

FCC 47 CFR PART 15 SUBPART C ISED CANADA RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

FOR

WIRELESS HEADSET

MODEL NUMBER: AP2

FCC ID: A94AP2 IC: 3232A-AP2

REPORT NUMBER: R11777487-E1

ISSUE DATE: 2017-08-15

Prepared for BOSE CORPORATION 100 THE MOUNTAIN FRAMINGHAM, MA 01701 USA

Prepared by UL LLC 12 LABORATORY DR. RESEARCH TRIANGLE PARK, NC 27709 USA TEL: (919) 549-1400

NVLAP LAB CODE 200246-0

Revision History

Ver.	lssue Date	Revisions	Revised By
1	2017-08-04	Initial Issue	Brian Kiewra
2	2017-08-15	Revised Description in Sections 5.1 and 8.1 Corrected limit in Section 8.2.5 Revised title in plot on p.93	Brian Kiewra

Page 2 of 98

TABLE OF CONTENTS

1.	ATTES	TATION OF TEST RESULTS	5
2.	TEST	NETHODOLOGY	5
3.	FACILI	TIES AND ACCREDITATION	5
4.	CALIB	RATION AND UNCERTAINTY	7
4.	1. ME	ASURING INSTRUMENT CALIBRATION	7
4.	2. SA	MPLE CALCULATION	7
4.	3. ME	ASUREMENT UNCERTAINTY	7
5.	EQUIP	MENT UNDER TEST	3
5.	1. ES	CRIPTION OF EUT	3
5.	2. MA	XIMUM OUTPUT POWER	3
5.	3. DE	SCRIPTION OF AVAILABLE ANTENNAS	3
5.	4. SC	۶. FTWARE AND FIRMWARE٤	3
5.	5. W	DRST-CASE CONFIGURATION AND MODE	3
5.	6. DE	SCRIPTION OF TEST SETUP	9
6.	TEST /	ND MEASUREMENT EQUIPMENT11	I
7.	MEASU	JREMENT METHODS13	3
7. 8.	MEASU ANTEN	JREMENT METHODS	3
7. 8. 8.	MEASU ANTEN 1. ON	JREMENT METHODS	3 1 4
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1.	JREMENT METHODS 13 INA PORT TEST RESULTS 14 I TIME AND DUTY CYCLE 14 SIC DATA RATE GFSK MODULATION 16 20 dB AND 99% BANDWIDTH 16	3 1 <i>4</i> 55
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20	3 1 <i>4</i> 55 0
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22	3 1 <i>4</i> <i>5</i> <i>5</i> <i>2</i>
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25	3 1 <i>4</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i>
7. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER29	3 4 <i>4</i> <i>5</i> <i>5</i> <i>2</i> <i>5</i> <i>9</i>
7. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER29AVERAGE POWER30	
7. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER29AVERAGE POWER30CONDUCTED SPURIOUS EMISSIONS31	3 1 <i>4</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i>
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7. 3. EN 8.3.1.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER29AVERAGE POWER30CONDUCTED SPURIOUS EMISSIONS31HANCED DATA RATE QPSK MODULATION3620 dB AND 99% BANDWIDTH36	3 1 <i>4</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i> <i>5</i>
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7. 3. EN 8.3.1. 8.3.2.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER30CONDUCTED SPURIOUS EMISSIONS31HANCED DATA RATE QPSK MODULATION3620 dB AND 99% BANDWIDTH36HOPPING FREQUENCY SEPARATION40	3 1 <i>4</i> <i>5</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>1</i> <i>5</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>
7. 8. 8. 8.	MEASU ANTEN 1. ON 2. BA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7. 3. EN 8.3.1. 8.3.2. 8.3.3.	JREMENT METHODS13INA PORT TEST RESULTS14I TIME AND DUTY CYCLE14SIC DATA RATE GFSK MODULATION1620 dB AND 99% BANDWIDTH16HOPPING FREQUENCY SEPARATION20NUMBER OF HOPPING CHANNELS22AVERAGE TIME OF OCCUPANCY25OUTPUT POWER20AVERAGE POWER30CONDUCTED SPURIOUS EMISSIONS31HANCED DATA RATE QPSK MODULATION3620 dB AND 99% BANDWIDTH36HOPPING FREQUENCY SEPARATION40NUMBER OF HOPPING CHANNELS42NUMBER OF HOPPING CHANNELS42	3 1 <i>1</i> <i>1</i> <i>2</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>9</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>1</i> <i>5</i> <i>5</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

12 Laboratory Dr., RTP, NC 27709 TEL: (919) 5 This report shall not be reproduced except in full, without the written approval of UL LLC.

