Noise floor

Readings taken in test mode which enable much higher duty cycle than is possible in real world usage. Average readings were taken in this mode.

Right Earbud, hopping on all channels, Basic Rate

Limits:

	Freq Range	Lim	nits (dBuV QF	^{D1})	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC 15B	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
FCC 15B	216-960		56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
E	Bandwidth and D	etector Setting	js:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Dete	ector	
30 – 1000	120	>300	QP		
> 1000	1000	>1000	Pk and	d AVG	

Procedure:

Per 558074 D01 15.247 Meas Guidance v05r02:

Taking a RMS average measurement while the EUT is transmitting in operational duty cycle – The RMS average detector of a spectrum analyzer can be used for making average measurements with the EUT operating on its operational duty cycle. If the EUT supports more than one operational duty cycle the worst-case value should be used, i.e., the highest operational duty cycle. The measured RMS value using this method is compared against the limits and no other corrections are permitted.

The spectrum analyzer settings shall meet the requirements of ANSI C63.10 for making Average measurements. This measurement refers to spectrum analyzer settings in either 11.12.2.5.2 or 11.12.2.5.3 in ANSI C63.10; except when using 11.12.2.5.2, set Trace mode = Max Hold and the measurement correction factor in 11.12.2.5.2 i) is not added.

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	24-Mar- 2020	24-Mar- 2021		
2373	RF Cable 30MHz- 18GHz - 25 feet "N"	TRU-300	N/A	TRU Corporation			12-Nov- 2014	
2479	RF cable 30MHz- 18GHz	257-257- 3052640	N/A	SRC Haverhill			12-Mar- 2020	12-Mar- 2021
2357	RF Cable 30MHz- 18GHz	TRU-300	TRU- 12707-03	TRU Corporation			12-Mar- 2020	12-Mar- 2021
2602	Miteq pre- amp 1- 18GHz 35dB	AFS42- 01001800-28- 10P-42	N/A	Miteq			19-Jun-2019	18-Jun-2020
2349	Double Ridge Waveguide Horn Antenna 1- 18GHz	3117	00152406	ETS Lindgren	30-Jan- 2020	29-Jan- 2021		
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	13-Jan- 2015		05-Mar- 2019	04-Mar- 2020
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	N/A	AP Americas			29-Oct-2019	28-Oct-2020
2929	Mini-circuits band-edge pre-amp 300 MHz - 8 GHz 20 dB	ZX60HV-83LN+	N/A	Mini-Circuits			17-Dec- 2018	17-Dec- 2019
1757	18GHz- 40GHz Preamp	JS4018004000- 30-8P-A1	1406279	Miteq			18-Jun-2019	17-Jun-2020
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research				
2368	RF Cable 30MHz- 26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation			12-Mar- 2020	12-Mar- 2021

Uncertainty:

Uncerta						
Title:	Radiated	d Emissions (>	·1GHz)			
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty		
	units:± dB			(± dB)		
Receiver - absolute level	0.3	Rect.	1.73	0.17		
Receiver - frequency response	2.0	Rect.	1.73	1.16		
Receiver - attenuator switching	0.2	Rect.	1.73	0.12		
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12		
Receiver - display	0.5	Rect.	1.73	0.29		
Antenna factor	0.4	Norm.	2.00	0.20		
Antenna directivity	1.0	Norm.	2.00	0.50		
Preamp correction factor	0.5	Norm.	2.00	0.25		
Cable correction factor	0.5	Norm.	2.00	0.25		
Site imperfection - NSA	3.0	Triang.	2.45	1.22		
Test table impact	1.7	Rect.	1.73	0.98		
Combined uncertainty (RSS):						
	Co	verage factor ((2 sigma):	2.00		
Ext	ended uncert	ainty (95% co	nfidence):	4.17		

Radiated Band Edge

Project code name:		Marketing name:			Model#:	BL3R		
Project number (Integrity):	BL3R	Build Phase:	C2.5					
Tested by:	N. Sanford		Date:	20Mar2020				
Requirements Standard(s):	CISPR32, FCC	CISPR32, FCC part 15B		Referenced Standard(s):				
EUT powered with:	Battery	Battery Temp / Humidity: 1		Test location		oni Manor		
Test equipment used TN's:	1663,2373,2479	,2357,2349,2385, 29	29					
EUT Serial number(s):	Right Earbud: R	3393						
EUT Software installed:	0.3.8	0.3.8						
EUT Modification(s):	USB Debug wire	es were attached to the	ne earbud to allow	w control of th	e radio.			

Conclusion:

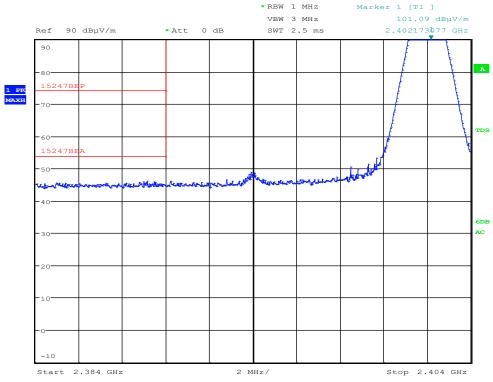
The Bose model BL3R passes Radiated Band Edge by 23.5dB.

