

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

WIRELESS HEADSET

MODEL NUMBER: BA2

FCC ID: A94BA2 IC: 3232A-BA2

REPORT NUMBER: 15M20579-E1 Revision B

ISSUE DATE: JUNE 19, 2015

Prepared for BOSE CORPORATION THE MOUNTAIN FRAMINGHAM, MA 01701 USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	5/18/15	Initial Issue	F. de Anda
A	6/15/15	Update – RSS 247 standard references	F. de Anda
В	6/19/15	Update – Tested date	F. de Anda

Page 2 of 63

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	LIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4.	SOFTWARE AND FIRMWARE	8
5.5.	WORST-CASE CONFIGURATION AND MODE	-
5.6.	DESCRIPTION OF TEST SETUP1	0
6. TE	ST AND MEASUREMENT EQUIPMENT1	4
-		
	TENNA PORT TEST RESULTS1	
7. AN 7.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1	5
7. AN	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 .1. ON TIME AND DUTY CYCLE RESULTS 1	5 5
7. AN 7.1. 7.1 7.1	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 .1. ON TIME AND DUTY CYCLE RESULTS 1	5 5 5 6
7. AN 7.1. 7.1 7.1 7.2. 7.2	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE11. ON TIME AND DUTY CYCLE RESULTS1. ON TIME AND DUTY CYCLE RESULTS1. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1. 20 dB AND 99% BANDWIDTH	5 556 77
7. AN 7.1. 7.1 7.1 7.2.	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1.ON TIME AND DUTY CYCLE RESULTS1.2.DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION.1.20 dB AND 99% BANDWIDTH1.2.HOPPING FREQUENCY SEPARATION2	5 15 5 6 17 7
7. AN 7.1. 7.1 7.2. 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE11ON TIME AND DUTY CYCLE RESULTS12DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS12DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12HOPPING FREQUENCY SEPARATION23NUMBER OF HOPPING CHANNELS24AVERAGE TIME OF OCCUPANCY	5 556 770225
7. AN 7.1. 7.1 7.2. 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE11. ON TIME AND DUTY CYCLE RESULTS12. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION11. 20 dB AND 99% BANDWIDTH11. 20 dB AND 99% BANDWIDTH12. HOPPING FREQUENCY SEPARATION23. NUMBER OF HOPPING CHANNELS23. OUTPUT POWER2	5 556 770 259
7. AN 7.1. 7.1 7.2. 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE11ON TIME AND DUTY CYCLE RESULTS12DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS12DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12OUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION12HOPPING FREQUENCY SEPARATION23NUMBER OF HOPPING CHANNELS24AVERAGE TIME OF OCCUPANCY	5 5 5 6 7 7 20 2 5 9 2
7. AN 7.1. 7.1 7.2. 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1. ON TIME AND DUTY CYCLE RESULTS1.2. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1.1. 20 dB AND 99% BANDWIDTH1.2. HOPPING FREQUENCY SEPARATION2.3. NUMBER OF HOPPING CHANNELS2.4. AVERAGE TIME OF OCCUPANCY2.5. OUTPUT POWER2.6. AVERAGE POWER3	5 556 77025923
7. AN 7.1. 7.1 7.2. 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.	TENNA PORT TEST RESULTS 1ON TIME AND DUTY CYCLE11. ON TIME AND DUTY CYCLE RESULTS12. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION11. 20 dB AND 99% BANDWIDTH12. HOPPING FREQUENCY SEPARATION23. NUMBER OF HOPPING CHANNELS24. AVERAGE TIME OF OCCUPANCY25. OUTPUT POWER26. AVERAGE POWER37. CONDUCTED SPURIOUS EMISSIONS3	5 556 77025923 8
 7. AN 7.1. 7.1 7.2. 7.2 8. RA 8.1. 8.2. 	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1. ON TIME AND DUTY CYCLE RESULTS1.2. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1.1. 20 dB AND 99% BANDWIDTH1.2. HOPPING FREQUENCY SEPARATION2.3. NUMBER OF HOPPING CHANNELS2.4. AVERAGE TIME OF OCCUPANCY2.5. OUTPUT POWER2.6. AVERAGE POWER3.7. CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz3	5 556 77025923 8 89
 7. AN 7.1. 7.1 7.2. 7.2 8. A 8.1. 8.2. 8.2 	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1. ON TIME AND DUTY CYCLE RESULTS1.2. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1.1. 20 dB AND 99% BANDWIDTH1.2. HOPPING FREQUENCY SEPARATION2.3. NUMBER OF HOPPING CHANNELS2.4. AVERAGE TIME OF OCCUPANCY2.5. OUTPUT POWER2.6. AVERAGE POWER3.7. CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3.1. BASIC DATA RATE GFSK MODULATION3	5 556 77025923 8 8 99
 AN 7.1. 7.1. 7.2. 8.1. 8.2. 8.2. 8.3. 	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1. ON TIME AND DUTY CYCLE RESULTS1.2. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1.1. 20 dB AND 99% BANDWIDTH1.2. HOPPING FREQUENCY SEPARATION2.3. NUMBER OF HOPPING CHANNELS2.4. AVERAGE TIME OF OCCUPANCY2.5. OUTPUT POWER2.6. AVERAGE POWER3.7. CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3.1. BASIC DATA RATE GFSK MODULATION3WORST-CASE ABOVE 1 BGHz4	5 556 77025923 8 8 999 9
 7. AN 7.1. 7.1. 7.2. 7.2 8. A. 	TENNA PORT TEST RESULTS1ON TIME AND DUTY CYCLE1.1. ON TIME AND DUTY CYCLE RESULTS1.2. DUTY CYCLE PLOTS1BASIC DATA RATE GFSK MODULATION1.1. 20 dB AND 99% BANDWIDTH1.2. HOPPING FREQUENCY SEPARATION2.3. NUMBER OF HOPPING CHANNELS2.4. AVERAGE TIME OF OCCUPANCY2.5. OUTPUT POWER2.6. AVERAGE POWER3.7. CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3.1. BASIC DATA RATE GFSK MODULATION3	5 556 77025923 8 8 99 9 0

Page 3 of 63

10.	SETUP PHOTOS	59

Page 4 of 63

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BOSE CORPORATION THE MOUNTAIN FRAMINGHAM, MA 01701 U.S.A					
EUT DESCRIPTION: WIRELESS HEADSET					
MODEL: BA2					
SERIAL NUMBER: DP2.5-B024 (RADIATED) & DP2-NCF-B020 (CONDUCTED					
DATE TESTED:	APRIL 30, 2015 – MAY 7, 2015				
	APPLICABLE STANDARDS				
ST	ANDARD	TEST RESULTS			
CFR 47 P	art 15 Subpart C	Pass			
INDUSTRY CAN	IADA RSS-247 Issue 1	Pass			
INDUSTRY CAN	ADA RSS-GEN Issue 4	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

comina de luck

FRANCISCO DE ANDA EMC SUPERVISOR UL Verification Services Inc.

Tested By:

JOSEPH GOMEZ EMC ENGINEER UL Verification Services Inc.

Page 5 of 63

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-247 Issue 1, and ANSI C63.10-2009 for FCC test and ANSI C63.10-2013 with deviation of measurement height of 0.8m rather than 1.5m for IC test.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	🛛 Chamber F
	Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) +

Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 63

4.3. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 63

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is a wireless headset. Supporting GFSK mode Only.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	9.066	8.06

The transmitter has a maximum average conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic- GFSK	7.470	5.58

Note: average figures are used for RF exposure exemption calculations.

5.3. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes an IFA antenna, with a maximum gain of 2.3 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was DP2

The EUT driver software installed in the support equipment during testing was 0.4.5.348

The test utility software used during testing was BlueTest3.

