

FCC ID: A94423816 IC: 3232A-423816

Test Type: Emissions [X] Immunity []

Product Type: Wireless Speaker

Product Name/Number: Model Number: 423816

FCC ID: A94423816 IC: 3232A-423816

Prepared For: Design Assurance Engineering Department,

Bose Corporation

Test Results: Pass [X] Fail []

Applicable Standards: FCC CFR 47 Part 15 Subpart C

Industry Canada RSS-247 Issue 2 Industry Canada RSS-GEN Issue 4

Report Number: EMC.423816.17.41.2

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for Enter product and any special modifications or test conditions.

	Print Name	Signature	Date
Prepared By:	Chad Bell	Chad Beld	August 23, 2017
Electrical Engineer Review* By:	Michael Royer	Michael a. Rozen	August 23, 2017

^{*} Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2

FCC ID: A94423816 IC: 3232A-423816

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
20dB and 99% Bandwidth	
Conducted Output Power	10
Hopping Frequency Separation	15
Conducted Spurious Emissions	
Average Time of Occupancy	
Number of Hopping Channels	32
Radiated Emissions Test Results	35
AC Power Line Conducted Emissions	50

FCC ID: A94423816 IC: 3232A-423816

Test Report Summary

Product Information:

Description

The EUT is a wireless speaker that contains Bluetooth/BLE transceivers, manufactured by Cambridge Silicon Radio, CSR8670. The EUT uses Adaptive Frequency Hopping (AFH) mode, using a reduced hop set if interference is detected in band, however a maximum of 20 channels is always maintained..

Setup (Cables and Accessories)

Radiated emission and power line conducted emission were performed with the EUT playing IEC pink noise over the BT link. EUT is not sold with a power supply so when necessary a Bose part number 745559-0030 power supply was used for charging. For radio tests the BT radio was configured with CSR Blue Suite software (details provided in SOFTWARE AND FIRMWARE section).

EUT Antenna Description

The antenna is an internal inverted F antenna with antenna gain of 3.574dBi formed by printed circuit board etch.

SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was version 0.1.4.5437

The test utility software used during testing was Polycomm, version 0.2.0.0 and CSR Blue Suite version 2.6.2.

Scope:

This report covers EMC requirements. Enter specific EMC requirements covered by this report (i.e. FCC).

Test Objective:

Verify product meets all applicable EMC requirements.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards selected in section 2 of this report.

[] does not meet all test standards selected in section 2 of this report.

Affirmation of Test Results:

	Print Name	Signature	Date
Testing Engineer/Technician	Chad Bell	Chad Beld	February 10, 2017

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2

FCC ID: A94423816 IC: 3232A-423816

Test Standards

Emissions:

[X]

Standard FCC Part 15C

[X] [X] Canada RSS-247

Canada RSS-GEN

Environmental Conditions

Ambient:

Temperature: 22±4°C Humidity: 30-60%RH Mains Voltage: [X] 120VAC

FCC ID: A94423816 IC: 3232A-423816

20dB and 99% Bandwidth

Requirement:

None; for reporting purposes only. Test per FCC 15.247(a)(1); IC RSS-247 5.1 (1), RSS-Gen 6.6.

Test Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to ≥ RBW. The sweep time is coupled.

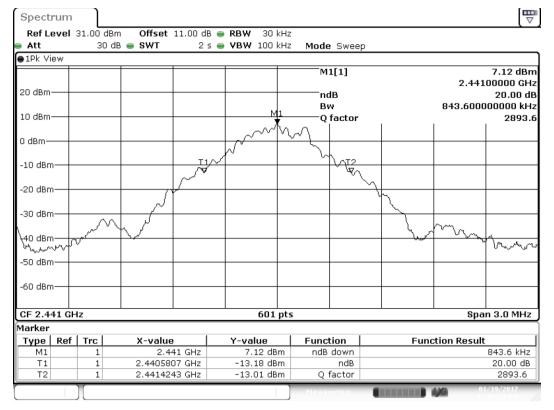
20dB Occupied Bandwidth

20 dB OBW Summary Table (Basic Rate: 1 Mbps)							
Channal	Frequency	Mada	20 dB OBW	Limit			
Channel	(MHz)	Mode	(MHz)	NA			
Low	2402	DH5	0.839	-			
Middle	2441	DH5	0.844	1			
High	2480	DH5	0.844	-			