Transmit Settings

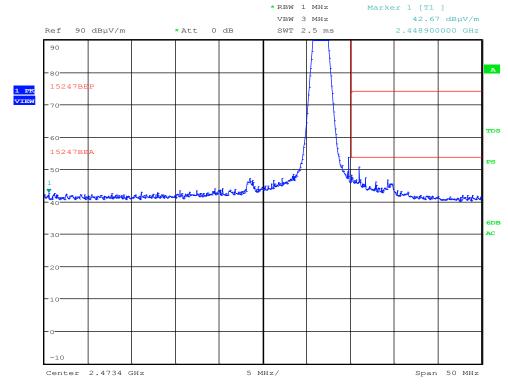
CFG TX POWER = 10
Basic Rate = CFG PKT 15/339
EDR = CFG PKT 31/1020
TX DATA1 set frequency

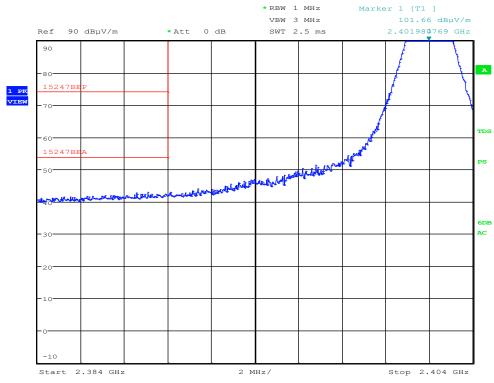
Test Checklist:

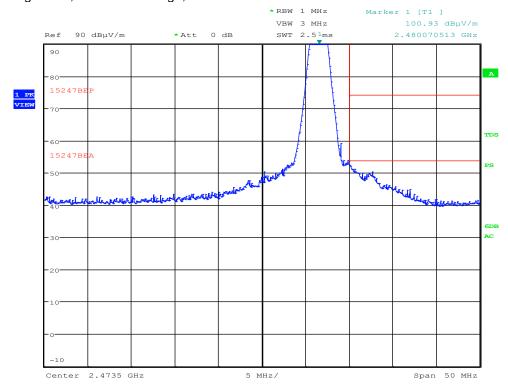
No.	ITEM (√ or n/a) →	OK
4	This checklist is intended to be a reminder of some highlights from the standards listed above, and not a step by	
1	step procedure. You must be familiar with the listed standards prior to using this checklist.	
2	Check EUT performance, confirm proper mains voltage prior to testing.	
	Using the Test Setup Verification section on this document perform verification check. Note: Six ferite panels	
3	placed under the six middle cones, check 3-meter distance horn to front edge of turntable. Remove all non-	
	essential items from the 3m chamber. Check bore-site (tilt) option set to on in the mast controller.	,
4	If EUT has an intentional radiator at 2.4GHz or 5GHz notch filters should be placed before the pre-amp to prevent	
•	its overload. Modify correction factor set in the receiver to include notch filter used.	,
	Place EUT on turntable with the rear of the unit aligned with the table edge closest to the antenna (maintain ~10	
	cm spacing between components). Connect the cables, accessories, and loads that would be utilized in a nominal	
_	configuration (judgment can be used to determine the minimum number of accessories required to achieve the	
5	maximum level of emissions). Telescoping antennas should be fully extended and vertical. If this is an initial test	
	of a system, decide what nominal configuration setup should be, bundle cables, and take a picture to	
	ensure future tests are performed using same configuration. For formal reports record type and length of cables used.	
	At least one of each type of EUT I/O port shall have a customer intent cable connected to it. Investigate all	
	surfaces (top, bottom, sides, and front) for I/O ports not in the main cluster. Examples of ports that may not be in	V
6	the main cluster of jacks are headphone jacks or convenience jacks on the front of the EUT.	
	Document cable configuration used for the test (describe cables used and take picture(s)).	
	Dress mains cord according to standard (see below). Drape all other cables over the edge of the table at the rear	
7	of the EUT, and bundle the excess in the center to ensure ~40 cm above the ground plane (floor). Bundles should	,
	be ~30-40 cm in length.	
	Ensure highest clock frequency used in EUT is known and taken into account to determine required	
8	frequency range. (Less than 108 MHz: 1 GHz, 108-500 MHz: 2 GHz, 500-1000 MHz: 5 GHz, greater than 1 GHz:	
0	5 x fundamental up to 40 GHz for FCC and 6 GHz for CISPR22 and CISPR32.) For measurements above 1 GHz,	
	both average and peak limits exist.	
9	For average measurements, it is generally recommended to use receiver mode. If using spectrum analyzer	
, , , , , , , , , , , , , , , , , , ,	mode for average measurements, be careful to provide sufficient sweep time to ensure accurate results.	,
	EUT is measured in all typical operational modes. Give special attention to modes where there is a potentially	
4.0	significant difference in spectral emissions. Amplifiers are exercised up to maximum power. Vary, antenna	
10	polarization, turn-table position, user controls, and cable positions, to obtain the worst case emissions, within the	
	range of likely configurations. Cables are not positioned on top of, or under, the system components unless	
	required by design.	√
11	Document the six worst case test result peaks using instrument software and or test template. Exclusions include peaks 20 dB or more below the limit and or system noise floor measurements.	ν
12	Document all equipment used during the test.	√
13	Take picture(s) of worst case test set up.	\ \ \
13	i are picture(s) or worst case test set up.	٧