8.3.4.	AVERAGE TIME OF OCCUPANCY	45
8.3.5.	OUTPUT POWER	49
8.3.6.	AVERAGE POWER	50
8.3.7.	CONDUCTED SPURIOUS EMISSIONS	51
<i>8.4. EN</i> 8.4.1.	HANCED DATA RATE 8PSK MODULATION 20 dB AND 99% BANDWIDTH	56 56
8.4.2.	HOPPING FREQUENCY SEPARATION	60
8.4.3.	NUMBER OF HOPPING CHANNELS	62
8.4.4.	AVERAGE TIME OF OCCUPANCY	65
8.4.5.	OUTPUT POWER	69
8.4.6.	AVERAGE POWER	70
8.4.7.	CONDUCTED SPURIOUS EMISSIONS	71
9. RADIA	TED TEST RESULTS	76
9.1. LIN	1ITS AND PROCEDURE	76
9.2. TR. 9.2.1.	ANSMITTER ABOVE 1 GHz BASIC DATA RATE GFSK MODULATION	77 77
9.2.2.	ENHANCED DATA RATE 8PSK MODULATION	84
9.3. WC	DRST-CASE	
10. SETU	JP PHOTOS	94
END OF RE	PORT	98

Page 4 of 98

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Bose Corporation 100 The Mountain Framingham, MA 01701 USA		
EUT DESCRIPTION:	Wireless Headset		
MODEL:	AP2		
SERIAL NUMBER:	Non-Serialized		
DATE TESTED:	2017-06-28 to 2017-07-11		
	APPLICABLE STANDARDS		
	TEST RESULTS		
CFR 47	CFR 47 Part 15 Subpart C		
ISED CAN	ADA RSS-247 Issue 2	Pass	
ISED CAN	ADA RSS-GEN Issue 4	Pass	

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For UL LLC By:

UL LLC

Jeffrey Moser **Operations Leader** UL – Consumer Technology Division

Prepared By:

ZI.K

Brian Kiewra **Project Engineer** UL – Consumer Technology Division

Page 5 of 98

FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Perimeter Park Dr., Suite B, Morrisville, NC 27560, USA.

12 Laboratory Dr., RTP, NC 27709				
Chamber A				
Chamber C				

2800 Suite B Perimeter Park Dr.,				
Morrisville, NC 27560				
🛛 Chamber NORTH				
🛛 Chamber SOUTH				

The onsite chambers are covered under Industry Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://www.nist.gov/nvlap/.</u>

Page 6 of 98

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	Required by standard
Occupied Channel Bandwidth	2.00%	±5 %
RF output power, conducted	1.3 dB	±1,5 dB
Power Spectral Density, conducted	2.47 dB	±3 dB
Unwanted Emissions, conducted	2.94 dB	±3 dB
All emissions, radiated	5.36 dB	±6 dB
Temperature	2.26 °C	±3 °C
Supply voltages	2.40%	±3 %
Time	3.39%	±5 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. ESCRIPTION OF EUT

The EUT is a wireless headset.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	9.96	9.91
2402 - 2480	DQPSK	8.49	7.06
2402 - 2480	Enhanced 8PSK	8.79	7.57

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an antenna with a maximum gain of +2.9 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was ver 1.1.9.424.

The EUT driver software installed in the host support equipment during testing was 2.4.0.0 The test utility software used during testing was CSR BlueSuite, rev. 2.6.4.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions 1-18GHz were performed with the EUT set to transmit on low, mid, and high channels. Radiated emissions 9kHz – 1000MHz and 18-26GHz were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

For Enhanced Data rate modes, 8DPSK is considered worst-case and only select tests were performed for the DQPSK mode. Additionally, unless noted in the test report, all tests were performed with the DH5 packet size as this was considered worst-case.

Page 8 of 98

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Lenovo	T450s	PC-0A2UQS 16/01	NA		
Power Supply	Lenovo	ADLX65NLC2A	11S45N0259Z1Z9743D21T	NA		

I/O CABLES

I/O Cable List						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	Antenna	1	SMA	RF	<3m	None
2	USB	1	μUSB	USB	<3m	Used to configure EUT

TEST SETUP

The EUT is setup as a standalone device

Page 9 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

SETUP DIAGRAM FOR TESTS

Page 10 of 98

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - North Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	0.009-30MHz	(Loop Ant.)			
AT0079	Active Loop Antenna	ETS-Lindgren	6502	2016-12-28	2017-12-31
	1-18 GHz				
AT0072	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2017-04-05	2018-04-05
	Gain-Loss Chains				
N-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2016-10-04	2017-10-04
N-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2016-08-28	2017-08-28
	Receiver & Software				
SA0027	Spectrum Analyzer	Agilent	N9030A	2017-03-16	2018-03-16
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
s/n 161024690	Environmental Meter	Fisher Scientific	15-077-963	2016-12-21	2018-12-21