Page 8 of 63

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Power line conducted emissions were performed with the EUT charging from a AC/DC adapter and from a laptop. it was determined that worst case emissions were with EUT connected to laptop.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Worst-case data rates were: GFSK mode: DH5

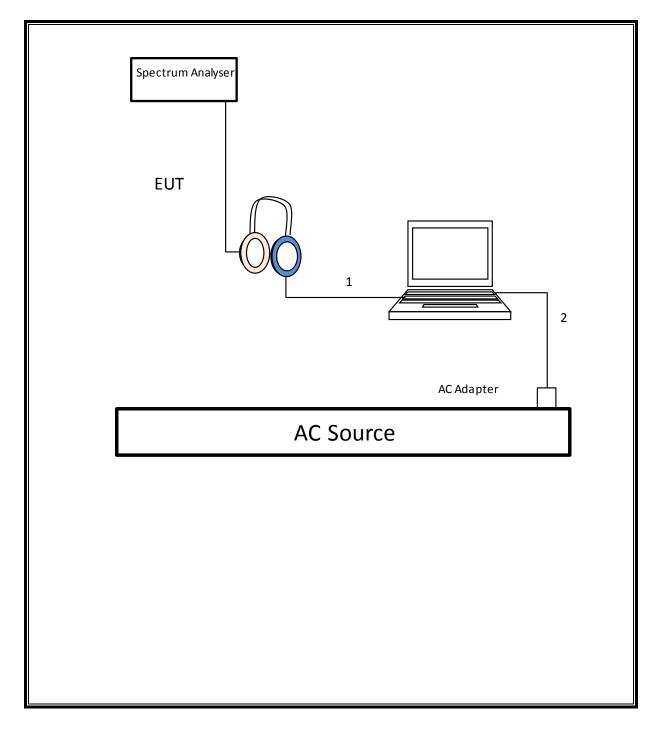
Page 9 of 63

5.6. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

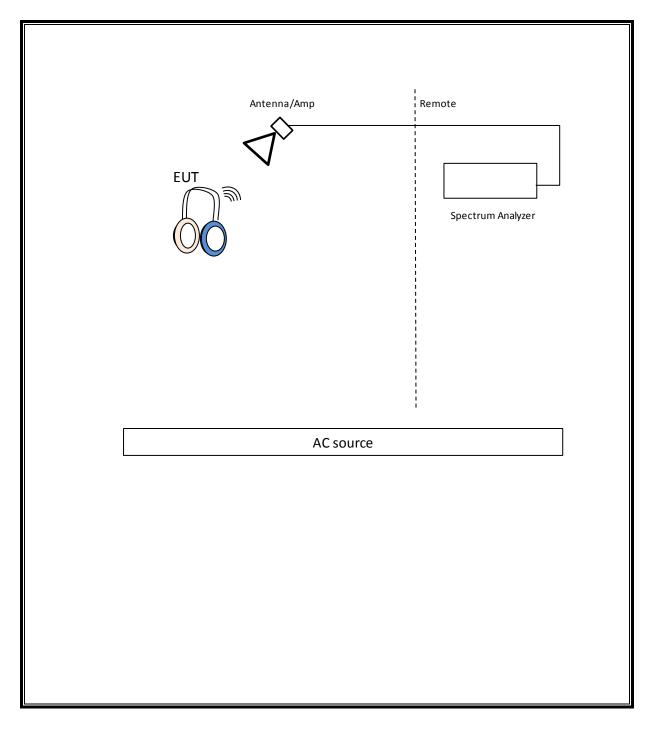
Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop	Lenovo	T440	PC-00TFVU	N/A			
AC Adapter	Lenovo	ADLX65NDC2A	36200282	N/A			

I/O CABLES

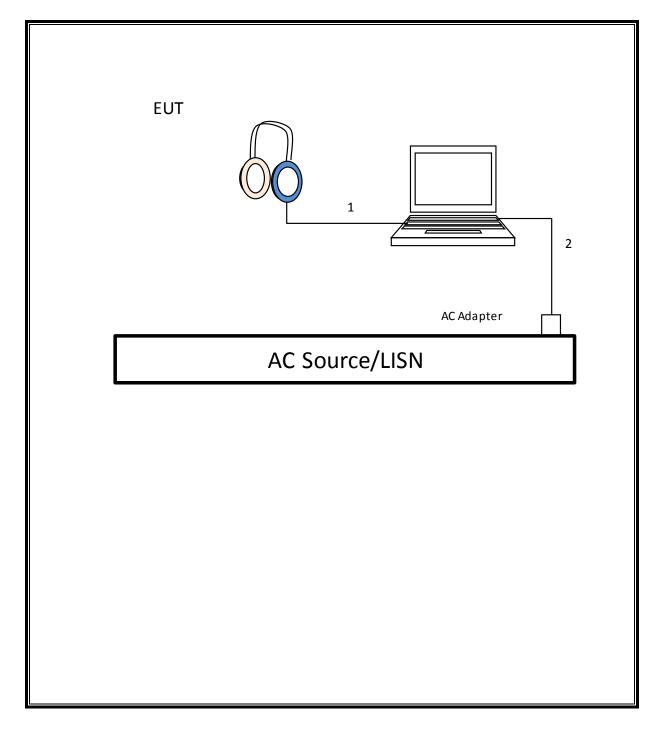

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	USB	1	Micro USB	Unshielded	0.25			
2	DC	1	Barrel	Unshielded	2			

TEST SETUP

The EUT connects to a support laptop via USB cable, test software exercises the radio.


Page 10 of 63

SETUP DIAGRAM FOR CONDUCTED TESTS


Page 11 of 63

SETUP DIAGRAM FOR RADIATED TESTS

Page 12 of 63

SETUP DIAGRAM FOR AC POWER LINE TESTS

Page 13 of 63

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model T No.		Cal Date	Cal Due		
Radiated Software	UL	UL EMC	V	er 9.5, July 22,	2014		
Conducted Software	UL	UL EMC	Ve	r 2.2, March 3	1, 2015		
Spectrum Analyzer, PXA,	Agilopt	N9030A	341	02/20/15	02/20/16		
3Hz to 44GHz	Agilent	N9050A					
Antenna, Horn 1-18GHz	ETS Lindgren	3117	120	03/26/15	03/26/16		
Antenna, Broadband Hybrid,	Sunol	JB1	122	02/13/15	02/13/16		
30MHz to 2000MHz	Sciences	JDT					
Amplifier, 10KHz to 1GHz,	Sonoma	310N	173	06/07/14	06/07/15		
Amplifier, 1 - 18GHz	Miteq	AFS42-	742	01/31/15	01/31/16		
Filter, HPF 3.0GHz	Micro-Tronics	HPM17543	427	01/31/15	01/31/16		
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826	89	12/17/14	12/17/15		
Amplifier, 1 to 26.5GHz,		8449B	404	04/13/15	04/13/16		
23.5dB Gain minimum	Agilent	0449D					
Spectrum Analyzer, 40 GHz	Agilent	8564E	106	08/06/14	08/06/15		
LISN, 30MHz	FCC	50/250-25-2	24	01/16/15	01/16/16		
Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	917	05/08/14	05/08/15		

Page 14 of 63

7. ANTENNA PORT TEST RESULTS

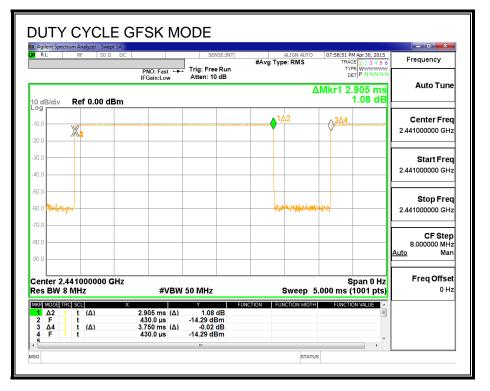
7.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.


7.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time B (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW (kHz)
2.4 GHz band (Hopping OFF)						
GFSK	2.905	3.750	0.775	77.47%	1.11	0.344

Page 15 of 63

7.1.2. DUTY CYCLE PLOTS

HOPPING OFF

Page 16 of 63

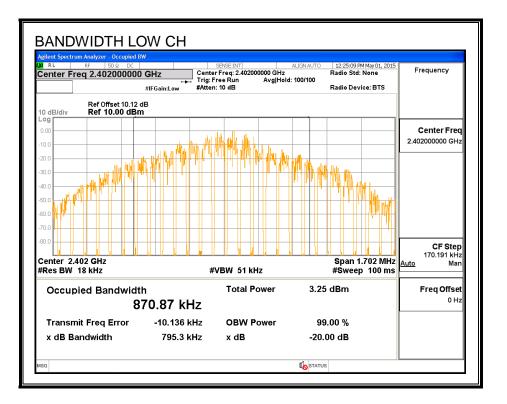
7.2. BASIC DATA RATE GFSK MODULATION

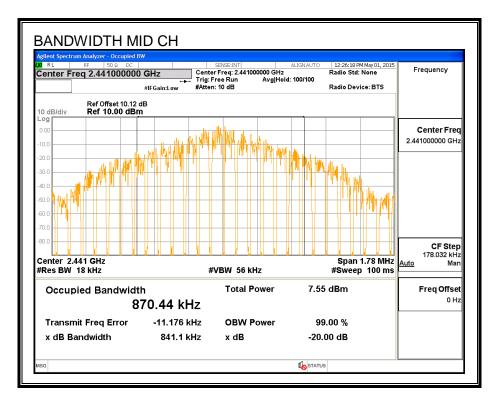
7.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

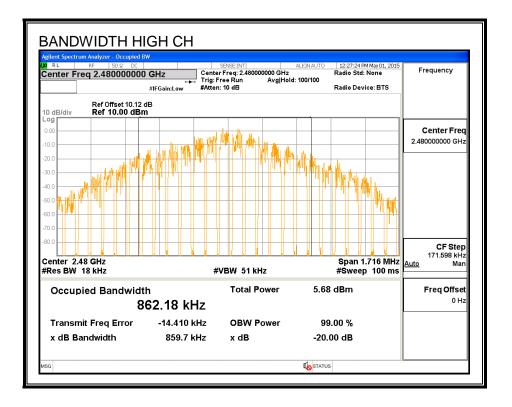
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	795.3	870.87
Middle	2441	841.1	870.44
High	2480	859.7	862.18


