ACCREDITED	
Certificate # 1514.	1

_BOSE

Certificate # 1514.1	
Test Type:	Emissions
Product Type:	Wireless Earbud
Product Name/Number:	Model 911R
	A94911R 3232A-911R
Prepared For:	Product Assurance Engineering Department Bose Corporation
Name of manufacturing agency applying for equipment type approval	Bose Corporation
Postal Address of manufacturing Agency	
Test Results:	Pass
Applicable Standards:	FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5
Report Number:	EMC.435911.22.207.1(4)
General Comments/Special Test Condi This report relates only to the items test Enter product and any special modification	ted. This report covers EMC marking requirements for

 Print Name
 Signature
 Date

 Prepared By:
 Michael A. Royer
 Michael O. Royer
 September 5, 2022

 Electrical Engineer Review* By:
 Bryan Cerqua
 Bryan Cerqua
 Bryan H Grqua
 September 5, 2022

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements.

_805e

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
Test Results Summary	4
Environmental Conditions	4
FCC Test Site Accreditation:	4
Canadian Test Site Registration:	5
RF Conducted Measurements	
On Time and Duty Cycle	6
99% Occupied Bandwidth	9
20dB Occupied Bandwidth	12
Hopping Frequency Separation	
Number of Hopping Channels	17
Average Time of Occupancy	
Output Power	22
Conducted Spurious Emissions	25
RF Radiated Emissions 30MHz -1GHz	29
Radiated Spurious Emissions 1-25GHz	33
Radiated Band Edge	44

_805E	

Test Report Summary

Product Information:

Description

Truly Wireless In Ear (TWIE) earbud. The bud uses Bluetooth classic (BT) Bluetooth Low Energy (BLE), and Qualcomm High Speed (QHS). The QHS is used for bud-to-bud communications. The role of master/puppet can be changed to best meet radio link conditions during operation. The unit is not supplied with an AC to USB adapter. The antenna is an inverted F with a maximum gain of 1dBi formed by Laser Direct Sequence on the inside of the top cover of the earbud.

EUT Condition

Product was as built in the factory. And for the conducted measurements the antenna was removed, and coaxial cable was installed in its place. Where necessary USB debug wires were added to allow control of the Radio. Worst case data rate was determined to be 1Mbps.

Scope:

This report covers EMC requirements. FCC or ISED, FHSS low power transceiver.

Test Objective:

Verify product meets all applicable EMC requirements, in Bluetooth Classic mode.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.): [X] meets all test standards on page 1 of this report.

Test Results Summary

TEST NAME	TEST RESULT PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	
99% Occupied Bandwidth	N/A	
20dB Occupied Bandwidth	Pass	
Hopping Frequency Separation	Pass	
Number of Hopping Channels	Pass	
Average Time of Occupancy	Pass	
Output Power	Pass	
Conducted Spurious Emissions	Pass	
RF Conducted Emissions – AC Mains	N/A	Does not transmit while charging.
RF Radiated Emissions 30MHz -1GHz	Pass	
Radiated RF Emissions 1-25GHz	Pass	
Radiated Band Edge	Pass	

Environmental Conditions

Ambient:

Temperature:	22±4°C
Humidity:	30-60%RH
Mains Voltage:	120VAC, 5VDC USB

FCC Test Site Accreditation:

Display Display ExhibitsCorrespo	Display <u>Firm Name</u> Location ondenceScopes	Accreditation MRA Designati Number	ion Expiration Conta Date	t Contact Address P.O. Mail C Title Box Stop	<u>State</u>	Zip Countr		<u>Phone</u> <u>Fax</u> NumberNumber
	1 New York Scopes Bose Avenue, CorporationFraminghan MA	Association	Mr. 07/31/2022 Cable Best	Mail Quality Stop 450 N/A 450 F ManagerThe Mountain	ramingham Massachusett	ts01701 ^{United} States	Cable_Best@bose.com	1 508 508 766 766 6137 1145

Canadian Test Site Registration:

Organization	<u>CAB</u> identifier	Scope/Recognition Date (yyyy-mm-dd)	Expiration (yyyy-mm-dd)
BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2022-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701		RSS-248 (2021-11-19)	A2LA
UNITED STATES			ISO/IEC
			17025:2017
Company Number: 3232A			Expires:
			2022-07-31
Contact:			
Mario Espinal			
mario_espinal@bose.com			

_/	:7	77	7	=
	_	_		_

RF Conducted Measurements

On Time and Duty Cycle

Project number (Integrity):	911R	Build Phase:	C1.5				
Tested by:	Mike Royer		Date: March 22, 2022				
Requirements			Defense and C	ton dond(o).			
Standard(s):			Referenced S	tandard(s):	ANS	SI C62.10:2013-11.6-b	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room	
Test equipment used TN's: 2409							
EUT Serial number(s):	084232M1333A0	084232M1333A069AE					
EUT Software installed:	0.6.16+g302b20e						
EUT Modification(s):	Product was tes	ted as built except the	e antenna was di	sconnected a	and a	coaxial cable was	
	installed.						

Conclusion:

This test is for information only.

Limits:

None; for reporting purposes only.

Procedure:

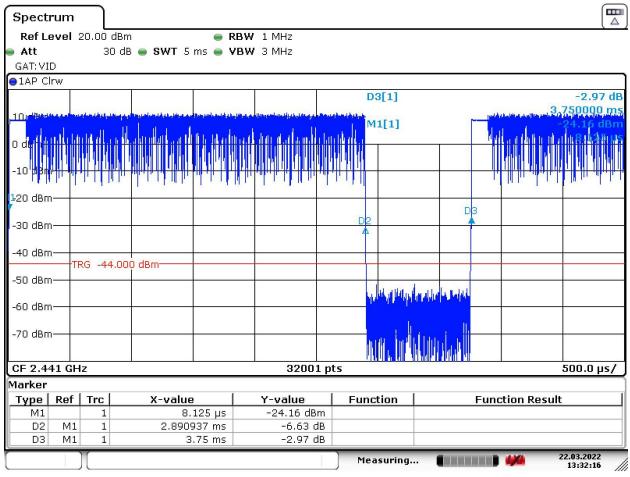
ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

BOSE

Data Collection:

Mode	ON Time (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
Bluetooth DH5	2.883	3.742	.77	77	1.13
Bluetooth 3DH5	2.883	3.742	.77	77	1.13


Spectrum Ref Level 20.00 dB		3W 1 MHz			
	dB 🖷 SWT 5 ms 🖷 VB				
GAT: VID		BH STAR			
1AP Clrw					
			D3[1]	1 <u>1</u>	-4.07 d
10 dBm			M1[1]		-20.46 dBr 8.125 µ
0 dBm					on to p
-10 dBm					
L					
-20 dBm			A	DB	
-30 dBm			-		
-40 dBm					
TRG -44.0	000 dBm				
-50 dBm			and the second	i di cali cali di cali	
-60 dBm			and the ball of the second	MIL MILLION AND	
				hapilahennya	
-70 dBm	0		100	fina and 🕂 🕂	
			1.446.46		
CF 2.441 GHz		32001 pt	ts		500.0 μs/
1arker					
Type Ref Trc	X-value	Y-value	Function	Function	on Result
M1 1	8.125 μs	-20.46 dBm			
D2 M1 1 D3 M1 1	2.890937 ms 3.75 ms	-0.74 dB -4.07 dB			
<u> </u>		1	Measuring		22.03.2022