Test Equipment Used - Wireless Conducted Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 2				
SA0020	Spectrum Analyzer	Agilent Technologies	E4446A	2017-04-25	2018-04-25
PWM005	RF Power Meter	Keysight Technologies	N1911A	2017-05-18	2018-05-18
PWS005	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2017-05-18	2018-05-18
15557603	Temp/Humidity Sensor	Fisher Scientific	14-650-118	2016-11-02	2018-11-02

Page 11 of 98

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	30-1000 MHz				
AT0074	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2017-06-15	2018-06-15
	1-18 GHz				
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2017-04-05	2018-04-05
	18-40 GHz				
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2016-09-06	2017-09-06
AT0077	Horn Antenna, 26-40GHz	ARA	MWH-2640/B	2016-09-06	2017-09-06
	Gain-Loss Chains				
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2017-06-11	2018-06-11
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2016-08-28	2017-08-28
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2017-03-03	2018-03-03
	Receiver & Software				
SA0025	Spectrum Analyzer	Agilent	N9030A	2017-04-10	2018-04-10
SA0026 (18- 40GHz RSE)	Spectrum Analyzer	Agilent	N9030A	2017-02-17	2018-02-28
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
s/n 161024887	Environmental Meter	Fisher Scientific	15-077-963	2016-12-23	2018-12-23

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 Zero-Span Spectrum Analyzer Method

20 dB BW: ANSI C63.10 Section 6.9.2.

99% Occupied Bandwidth: ANSI C63.10-2013, Section 6.9.3

Hopping Frequency Separation: ANSI C63.10 Section 7.8.2

Number of Hopping Channels: ANSI C63.10 Section 7.8.3

Average Time of Occupancy: ANSI C63.10 Section 7.8.4

Output Power: ANSI C63.10 Section 7.8.5

Out-of-band emissions in non-restricted bands: ANSI C63.10 Section 7.8.6 & 7.8.8

Out-of-band emissions in restricted bands: ANSI C63.10:2013 Sections 6.3-6.6

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4 GHz band (Hopping	OFF)					
GFSK	0.386	1.249	0.309	30.91%	5.10	2.590
8PSK	0.401	1.249	0.321	32.13%	4.93	2.492

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 14 of 98

DUTY CYCLE PLOTS

8.2. BASIC DATA RATE GFSK MODULATION

8.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only. Test per FCC §15.247(a)(1); IC RSS-247 5.1 (1), RSS-Gen 6.6.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1%-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	920.000	867.953
Middle	2441	852.000	838.9222
High	2480	892.000	849.0463

TEST INFORMATION Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 16 of 98

99% BANDWIDTH

Page 17 of 98

UL LLC 12 Laboratory Dr., RTP, NC 27709 FORM NO: 03-EM-F00858 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

20 dB BANDWIDTH

Page 19 of 98

8.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Page 20 of 98

HOPPING FREQUENCY SEPARATION

Ch. A	Ch. B	Ch. 1 to Ch. 2 Sep.	Max. 20 dB BW	Margin
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	0.920	-0.080

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 21 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

8.2.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300kHz). The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels minimum declared.

TEST INFORMATION Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 22 of 98

NUMBER OF HOPPING CHANNELS

Page 23 of 98

Page 24 of 98

8.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii) IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

DH Packet	Pulse Width	Number of Pulses in	Average Time of Occupancy	Limit	Margin		
	(msec)	3.16	(sec)	(sec)	(sec)		
		seconds					
GFSK Norma	I Mode						
DH1	0.3847	32	0.123	0.4	-0.277		
DH3	1.636	16	0.262	0.4	-0.138		
DH5	2.881	11	0.317	0.4	-0.083		
DH Packet	Pulse	Number of	Average Time	Limit	Margin		
	Width	Pulses in	of Occupancy				
	(msec)	0.8	(sec)	(sec)	(sec)		
		seconds					
GFSK AFH Mode							
DH1	0.3847	8	0.031	0.4	-0.369		
DH3	1.636	4	0.065	0.4	-0.335		
DH5	2.881	2.75	0.079	0.4	-0.321		

RESULTS

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 25 of 98

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 26 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH3

Page 27 of 98

UL LLC 12 Laboratory Dr., RTP, NC 27709

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 28 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

8.2.5. OUTPUT POWER

LIMIT

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

<u>RESULTS</u>

Channel	Frequency	Output Power	Directional	Limit	Margin
	(MHz)	(dBm)	Gain (dBi)	(dBm)	(dB)
Low	2402	8.02	2.90	30	-21.98
Middle	2441	9.96	2.90	30	-20.04
High	2480	8.64	2.90	30	-21.36

TEST INFORMATION Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 29 of 98

8.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.31 dB (including 10 dB pad and 1.31 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	7.68
Middle	2441	9.73
High	2480	9.36

TEST INFORMATION

Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 30 of 98

8.2.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 31 of 98

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 34 of 98

FORM NO: 03-EM-F00858 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

UL LLC 12 Laboratory Dr., RTP, NC 27709

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 35 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

