

Test Type:	Emissions [X] Immunity []
Product Type:	Wireless Earbuds
Product Name/Number:	Model Number(s): 926L (Bud) 438926 (Case/System) FCC ID: A94926L IC: 3232A-926L
Prepared For:	Product Assurance Engineering Department, Bose Corporation
Name of manufacturing agency applying for equipment type approval:	Bose Corporation
Postal Address of manufacturing Agency:	The Mountain Framingham, MA 01701 USA
Test Results:	Pass [X] Fail []
Applicable Standards:	FCC CFR 47 Part 15 Subpart C Industry Canada RSS-247 Issue 2 Industry Canada RSS-GEN Issue 5
Report Number:	EMC.442345.23.222.5

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for model 440108

	Print Name	Signature	Date
Prepared By:	Kenneth Lee	Hentes	10-Aug-2023
Electrical Engineer Review* By:	Bryan Cerqua	Bryon H Cerqua	31-Aug-2023

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Table of Contents

1.	Test Report Summary	3
2.	Test Results Summary	4
3.	Test Standards & Environmental Conditions	5
4.	Lab Accreditations / Registrations	6
5.	On Time & Duty Cycle	7
6.	6 dB and 99% Occupied Bandwidth	8
7.	Conducted Output Power	12
8.	Power Spectral Density	14
9.	Conducted Spurious Emissions	16
10.	Radiated Emissions 1 GHz to 25 GHz	22
11.	Radiated Emissions 30 MHz to 1 GHz	33
12.	AC Line Conducted Emissions	35
13.	Equipment List	38
14.	Measurement Uncertainty	39

1. Test Report Summary

Product Information:

Description

The EUT is a wireless earbud that contains DSS/DTS transceiver IC manufactured by Qualcomm Technologies.

Setup (Cables and Accessories)

For radio tests the radio was configured with Qualcomm Blue Suite software (details provided in SOFTWARE AND FIRMWARE section).

EUT Antenna Description

The antenna is an inverted F antenna with a maximum gain of 1 dBi.

SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was version 0.7.10 for the buds and 0.7.4 for the case. The test utility software used during testing was Blue Suite version 3.3.16.

Scope:

This report covers EMC requirements. FCC CFR 47 PART 15 SUBPART C, Industry Canada RSS-247 Issue 2, and Industry Canada RSS-GEN Issue 5.

All radiated emissions measurements performed using the internal non-removable antenna. The antenna is permanently attached, complies with 15.203.

All conducted RF measurements were done with 3" coaxial cable with SMA connector soldered to pad that leads to the antenna.

Test Objective:

Verify product meets all applicable EMC requirements.

Measurement Methods:

ANSI C63.10 (2013). RSS-Gen Issue 5 (2018)

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards selected in section 2 of this report.

[] does not meet all test standards selected in section 2 of this report.

2. Test Results Summary

	TEST RESULT	
TEST NAME	PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	For reporting only
6 dB Occupied Bandwidth	Pass	
99% Occupied Bandwidth	N/A	For reporting only
Conducted Output Power	Pass	
Power Spectral Density	Pass	
Conducted Spurious Emissions	Pass	
Radiated Emissions 1 to 25 GHz	Pass	
Radiated Emissions 30 to 1000 MHz	Pass	
AC Line Conducted Emissions	Pass	

EUT serial numbers used for this test report:

Conducted RF: Bud – ACBF71403A8B

Radiated Measurements:

Bud - ACB71405826

Conducted AC mains emissions:

Left Bud – ACB7140490E Right Bud – ACB714049AC Case/System – R3174008701879834S1FC10

Note: BLE 1M uses channels between and including 2402 to 2480 MHz which are determined by the Qualcomm Bluetooth IC.

BLE 2M uses channels between and including 2404 to 2478 MHz which are determined by the Qualcomm Bluetooth IC.

3. Test Standards & Environmental Conditions

Test Standards

Emissions:

[X] FCC Part 15C[X] Canada RSS-247[X] Canada RSS-GEN

Environmental Conditions

Ambient: Temperature:	22±4 °C
Humidity:	30-60 % RH
Internal Battery Voltage:	3.7 VDC Nominal

4. Lab Accreditations / Registrations

FCC Test Site Accreditation.