Page 17 of 63

20 dB AND 99% BANDWIDTH

Page 18 of 63

Page 19 of 63

7.2.2. HOPPING FREQUENCY SEPARATION

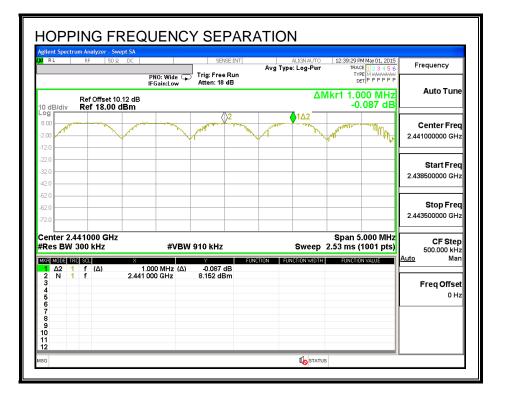
LIMIT

FCC §15.247 (a) (1)

IC RSS-247 5.1 (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 900 kHz. The sweep time is coupled.

RESULTS

Page 20 of 63

HOPPING FREQUENCY SEPARATION

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 63

7.2.3. NUMBER OF HOPPING CHANNELS

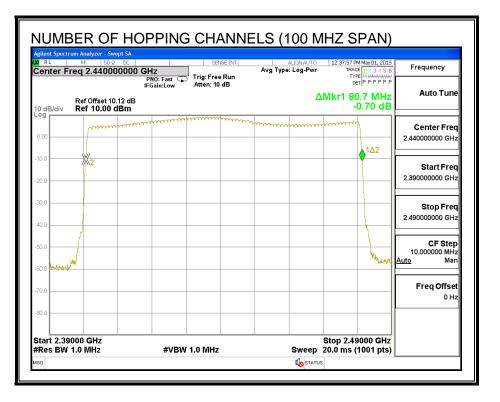
LIMIT

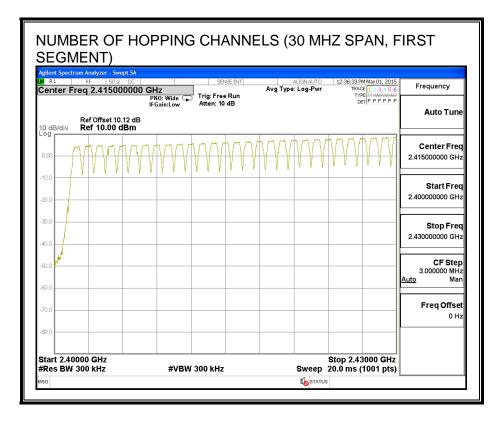
FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4)

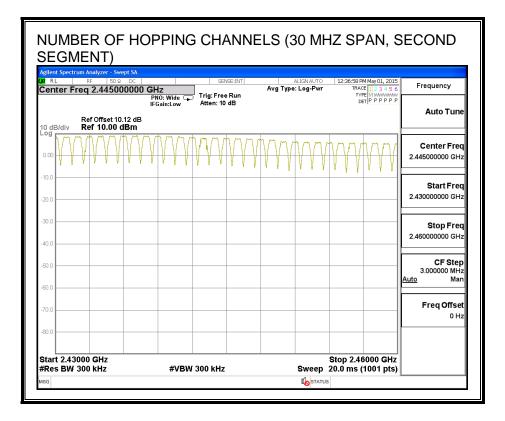
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

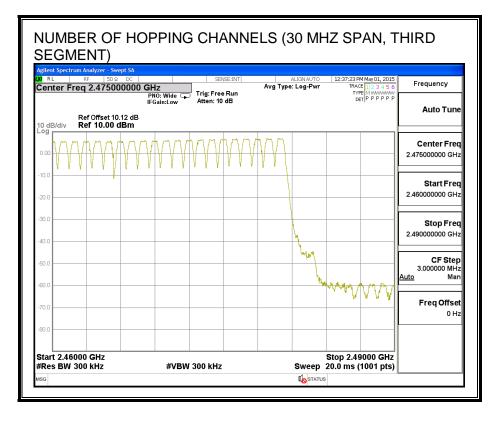
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


<u>RESULTS</u>

Normal Mode: 79 Channels observed.


Page 22 of 63


NUMBER OF HOPPING CHANNELS

Page 23 of 63

Page 24 of 63

7.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

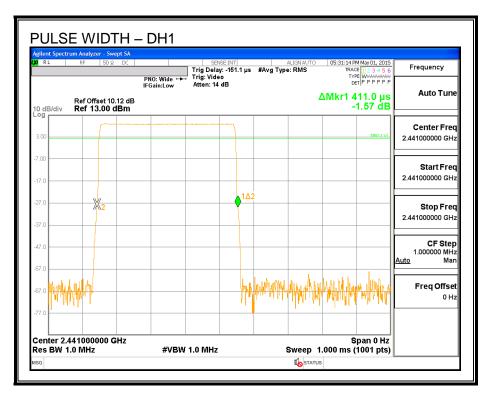
IC RSS-247 5.1 (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

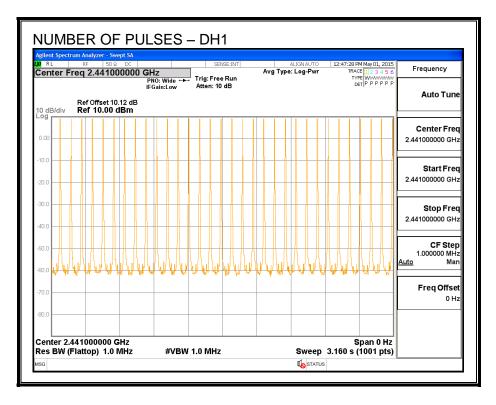
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

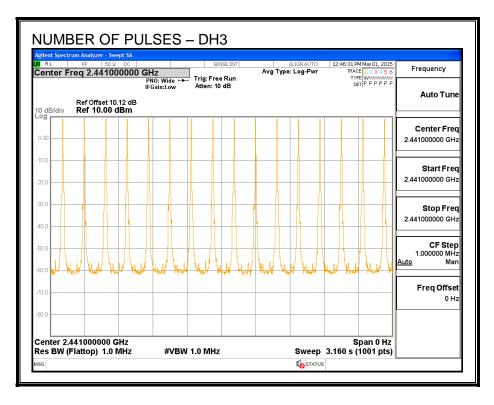
DH Packet	Pulse	Number of	Average Time	Limit	Margin					
	Width	Pulses in	of Occupancy		()					
	(msec)	3.16 seconds	(sec)	(sec)	(sec)					
GFSK Norma	Modo	Seconds								
DH1	0.411	32	0.132	0.4	-0.268					
DH3	1.672	16	0.268	0.4	-0.132					
DH5	2.92	10	0.292	0.4	-0.108					
DH Packet	Pulse	Number of	Average Time	Limit	Margin					
	Width	Pulses in	of Occupancy							
	(msec)	0.8	(sec)	(sec)	(sec)					
		seconds								
GFSK AFH M	GFSK AFH Mode									
DH1	0.411	8	0.033	0.4	-0.367					
DH3	1.672	4	0.067	0.4	-0.333					
DH5	2.92	2.5	0.073	0.4	-0.327					


<u>RESULTS</u>

Page 25 of 63

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

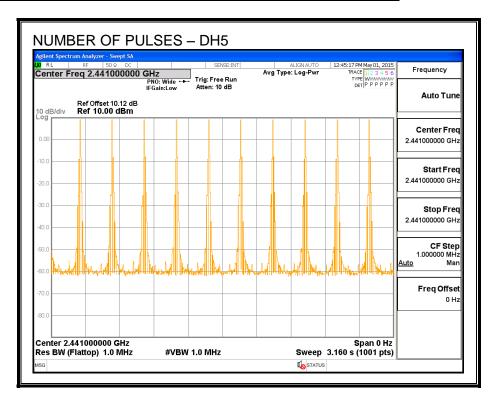


Page 26 of 63

PULSE WIDTH - DH3

RL		F	F	- Swep 50 Ω	DC		1		ense:INT lay: -200.0 µs	0.1.m Tum	ALIGNAUTO e: Log-Pwr		M May 01, 2015	Amplit	ude
ete	ren	ce L	evel	15.0	0 dB		Wide G		deo	AVgiyp	e: Log-Pwr	TY	PE WWWWWWWW ET P P P P P P		fLeve
dB	/div			et 10.1 00 dE							Δ		.672 ms 2.98 dB		.00 dBn
g 00													TROLVL	Atten	uation
00 .0															[16 dB]
.0		-(2			_							1Δ2	Sc	ale/Div
- 0. .0 -						_									10 di
.0 .0	fur Ht	hindly				+							(AMALY)	Sca Log	le Type
				00 GH									Span 0 Hz		
R M	ODE 1	RC SC	.,	1.0 M	х			V 1.0 MH	FUN	TION FU	Sweep 2		1001 pts) Invalue	Prese	Cente
	\2 N	1 t 1 t				1.672 188.0	ms (∆) µs	-2.9 -32.05	3 dB dBm					Prese	۱۵dius
														Trese	0 H
' 															Mor
)															1 of:

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 27 of 63

PULSE WIDTH - DH5

RL			RF		- <mark>Swep</mark> 50 Ω	DC					ENSE:INT			ALIGNAUTO	12:-		4 May 01, 2		Amplitude
efe	rer	nce	Le	vel	16.0	0 dE	PNC): Wide ain:Low	P			µs Av	g Тур	e: Log-Pwr		TYP	E 1 2 3 4 E WWWWW T P P P P	later -	RefLev
dB	Vdiv				t 10.1)0 di									۵	Mki		920 n 4.24 d		16.00 dB
	// 4// 1														-		ING		Attenuation
00																	TRUST		[16 dB]
.0			¢2												1	∆2 —			Scale/D
.0 - .0 -																			10 c
- 0. 0.	44	(phart)	ł												₩ ⁴	lproduta	Annaha		Scale Typ
					0 GH .0 M			#V	вw	1.0 MF	z			Sweep 4	.000		pan 0 1001 pi	4-1	Presel Cent
1	000 A2 N	TRC 1	t	(Δ)		Х		0 ms	(Δ)	¥ -4.2 -29.70	4 dB	UNCTION	FU	ICTION WIDTH	F	UNCTIO	N VALUE		
	N		t				384	.0 µs		-29.70	авт								Presel Adju 0 F
																			Мо
)																			1 of

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 28 of 63

7.2.5. OUTPUT POWER

<u>LIMIT</u>

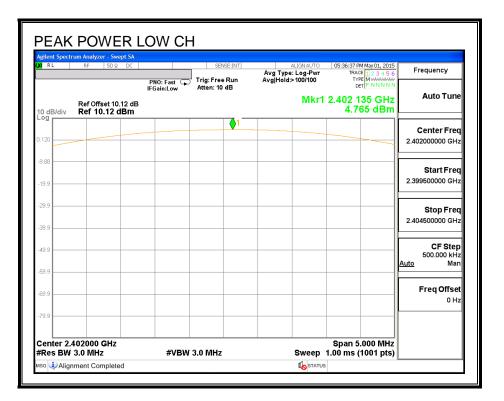
§15.247 (b) (1)

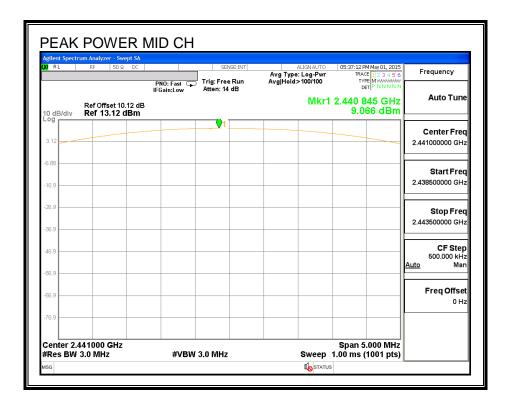
For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 Clause 5.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Directional	Limit	Margin
	(MHz)	(dBm)	Gain (dBi)	(dBm)	(dB)
Low	2402	4.765	2.30	21	-16.24
Middle	2441	9.066	2.30	21	-11.93
High	2480	6.972	2.30	21	-14.03

Page 29 of 63

OUTPUT POWER

Page 30 of 63

(RL RF 50 Ω D	c	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	05:37:33 PM May 01, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
Ref Offset 10.12 o dB/div Ref 13.12 dBi		Atten: 14 dB	-	2.479 965 GHz 6.972 dBm	Auto Tune
.og 3.12					Center Freq 2.480000000 GHz
16.9					Start Freq 2.477500000 GHz
26.9					Stop Freq 2.482500000 GHz
46.9					CF Step 500.000 kHz <u>Auto</u> Man
66.9					Freq Offset 0 Hz
76.9					

Page 31 of 63

7.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.12 dB (including 10 dB pad and 0.12 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power				
	(MHz)	(dBm)				
Low	2402	3.20				
Middle	2441	7.47				
High	2480	5.63				

Page 32 of 63

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

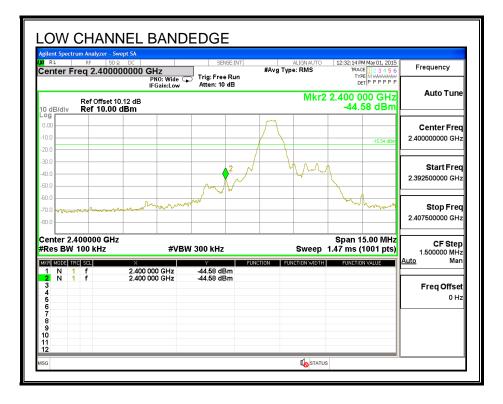
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

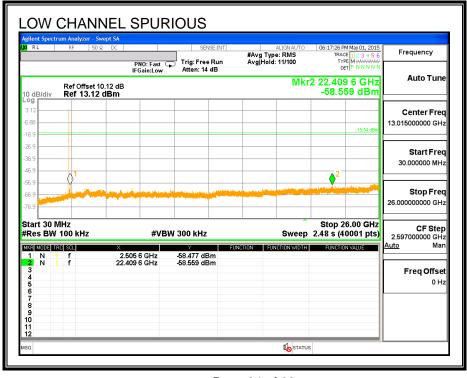
IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