8.3. ENHANCED DATA RATE QPSK MODULATION

8.3.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only. Test per FCC §15.247(a)(1); IC RSS-247 5.1 (1), RSS-Gen 6.6.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

<u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1248	1149
Middle	2441	1230	1155
High	2480	1224	1155

TEST INFORMATION
Date: 2017-06-28

Tester: Jeffrey Cabrera

Page 36 of 98
99% BANDWIDTH

Page 37 of 98

UL LLC 12 Laboratory Dr., RTP, NC 27709 FORM NO: 03-EM-F00858 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

99% BANDWIDTH 🔆 Agilent 10:54:51 Jun	HIGH CH 28, 2017		L	Measure
Ch Freq 2.4 Occupied Bandwidth	8 GHz	Averages: 20	Trig Free	Meas Off
000 0/001417) 40000				Channel Power
Hrvo.3(06141/),40062, Ref 20 dBm #Atte #Samp Log	n 30 dB			Occupied BW
dB/ 0ffst 11.3				ACP
dB Center 2.480 000 GHz			Span 5 MHz	Multi Carrier Power
Occupied Bandwic	*VBW 91 KH2 Ith 17 MH-	2 #Sweep 100 ms Occ BW % Pwr x dB	99.00 % 99.00 % -20.00 dB	Power Stat CCDF
Transmit Freq Error x dB Bandwidth	404.640 Hz 1.171 MHz*			More 1 of 2
Copyright 2000–2010 A	gilent Technolog	ies		

20 dB BANDWIDTH

Page 39 of 98

8.3.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Page 40 of 98

HOPPING FREQUENCY SEPARATION

Ch. A	Ch. B	Ch. 1 to Ch. 2 Sep.	Max. 20 dB BW	2/3 20 dB BW	Margin
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	1.248	0.832	-0.168

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.25 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 832 kHz).

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 41 of 98

8.3.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels minimum declared.

TEST INFORMATION Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 42 of 98

NUMBER OF HOPPING CHANNELS

Page 43 of 98

Agilent 11:02:51	Jun 28, 2017					L	Measure
6.9(061417),4088 30 dBm	2, Atten 30 dB						Meas Off
,							Channel Power
		ᢣᢦᡃᢦᢦᢦ	⊻∽∿∨	$\nabla \nabla \nabla$	VVV	γvγ	Occupied BW
vg							ACP
S2 FC							Multi Carrier Power
:							Power Stat CCDF
ter 2.445 00 GHz s BW 300 kHz		W 300 kHz		ep 20 m	Span 3 s (100:	0 MHz 1 pts)	More 1 of 2

Page 44 of 98

8.3.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

DQPSK Mode

DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		-
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
DH1	0.399	32	0.128	0.4	-0.272
DH3	1.65	17	0.281	0.4	-0.120
DH5	2.908	10	0.291	0.4	-0.109

Note: for AFH (DQPSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate on page 25 demonstrates compliance with channel occupancy when AFH is employed.

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 45 of 98

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 46 of 98

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – DH3

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 48 of 98

8.3.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	6.23	2.90	21	-14.77
Middle	2441	8.49	2.90	21	-12.51
High	2480	7.63	2.90	21	-13.37

TEST INFORMATION Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 49 of 98

8.3.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.31 dB (including 10 dB pad and 1.31 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	3.89
Middle	2441	6.33
High	2480	5.01

TEST INFORMATION

Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 50 of 98

8.3.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 51 of 98

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 54 of 98

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 55 of 98

8.4. ENHANCED DATA RATE 8PSK MODULATION

8.4.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only. Test per FCC §15.247(a)(1); IC RSS-247 5.1 (1), RSS-Gen 6.6.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1206	1146
Middle	2441	1194	1150
High	2480	1176	1140

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 56 of 98

99% BANDWIDTH

Page 57 of 98

UL LLC 12 Laboratory Dr., RTP, NC 27709 FORM NO: 03-EM-F00858 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

Agilent 09:54:55 Ju	n HIGH CH n 28, 2017		L	Measure
Ch Freq 2 Occupied Bandwidth	.48 GHz	Averages: 20	Trig Free	Meas Off
				Channel Power
HPv6.9(061417),40882, Ref 20 dBm #Att #Samp Log	en 30 dB			Occupied Bł
dB/ 0ffst 11.3				ACF
dB Center 2.480 000 GHz			Span 5 MHz	Multi Carriei Powei
Cccupied Bandw	#VBW 91 KHZ idth 398 MH-7	#Sweep 100 m Occ BW % Pwr x dB	s (1001 pts) 99.00 % -20.00 dB	Power Stat CCDF
Transmit Freq Error x dB Bandwidth	-25.927 kHz 1.205 MHz*			More 1 of 2
Copyright 2000-2010	Agilent Technolog	es		

20 dB BANDWIDTH

Page 59 of 98

8.4.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Page 60 of 98

HOPPING FREQUENCY SEPARATION

Ch. A	Ch. B	Ch. 1 to Ch. 2 Sep.	Max. 20 dB BW	2/3 20 dB BW	Margin
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
2441	2442	1.000	1.206	0.804	-0.196

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.2 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 800 kHz)

TEST INFORMATION Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 61 of 98

8.4.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: 20 Channels minimum declared.