<u>Firm</u> <u>Name</u>	Location	Expiration Date	Accreditation	<u>MRA</u>	Designation Number	<u>Contact</u>	Contact Title	Address	<u>РО</u> <u>Вох</u>	<u>Mail</u> Stop	<u>City</u>	<u>State</u>	Zip Code	<u>Country</u>	<u>Email</u>	Phone	<u>Fax</u>
Bose Corporation	1 New York Avenue, Framingham, MA	07/31/2024	American Association for Laboratory Accreditation	N/A	US1088	Mr. Cable Best	Quality Manager	Mail Stop 450 The Mountain	N/A	450	Framingham	Massachusetts	01701	United States	Cable_Best@bose.com	1 508 766 6137	508 766 1145

Canadian Test Site Registration.

BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2024-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701		RSS-248 (2021-11-19)	A2LA
UNITED STATES			ISO/IEC
			17025:2017
Company Number: 3232A			Expires:
			2024-07-31
Contact:			
Mario Espinal <u>mario_espinal@bose.com</u>			
-			

5. On Time & Duty Cycle

Requirement:

None; for reporting purposes only.

Measurement Method:

KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019 Section 6 b), zero span method.

On time & duty cycle test results:

All testing is done using the maximum packet length for maximum duty cycle shown in the table below.

Frequency (MHz)	Mode	Packet Type	Data Rate (Mbps)	Max Packet Length (Bytes)	On Time (ms)	Period (ms)	Duty Cycle (%)
2402	BLE	LE1M	1	255	2.137	3.126	68.3
2404	BLE	LE2M	2	255	1.083	2.505	43.2

The duty cycle in the above table represents the maximum worst case duty cycle possible using the maximum packet length of 255 bytes. In a normal usage case the duty cycle will be less than what is shown above and will be dependent on packet length but never more than 255 bytes can be used.

6. 6 dB and 99% Occupied Bandwidth

Requirement:

None; 99% occupied bandwidth is for reporting purposes only.

FCC 15.247(a) (2) (DTS BW = 6 dB OBW)

RSS-247 5.2 (a) (6 dB OBW)

6 dB (DTS) occupied bandwidth > 500 kHz

Measurement Method:

ANSI C63.10-2013 Subclause 11.8.1 option 1 (6 dB Bandwidth)

ANSI C63.10-2013 Subclause 6.9.3 (99% Bandwidth)

RSS-Gen Issue 5, 6.7 (6 dB & 99% Bandwidth)

The EUT is connected to a spectrum analyzer, the 10 dB external pad and test cable loss (0.2 dB) is accounted for using the reference level offset feature of the spectrum analyzer. The reference level offset is set to 10.2 dB.

6 dB Occupied Bandwidth Results:

BLE 1M 6dB OBW Summary Table									
Channel	Frequency	Mode	Data Rate	6dB OBW	Limit	Result			
-	(IVIHZ)		(addivi)	(KHZ)	(KHZ)	_			
Low	2402	BLE 1M	1	709	>500	Pass			
Mid	2440	BLE 1M	1	745	>500	Pass			
High	2480	BLE 1M	1	725	>500	Pass			
		BLE 2M 6	dB OBW Summary	/ Table					
Channel	Frequency	Modo	Data Rate	6dB OBW	Limit	Result			
Charmer	(MHz)	Mode	(Mbps)	(kHz)	(kHz)				
Low	2404	BLE 2M	2	1216	>500	Pass			
Mid	2440	BLE 2M	2	1229	>500	Pass			
High	2478	BLE 2M	2	1274	>500	Pass			

6 dB OBW worst-case plots, other frequencies measured the same way. BLE 1M

Date: 3.AUG.2023 11:09:13

BLE 2M

Date: 3.AUG.2023 11:08:12

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

BOSE

99% Occupied bandwidth test results:

BLE 1M 99% OBW Summary Table									
Channel	Frequency	Mode	Data Rate	99% OBW	Limit				
Onarmer	(MHz)	MOUC	(Mbps)	(kHz)	N/A				
Low	2402	BLE 1M	1	1043	-				
Mid	2440	BLE 1M	1	1044	-				
High	2480	BLE 1M	1	1044	-				
		BLE 2M 99% OB\	N Summary Table						
Channel	Frequency	Modo	Data Rate	99% OBW	Limit				
Channel	(MHz)	Mode	(Mbps)	(kHz)	N/A				
Low	2404	BLE 2M	2	2075	-				
Mid	2440	BLE 2M	2	2074	-				
High	2478	BLE 2M	2	2074	-				

99% OBW worst-case plots, other frequencies measured the same way.