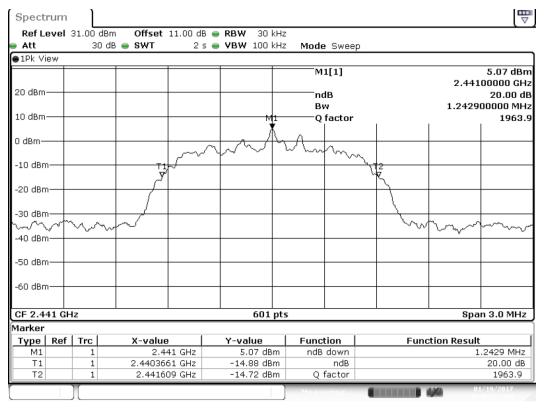
20 dB OBW Summary Table (Enhanced Rate: 2 Mbps)							
Channal	Frequency	Mada	20 dB OBW	Limit			
Channel	(MHz)	Mode	(MHz)	NA			
Low	2402	2-DH5	1.243	1			
Middle	2441	2-DH5	1.243	1			
High	2480	2-DH5	1.243	-			

20 dB OBW Summary Table (Enhanced Rate: 3 Mbps)							
Channel	Frequency	Mada	20 dB OBW	Limit			
	(MHz)	Mode	(MHz)	NA			
Low	v 2402 3-DH5		1.263	-			
Middle	2441	3-DH5	1.263	-			
High	2480	3-DH5	1.263	-			

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145


Form FL300959 Rev 04 BOSE CONFIDENTIAL

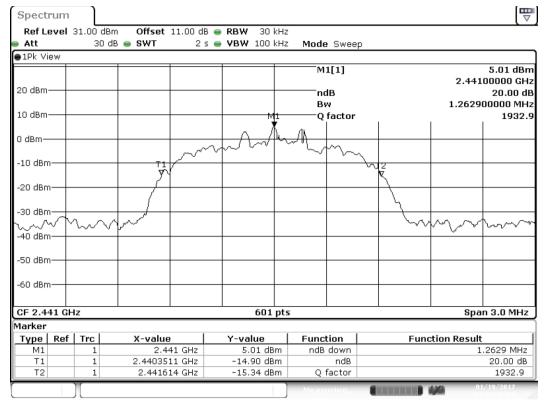
Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2