TEST INFORMATION Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 62 of 98

NUMBER OF HOPPING CHANNELS

Page 63 of 98

gilent 10:	21:16 Jun	28,2017					L	Measure
.9(061417 0 dBm	7),40882, Atte	n 30 dB				1		Meas Off
								Channel Power
y n ynyn			~~~~	₽₩₩₽₽	~~~	$\sim \sim \sim$	~~~	Occupied BW
3								ACP
2								Multi Carrier Power
								Power Stat CCDF
er 2.445 (00 GHz					Span (30 MHz	More 1 of 2

Page 64 of 98

8.4.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

<u>RESULTS</u>

8PSK (EDR) Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16	Average Time of (sec)	Limit (sec)	Margin (sec)
		seconds			
DH1	0.399	32	0.128	0.4	-0.272
DH3	1.649	16	0.264	0.4	-0.136
DH5	2.898	11	0.319	0.4	-0.081

Note: for AFH (8PSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate on page 25 demonstrates compliance with channel occupancy when AFH is employed.

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 65 of 98

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 66 of 98

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 67 of 98

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 68 of 98

8.4.5. OUTPUT POWER

LIMIT

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (b)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

<u>RESULTS</u>

Channel	Frequency	Output Power	Directional	Limit	Margin
	(MHz)	(dBm)	Gain (dBi)	(dBm)	(dB)
Low	2402	6.56	2.90	21	-14.44
Middle	2441	8.79	2.90	21	-12.21
High	2480	7.87	2.90	21	-13.13

TEST INFORMATION Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 69 of 98

8.4.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

<u>RESULTS</u>

The cable assembly insertion loss of 11.31 dB (including 10 dB pad and 1.31 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	4.31
Middle	2441	4.36
High	2480	5.50

TEST INFORMATION Date: 2017-07-05 Tester: Jeffrey Cabrera

Page 70 of 98

8.4.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

TEST INFORMATION

Date: 2017-06-28 Tester: Jeffrey Cabrera

Page 71 of 98

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

SPURIOUS EMISSIONS, HIGH CHANNEL

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209 IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz measurements and 1.5 m above the ground plane for above 1GHz measurements. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 120 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements for the 30-1000 MHz range, 9 kHz for peak detection measurements for the 0.15-30 MHz range and 200 Hz for peak detection measurements or 200 Hz for quasi-peak detection measurements for the 9 to 150 kHz range. Peak detection is used unless otherwise noted as quasi-peak.

For peak measurements above 1 GHz, the resolution bandwidth is set to 1 MHz and the video bandwidth is set to 3 MHz. For average measurements above 1GHz, the resolution bandwidth and video bandwidth are set as described in ANSI C63.10:2013 for the applicable measurement. The particular averaging method used for this test program was by measuring using a Peak detector with the resolution bandwidth set to 1MHz and a reduced video bandwidth, based on $1/T_{on}$ where T_{on} is the transmit on time.

The spectrum from 1 to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. For 9kHz to 1000 MHz and 18 to 26 GHz investigation, the worst-case channel was selected.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 76 of 98

9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AT0072	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.39	39.82	Pk	31.8	-24.5	47.12	-	-	74	-26.88	163	249	Н
2	* 2.383	42.94	Pk	31.8	-24.5	50.24	-	-	74	-23.76	163	249	Н
3	* 2.39	31.74	V1TR	31.8	-24.5	39.04	54	-14.96	-	-	163	249	Н
4	* 2.364	32.34	V1TR	31.7	-24.5	39.54	54	-14.46	-	-	163	249	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AT0072	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.39	39.69	Pk	31.8	-24.5	46.99	-	-	74	-27.01	287	399	V
2	* 2.389	42.59	Pk	31.8	-24.5	49.89	-	-	74	-24.11	287	399	V
3	* 2.39	31.33	V1TR	31.8	-24.5	38.63	54	-15.37	-	-	287	399	V
4	* 2.389	32.08	V1TR	31.8	-24.5	39.38	54	-14.62	-	-	287	399	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 78 of 98

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	38.45	Pk	32.4	-24.6	46.25	-	-	74	-27.75	56	284	Н
2	* 2.484	38.87	Pk	32.4	-24.6	46.67	-	-	74	-27.33	56	284	Н
3	* 2.484	29.43	V1TR	32.4	-24.6	37.23	54	-16.77	-	-	56	284	Н
4	* 2.484	30.53	V1TR	32.4	-24.6	38.33	54	-15.67	-	-	56	284	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 79 of 98