Date: 22.MAR.2022 13:11:38

DH5

_805E

Date: 22.MAR.2022 13:32:16

3-DH5

_/	:7	77	7	=
	_	-		_

99% Occupied Bandwidth

Project code name:	Marketing name:			Mode	el number	: 911R
Project number (Integrity):	911R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	July 18-19,	2022	
					-	
Requirements Standard(s):			Referenced S	tandard(s):	ANSI C6	3.10:2013-6.9.3
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location: Braun Room			un Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084232M1333A0	69AE				
EUT Software installed:	0.11.2					
EUT Modification(s):	Product was tes installed.	Product was tested as built except the antenna was disconnected and a coaxial cable was installed.				

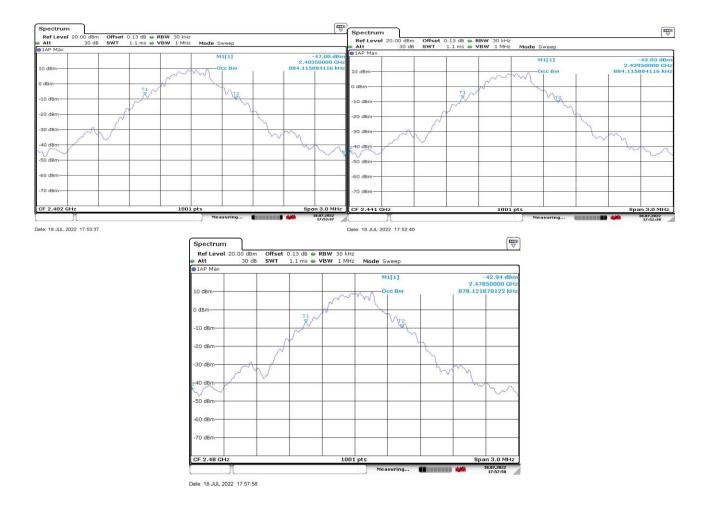
Conclusion:

This test is for information only.

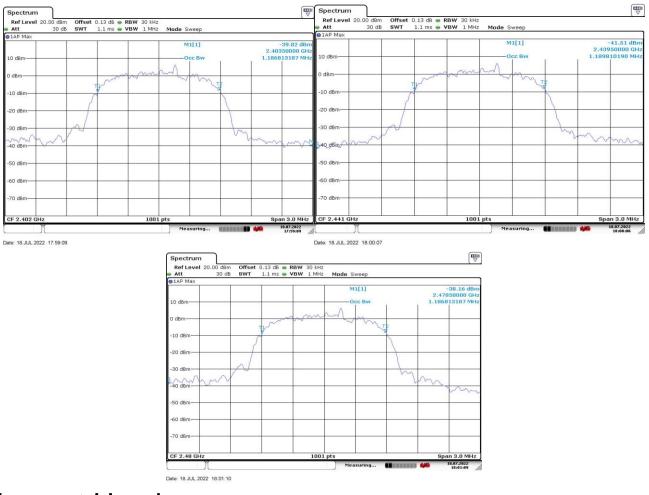
Limits:

None; for reporting purposes only.

Procedure:


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW.

Basic Rate (DH5) Data Collection:


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	0.884
Middle	2441	0.884
High	2480	0.878

Enhanced Data Rate (3DH5) Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.187
Middle	2441	1.190
High	2480	1.187

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

_/	://	47	E

20dB Occupied Bandwidth

Project number (Integrity):	911R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	July 19, 202	22	
Requirements	FCC §15.247 (2		Referenced St	andard(s).		SI 63.10:2013 - 6.9.2
Standard(s):	RSS-247 5.2 (a)	1	Referenced Standard(s): ANSI 63.10:2013		0.0.2010 0.0.2	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084232M1333A069AE					
EUT Software installed:	0.11.2					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.					

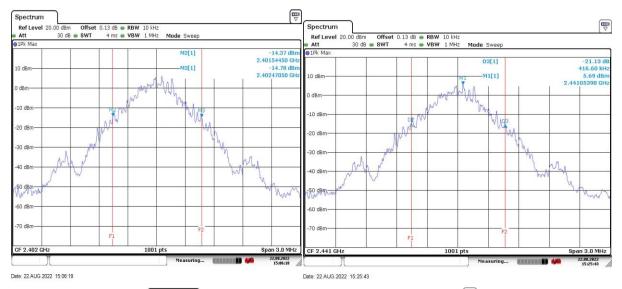
Conclusion:

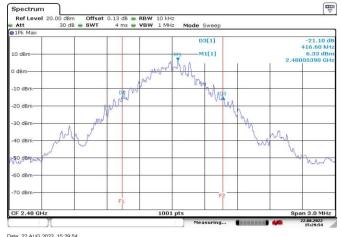
This test is for information only.

Limits:

None; for reporting purposes only.

Procedure:


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 20dB bandwidth. The VBW is set to \geq RBW.



F/TFFE

Basic Rate (DH5) Data Collection:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	0.926
Middle	2441	0.922
High	2480	1.106

Date: 22.AUG.2022 15:29:54

BOSE

Enhanced Data Rate (3DH5) Data Collection:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	1.303
Middle	2441	1.303
High	2480	1.303

Ref Level 20.00 dBm Offset 0.13 dB
 RBW 30 kHz
SWT 1.1 ms
 VBW 100 kHz Att 30 dB Mode Swee M1[1] 6.35 d 2.48015980 0 10 dB 20.00 X Bw QI 1903 dB -10 dBm 20 dB 30 dBr 40 dBn 50 dBr 60 dBm TO de F 2.48 1001 pt 9.07.2022

Date: 19. JUL. 2022 12:48:25

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

_/	:7	77	7	-
		_	_	

Hopping Frequency Separation

Project number (Integrity):	911R	Build Phase:	C1.5					
Tested by:	Mike Royer	Mike Royer Date: March 22, 2022						
Requirements	FCC 15.247 (a)		Referenced Standard(s):			ANEL CE2 10 2012		
Standard(s):	IC RSS-247 5.1	(b)	Referenced 5	tanuaru(s).	ANSI C63.10-2013			
EUT powered with:	5V USB Temp / Humidity: n/a Test location: E				Braun room			
Test equipment used TN's:	2409							
EUT Serial number(s):	084232M1333A0	084232M1333A069AE						
EUT Software installed:	0.6.16+g302b20e	0.6.16+g302b20e						
EUT Modification(s):	Product was tes	ted as built except the	e antenna was di	sconnected a	and a	coaxial cable was		
	installed.							