BLE 1M – Mid Ch

Date: 3.AUG.2023 11:12:57

3/1/5/5

Date: 3.AUG.2023 11:01:19

Spectrum

7. Conducted Output Power

Requirements:

FCC 15.247 (b) (3)

The maximum peak conducted output power of digital modulation systems operating in the 2400 - 2483.5 MHz band is 1 Watt

RSS-247 5.4 (d)

For DTS devices employing digital modulation techniques operating in the 2400 – 2483.5 MHz band, the maximum peak conducted power shall not exceed 1W. The e.i.r.p shall not exceed 4W, except as provided in section 5.4 (e)

Measurement Method:

ANSI C63.10-2013 Subclause 11.9.1.1

RSS-Gen Issue 5, 6.12

The EUT is connected to a spectrum analyzer, the 10 dB external pad and test cable loss (0.2 dB) is accounted for using the reference level offset feature of the spectrum analyzer. The reference level offset is set to 10.2 dB.

Maximum antenna gain is 1 dBi therefore maximum e.i.r.p will be less than 4W (36 dBm) with the maximum power shown below in the following tables:

Conducted output power Test Results:

DH5 Output Power Summary Table									
Channel	Frequency (MHz)	Mode	Data Rate (Mbps)	Output Power (dBm)	Limit (dBm)	Margin (dBm)	Result		
Low	2402	BLE 1M	1	6.96	21	14.04	Pass		
Mid	2440	BLE 1M	1	7.70	21	13.3	Pass		
High	2480	BLE 1M	1	6.48	21	14.52	Pass		
		3-[DH5 Output Pow	er Summary Table)				
Channel	Frequency (MHz)	Mode	Data Rate (Mbps)	Output Power (dBm)	Limit (dBm)	Margin (dBm)	Result		
Low	2404	BLE 2M	2	6.97	21	14.03	Pass		
Mid	2440	BLE 2M	2	7.71	21	13.29	Pass		
High	2478	BLE 2M	2	6.78	21	14.13	Pass		

Output power worst-case plots, other frequencies measured the same way. BLE 1M

Date: 3.AUG.2023 11:17:20

BLE 2M

Date: 3.AUG.2023 11:19:17

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

8. Power Spectral Density

Requirements:

FCC 15.247 (e)

RSS-247 5.2 (b)

The maximum permissible power spectral density is 8 dBm using 3 kHz resolution bandwidth.

Measurement Method:

ANSI C63.10-2013 Subclause 11.10.2

The EUT is connected to a spectrum analyzer, the 10 dB external pad and test cable loss (0.2 dB) is accounted for using the reference level offset feature of the spectrum analyzer. The reference level offset is set to 10.2 dB.

Power spectral density test results:

	PSD Summary Table										
Channel	Frequency (MHz)	Mode	Data Rate (Mbps)	PSD (dBm)	Limit (dBm)	Margin (dB)	Result				
Low	2402	BLE 1M	1	-9.85	8	17.85	Pass				
Mid	2440	BLE 1M	1	-9.06	8	17.06	Pass				
High	2480	BLE 1M	1	-10.31	8	18.31	Pass				
Low	2404	BLE 2M	2	-12.20	8	20.2	Pass				
Mid	2440	BLE 2M	2	-11.58	8	19.58	Pass				
High	2478	BLE 2M	2	-12.47	8	20.47	Pass				

PSD worst-case plots, other frequencies measured the same way.

BLE 1M

Date: 3.AUG.2023 11:17:04

BLE 2M

Date: 3.AUG.2023 11:19:33

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Form FL300959 Rev 07 BOSE

:///s/=

9. Conducted Spurious Emissions

Requirements:

FCC 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Note: Antenna gain outside of the wanted band was assumed to be zero. The conducted spurious readings are for additional information as the radiated readings take precedence.

Measurement Method:

ANSI C63.10-2013 Subclause 11.11.3

The EUT was tested at the maximum power setting for each mode.

Note analyzer marker search limit featured used to block out peak search from finding in band emissions.

The EUT is connected to a spectrum analyzer, the 10 dB external pad and test cable loss (0.2 dB) is accounted for using the reference level offset feature of the spectrum analyzer. The reference level offset is set to 10.2 dB.

Auto sweep mode was used on the spectrum analyzer for the following measurements.

Low Channel Band Edge

Conducted spurious emissions test results:

BLE 1M Spectrum Ref Level 25.00 dBm Offset 10.20 dB 👄 RBW 100 kHz Att 30 dB SWT 10 ms 👜 VBW 300 kHz Mode Sweep ●1Pk Max D2[1] 52.83 dB 20 dBn 2.24900 MHz M1[1] -46.00 dBm 2.4000000 GHz 10 dBm 0 dBm--10 dBm -20 dBm -30 dBm 40 dBm al. 50 HP -60 dBm -70 dBm Span 20.0 MHz CF 2.4 GHz 10000 pts 08/03/2023 11:23:57 AM Measuring...