FCC ID: A94423816 IC: 3232A-423816

Plot2 20dB OBW DH5 2441 MHz

Plot5 20dB OBW 2DH5 2441 MHz


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

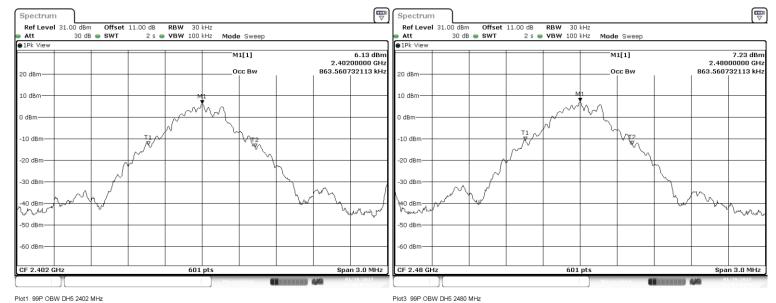
FCC ID: A94423816 IC: 3232A-423816

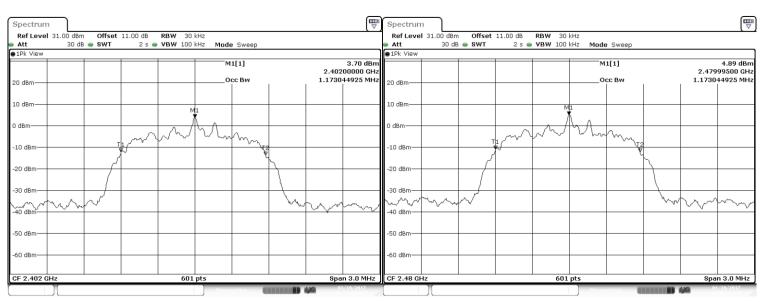
Plot8 20dB OBW 3DH5 2441 MHz

99% Occupied Bandwidth

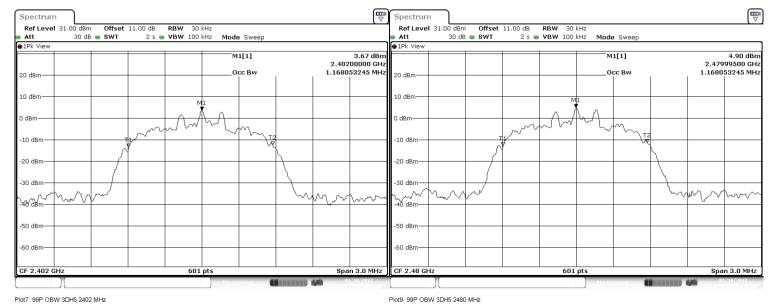
	99% OBW Summary Table (Basic Rate: 1 Mbps)							
Cla a mara a l	Frequency	Mada	99% OBW	Limit				
Channel	(MHz)	Mode	(MHz)	NA				
Low	2402	DH5	0.864	-				
Middle	2441	DH5	0.859	-				
High	2480	DH5	0.864	-				
9	9% OBW Summa	ry Table (En	hanced Rate: 2 Mbps	5)				
Channel	Frequency	Mada	99% OBW	Limit				
Channel	(MHz)	Mode	(MHz)	NA				
Low	2402	2-DH5	1.173	-				
Middle	2441	2-DH5	1.173	-				
High	2480	2-DH5	1.173	-				
9	9% OBW Summa	ry Table (En	hanced Rate: 3 Mbps	s)				
Channal	Frequency	Mada	99% OBW	Limit				
Channel	(MHz)	Mode	(MHz)	NA				
Low	2402	3-DH5	1.168	-				
Middle	2441	3-DH5 1.168		-				
High	2480	3-DH5	1.168	-				

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA


Tel: (508) 766-6000 Fax: (508) 766-1145


Without written permission of laboratory, this report shall not be reproduced except in full.

FCC ID: A94423816 IC: 3232A-423816


Plot4 99P OBW 2DH5 2402 MHz

Plot6 99P OBW 2DH5 2480 MHz

FCC ID: A94423816 IC: 3232A-423816

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reprod

FCC ID: A94423816 IC: 3232A-423816

Conducted Output Power Requirements:

FCC 15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 5.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

Test setup details:

The EUT is controlled via the USB port with CSR's Blue Suite software which is used to set the test modes of the Bluetooth device. The EUT antenna is disconnected. A temporary test connector is mounted to the PCB. An 8 inch u.FL to SMA adapter cable with 1 dB loss was used for all conducted measurements. To compensate for the cable loss, the reference level offset feature of the spectrum analyzer was used. The EUT is programmed to operate on fixed frequencies at the low, middle, and high end of the authorized frequency band. The spectrum analyzer resolution bandwidth is set to 3 MHz (higher than the occupied bandwidth), peak detector and max hold. The maximum output power is recorded for each of the three frequencies in both basic and enhanced data rates.

Test Results:

Output Power Summary Table (Basic Rate: 1 Mbps)									
Channel	Frequency (MHz)	Mode	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result		
Low	2402	DH5 (GFSK)	7.62	3.574	30	18.80	Pass		
Middle	2441	DH5 (GFSK)	8.64	3.574	30	17.79	Pass		
High	2480	DH5 (GFSK)	8.72	3.574	30	17.70	Pass		

	Output Power Summary Table (Enhanced Rate: 2 Mbps)									
Channel	Frequency (MHz)	Mode	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result			
Low	2402	2-DH5 (DQPSK)	6.09	3.574	30	20.33	Pass			
Middle	2441	2-DH5 (DQPSK)	7.38	3.574	30	19.05	Pass			
High	2480	2-DH5 (DQPSK)	7.22	3.574	30	19.21	Pass			

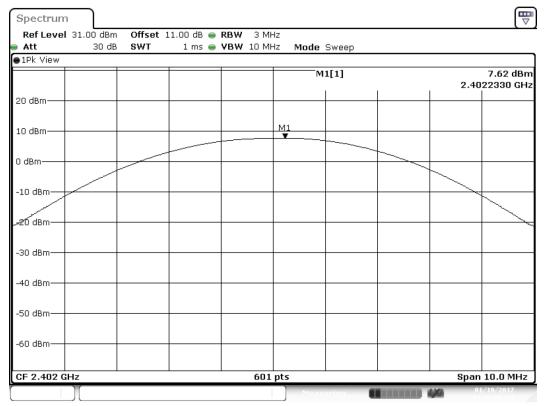
	Output Power Summary Table (Enhanced Rate: 3 Mbps)							
Channel	Frequency (MHz)	Mode	Output Power (dBm)	Directional Gain (dBi)	Limit (dB)	Margin (dB)	Result	
Low	2402	3-DH5 (8PSK)	6.49	3.574	30	19.94	Pass	
Middle	2441	3-DH5 (8PSK)	7.67	3.574	30	18.76	Pass	
High	2480	3-DH5 (8PSK)	7.57	3.574	30	18.86	Pass	