Conclusion:

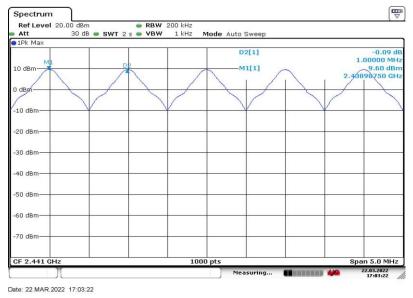
Hopping frequencies are separated by 1MHz which is more than the required minimum of 25kHz and more than 2/3 of the 20dB bandwidth of the hopping channel which would be 869 kHz.

Limits:

FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024



Data Collection:

DH5 hopping

Date: 22.MAR.2022 17:23:52

3-DH5 hopping

_/	:7	77	7	=
	_	_		

Number of Hopping Channels

Project number (Integrity):	911R	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	March 22, 2	022			
Requirements	FCC 15.247 (a)	(1) (iii)	Deferenced S	tondord(c)	ANSI 062 10 2012			
Standard(s):	IC RSS-247 5.1	(d)	Referenced Standard(s):		ANSI C63.10-2013			
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion: Braun Room			
Test equipment used TN's:	2409							
EUT Serial number(s):	084232M1333A0	69AE						
EUT Software installed:	0.6.16+g302b20e	D.6.16+g302b20e						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.							

Conclusion:

Bose Model 911R uses 79 hopping channels in normal operation and always uses at least 20, both of which are more than the required 15.

Limits:

FCC 15.247 (a) (1) (iii), IC RSS-247 5.1 (d) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

Data Collection:

Spectrum	ı)										₽
Ref Level				X		500 kHz					
🔵 Att	30	dB 🧉	SWT	2 s (VBW	500 kHz 🛛 🖡	Mode Auto :	Sweep			
😑 1Pk Max											
101200000		νıγ	INNNY	תרמו	499090	hurundun	and bound the		ananana	ממממחמ	huouu
O dBm											
-10 dBm											
-30 dBm		_									
-40 dBm											
-50 dBm											
-60 dBm											
Start 2.4 G	Hz					100) pts			Stor	2.482 GHz
	1					1000		suring			22.03.2022 18:15:42

Date: 22.MAR.2022 18:15:42

79 hopping channels active DH5

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

_/	:7	77	77	E
				_

Average Time of Occupancy

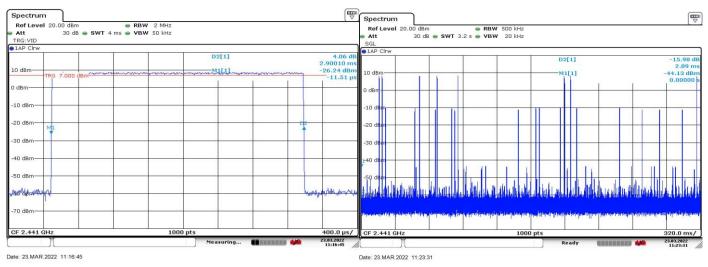
Project number (Integrity):	911R	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	March 23, 2	March 23, 2022			
Requirements	FCC 15.247 (a)		Referenced Standard(s): AN			SI C63.10-2013		
Standard(s):	IC RSS-247 5.1	(d)	Referenced Standard(S)		ANGI C03.10-2013			
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	st location: Braun Room			
Test equipment used TN's:	2409							
EUT Serial number(s):	084232M1333A0	69AE						
EUT Software installed:	0.6.16+g302b20e	0.6.16+g302b20e						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.							

Conclusion:

The highest time of occupancy in any mode is 318 mS which meets the 400mS limit by 82mS.

Limit:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.



_/	:7	77	7.	_

Data Collection:

Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 3.16 S	Number of pulses in 31.6 S (X 10)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
2441	DH5	2.890	11	110	318	400	82	Pass
2441	2-DH5	2.890	10	100	289	400	111	Pass
2441	3-DH5	2.890	8	80	232	400	168	Pass
iD dBm			2.90010 n -17.61 dB	dB 1AP Cirw m 10 dBn 0 dBm	02[1]		2.89	ims IBm
			De	-10 dB m				
				— _40 dBm 1 — _50 dBm фе				
	1000 pts		400.0 µs,	and the second second second second	ésvetszeleszterentistelesszintegésztek jetésztesztépszeneteszt 1000 pts	en an	320.0 m	
	(MHz) 2441 2441 2441	(MHz) Mode 2441 DH5 2441 2-DH5 2441 3-DH5 2441 3-DH5	Frequency (MHz) Mode Width (mS) 2441 DH5 2.890 2441 2-DH5 2.890 2441 3-DH5 2.890 26 = SWT 4 ms = VBW 50 kHz MI[1] 0 MI[1] MI[1] 0 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 11 1 1 1 1 12 1 1 1 1 13 1 1 1 1 14 1 1 1 1 1 14 1 1 1 1 1 14 1 <td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S 2441 DH5 2.890 11 2441 2-DH5 2.890 10 2441 3-DH5 2.890 8 2441 3-DH5 2.890 8 Image: BWT + ms + VBW 50 Hz 20000 r -0.54+ -11.51 D0 dbm M1(1) -0.54+ -11.51 D0 dbm M1(1) -12.61 db -13.51 D0 dbm M1(1) -13.61 db -13.61 db -1</td> <td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 31.6 S pulses in 31.6 S 2441 DH5 2.890 11 110 2441 2-DH5 2.890 10 100 2441 3-DH5 2.890 10 100 2441 3-DH5 2.890 8 80 """"""""""""""""""""""""""""""""""</td> <td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) 2441 DH5 2.890 11 110 318 2441 2-DH5 2.890 10 100 289 2441 3-DH5 2.890 8 80 232 ************************************</td> <td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) (mS) Limit (mS) 2441 DH5 2.890 11 110 318 400 2441 2-DH5 2.890 10 100 289 400 2441 3-DH5 2.890 8 80 232 400 2441 3-DH5 2.890 8 80 232 400 264 3-DH5 2.890 10 100 289 400 264 3-DH5 2.890 8 80 232 400 56.<!--</td--><td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) Limit (mS) Margin (mS) 2441 DH5 2.890 11 110 318 400 82 2441 2-DH5 2.890 10 100 289 400 111 2441 3-DH5 2.890 8 80 232 400 168 0 9 8 80 232 400 168 0 9 9 9 9 9 10 100 289 400 168 0 9 9 10 100 289 400 168 0 9</td></td>	Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S 2441 DH5 2.890 11 2441 2-DH5 2.890 10 2441 3-DH5 2.890 8 2441 3-DH5 2.890 8 Image: BWT + ms + VBW 50 Hz 20000 r -0.54+ -11.51 D0 dbm M1(1) -0.54+ -11.51 D0 dbm M1(1) -12.61 db -13.51 D0 dbm M1(1) -13.61 db -13.61 db -1	Frequency (MHz) Mode Pulse Width (mS) of pulses in 31.6 S pulses in 31.6 S 2441 DH5 2.890 11 110 2441 2-DH5 2.890 10 100 2441 3-DH5 2.890 10 100 2441 3-DH5 2.890 8 80 """"""""""""""""""""""""""""""""""	Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) 2441 DH5 2.890 11 110 318 2441 2-DH5 2.890 10 100 289 2441 3-DH5 2.890 8 80 232 ************************************	Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) (mS) Limit (mS) 2441 DH5 2.890 11 110 318 400 2441 2-DH5 2.890 10 100 289 400 2441 3-DH5 2.890 8 80 232 400 2441 3-DH5 2.890 8 80 232 400 264 3-DH5 2.890 10 100 289 400 264 3-DH5 2.890 8 80 232 400 56. </td <td>Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) Limit (mS) Margin (mS) 2441 DH5 2.890 11 110 318 400 82 2441 2-DH5 2.890 10 100 289 400 111 2441 3-DH5 2.890 8 80 232 400 168 0 9 8 80 232 400 168 0 9 9 9 9 9 10 100 289 400 168 0 9 9 10 100 289 400 168 0 9</td>	Frequency (MHz) Mode Pulse Width (mS) of pulses in 3.16 S pulses in 31.6 S (Pulse Width X Number of pulses) Limit (mS) Margin (mS) 2441 DH5 2.890 11 110 318 400 82 2441 2-DH5 2.890 10 100 289 400 111 2441 3-DH5 2.890 8 80 232 400 168 0 9 8 80 232 400 168 0 9 9 9 9 9 10 100 289 400 168 0 9 9 10 100 289 400 168 0 9