Date: 3.AUG.2023 11:23:57

Emissions are more than 20 dBc, pass.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

High Channel Band Edge BLE 1M

Date: 3.AUG.2023 11:23:13

BLE 2M

Emissions are more than 20 dBc, pass.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

				BLE 1M – L	ow Ch		
Spect	rum						
Ref Le	vel 2	5.00 dBn	n Offset 10.20 dB	🖷 RBW 100 kHz			,
Att		30 di	3 SWT 250 ms	👄 VBW 300 kHz	Mode Sweep		
1Pk M	ах						
20 dBm					M1[1]		6.40 dBm
	641						2.40340 GHz
10 dBm	T				M2[1]		-46.72 dBm
) dBm–						- I I	4.00400 GHZ
-10 dBn	л <u>—</u> п	1 -13.60					
20 dBn	n						
30 dBn	1						
						estas	
-40 dBn	n	, r	M2	M4 M5	MIS	M7	
the set	and the	and the second second	President and	and the state of the state	And the second s	and the second second in the second in the second	interesting means interesting
-60 dBn	n						
-70 dBn	-						
Ot ant 0	0.0 M	U-7		10000 pt	-		Stop 25 0 CHz
larkor	0.0 141	12		10000 pt	.5		atup 23.0 GH2
Type	Rof	Tre	Y-value	Y-value	Eunction	Eunction F	Posult
M1		1	2.4034 GHz	6.40 dBm	1 unocion	T unocion 1	(O) dit
M2		1	4.804 GHz	-46.72 dBm			
MЗ		1	7.206 GHz	-49.05 dBm			
M4		1	9.608 GHz	-47.61 dBm			
M5		1	12.01 GHz	-47.49 dBm			
M6		1	14.412 GHz	-46.38 dBm			
M7		1	16.814 GHz	-45.15 dBm			
		1			Measuring		08/03/2023

Date: 3.AUG.2023 11:34:10

BLE 1M – Mid Ch

Spect	rum									
Ref Le	vel 2	5.00 dB	m Offset 10.2	0 dB 🥌 🖡	RBW 100 kHz					
Att		30 d	B SWT 250) ms 🧉 🕻	/BW 300 kHz	Mode 9	Sweep			
●1Pk M	ах									
20 dBm	11					M	7[1]			-46.98 dBn
20 0011										17.08000 GH
10 dBm	ML					M	1[1]			6.38 dBn
	Ī						17	7		2.44090 GH
0 dBm-									_	
-10 dBm	-									
10 000	D	1 -13.6	20 dBm				5			
-20 dBn	n						02			
20 40-										
-30 UBI	1									
-40 dBm	n				ME	ME		147		
		In unte	M2 Manual M3	M		L. D. J. L. L. L. L.	and between the	A the set of the sur	المريس بالبروس الأقريل	مرجه برمانا أو الأقوان ولا
PER PE	the state	- AND				a patrony and a state of		hinds had all the sa	time filmed in the second s	and a second state of the
-60 dBr										
-00 081							37			
-70 dBn	n								_	
CF 12.	515 G	Hz			10000 p	ts	<u>2</u>		Sp	an 24.97 GHz
Marker										
Type	Ref	Trc	X-value		Y-value	Func	tion	F	unction Re	sult
M1		1	2.4409	GHz	6.38 dBm					
M2		1	4.88	GHz	-47.92 dBm					
MЗ		1	7.32	GHz	-49.42 dBm					
M4		1	9.76	GHz	-50.00 dBm					
M5		1	12.2	GHz	-47.37 dBm					
M6		1	14.64	GHz	-46.96 dBm					
M7		1	17.08	GHz	-46.98 dBm					
						Meas	suring			08/03/2023
)				11:37:51 AM