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	35.55	Pk	32.4	-24.6	43.35	-	-	74	-30.65	74	316	V
2	* 2.484	37.58	Pk	32.4	-24.6	45.38	-	-	74	-28.62	74	316	V
3	* 2.484	27.04	V1TR	32.4	-24.6	34.84	54	-19.16	-	-	74	316	V
4	* 2.484	28.02	V1TR	32.4	-24.6	35.82	54	-18.18	-	-	74	316	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 80 of 98

HARMONICS AND SPURIOUS EMISSIONS

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
1	* 1.301	35.82	PK-U	29.2	-23.2	41.82	-	-	74	-32.18	192	392	Н
	* 1.302	25.38	V1TR	29.2	-23.1	31.48	54	-22.52	-	-	192	392	Н
4	* 1.296	36.74	PK-U	29.1	-23.2	42.64	-	-	74	-31.36	231	230	V
	* 1.296	25.3	V1TR	29.1	-23.2	31.2	54	-22.8	-	-	231	230	V
2	* 4.804	47.27	PK-U	34	-31.1	50.17	-	-	74	-23.83	54	105	Н
	* 4.804	42.46	V1TR	34	-31.1	45.36	54	-8.64	-	-	54	105	Н
3	* 10.844	34.57	PK-U	37.9	-25	47.47	-	-	74	-26.53	174	322	Н
	* 10.843	24.57	V1TR	37.9	-25	37.47	54	-16.53	-	-	174	322	Н
5	* 4.804	45.39	PK-U	34	-31.1	48.29	-	-	74	-25.71	200	103	V
	* 4.804	39.37	V1TR	34	-31.1	42.27	54	-11.73	-	-	200	103	V
6	* 10.876	35.85	PK-U	37.9	-25	48.75	-	-	74	-25.25	37	286	V
	* 10.877	25.06	V1TR	37.9	-25	37.96	54	-16.04	-	-	37	286	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 81 of 98

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
1	* 1.304	36.19	PK-U	29.1	-23.1	42.19	-	-	74	-31.81	189	223	Н
	* 1.303	25.5	V1TR	29.2	-23.1	31.6	54	-22.4	-	-	189	223	Н
2	* 3.921	40.99	PK-U	33.3	-32.1	42.19	-	-	74	-31.81	290	113	Н
	* 3.92	29.82	V1TR	33.3	-32.1	31.02	54	-22.98	-	-	290	113	Н
3	* 7.323	41.39	PK-U	35.5	-27.9	48.99	-	-	74	-25.01	300	111	Н
	* 7.323	34.58	V1TR	35.5	-27.9	42.18	54	-11.82	-	-	300	111	Н
4	* 1.3	35.85	PK-U	29.2	-23.2	41.85	-	-	74	-32.15	111	390	V
	* 1.299	25.33	V1TR	29.2	-23.2	31.33	54	-22.67	-	-	111	390	V
5	* 3.904	40.16	PK-U	33.3	-32.2	41.26	-	-	74	-32.74	332	140	V
	* 3.903	29.71	V1TR	33.3	-32.2	30.81	54	-23.19	-	-	332	140	V
6	* 7.323	41	PK-U	35.5	-27.9	48.6	-	-	74	-25.4	195	110	V
	* 7.323	34.21	V1TR	35.5	-27.9	41.81	54	-12.19	-	-	195	110	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK-U: Maximum Peak

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
2	* 1.3	36.3	PK-U	29.2	-23.2	42.3	-	-	74	-31.7	76	377	Н
	* 1.301	25.46	V1TR	29.2	-23.2	31.46	54	-22.54	-	-	76	377	Н
6	* 4.96	48.56	PK-U	34	-31.3	51.26	-	-	74	-22.74	339	105	Н
	* 4.96	44.44	V1TR	34	-31.3	47.14	54	-6.86	-	-	339	105	Н
4	* 12.428	34.41	PK-U	38.9	-24.6	48.71	-	-	74	-25.29	40	366	Н
	* 12.428	24.19	V1TR	38.9	-24.6	38.49	54	-15.51	-	-	40	366	Н
1	* 1.298	35.62	PK-U	29.2	-23.2	41.62	-	-	74	-32.38	194	273	V
	* 1.297	25.55	V1TR	29.2	-23.2	31.55	54	-22.45	-	-	194	273	V
3	* 4.96	45.59	PK-U	34	-31.3	48.29	-	-	74	-25.71	234	109	V
	* 4.96	40.41	V1TR	34	-31.3	43.11	54	-10.89	-	-	234	109	V
5	* 12.41	34.5	PK-U	38.9	-24.6	48.8	-	-	74	-25.2	330	215	V
	* 12.41	24.24	V1TR	38.9	-24.6	38.54	54	-15.46	-	-	330	215	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK-U: Maximum Peak