DH5

3DH5

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4)

:7	77	7	-
- /			_

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

Output Power

Project number (Integrity):	911R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	June 7, 2022		
				-		
Requirements	FCC 15.247	(b) (3)	Referenced	ANSI 63.10:2013	705	
Standard(s):	RSS-247 5.4	(b)	Standard(s):	ANSI 65.10.2015	- 7.0.3	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test location:	Braun Room	
Test equipment used TN's:	2409					
EUT Serial number(s):	084232M1333	084232M1333A069AE				
EUT Software installed:	0.6.16+g302b20e					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.					

Conclusion:

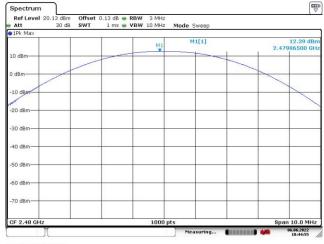
The unit passes output power by 8.2 dB.

Limits:

FCC §15.247 (b) (1)

RSS-247 5.4 (b)

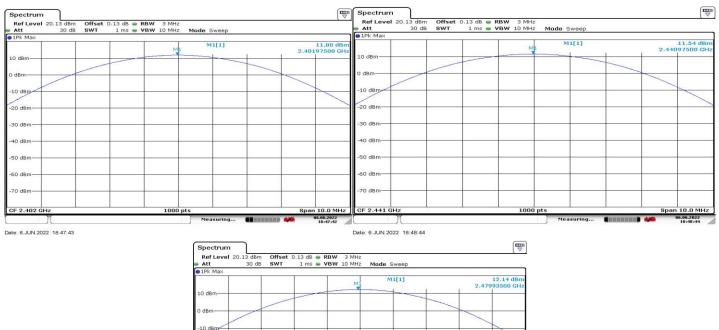
The device maintains a minimum of 20 hopping channels. The limit is 21 dBm.

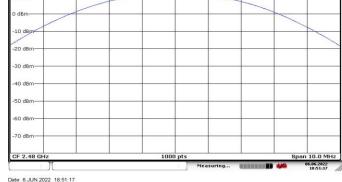


Basic Rate (DH5) Data Collection:

Output Power Summary Table (Basic Rate: 1 Mbps)									
Channel	Frequency (MHz)	Mode	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result		
Low	2402	DH5	12.08	1	21	8.92	Pass		
Middle	2441	DH5	11.72	1	21	9.28	Pass		
High	2480	DH5	12.39	1	21	8.61	Pass		

Date: 6.JUN.2022 18:44:55


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4)



BOSE

Enhanced Data Rate (3DH5) Data Collection:

Output Power Summary Table (Enhanced Rate: 3 Mbps)									
Channel	Frequency	Mode Output Power Directional Gain		Limit	Margin	Result			
Channel	(MHz)	woue	(dBm)	(dBi)	(dB)	(dB)	Result		
Low	2402	3-DH5	11.80	1	21	8.20	Pass		
Middle	2441	3-DH5	11.54	1	21	9.46	Pass		
High	2480	3-DH5	12.14	1	21	8.86	Pass		

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2022	21-Mar-2024

_/	:7	77	7	=
	_			_

Conducted Spurious Emissions

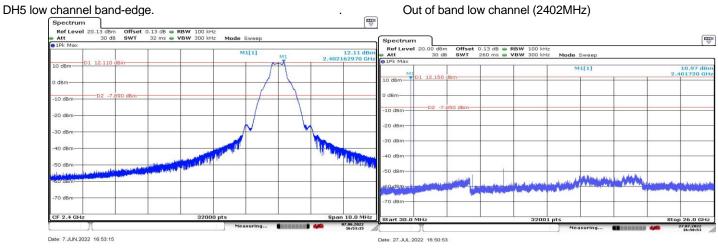
Project number (Integrity):	911R	Build Phase:	C1.5				
Tested by:	Mike Royer		Date: June 7, 2022 and Aug 26, 202			l Aug 26, 2022	
Requirements	FCC §15.247		Poforoncod S	tandard(e).		SI 63.10 (7.8.8)	
Standard(s):	RSS-247 5.5		Referenced Standard(s): ANSI 63.10 (51 03. 10 (7.0.0)	
EUT powered with:	5V USB	Temp / Humidity:	n/a Test locatio		ion:	Braun Room	
Test equipment used TN's:	2409						
EUT Serial number(s):	084232M1333	084232M1333A069AE					
EUT Software installed:	0.6.16+g302b20e						
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was installed.						

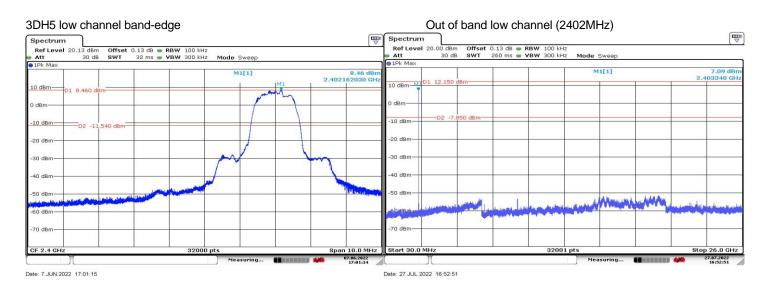
Conclusion:

The Bose Model 911R passes Conducted Spurious Emissions by more than 10dB.