Date: 3.AUG.2023 11:37:52

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5 E/11/5/ E

BLE 1M – High Ch

Spectrum					
Ref Level 2	25.00 dBm	Offset 10.20 dB 👄	RBW 100 kHz		
Att	30 dB	SWI 250 ms 🥃	VBW 300 KHZ	Mode Sweep	
) IPK Max				547[1]	46 E1 dD.
20 dBm				M/[1]	-40.31 UBF
				M1[1]	5.24 dBr
to abiii					2.48080 GH
) dBm					
-10 dBm					
	01 -14.76	0 dBm			
20 dBm					
-30 dBm					
oo abiii					
-40 dBm		M2 MB	Ma MS	Mo	M
and a first party of the second	A DE LA D	Superinter whater what	and shared the sub-	and the state of the second states	ومرجلي المدانل المستحدين بالمحاص المجامعات المحاج المتعالي العريا
-60 dBm					
70 dBm					
			10000	5	
CF 12.515 (iHz		10000 pt	s	Span 24.97 GHz
larker	1 Tue 1	V uslue	V	Function	Function Desult
M1 M1	1	2 4000 CU-2	F 24 dBm	Function	Function Result
M2	1	4.96 GHz	-47.78 dBm		
M3	1	7.44 GHz	-47.46 dBm		
M4	1	9.92 GHz	-48.71 dBm		
M5	1	12.4 GHz	-47.79 dBm		
M6	1	14.88 GHz	-47.76 dBm		
M7	1	17.36 GHz	-46.51 dBm		
11	1			Measuring	08/03/2023

Date: 3.AUG.2023 11:40:57

BLE 2M – Low Ch

Spect	rum						
Ref Le Att	vel 2	5.00 dBm 30 dB	Offset 10.20 dB SWT 250 ms	 RBW 100 kHz VBW 300 kHz 	Mode Sweep		
🖯 1Pk M	ах						
20 dBm					M7[1]		-45.94 dBm
							16.82800 GHz
10 dBm	MI				M1[1]		5.43 dBm
0 dBm—					1		2.40340 GHz
o abiii							
-10 dBm							
-20 dBm	D	1 -14.57	D dBm				
-30 dBm	۱ <u> </u>						
-40 dBm		N	13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	M4 IVIS	M6	1017	
-60 dBm							
-70 dBm	1						
CE 12.	515 G	Hz		10000 n	ts		Snan 24.97 GHz
larker				10000 P			opan 2 nor and
Type	Ref	Trc	X-value	Y-value	Function	l Fu	nction Result
M1		1	2.4034 GHz	5.43 dBm			iono in the bank
M2		1	4.808 GHz	-48.25 dBm			
MЗ		1	7.212 GHz	-50.11 dBm			
M4		1	9.616 GHz	-48.43 dBm			
M5		1	12.02 GHz	-46.45 dBm			
M6		1	14.424 GHz	-47.51 dBm			
M7		1	16.828 GHz	-45.94 dBm			
	1)[]) Measuring.		08/03/2023 11:44:18 AM

Date: 3.AUG.2023 11:44:18

://///E

Date: 3.AUG.2023 11:36:26

BLE 2M – High Ch

Spectri	um											
Ref Lev	el 25	5.00 dBm	Offset 10.	.20 dB 🦷	RBW 100	kHz						
ALL 10k Mar		30 aB	SWI 2	50 ms 🍯	VBW 300	KHZ	Mode S	weep				
IFK Ma	<u> </u>		т т				M	7[1]				-47 68 dBr
20 dBm—								1-1			17	7.34600 GH
i0 dBm—	MI						M1	[1]				5.81 dBr
	1										2	2.47830 GH
I dBm—					-	-			-			
10 dBm-												
to ubiii	DI	1 -14.190	dBm						_			
20 dBm-	-	×										
30 aBm-												
40 dBm-							100					
		IVI LINA CALL	E Market ME		M#	M5	الم الم الم	NIN ALA	Million	-	والمحاجم والمحاجم	A MARINA AND AND A
PO GROW	- International	and the second second second									Base, and all the de	
60 dBm-												
oo ubiii-	2							52				
70 dBm-	-					_			_			-
CF 12.5	15 Gł	Hz	1		10	000 pt	s	8.			Span	24.97 GHz
larker												
Type	Ref	Trc	X-value		Y-value	.	Funct	ion		Funct	ion Resu	lt
M1		1	2.478	3 GHz	5.81	dBm						
M2		1	4.95	6 GHz	-47.79	dBm						
MЗ		1	7.43	84 GHz	-47.92	dBm						
M4		1	9.91	2 GHz	-48.94	dBm						
M5		1	12.3	39 GHz	-48.56	dBm						
M6		1	14.86	68 GHz	-46.43	dBm						
M7		1	17.34	H6 GHz	-47.68	dBm						
Contraction of the local division of the loc	-	1				~				_		

Date: 3.AUG.2023 11:42:32

Emissions are more than 20 dBc, pass.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5 :///s/=

10. Radiated Emissions 1 GHz to 25 GHz

Requirement:

FCC 15.205, 15.209, 15.247 (d), RSS-GEN Clause 8.9 (Transmitter)

Measurement Method:

ANSI C63.10-2013 11.12 (Emissions in restricted bands) 11.12.2.5.3 (Reduced VBW averaging across on and off times using trace max hold, D< 98%) RSS-Gen 6.13

Reduced video bandwidth method used for making average measurements for lower and upper adjacent restricted bands using a peak detector. Trace max hold was left running for several minutes to allow meeting the 50x(1/D) trace requirement.