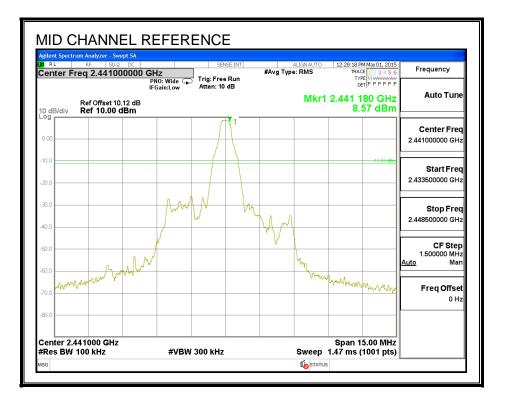

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

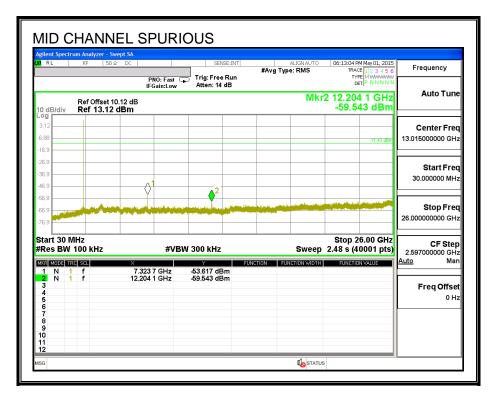

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 33 of 63

RESULTS

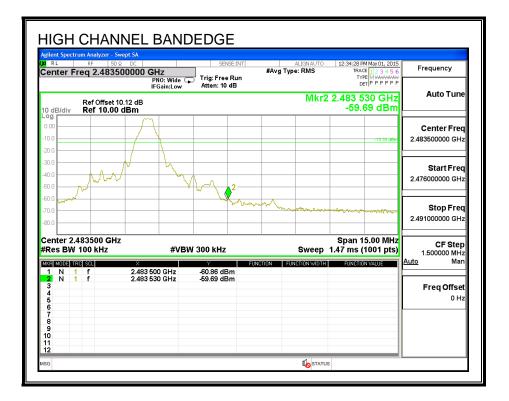
SPURIOUS EMISSIONS, LOW CHANNEL

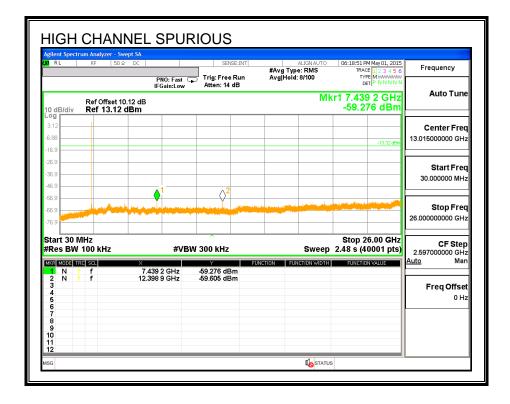




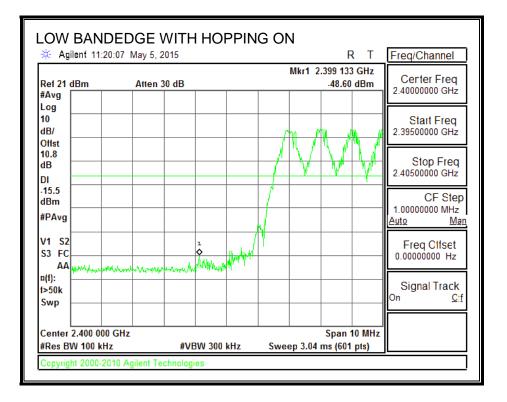
Page 34 of 63

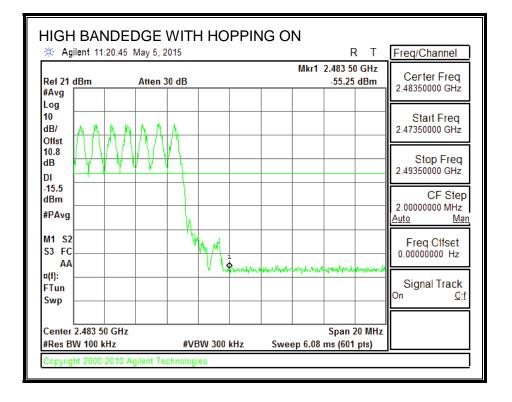
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 FAX: (510) 661-0888


SPURIOUS EMISSIONS, MID CHANNEL



Page 35 of 63


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 36 of 63

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 37 of 63

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

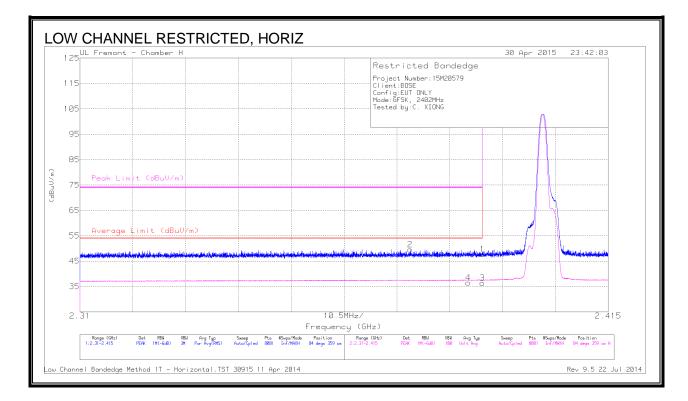
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

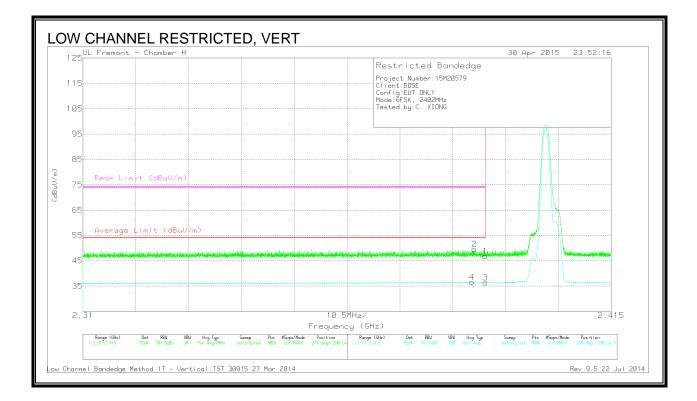
Page 38 of 63

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.376	42.1	РК	32.1	-24.6	49.6	-	-	74	-24.4	84	359	Н
4	* 2.387	28.91	VB1T	32.1	-24.5	36.51	54	-17.49	-	-	84	359	Н
1	* 2.39	40.13	РК	32.1	-24.6	47.63	-	-	74	-26.37	84	359	Н
3	* 2.39	28.86	VB1T	32.1	-24.6	36.36	54	-17.64	-	-	84	359	Н

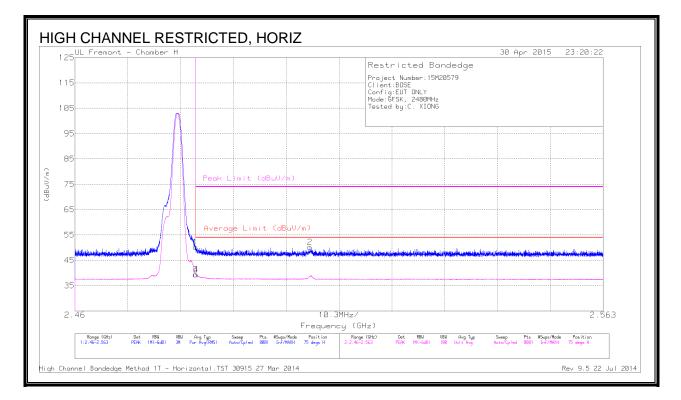
* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 39 of 63

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 2.387	28.91	VB1T	32.1	-24.5	36.51	54	-17.49	-	-	218	290	V
2	* 2.388	42.05	РК	32.1	-24.6	49.55	-	-	74	-24.45	218	290	V
1	* 2.39	39.37	PK	32.1	-24.6	46.87	-	-	74	-27.13	218	290	V
3	* 2.39	28.88	VB1T	32.1	-24.6	36.38	54	-17.62	-	-	218	290	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

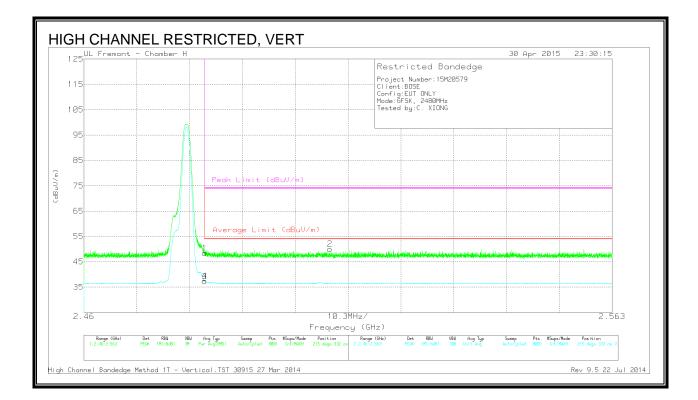
PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 40 of 63

AUTHORIZED BANDEDGE (HIGH CHANNEL)

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	42.66	РК	32.1	-24.5	50.26	-	-	74	-23.74	75	332	н
3	* 2.484	31.82	VB1T	32.1	-24.5	39.42	54	-14.58	-	-	75	332	н
4	* 2.484	31.8	VB1T	32.1	-24.5	39.4	54	-14.6	-	-	75	332	н
2	2.506	42.49	РК	32.1	-24.4	50.19	-	-	74	-23.81	75	332	Н

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

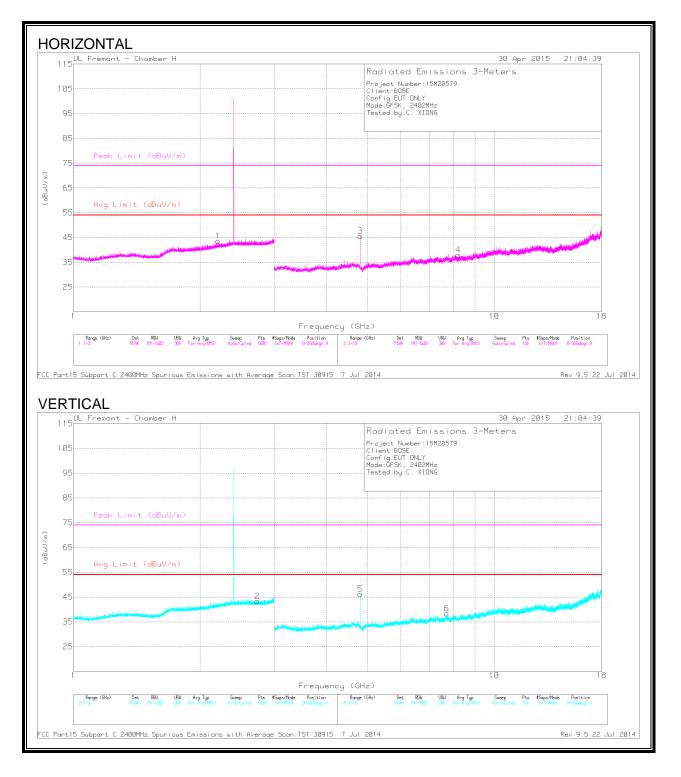
PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 41 of 63

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.86	РК	32.1	-24.5	48.46	-	-	74	-25.54	215	332	V
3	* 2.484	29.61	VB1T	32.1	-24.5	37.21	54	-16.79	-	-	215	332	V
4	* 2.484	29.72	VB1T	32.1	-24.5	37.32	54	-16.68	-	-	215	332	V
2	2.508	42.36	РК	32.1	-24.4	50.06	-	-	74	-23.94	215	332	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