Limits

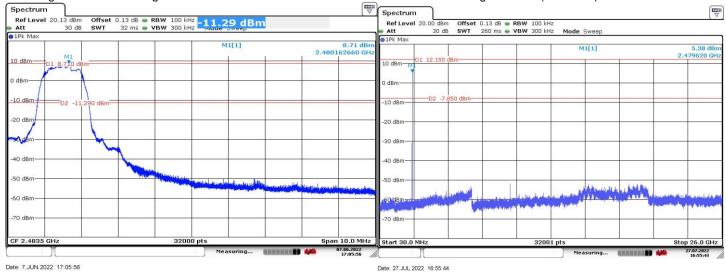
FCC §15.247 (d)

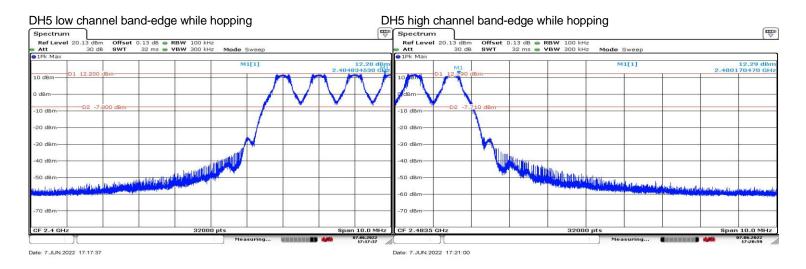

RSS-247 5.5


Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.

BOSE

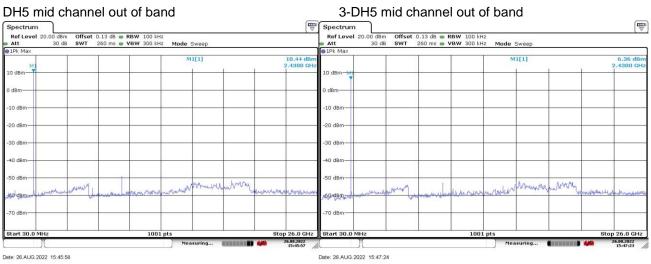
Data Collection:


DH5 high channel band-edge Out of band high channel (2480MHz) -Spectrum Spectrum Ref Level Att Ref Level 20 Att dBn Offset 0.13 dB 🖷 RBW **VBW** 300 kHz Mode Swee Mode Swee SWI 1Pk 12.15 dBn 79620 GH M1[1] 12.40 dBr 2.480160160 GH 10 dB dBr 10 dBr 20 di -50 di 60 d Date: 7 JUN 2022 16:57:19 Date: 27.JUL.2022 16:54:07


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4) Form FL300959 Rev 06 BOSE CONFIDENTIAL

3DH5 high channel band-edge

Out of band high channel (2480MHz)



3DH5 low channel band-edge while hopping 3DH5 high channel band-edge while hopping 1 Spectrum Spectrum Ref Level Att Ref Level 20.13 Att 3 Offset 0.13 dB
 RBW 100 kHz
 SWT 32 ms
 VBW 300 kHz Att
 1Pk Ma Mode Sweep 8.60 dB 2.404161410 G M1[1] 8.28 dBr 0160 GH 2.478 10 dBr dBr -10 dBn -10 d ah ng 20 d 30 de 10 de SO de 10.0 MHz 0.0 M Date: 7.JUN.2022 17:12:01 Date: 7.JUN.2022 17:09:30

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4) Form FL300959 Rev 06 BOSE CONFIDENTIAL

	:7		
_	-1	-7	_

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2012	21-Mar-2022

RF Radiated Emissions 30MHz -1GHz

Test Information:

Project number (Integrity):	435911	Build Phase:	DV				
Tested by:	K Thibodeau		Date:	7/14/2022			
			-				
Requirements Standard(s):	FCC §15.247 (d RSS-247 Sectio		Referenced S	ANSI C63.10-2013			
EUT powered with:		Temp / Humidity:	N/A	Test location: Maxwell House			
Test equipment used TN's:	644,1541,2319,	644,1541,2319,2077,1445,1569					
EUT Serial number(s):	Left: Etched on	Right: Etched on bud:O4-2R SN: 084232M21440096AE Left: Etched on bud:O4-2L SN: 084233M21650042AE Case: 084231M21500145AE					
EUT Software installed:	Right: 0.11.6						
	Left: 0.11.6 Case: 0.11.2						
EUT Modification(s):	None						

Objective/Summary/Conclusion:

EUT meets FCC §15.247 (d) and RSS-247 Section 5.5 requirements with a worst-case passing margin of 20.8dB at 70.985MHz.

Additional EUT Information:

The EUT was tested in a 3m Semi Anechoic Chamber on an insulating turntable 80 cm high.

Test Setup Details:

EUT Emissions levels contained within this report are calculated on the following basis:

Radiated Emission Level (dBµV/m) = EMI Receiver Reading (dBµV) + Antenna Correction Factor (dB/m) – Preamplifier Gain (dB) + Cable Loss (dB)

Data Collection:

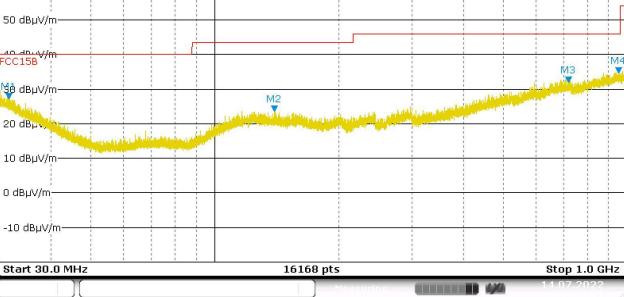
Att

PS TDF ⊖1Pk Max

70 dBµV/m-

60 dBµV/m-

Spectrum


Limit Check

Line FCC15B

DESIGN ASSURANCE ENGINEERING COMPLIANCE **EMC TEST REPORT**

BITHE

₩ Ref Level 80.00 dBµV/m 🖷 RBW (CISPR) 120 kHz 10 dB SWT 133 ms VBW 1 MHz Mode Sweep Input 1 DC 100 MHzPASS PASS ΜЗ and a start of the M2 line and all

Plots are pre-compliance investigative information. Tables contain the compliance data.								
EUT S/N:	See page 1	Power applied: EUT battery	Plot#					
EUT Mods:	None							
EUT Setup:	EUT earbuds playing pink noise from phone. ANR ON.							
Comments:								

	FCC §15.247 (d) RSS-247 Section 5.5 @ 3 Meters										
MK	Emission	Measured	Measured						Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	31.675	19.00	28.60	40.0	N/A	21.0	N/A	0	V	1.00	Noise floor
2	139.046	10.70	21.20	43.5	N/A	32.8	N/A	0	V	1.00	Noise floor
3	720.291	20.50	31.60	46.0	N/A	25.5	N/A	233	V	1.00	Noise floor
4	951.894	22.50	33.70	46.0	N/A	23.5	N/A	360	V	1.00	Noise floor

Limits:

Standard	Freq Range	Limits (dBuV QP	1)	Comments
	(MHz)	Class A	Class B	

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4)