Note: The procedure listed in ANSI C63.10-2013 footnote **23** on page 28 was used to demonstrate that the proper analyzer settings were used for an average measurement using reduced video bandwidth method. The result was -6 dB different between peak using VBW = 3 MHz and average using VBW = 1 Hz. The below table shows the minimum VBW allowed based on the $1/T_{on}$

Frequency (MHz)	Mode	Packet Type	Data Rate (Mbps)	Max Packet Length (Bytes)	On Time (ms)	Period (ms)	Duty Cycle (%)	1/T _{on} (Hz)
-	BLE	LE1M	1	255	2.137	3.126	68.3	468
-	BLE	LE2M	2	255	1.083	2.505	43.2	924

The VBW must be above 468 Hz to prove compliance for BLE 1M and 924Hz to prove compliance for BLE 2M.

For radiated emissions above 1 GHz the EUT is positioned 1.5m off the ground plane.

The EUT was tested in three orientations per ANSI C63.10 6.3.1.

The EUT was tested at the maximum power setting for each mode.

For emissions other than the lower and upper adjacent restricted bands a 2.4 GHz notch filter is used between the measurement horn antenna and measurement preamp to prevent overload to the preamp due to the EUT fundamental. The restricted band edge measurement is done using high dynamic range preamp.

Reference: ANSI C63.10 6.6.4.1:

Install an appropriate filter at the input of the measurement system power amplifier. This filter shall attenuate the fundamental emission of the EUT and allow an accurate measurement of the associated harmonics and spurious emissions. The filter shall be characterized, and any attenuation/loss factors shall be accounted for in the measurement results.

EUT was evaluated in 3 orthogonal axis with X-Axis orientation being worst case showing the highest emissions.

Radiated emission measurements performed using both horizontal and vertical measurement antenna polarizations with worst case highest emission being with **horizontal** antenna polarization.

Spectrum analyzer auto sweep mode used on the following plots.

Radiated emissions 1 GHz to 25 GHz test results:

Date: 7.AUG.2023 12:52:34

Peak emissions below Average limit

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 7.AUG.2023 12:30:34

Upper restricted band: BLE 1M (2480 MHz) - VBW Average (50kHz VBW used)

Date: 7.AUG.2023 12:31:53

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 7.AUG.2023 12:36:51

Upper restricted band; BLE 2M (2478 MHz) – VBW Average (200kHz VBW used)

Date: 7.AUG.2023 12:37:47

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Radiated emissions 1 GHz to 18 GHz

Blue trace is peak detector; black trace is average detector. (30,000 sweep points) Measurement noise floor more than 6 dB below the respective limits.

Date: 8.AUG.2023 07:53:40

BLE 1M – Mid Channel (2440 MHz)

Date: 8.AUG.2023 07:57:36

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 8.AUG.2023 08:00:47

Date: 8.AUG.2023 08:04:27

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 8.AUG.2023 08:07:49

Date: 8.AUG.2023 08:11:12

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Radiated emissions 18 GHz to 25 GHz at 30 centimeter distance.

Distance is 30cm (0.3 meters), Limit lines settings based on scaling of 20Log(D1/D2) = 20Log(3m/.3) = 20Log(10) = 20 dBPeak limit = 74 + 20 = 94 dBuV/m (Display line 1)

Average limit = 54 + 20 = 74 dBuV/m (Display line 2)

As no emissions were detected in this range, the below plots are combined Vertical and Horizontal antenna polarizations. Blue trace is Peak detection and the Black trace is average detection.

Date: 8.AUG.2023 11:50:15

Date: 8.AUG.2023 11:50:50

Date: 8.AUG.2023 11:51:45

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 8.AUG.2023 11:52:28

Date: 8.AUG.2023 11:53:21

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5

Date: 8.AUG.2023 11:54:19

All Peak Emissions measured are below the average limit.