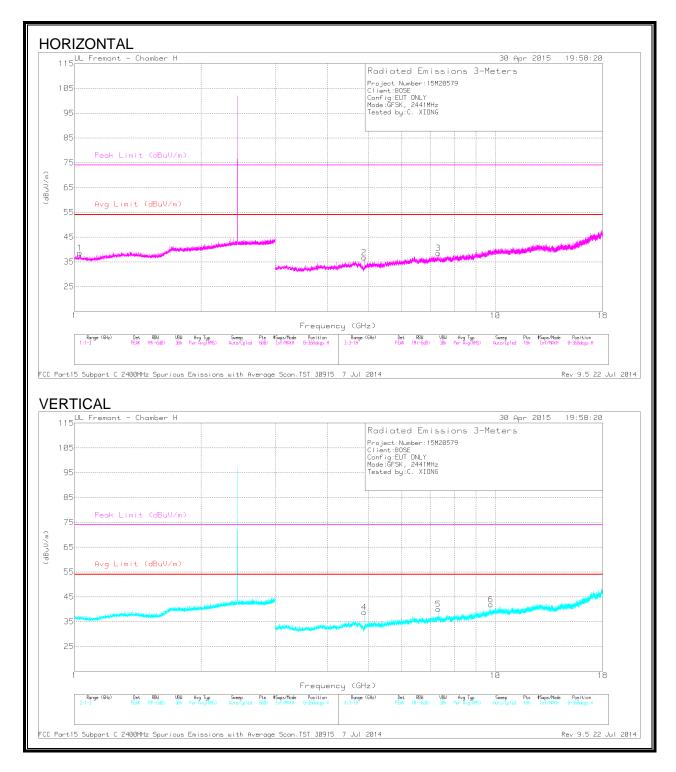
Page 42 of 63

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL

Page 43 of 63

Frequency (GHz)	Meter Reading	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBuV)			(dB)	(dBuV/m)							
* 2.204	43.49	PK3	31.4	-24.7	50.19	-	-	74	-23.81	23	128	н
* 2.205	30.35	VB1T	31.4	-24.7	37.05	54	-16.95	-	-	23	128	н
* 2.732	43.59	PK3	32	-24.3	51.29	-	-	74	-22.71	9	155	V
* 2.732	30.24	VB1T	32	-24.3	37.94	54	-16.06	-	-	9	155	V
* 4.804	49.85	PK3	33.9	-32.5	51.25	-	-	74	-22.75	103	132	Н
* 4.804	45.74	VB1T	33.9	-32.5	47.14	54	-6.86	-	-	103	132	н
* 8.219	38.17	PK3	35.8	-29.1	44.87	-	-	74	-29.13	84	172	н
* 8.218	25.69	VB1T	35.8	-29.1	32.39	54	-21.61	-	-	84	172	н
* 4.804	49.35	PK3	33.9	-32.5	50.75	-	-	74	-23.25	334	124	V
* 4.804	44.55	VB1T	33.9	-32.5	45.95	54	-8.05	-	-	334	124	V
* 7.706	38.53	PK3	35.7	-28.5	45.73	-	-	74	-28.27	278	117	V
* 7.707	25.66	VB1T	35.7	-28.5	32.86	54	-21.14	-	-	278	117	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

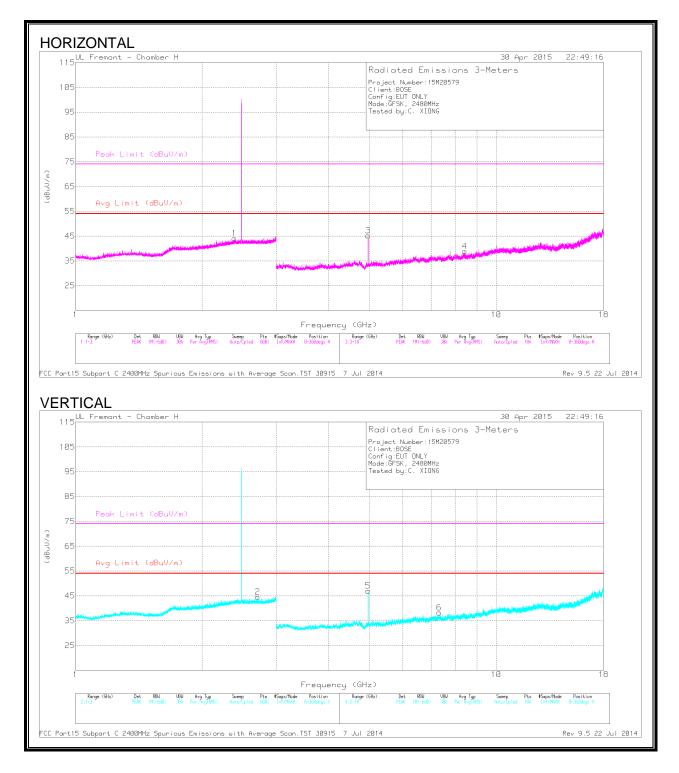
Page 44 of 63

MID CHANNEL

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 63

Frequency (GHz)	Meter Reading	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBuV)			(dB)	(dBuV/m)							
* 1.029	44.05	PK3	27.2	-25.8	45.45	-	-	74	-28.55	212	273	н
* 1.03	30.94	VB1T	27.2	-25.8	32.34	54	-21.66	-	-	212	273	н
* 4.882	42.76	PK3	33.9	-32.1	44.56	-	-	74	-29.44	112	110	н
* 4.882	34.68	VB1T	33.8	-32.1	36.38	54	-17.62	-	-	112	110	н
* 7.323	40.69	PK3	35.4	-28.9	47.19	-	-	74	-26.81	123	376	Н
* 7.323	29.68	VB1T	35.4	-28.9	36.18	54	-17.82	-	-	123	376	н
* 4.881	43.77	PK3	33.9	-32.1	45.57	-	-	74	-28.43	151	361	V
* 4.882	36.21	VB1T	33.8	-32.1	37.91	54	-16.09	-	-	151	361	V
* 7.323	41.59	PK3	35.4	-28.9	48.09	-	-	74	-25.91	4	193	V
* 7.323	31.62	VB1T	35.4	-28.9	38.12	54	-15.88	-	-	4	193	V
9.764	40.23	PK3	36.9	-26.5	50.63	-	-	-	-	32	209	V
9.764	28.45	VB1T	36.9	-26.5	38.85	-	-	-	-	32	209	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 46 of 63

HIGH CHANNEL

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 47 of 63

Frequency	Meter	Det	AF T712	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
(GHz)	Reading		(dB/m)	Fitr/Pad	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
	(dBuV)			(dB)		(dBuV/m)							
* 2.385	43.2	PK3	32.1	-24.6	0	50.7	-	-	74	-23.3	352	135	н
* 2.386	30.36	VB1T	32.1	-24.5	0	37.96	54	-16.04	-	-	352	135	н
* 2.709	43.37	PK3	32	-24.3	0	51.07	-	-	74	-22.93	153	123	V
* 2.709	30.24	VB1T	32	-24.3	0	37.94	54	-16.06	-	-	153	123	V
* 4.96	48.43	PK3	33.9	-31.8	0	50.53	-	-	74	-23.47	273	352	н
* 4.96	43.54	VB1T	33.9	-31.8	0	45.64	54	-8.36	-	-	273	352	н
* 8.415	37.5	PK3	35.8	-27.6	0	45.7	-	-	74	-28.3	254	314	н
* 8.417	24.97	VB1T	35.8	-27.6	0	33.17	54	-20.83	-	-	254	314	н
* 4.96	49.91	PK3	33.9	-31.8	0	52.01	-	-	74	-21.99	204	320	V
* 4.96	45.6	VB1T	33.9	-31.8	0	47.7	54	-6.3	-	-	204	320	V
* 7.322	39.28	PK3	35.4	-28.9	0	45.78	-	-	74	-28.22	110	278	V
* 7.321	26.09	VB1T	35.4	-28.9	0	32.59	54	-21.41	-	-	110	278	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak

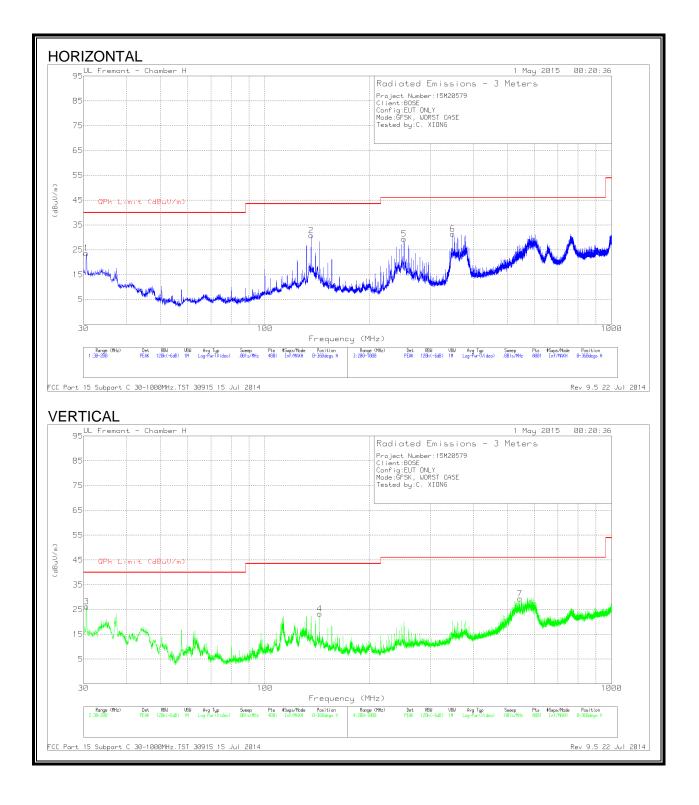
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 48 of 63

8.3. WORST-CASE ABOVE 18GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	19.838	40.27	РК	33	-24.6	-9.5	39.17	54	-14.83	74	-34.83
2	22.363	40.67	РК	33.7	-24.2	-9.5	40.67	54	-13.33	74	-33.33
3	24.168	42.5	РК	34.2	-23.7	-9.5	43.5	54	-10.5	74	-30.5
4	18.873	41.33	РК	32.8	-25.3	-9.5	39.33	54	-14.67	74	-34.67
5	23.236	41.97	РК	33.8	-23.6	-9.5	42.67	54	-11.33	74	-31.33
6	25.067	44.3	РК	34.5	-23.8	-9.5	45.5	54	-8.5	74	-28.5

PK - Peak detector

Page 49 of 63

8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 50 of 63

Marker	Frequency	Meter	Det	AF T900	Amp/Cbl (dB)	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
2	* 135.995	47.55	РК	13.5	-30.2	30.85	43.52	-12.67	0-360	201	Н
5	* 252	47.38	РК	11.4	-29.4	29.38	46.02	-16.64	0-360	99	Н
1	30.5525	33.63	РК	21.3	-31.3	23.63	40	-16.37	0-360	400	н
3	30.595	36.28	РК	21.3	-31.3	26.28	40	-13.72	0-360	100	V
4	143.985	40.57	РК	12.9	-30.2	23.27	43.52	-20.25	0-360	100	V
6	348	46.09	РК	14.3	-28.9	31.49	46.02	-14.53	0-360	99	н
7	544	39.43	РК	18.2	-28.2	29.43	46.02	-16.59	0-360	100	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

Page 51 of 63

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

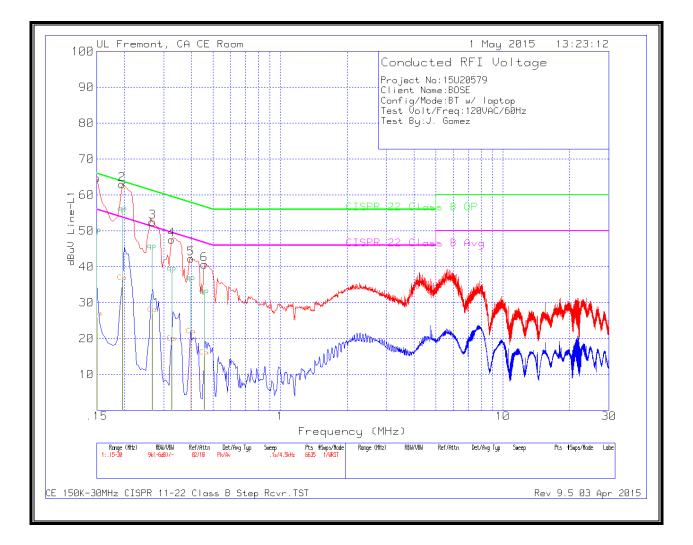
Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

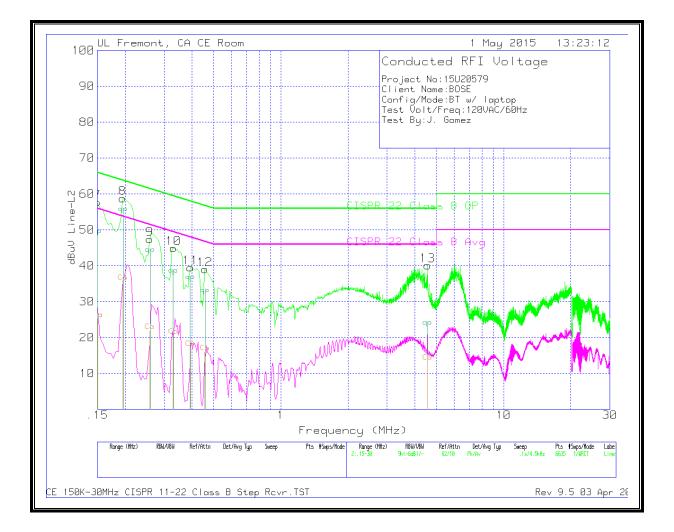
The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 52 of 63