Form FL300959 Rev 06 BOSE CONFIDENTIAL

		10 m	3 m ²	3 m	Measurements above 1 GHz are made using average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC §15.247 (d)	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
	andwidth and De	etector Settings	8:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Dete	ector	
30 – 1000	120	>300	QP		
> 1000	1000	>1000	Pk and AVG		

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
644	Maxwell House 3 Meter Semi- Anechoic Chamber	N/A	1698A	EM Test	N/A	N/A	19-Jan-2022	19-Jan-2024
1541	Antenna 30MHz - 6GHz	JB6	A050807	Sunol Sciences Corp	14-Dec-2021	14-Dec-2023	N/A	N/A
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	17-Mar-2022	17-Mar-2023	N/A	N/A
2077	PreAmplifier	N/A	N/A	Bose Corporation	N/A	N/A	01-Sep-2021	01-Sep-2022
1445	Maxwell House Radiated Emissions Cable Set	N/A	N/A	Bose Corporation	N/A	N/A	01-Sep-2021	01-Sep-2022
1569	Comb Generator 20MHz - 4.5GHz	CG- 520	451016	Com-Power Corporation	N/A	N/A	13-Jul-2022	13-Jul-2023

Uncertainty:

Uncertainty Budget								
Title:	Radiat	ed RF Emissio	ons (30MH	z-1GHz)				
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	0.8	Rect.	1.73	0.46				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
Antenna factor	0.8	Norm.	2.00	0.38				
Antenna directivity	1.0	Norm.	2.00	0.50				
Preamp correction factor	0.5	Norm.	2.00	0.25				
Cable correction factor	0.5	Norm.	2.00	0.25				
Site imperfection - NSA	4.0	Triang.	2.45	1.63				
Test table impact	1.1	Rect.	1.73	0.64				
	Comb	ined uncertair	nty (RSS):	1.98				
	Cov	verage factor (2 sigma):	2.00				
Exte	ended uncert	ainty (95% coi	nfidence):	3.97				

Radiated Spurious Emissions 1-25GHz

Project number (Integrity):	911R	Build Phase:	C.5				
Tested by:	Mike Royer		Date:	June 8-14, 2022 June 21, 2022			
	FCC §15.247 (d) RSS-247 Section 5.5						
Requirements Standard(s):			Referenced Standard(s): AN		ANS	SI C63.10-2013	
EUT powered with:	Battery Temp / Humidity:		N/A	Test locat	ion:	Marconi Manor	
Test equipment used TN's:	1663,2602,2349	1663,2602,2349,1757,1596					
EUT Serial number(s):	084232M2011G099AE						
EUT Software installed:	0.6.18						
EUT Modification(s):	USB Debug wire	es were attached to th	ne earbud to allow	w control of th	ne rac	lio.	

Conclusion:

The Bose model 911R passes radiated emissions from 1-25GHz.

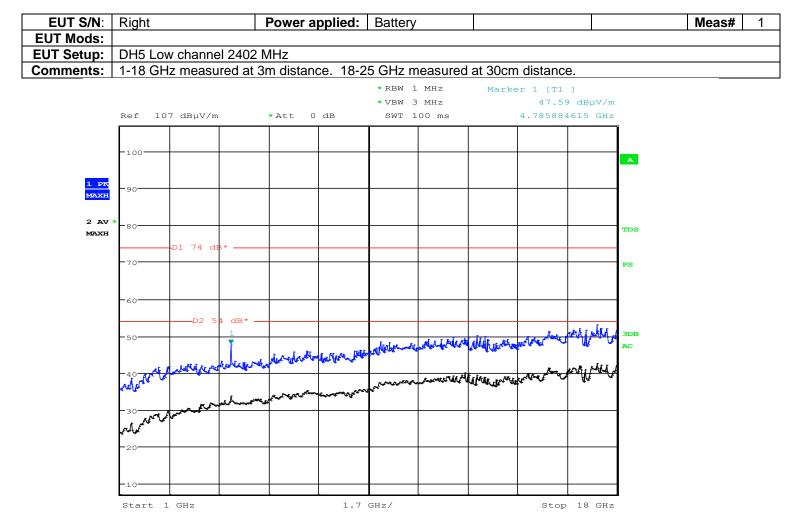
The blue trace is peak mode, the black trace is average detection.

The 2.4 GHz band is notched out with a filter to protect the pre-amplifier from overloading.

1-18 GHz, the worst case peak is 51.6 dBuV/m. The average limit is 54. The margin is 2.4 dB 18-25 GHz the worst case peak is 57.6 dBuV/m. The average limit is 74. The margin is 16.4 dB.

Procedure:

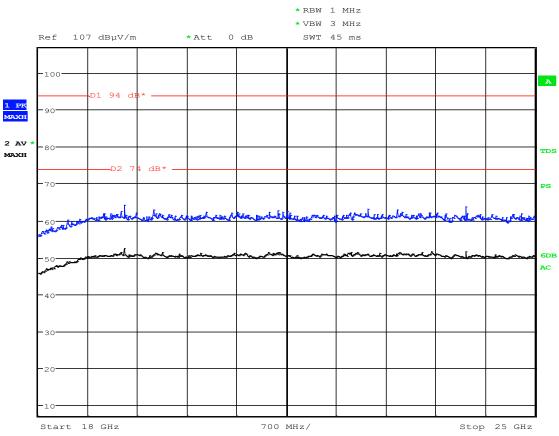
Each mode tested was measured at all 10 Harmonics, at the low, middle, and high transmit frequencies.


Pretesting in 3 axis showed that the worst orientation was a vertical position. The EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

The 2.4 GHz band is notched out with a filter to protect the pre-amplifier from overloading.

BOSE

Data Collection:



Date: 13.JUN.2022 18:02:44

3m Measurement Distance

Date: 21.JUN.2022 16:55:06

30cm Measurement Distance

Limit calculation:

The E field in the far field observes the inverse square law. So that the difference in field strength difference in decibels is;

$$20 \log\left(\frac{D1}{D2}\right) = 20 \log 10 = 20$$

Peak limit of 74 becomes 94 dBuV at 30cm.

Average limit of 54 becomes 74 dBuV at 30cm.

EUT S/N:	continued	Power applied:	Battery			Meas#	1
EUT Mods:							
EUT Setup:	DH5 Low channel 2402 MHz						
Comments:	1-18 GHz measured at	3m distance. 18-2	5 GHz measured	at 30cm distance.			