11. Radiated Emissions 30 MHz to 1 GHz

Requirement:

FCC 15.205, 15.209 RSS-Gen Clause 8.9

Measurement Method:

ANSI C63.10-2013 Subclause 6.5

EUT on wooden table 80cm off ground plane. EUT was evaluated in 3 orthogonal axis with no difference between orientations.

Radiated emissions below 1 GHz test results:

The EUT was tested while in the X, Y and Z Axis transmitting at the Lowest, Middle and Highest channel of operation. All measurements were the same throughout (Noise Floor) and the worst-case plot is displayed below for reference.

Date: 9.AUG.2023 07:53:14

Date: 9.AUG.2023 07:14:17

Peak emissions are more than 10 dB below the limits.

12. AC Line Conducted Emissions

Requirement:

FCC 15.207 (a)

RSS-Gen 8.8

Measurement Method:

ANSI C63.10-2013 Subclause 6.2

EUT on wooden table 80cm off ground plane.

AC Line conducted emissions test results:

The EUT is not able to use BT or QHS technologies while charging, only BLE pairing is available while in the charging case and only the charging case connects to the AC Mains. The EUT was tested with the buds in the charging case and the BLE advertising active.

Date: 9.AUG.2023 09:20:41

	FCC 15B and CISPR 32 Class B Product										
Mk	Frequency	MEA	SURED	LI	MIT	MARGIN					
#	MHz	dBµV QP	dBµV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	Notes			
1	0.6585	31.30	22.20	56.0	46.0	24.7	23.8				
2	0.6698	31.40	22.10	56.0	46.0	24.6	23.9				
3	4.5060	31.60	19.60	56.0	46.0	24.4	26.4				
4	4.5218	31.50	19.60	56.0	46.0	24.5	26.4				
5	2.4315	22.70	12.30	56.0	46.0	33.3	33.7				
6	0.8340	21.90	11.90	56.0	46.0	34.1	34.1				
7	0.8340	21.90	11.90	56.0	46.0	34.1	34.1				
8	1.7970	21.20	11.60	56.0	46.0	34.8	34.4				
9	1.3358	21.50	10.40	56.0	46.0	34.5	35.6				
10	1.2075	19.80	10.60	56.0	46.0	36.2	35.4				
11	0.1523	29.30	16.00	65.9	55.9	36.6	39.9				
12	0.1748	28.00	15.20	64.7	54.7	36.7	39.5				

Date: 9.AUG.2023 09:19:20

	FCC 15B and CISPR 32 Class B Product											
Mk	Frequency	MEAS	SURED	RED LIMIT			RGIN					
#	MHz	dBµV QP	dBµV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	Notes				
1	0.6698	32.70	24.60	56.0	46.0	23.3	21.4					
2	0.6653	32.70	24.50	56.0	46.0	23.3	21.5					
3	4.4835	32.40	21.10	56.0	46.0	23.6	24.9					
4	4.4363	32.20	21.10	56.0	46.0	23.8	24.9					
5	0.8340	23.00	14.20	56.0	46.0	33.0	31.8					
6	0.8340	23.00	14.20	56.0	46.0	33.0	31.8					
7	2.3370	23.40	14.00	56.0	46.0	32.6	32.0					
8	1.7970	22.70	13.40	56.0	46.0	33.3	32.6					
9	1.3335	22.70	12.60	56.0	46.0	33.3	33.4					
10	1.2120	21.20	12.70	56.0	46.0	34.8	33.3					
11	0.1523	29.80	20.70	65.9	55.9	36.1	35.2					
12	0.1703	28.80	19.70	64.9	54.9	36.1	35.2					