9.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.39	35.27	Pk	31.9	-24.1	43.07	-	-	74	-30.93	54	187	Н
2	* 2.359	37.38	Pk	31.8	-23.8	45.38	-	-	74	-28.62	54	187	Н
3	* 2.39	26.11	V1TR	31.9	-24.1	33.91	54	-20.09	-	-	54	187	Н
4	* 2.377	26.65	V1TR	31.9	-24	34.55	54	-19.45	-	-	54	187	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.39	34.48	Pk	31.9	-24.1	42.28	-	-	74	-31.72	140	290	V
2	* 2.346	37.47	Pk	31.7	-23.8	45.37	-	-	74	-28.63	140	290	V
3	* 2.39	25.74	V1TR	31.9	-24.1	33.54	54	-20.46	-	-	140	290	V
4	* 2.341	26.87	V1TR	31.7	-23.9	34.67	54	-19.33	-	-	140	290	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 85 of 98

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	38.81	Pk	32.4	-24.6	46.61	-	-	74	-27.39	51	332	Н
2	* 2.484	39.46	Pk	32.4	-24.6	47.26	-	-	74	-26.74	51	332	Н
3	* 2.484	30.18	V1TR	32.4	-24.6	37.98	54	-16.02	-	-	51	332	Н
4	* 2.484	30.26	V1TR	32.4	-24.6	38.06	54	-15.94	-	-	51	332	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 86 of 98

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	37.86	Pk	32.4	-24.6	45.66	-	-	74	-28.34	166	266	V
2	* 2.484	38.05	Pk	32.4	-24.6	45.85	-	-	74	-28.15	166	266	V
3	* 2.484	27.73	V1TR	32.4	-24.6	35.53	54	-18.47	-	-	166	266	V
4	* 2.484	27.95	V1TR	32.4	-24.6	35.75	54	-18.25	-	-	166	266	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 87 of 98

HARMONICS AND SPURIOUS EMISSIONS

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
1	* 1.311	35.54	PK-U	29.1	-23.1	41.54	-	-	74	-32.46	348	212	Н
	* 1.311	25.16	V1TR	29.1	-23.1	31.16	54	-22.84	-	-	348	212	Н
2	* 4.804	44.99	PK-U	34	-31.1	47.89	-	-	74	-26.11	47	105	Н
	* 4.804	39.34	V1TR	34	-31.1	42.24	54	-11.76	-	-	47	105	Н
3	* 11.657	35.11	PK-U	38.4	-24.8	48.71	-	-	74	-25.29	51	399	Н
	* 11.657	24.45	V1TR	38.4	-24.8	38.05	54	-15.95	-	-	51	399	Н
4	* 1.297	35.87	PK-U	29.2	-23.2	41.87	-	-	74	-32.13	250	375	V
	* 1.297	25.27	V1TR	29.1	-23.2	31.17	54	-22.83	-	-	250	375	V
5	* 4.804	42.59	PK-U	34	-31.1	45.49	-	-	74	-28.51	214	104	V
	* 4.804	35.22	V1TR	34	-31.1	38.12	54	-15.88	-	-	214	104	V
6	* 11.797	35.02	PK-U	38.6	-24.6	49.02	-	-	74	-24.98	134	347	V
	* 11.797	23.97	V1TR	38.6	-24.6	37.97	54	-16.03	-	-	134	347	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 88 of 98

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
1	* 1.301	36.18	PK-U	29.2	-23.2	42.18	-	-	74	-31.82	58	117	Н
	* 1.301	25.78	V1TR	29.2	-23.2	31.78	54	-22.22	-	-	58	117	Н
2	* 4.882	43.2	PK-U	34	-31	46.2	-	-	74	-27.8	338	108	Н
	* 4.882	36.36	V1TR	34	-31	39.36	54	-14.64	-	-	338	108	Н
3	* 7.323	40.08	PK-U	35.5	-27.9	47.68	-	-	74	-26.32	303	107	Н
	* 7.323	31.9	V1TR	35.5	-27.9	39.5	54	-14.5	-	-	303	107	Н
4	* 1.31	35.73	PK-U	29.1	-23.1	41.73	-	-	74	-32.27	184	285	V
	* 1.309	25.24	V1TR	29.1	-23.1	31.24	54	-22.76	-	-	184	285	V
5	* 4.882	41.92	PK-U	34	-31	44.92	-	-	74	-29.08	221	106	V
	* 4.882	33.53	V1TR	34	-31	36.53	54	-17.47	-	-	221	106	V
6	* 7.323	39.06	PK-U	35.5	-27.9	46.66	-	-	74	-27.34	186	112	V
	* 7.323	29.93	V1TR	35.5	-27.9	37.53	54	-16.47	-	-	186	112	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, where: Ton is packet duration