FCC §15.247 (d), RSS-247 Section 5.5 @ 3 Meters										
Emission	Measured	Measured					Table	Receiving Ant		
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode
4804	41.20	49.50	54.0	74.0	12.8	24.5	151	V	1.7	
7206	30.60	44.00	54.0	74.0	23.4	30.0	0	Н	1.5	noise floor
9608	37.70	48.70	54.0	74.0	16.3	25.3	313	Н	1.7	
12010	34.40	47.10	54.0	74.0	19.6	26.9	0	Н	1.5	noise floor
14412	34.70	47.80	54.0	74.0	19.3	26.2	0	Н	1.5	noise floor
16814	36.10	48.90	54.0	74.0	17.9	25.1	0	Н	1.5	noise floor

FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm										
Emission	Measured	Measured					Table	Receiving Ant		
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode
19216	44.40	57.30	74.0	94.0	29.6	36.7				noise floor
21618	43.20	56.60	74.0	94.0	30.8	37.4				noise floor
24020	42.90	55.90	74.0	94.0	31.1	38.1				noise floor

BITHE

Meas#

2

EUT S/N: Right EUT Mods:

Comments:

Power applied: Battery EUT Setup: DH5 Mid channel 2441 MHz

FCC §15.247 (d), RSS-247 Section 5.5 @ 3 Meters Emission Measured Measured Table **Receiving Ant** Frequency Amplitude Amplitude Limit Limit Margin Margin Azimuth Pol Height (H/V) (MHz) (dBµV/m) (dBµV/m) (dBµV/m) $(dB\mu V/m)$ (dB) (dB) (0° closest (Meters) AVG Peak AVG Peak AVG Peak to ant) Notes/Mode 4882 39.40 47.70 54.0 74.0 14.6 26.3 160 V 1.7 7323 44.50 74.0 22.4 Н 31.60 54.0 29.5 1.5 noise floor 0 9764 40.40 51.60 54.0 74.0 13.6 22.4 -4 Н 1.7 12205 35.20 48.50 54.0 74.0 18.8 25.5 0 Н 1.5 noise floor 47.70 74.0 14646 35.00 54.0 19.0 26.3 0 н 1.5 noise floor 17087 36.80 49.80 54.0 74.0 17.2 24.2 0 н 1.5 noise floor

	FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm												
Emission	Measured	Measured					Table	Rece	eiving Ant				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
19528	43.30	56.20	74.0	94.0	30.7	37.8				noise floor			
21969	43.70	56.70	74.0	94.0	30.3	37.3				noise floor			
24410	43.60	56.80	74.0	94.0	30.4	37.2				noise floor			

BOSE

Meas#

3

	FCC §15.247 (d), RSS-247 Section 5.5 @ 3 Meters												
Emission	Measured	Measured					Table	Receiving Ant					
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
4960	37.00	46.40	54.0	74.0	17.0	27.6	165	V	1.7				
7440	32.00	44.80	54.0	74.0	22.0	29.2	0	Н	1.5	noise floor			
9920	39.70	50.60	54.0	74.0	14.3	23.4	240	Н	1.7				
12400	35.30	48.50	54.0	74.0	18.7	25.5	0	Н	1.5	noise floor			
14880	36.30	49.80	54.0	74.0	17.7	24.2	0	Н	1.5	noise floor			
17360	38.10	50.60	54.0	74.0	15.9	23.4	0	Н	1.5	noise floor			

	FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm												
Emission	Measured	Measured					Table	Rece	iving Ant				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
19840	44.10	57.60	74.0	94.0	29.9	36.4				noise floor			
22320	44.00	57.20	74.0	94.0	30.0	36.8				noise floor			
24800	43.60	56.30	74.0	94.0	30.4	37.7				noise floor			

BOSE

Meas#

4

EUT S/N:RightPower applied:BatteryEUT Mods:EUT Setup:3-DH5 Low channel 2402 MHzComments:

	FCC §15.247 (d), RSS-247 Section 5.5 @ 3 Meters												
Emission	Measured	Measured						Rece	eiving Ant				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
4804	36.80	47.90	54.0	74.0	17.2	26.1	152	V	1.7				
7206	30.80	45.00	54.0	74.0	23.2	29.0	0	Н	1.5	noise floor			
9608	36.50	48.80	54.0	74.0	17.5	25.2	226	Н	1.7				
12010	34.50	47.30	54.0	74.0	19.5	26.7	0	Н	1.5	noise floor			
14412	34.70	47.40	54.0	74.0	19.3	26.6	0	Н	1.5	noise floor			
16814	36.20	49.10	54.0	74.0	17.8	24.9	0	Н	1.5	noise floor			

	FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm												
Emission	Measured	Measured					Table	Rece	iving Ant				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
19216	44.30	57.30	74.0	94.0	29.7	36.7				noise floor			
21618	43.20	56.10	74.0	94.0	30.8	37.9				noise floor			
24020	43.00	56.40	74.0	94.0	31.0	37.6				noise floor			

BOSE

Meas#

5

	FCC §15.247 (d), RSS-247 Section 5.5 @ 3 Meters												
Emission	Measured	Measured					Table	Receiving Ant					
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
4882	29.30	43.50	54.0	74.0	24.7	30.5	229	V	1.7				
7323	31.70	45.70	54.0	74.0	22.3	28.3	0	Н	1.5	noise floor			
9764	32.50	47.20	54.0	74.0	21.5	26.8	179	Н	1.7				
12205	34.00	47.10	54.0	74.0	20.0	26.9	0	Н	1.5	noise floor			
14646	34.80	48.20	54.0	74.0	19.2	25.8	0	Н	1.5	noise floor			
17087	36.80	49.70	54.0	74.0	17.2	24.3	0	Н	1.5	noise floor			

	FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm												
Emission	Measured	Measured				Table	Receiving Ant						
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
19528	43.30	56.10	74.0	94.0	30.7	37.9				noise floor			
21969	43.70	56.80	74.0	94.0	30.3	37.2				noise floor			
24410	43.70	56.10	74.0	94.0	30.3	37.9				noise floor			

_*B[]]5[*=

Meas#

6

	@ 3 Meters												
Emission	Measured	Measured					Table	Rece	eiving Ant				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
4960	31.80	44.80	54.0	74.0	22.2	29.2	180	V	1.6				
7440	31.70	45.70	54.0	74.0	22.3	28.3	0	Н	1.5	noise floor			
9920	37.50	50.50	54.0	74.0	16.5	23.5	243	Н	1.6				
12400	35.20	47.90	54.0	74.0	18.8	26.1	0	Н	1.5	noise floor			
14880	37.10	50.20	54.0	74.0	16.9	23.8	0	Н	1.5	noise floor			
17360	38.00	50.80	54.0	74.0	16.0	23.2	0	Н	1.5	noise floor			

	FCC §15.247 (d), RSS-247 Section 5.5 @ 30 cm												
Emission	Measured	Measured				Table Receiving Ant							
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)				
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode			
19840	44.10	56.90	74.0	94.0	29.9	37.1	360	Н	1.5	noise floor			
22320	44.00	57.20	74.0	94.0	30.0	36.8	360	Н	1.5	noise floor			
24800	43.60	56.10	74.0	94.0	30.4	37.9	360	Н	1.5	noise floor			

:///	7	_
		1

Limits:

	Freq Range	Lim	nits (dBuV QI	⊃1)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC §15.247 (d),	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
E	andwidth and D	etector Setting	s:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Dete	ector	
30 - 1000	120	>300	C	P	
> 1000	1000	>1000	Pk an	d AVG	