Data Collection:


FCC 15B Class B Product (Residential) @ 3 Meters										
Emission	Measured	Measured	FCC 15B			Table	Rece	iving Ant		
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)		,	Notes/Mode
2390.000	29.60	42.50	54.0	74.0	24.4	31.5	0	Н	1.5	BL3R, Basic Rate, transmitting only on lowest channel
2483.500	30.50	44.10	54.0	74.0	23.5	29.9	0	Н	1.5	BL3R, Basic Rate, transmitting only on lowest channel
2390.000	29.10	42.60	54.0	74.0	24.9	31.4	0	н	1.5	BL3R, Basic Rate, while hopping on all channels
2483.500	30.10	44.20	54.0	74.0	23.9	29.8	0	Н	1.5	BL3R, Basic Rate, while hopping on all channels
2390.000	29.80	43.90	54.0	74.0	24.2	30.1	0	Н	1.5	BL3R, EDR, transmitting only on lowest channel
2483.500	29.40	42.80	54.0	74.0	24.6	31.2	0	н	1.5	BL3R, EDR, transmitting only on lowest channel
2390.000	29.20	44.00	54.0	74.0	24.2	30.1	0	Н	1.5	BL3R, EDR, while hopping on all channels
2483.500	28.80	42.90	54.0	74.0	24.6	31.2	0	Н	1.5	BL3R, EDR, while hopping on all channels


Right Bud, Lower Band edge, Basic Rate


Right Bud, Upper Band edge, Basic Rate

Right Bud, Lower Band edge, EDR

Right Bud, Upper Band edge, EDR

Limits:

	Freq Range	Lim	nits (dBuV QF	P ¹)	Comments		
Standard	(MHz)	Class A		Class B	Measurements above 1 GHz are made using		
		10 m	3 m	3 m	average and peak detectors.		
	30-88	39	49	40	Mains cables draped to floor, not bundled.		
FCC 15B	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak		
FCC 13B	216-960	46.5	56.5	46	limits must also be met that are 20 dB		
	>960	49.5*	59.5*	54*	higher than average limits.		
			Class A	Class B	Mains cables bundled not draped to floor.		
			3 m	3 m	*For measurements above 1 GHz, peak		
	30-230		50	40	limits must also be met that are 20 dB		
CISPR 32	230-1000		57	47	higher than average limits.		
CISFN 32	Freq Range						
	(GHz)						
	1-3		56*	50*			
	3-6		60*	54*			
E	Bandwidth and D						
Freq. Range (MHz) RBW (kHz)		VBW (kHz)	Detector				
30 – 1000 120		>300	QP				
> 1000 1000		>1000	Pk and AVG				

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	24-Mar-2020	24-Mar- 2021		
2479	RF cable 30MHz-18GHz	257-257- 3052640	N/A	SRC Haverhill			12-Mar-2020	12-Mar-2021
2357	RF Cable 30MHz-18GHz	TRU-300	TRU- 12707-03	TRU Corporation			12-Mar-2020	12-Mar-2021
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	30-Jan-2020	29-Jan-2021		
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	N/A	AP Americas			29-Oct-2019	28-Oct-2020
2929	Mini-circuits band-edge pre- amp 300 MHz - 8 GHz 20 dB	ZX60HV- 83LN+	N/A	Mini-Circuits			17-Dec-2019	17-Dec-2020

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Uncertainty:

Und	certai	nty Budget					
Т	Title: Radiated Emissions (>1GHz)						
Source of Uncertainty		Value units:± dB	Distribution	Divisor	Uncertainty (± dB)		
Receiver - absolute level		0.3	Rect.	1.73	0.17		
Receiver - frequency response		2.0	Rect.	1.73	1.16		
Receiver - attenuator switching		0.2	Rect.	1.73	0.12		
Receiver - bandwidth switching		0.2	Rect.	1.73	0.12		
Receiver - display		0.5	Rect.	1.73	0.29		
Antenna factor		0.4	Norm.	2.00	0.20		
Antenna directivity		1.0	Norm.	2.00	0.50		
Preamp correction factor		0.5	Norm.	2.00	0.25		
Cable correction factor		0.5	Norm.	2.00	0.25		
Site imperfection - NSA		3.0	Triang.	2.45	1.22		
Test table impact		1.7	Rect.	1.73	0.98		
Combined uncertainty (RSS):							
Coverage factor (2 sigma):							
Extended uncertainty (95% confidence):							