Page 89 of 98

Markers	Frequency	Meter	Det	AT0069	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AF	(dB)	Reading	(dBuV/m)	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)			(dBuV/m)	(dB)			
1	* 1.306	35.9	PK-U	29.1	-23.1	41.9	-	-	74	-32.1	167	317	Н
	* 1.306	25.33	V1TR	29.1	-23.1	31.33	54	-22.67	-	-	167	317	Н
2	* 4.96	46.06	PK-U	34	-31.3	48.76	-	-	74	-25.24	335	127	Н
	* 4.96	39.82	V1TR	34	-31.3	42.52	54	-11.48	-	-	335	127	Н
3	* 11.41	34.74	PK-U	38.2	-24.1	48.84	-	-	74	-25.16	212	153	Н
	* 11.41	24.09	V1TR	38.2	-24.1	38.19	54	-15.81	-	-	212	153	Н
4	* 1.311	36.32	PK-U	29.1	-23.1	42.32	-	-	74	-31.68	83	160	V
	* 1.311	25.16	V1TR	29.1	-23.1	31.16	54	-22.84	-	-	83	160	V
5	* 4.96	43.36	PK-U	34	-31.3	46.06	-	-	74	-27.94	223	104	V
	* 4.96	36.53	V1TR	34	-31.3	39.23	54	-14.77	-	-	223	104	V
6	* 11.397	34.34	PK-U	38.1	-23.9	48.54	-	-	74	-25.46	90	130	V
	* 11.397	23.92	V1TR	38.1	-23.9	38.12	54	-15.88	-	-	90	130	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak V1TR: VB=1/Ton, where: Ton is packet duration

Page 90 of 98

9.3. WORST-CASE

SPURIOUS EMISSIONS 9 kHz TO 30 MHz (WORST-CASE CONFIGURATION)

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (specification distance / test distance).

Although these tests were performed at a test site other than an open area test site, adequate comparison measurements were confirmed against an open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Marker	Frequenc y (MHz)	Meter Reading (dBuV)	Det	AT0079 AF (dB/m)	Cbl (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.209 (projected to 3m)	Margin (dB)	Azimuth (Degs)
1	.01359	45.39	Pk	16.8	.1	62.29	124.94	-62.65	0-360
4	.01407	45.08	Pk	16.6	.1	61.78	124.64	-62.86	0-360
5	.20374	43.43	Pk	10.7	.1	54.23	101.42	-47.19	0-360
2	.21568	43.76	Pk	10.7	.1	54.56	100.93	-46.37	0-360
6	1.86368	24.9	Pk	11	.2	36.1	69.54	-33.44	0-360
3	23.92652	13.45	Pk	9.2	.8	23.45	69.54	-46.09	0-360

Pk - Peak detector

Page 91 of 98

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Marker	Frequency	Meter	Det	AT0074 AF	Cbl/Amp	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	31.1478	29.19	Pk	25.4	-31.8	22.79	40	-17.21	0-360	399	Н
2	184.0174	34.63	Pk	15.7	-30.4	19.93	43.52	-23.59	0-360	198	Н
3	847.1841	31.99	Pk	26.6	-27.6	30.99	46.02	-15.03	0-360	298	Н
4	32.4231	28.2	Pk	24.4	-31.7	20.9	40	-19.1	0-360	102	V
5	186.7806	31.2	Pk	15.8	-30.3	16.7	43.52	-26.82	0-360	102	V
6	806.7789	30.93	Pk	26.2	-27.9	29.23	46.02	-16.79	0-360	199	V

Pk - Peak detector

Page 92 of 98

SPURIOUS EMISSIONS 18 to 26 GHz (WORST-CASE CONFIGURATION)

Markers	Frequency	Meter	Det	AF	Amp/Cbl	Corrected	Average	Margin	Peak	Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0076	(dB)	Reading	Limit	(dB)	Limit	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)				
1	* 18.434	47.81	PK-U	32.7	-40.3	40.21	54	-13.79	74	-33.79	305	292	Н
2	* 21.085	47.37	PK-U	33.2	-39.7	40.87	54	-13.13	74	-33.13	0	300	Н
3	* 22.818	47.42	PK-U	33.7	-39.2	41.92	54	-12.08	74	-32.08	249	241	Н
4	* 18.425	47.5	PK-U	32.7	-40.3	39.9	54	-14.1	74	-34.1	255	323	V
5	* 21.069	47.49	PK-U	33.2	-39.7	40.99	54	-13.01	74	-33.01	221	278	V
6	* 22.794	48.31	PK-U	33.7	-39.2	42.81	54	-11.19	74	-31.19	298	125	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U: Maximum Peak

Page 93 of 98