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Service	Service Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	18-Mar-2022	18-Mar- 2024
2373	RF Cable 30MHz-18GHz - 25 feet "N"	TRU-300	N/A	TRU Corporation	20-Mar-2022	20-Mar- 2023
2479	RF cable 30MHz-18GHz	257-257-3052640	N/A	SRC Haverhill	20-Mar-2022	20-Mar- 2023
2357	RF Cable 30MHz-18GHz	TRU-300	TRU- 12707-03	TRU Corporation	20-Mar-2022	20-Mar- 2023
2602	Miteq pre-amp 1-18GHz 35dB	AFS42-01001800-28- 10P-42	N/A	Miteq	7-Jul-2021	7-Jul-2022
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2022	24-Feb-2024
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	20-Mar-2022	20-Mar- 2024
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	N/A	AP Americas	20-Jan-2022	20-Jan-2024
1757	18GHz-40GHz Preamp	JS4018004000-30-8P- A1	1406279	Miteq	7-Jul-2021	7-Jul-2022
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research		
2368	RF Cable 30MHz-26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation	20-Mar-2022	20-Mar- 2024

Uncertainty:

Uncerta	inty Budget					
Title:	Radiated					
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty		
	units:± dB			(± dB)		
Receiver - absolute level	0.3	Rect.	1.73	0.17		
Receiver - frequency response	2.0	Rect.	1.73	1.16		
Receiver - attenuator switching	0.2	Rect.	1.73	0.12		
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12		
Receiver - display	0.5	Rect.	1.73	0.29		
Antenna factor	0.4	Norm.	2.00	0.20		
Antenna directivity	1.0	Norm.	2.00	0.50		
Preamp correction factor	0.5	Norm.	2.00	0.25		
Cable correction factor	0.5	Norm.	2.00	0.25		
Site imperfection - NSA	3.0	Triang.	2.45	1.22		
Test table impact	1.7	Rect.	1.73	0.98		
Combined uncertainty (RSS):						
Coverage factor (2 sigma):						
Extended uncertainty (95% confidence):						

_/	://	F	

Radiated Band Edge

Project number (Integrity):	911R	Build Phase:	C1.5						
Tested by:	Mike Royer		Date: June 20, 2022						
	FCC §15.247 (d								
Requirements Standard(s):	RSS -247 Section	on 5.5			ANSI C63.10-2013				
EUT powered with:	Battery	Temp / Humidity:	N/A	Test locat	ion:	Marconi Manor			
		• • •							
Test equipment used TN's:	1663,								
EUT Serial number(s):	084232M2011G099AE								
EUT Software installed:	0.6.18+g5d320d0								
EUT Modification(s):	USB Debug wires were attached to the earbud to allow control of the radio.								

Conclusion:

The Bose model 911R passes Radiated Band Edge.

The blue trace is peak mode, and the black trace is average detection.

Procedure:

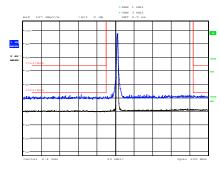
Pretesting showed that the worst orientation was a vertical position. The EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

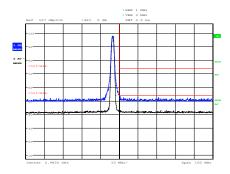
A low gain pre-amp was used to ensure that overloading was avoided. Care was taken in selecting input attenuation and reference level to avoid compression.

Taking a RMS average measurement while the EUT is transmitting in 100% duty cycle. If the EUT supports more than one operational duty cycle the worst-case value should be used, i.e., the highest operational duty cycle.

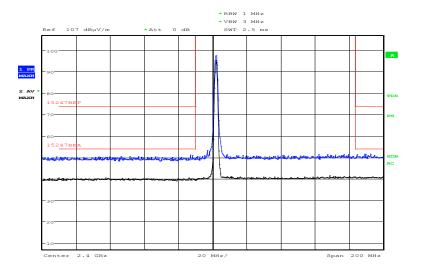
The average detector built into the receiver was used for taking average measurements.

The spectrum analyzer settings shall meet the requirements of ANSI C63.10 for making Average measurements.


For lower band edge measurements the transmit frequency was 2402 MHz.

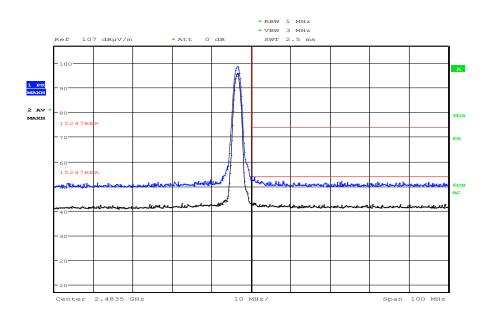

For upper band edge measurements the transmit frequency was 2480 MHz.

Data Collection:


Lower Band edge, Basic Rate

Date: 20.JUN.2022 14:58:22

Upper Band edge, Basic Rate


FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters										
Emission	Measured	Measured	RBW 1 MHz			Table	Receivi	ng Antenna		
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes/Mode
2483.500	37.60	51.00	54.0	74.0	16.4	23.0	0	Н	150.00	DH5, 100% DC
2483.500	37.60	50.70	54.0	74.0	16.4	23.3	0	H	150.00	3-DH5, 100% DC

Date: 20.JUN.2022 15:03:21

Lower Band edge, EDR

Upper Band edge, EDR

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.435911.20.207.1(4)

Limits:

	Freq Range	Lim	nits (dBuV QF	P ¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
ECC 815 247 (d)	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC §15.247 (d) RSS -247 Section 5.5	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
R33-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average limits.
CISER 32	Freq Range				
	(GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
E	Bandwidth and De	etector Setting	S:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Dete	ctor	
30 – 1000	120	120 >300 QP		Р	
> 1000	1000	>1000	Pk and	AVG	

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	18-Mar-2022	18-Mar-2024
2479	RF cable 30MHz-18GHz	257-257- 3052640	N/A	SRC Haverhill	20-Mar-2022	20-Mar-2023
2357	RF Cable 30MHz-18GHz	TRU-300	TRU- 12707-03	TRU Corporation	20-Mar-2022	20-Mar-2023
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2022	24-Feb-2024
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	N/A	AP Americas	20-Jan-2022	20-Jan-2024
2929	Mini-circuits band-edge pre- amp 300 MHz - 8 GHz 20 dB	ZX60HV-83LN+	N/A	Mini-Circuits	20-Mar-2022	20-Mar-2023

Uncertainty:

Uncertainty Budget								
Title:	Radiated	Radiated Emissions (>1GHz)						
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty				
	units:± dB			(± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	2.0	Rect.	1.73	1.16				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
Antenna factor	0.4	Norm.	2.00	0.20				
Antenna directivity	1.0	Norm.	2.00	0.50				
Preamp correction factor	0.5	Norm.	2.00	0.25				
Cable correction factor	0.5	Norm.	2.00	0.25				
Site imperfection - NSA	3.0	Triang.	2.45	1.22				
Test table impact	1.7	Rect.	1.73	0.98				
Combined uncertainty (RSS):								
Coverage factor (2 sigma):								
Extended uncertainty (95% confidence):								