WITH LAPTOP


LINE 1 RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888

Page 53 of 63

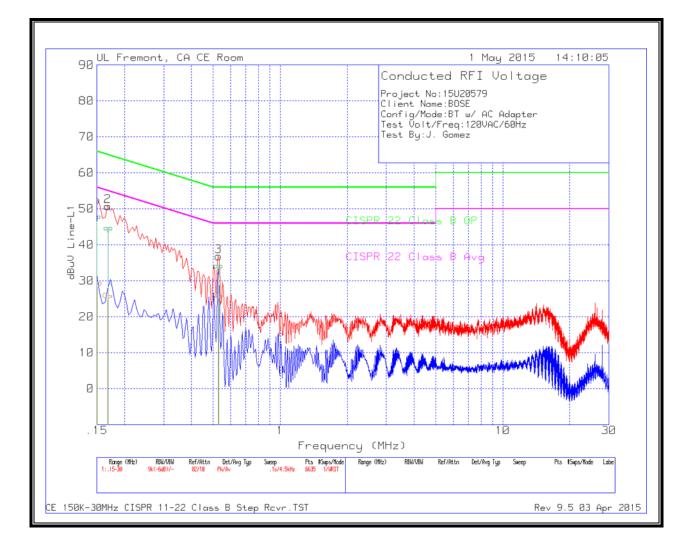
LINE 2 RESULTS

Page 54 of 63

WORST EMISSIONS

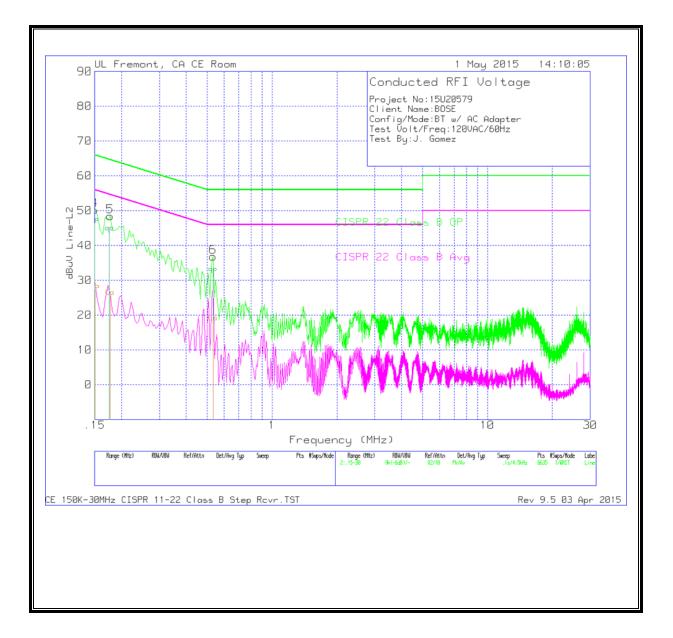
Range 1: Line	-L1 .15 - 30N	lHz							
Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1	LC Cables 1&3	Corrected Reading dBuV	CISPR 22 Class B QP	Margin (dB)	CISPR 22 Class B Avg	Margin (dB)
.15	47.74	Qp	1.4	0	49.14	66	-16.86	-	-
.15	24.46	Ca	1.4	0	25.86	-	-	56	-30.14
.19613	54.15	Qp	1	0	55.15	63.77	-8.62	-	-
.19613	34.8	Ca	1	0	35.8	-	-	53.77	-17.97
.26588	44.1	Qp	.6	0	44.7	61.25	-16.55	-	-
.26588	26.28	Ca	.6	0	26.88	-	-	51.25	-24.37
.32663	38	Qp	.5	0	38.5	59.54	-21.04	-	-
.32663	18.38	Ca	.5	0	18.88	-	-	49.54	-30.66
.39638	35.49	Qp	.4	0	35.89	57.93	-22.04	-	-
.39638	20.54	Ca	.4	0	20.94	-	-	47.93	-26.99
.45713	31.83	Qp	.4	0	32.23	56.74	-24.51	-	-
.45713	14.6	Ca	.4	0	15	-	-	46.74	-31.74
	Frequency (MHz) .15 .19613 .19613 .26588 .26588 .32663 .32663 .32663 .39638 .39638 .45713	C Meter Frequency (MHz) Meter Reading (dBuV) .15 47.74 .15 24.46 .19613 54.15 .19613 34.8 .26588 44.1 .26588 26.28 .32663 38 .32663 18.38 .39638 35.49 .39638 20.54 .45713 31.83	(MHz)Reading (dBuV).1547.74Qp.1524.46Ca.1961354.15Qp.1961334.8Ca.2658844.1Qp.2658826.28Ca.3266338Qp.3266318.38Ca.3963835.49Qp.3963820.54Ca.4571331.83Qp	Vere Meter Det T24 IL L1 (MHz) Reading (dBuV) Det T24 IL L1 .15 47.74 Qp 1.4 .15 24.46 Ca 1.4 .15 24.46 Ca 1.4 .19613 54.15 Qp 1 .19613 34.8 Ca 1 .26588 44.1 Qp .6 .26588 26.28 Ca .6 .32663 38 Qp .5 .32663 18.38 Ca .5 .39638 35.49 Qp .4 .45713 31.83 Qp .4	Join Meter Det T24 IL L1 LC Cables (MHz) Reading (dBuV) 1& 1& 1& .15 47.74 Qp 1.4 0 .15 24.46 Ca 1.4 0 .19613 54.15 Qp 1 0 .19613 34.8 Ca 1 0 .26588 44.1 Qp .6 0 .26588 26.28 Ca .6 0 .32663 38 Qp .5 0 .32663 18.38 Ca .5 0 .39638 20.54 Ca .4 0 .45713 31.83 Qp .4 0	Join Meter Det T24 IL L1 LC Cables Corrected (MHz) Reading (dBuV) 1&3 Reading dBuV .15 47.74 Qp 1.4 0 49.14 .15 24.46 Ca 1.4 0 25.86 .19613 54.15 Qp 1 0 55.15 .19613 34.8 Ca 1 0 35.8 .26588 44.1 Qp .6 0 44.7 .26588 26.28 Ca .6 0 26.88 .32663 38 Qp .5 0 38.5 .32663 18.38 Ca .5 0 18.88 .39638 35.49 Qp .4 0 35.89 .39638 20.54 Ca .4 0 32.23	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 LC Cables 1&3 Corrected Reading dBuV ClSPR 22 Class B QP dBuV .15 47.74 Qp 1.4 0 49.14 66 .15 47.74 Qp 1.4 0 49.14 66 .15 24.46 Ca 1.4 0 25.86 - .19613 54.15 Qp 1 0 55.15 63.77 .19613 34.8 Ca 1 0 35.8 - .26588 44.1 Qp .6 0 44.7 61.25 .26588 26.28 Ca .6 0 26.88 - .32663 38 Qp .5 0 38.5 59.54 .32663 18.38 Ca .5 0 18.88 - .39638 20.54 Ca .4 0 20.94 - .45713 31.83 Qp .4 0 <t< td=""><td>Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 LC Cables 1&3 Corrected Reading dBuV CISPR 22 Class B QP Margin (dB) .15 47.74 Qp 1.4 0 49.14 66 -16.86 .15 24.46 Ca 1.4 0 25.86 - - .19613 54.15 Qp 1 0 55.15 63.77 -8.62 .19613 34.8 Ca 1 0 35.8 - - .26588 44.1 Qp .66 0 44.7 61.25 -16.55 .26588 26.28 Ca .6 0 26.88 - - .32663 38 Qp .5 0 38.5 59.54 -21.04 .32663 18.38 Ca .5 0 18.88 - - .39638 35.49 Qp .4 0 20.94 - - .45713 31.83 Qp</td><td>Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 LC Cables 1&3 Corrected Reading dBuV CISPR 22 (Class B QP dBuV Margin (dB) CISPR 22 Class B Avg .15 47.74 Qp 1.4 0 49.14 66 -16.86 - .15 47.74 Qp 1.4 0 49.14 66 -16.86 - .15 47.74 Qp 1.4 0 25.86 - - 56 .19613 54.15 Qp 1 0 35.8 - - 53.77 .19613 34.8 Ca 1 0 35.8 - - 53.77 .26588 44.1 Qp .6 0 44.7 61.25 -16.55 - .32663 38 Qp .5 0 38.5 59.54 -21.04 - .32663 18.38 Ca .5 0 18.88 - - 49.54 .39638 20.54</td></t<>	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 LC Cables 1&3 Corrected Reading dBuV CISPR 22 Class B QP Margin (dB) .15 47.74 Qp 1.4 0 49.14 66 -16.86 .15 24.46 Ca 1.4 0 25.86 - - .19613 54.15 Qp 1 0 55.15 63.77 -8.62 .19613 34.8 Ca 1 0 35.8 - - .26588 44.1 Qp .66 0 44.7 61.25 -16.55 .26588 26.28 Ca .6 0 26.88 - - .32663 38 Qp .5 0 38.5 59.54 -21.04 .32663 18.38 Ca .5 0 18.88 - - .39638 35.49 Qp .4 0 20.94 - - .45713 31.83 Qp	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 LC Cables 1&3 Corrected Reading dBuV CISPR 22 (Class B QP dBuV Margin (dB) CISPR 22 Class B Avg .15 47.74 Qp 1.4 0 49.14 66 -16.86 - .15 47.74 Qp 1.4 0 49.14 66 -16.86 - .15 47.74 Qp 1.4 0 25.86 - - 56 .19613 54.15 Qp 1 0 35.8 - - 53.77 .19613 34.8 Ca 1 0 35.8 - - 53.77 .26588 44.1 Qp .6 0 44.7 61.25 -16.55 - .32663 38 Qp .5 0 38.5 59.54 -21.04 - .32663 18.38 Ca .5 0 18.88 - - 49.54 .39638 20.54

	Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin	
	(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B Avg	(dB)	
		(dBuV)				dBuV					
1	.15	47.1	Qp	1.5	0	48.6	66	-17.4	-	-	
	.15	23.7	Ca	1.5	0	25.2	-	-	56	-30.8	
2	.19613	53.76	Qp	1	0	54.76	63.77	-9.01	-	-	
	.19613	34.54	Ca	1	0	35.54	-	-	53.77	-18.23	
3	.25913	42.69	Qp	.7	0	43.39	61.46	-18.07	-	-	
	.25913	21.19	Ca	.7	0	21.89	-	-	51.46	-29.57	
4	.32888	37.12	Qp	.5	0	37.62	59.48	-21.86	-	-	
	.32888	20.09	Ca	.5	0	20.59	-	-	49.48	-28.89	
5	.39188	35.42	Qp	.4	0	35.82	58.02	-22.2	-	-	
	.39188	16.73	Ca	.4	0	17.13	-	-	48.02	-30.89	
6	.45668	31.72	Qp	.4	0	32.12	56.75	-24.63	-	-	
	.45668	15.55	Ca	.4	0	15.95	-	-	46.75	-30.8	
7	4.55438	22.8	Qp	.2	.1	23.1	56	-32.9	-	-	
	4.55438	13.01	Ca	.2	.1	13.31	-	-	46	-32.69	


Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 55 of 63


WITH AC ADAPTER

LINE 1 RESULTS

Page 56 of 63

LINE 2 RESULTS

Page 57 of 63

WORST EMISSIONS

	Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin	
	(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B Avg	(dB)	
		(dBuV)				dBuV					
1	.15	45.25	Qp	1.4	0	46.65	66	-19.35	-	-	
	.15	26.84	Ca	1.4	0	28.24	-	-	56	-27.76	
2	.16913	42.33	Qp	1.2	0	43.53	65	-21.47	-	-	
	.16913	23.43	Ca	1.2	0	24.63	-	-	55	-30.37	
3	.52913	32.73	Qp	.3	0	33.03	56	-22.97	-	-	
	.52913	24.54	Ca	.3	0	24.84	-	-	46	-21.16	

	Range 2: Line-L2 .15 - 30MHz									
Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
	(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B Avg	(dB)
		(dBuV)				dBuV				
1	.15	44.96	Qp	1.5	0	46.46	66	-19.54	-	-
	.15	25.76	Ca	1.5	0	27.26	-	-	56	-28.74
2	.17588	42.68	Qp	1.2	0	43.88	64.68	-20.8	-	-
	.17588	24.13	Ca	1.2	0	25.33	-	-	54.68	-29.35
3	.53228	31.84	Qp	.3	0	32.14	56	-23.86	-	-
	.53228	17.69	Ca	.3	0	17.99	-	-	46	-28.01

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 58 of 63