13. Equipment List

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2247	EMI Test Receiver, 7GHZ	ESR7	101263	Rohde & Schwarz	21-Mar-2023	20-Mar-2024		
2236	2-LINE V-NETWORK	ENV216	101193	Rohde & Schwarz	29-Mar-2022	28-Mar-2024		
1380	Conducted Comb Generator	CGC-510	311559	Com-Power Corporation			11-Jul-2023	10-Jul-2024
1375	System Controller	SC99V	050905-1	Sunol Sciences Corp				
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	29-Mar-2023	28-Mar-2024		
644	Maxwell House 3 Meter Semi-Anechoic Chamber	N/A	1698A	EM Test			VBU	Verified
1541	Antenna 30MHz - 6GHz	JB6	A050807	Sunol Sciences Corp	14-Dec-2021	14-Dec-2023		
2077	Maxwell House RE Pre- amp (20MHz-3GHz)	N/A	N/A	Bose Corporation			01-Sep-2022	01-Sep-2023
1445	Maxwell House Radiated Emissions Cable Set (10MHz- 6GHz)	N/A	N/A	Bose Corporation			01-Sep-2022	01-Sep-2023
2602	Miteq pre-amp 1- 18GHz 35dB	AFS42-01001800- 28-10P-42	N/A	Miteq			06-Jul-2023	05-Jul-2024
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar-2023	19-Mar-2024		
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics			28-Mar-2023	27-Mar-2024
2342	2.4GHz Band Reject Filter	BRM50702-07	001	Micro-Tronics			28-Mar-2023	27-Mar-2024
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	N/A	AP Americas			12-Jul-2023	
1757	18GHz-40GHz Preamp	JS4018004000-30- 8P-A1	1406279	Miteq			12-Jul-2023	11-Jul-2024
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research			VBU	Verified
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2023	23-Feb-2025		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024
2408	Signal and Spectrum Analyzer	FSV40	101414	Rohde & Schwarz	23-Mar-2023	22-Mar-2024		
3724	Conducted Emission Cable	RG223 N- Connectors 16'					VBU	Verified

14. Measurement Uncertainty

AC Mains conducted emissions uncertainty.

Uncertainty Budget (AC mains measurments)										
Title:	Conducted	RF Emissions	s (Mains)							
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)						
Receiver - absolute level	0.3	Rect.	1.73	0.17						
Receiver - frequency response	1.0	Rect.	1.73	0.58						
Receiver - attenuator switching	0.2	Rect.	1.73	0.12						
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12						
Receiver - display	0.5	Rect.	1.73	0.29						
LISN impedance	2.6	Triang.	2.45	1.06						
LISN insertion loss	0.6	Norm.	2.00	0.30						
Cable correction factor	0.1	Norm.	2.00	0.05						
	Combined uncertainty (RSS): 1.30									
	Co	verage factor ((2 sigma):	2.00						
Ext	Extended uncertainty (95% confidence): 2.60									

Radiated emissions above 1 GHz

Uncertainty Budget				
Title:	Radiated E	missions abov	e 1 GHz	
Source of Uncertainty	Value units:+/- dB	Distribution	Divisor	Uncertainty (± dB)
RF spec anal-level-Ref.	0.6	Rect.	1.73	0.35
RF spec anal-level-Freq resp.	1.0	Rect.	1.73	0.58
RF spec anal-level-Display	0.3	Rect.	1.73	0.17
RF spec anal-level-QP det.	1.0	Rect.	1.73	0.58
Antenna factor	0.9	Norm.	2.00	0.45
Preamp corr. Factor	0.5	Rect.	1.73	0.29
Cable corr. Factor	0.5	Rect.	1.73	0.29
Combined uncertainty (RSS):				1.09
Coverage factor (2 sigma):				2.00
Extended uncertainty (95% cor	nfidence):			2.18

Radiated emission uncertainty (30 MHz – 1 GHz)

Uncertainty Budget							
Title:	Radiated RF Emissions (30MHz-1GHz)						
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)			
Receiver - absolute level	0.3	Rect.	1.73	0.17			
Receiver - frequency response	0.8	Rect.	1.73	0.46			
Receiver - attenuator switching	0.2	Rect.	1.73	0.12			
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12			
Receiver - display	0.5	Rect.	1.73	0.29			
Antenna factor	0.8	Norm.	2.00	0.38			
Antenna directivity	1.0	Norm.	2.00	0.50			
Preamp correction factor	0.5	Norm.	2.00	0.25			
Cable correction factor	0.5	Norm.	2.00	0.25			
Site imperfection - NSA	4.0	Triang.	2.45	1.63			
Test table impact	1.1	Rect.	1.73	0.64			
	1.98						
	2.00						
Exte	3.97						

Conducted RF measurements

Uncertainty Budget							
Title:	Condu						
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty			
	units:± dB			(± dB)			
Analyzer - absolute level	0.3	Rect.	1.73	0.17			
Analyzer - frequency response	0.5	Rect.	1.73	0.29			
Analyzer - attenuator switching	0.2	Rect.	1.73	0.12			
Analyzer - bandwidth switching	0.2	Rect.	1.73	0.12			
Analyzer - display	0.5	Rect.	1.73	0.29			
Cable correction factor	0.5	Norm.	2.00	0.25			
Combined uncertainty (RSS):							
Coverage factor (2 sigma):							
Extended uncertainty (95% confidence):							

End of Report

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.442345.23.222.5