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

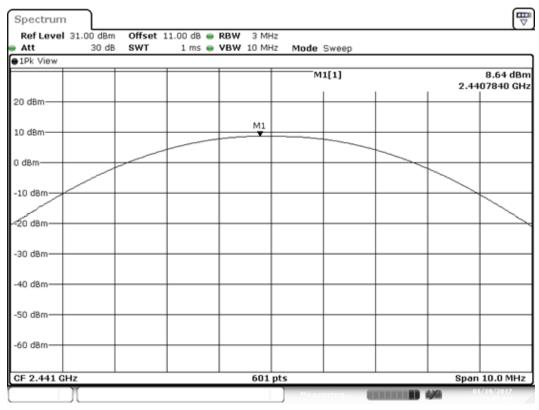
Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.423816.17.41.2


Form FL300959 Rev 04 BOSE CONFIDENTIAL

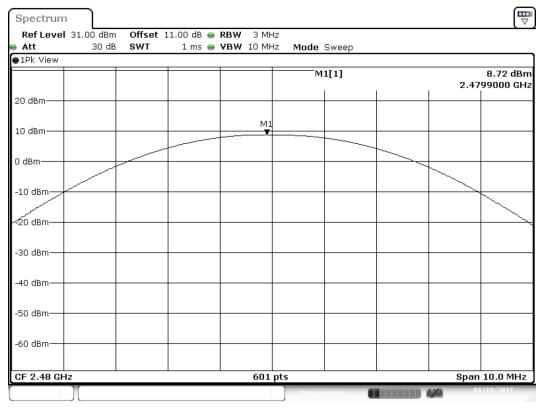
Page 10 of 52



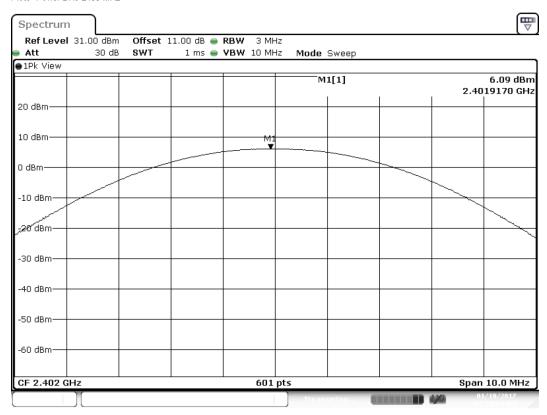
FCC ID: A94423816 IC: 3232A-423816

Plot2 Power DH5 2441 MHz

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

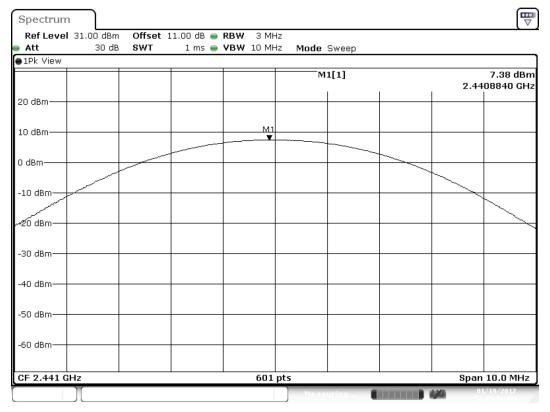

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

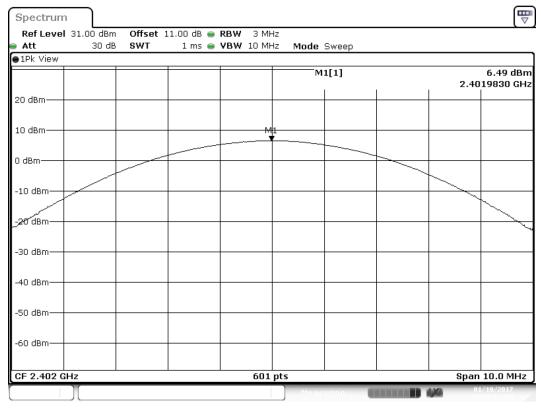


FCC ID: A94423816 IC: 3232A-423816

Plot4 Power 2DH5 2402 MHz


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

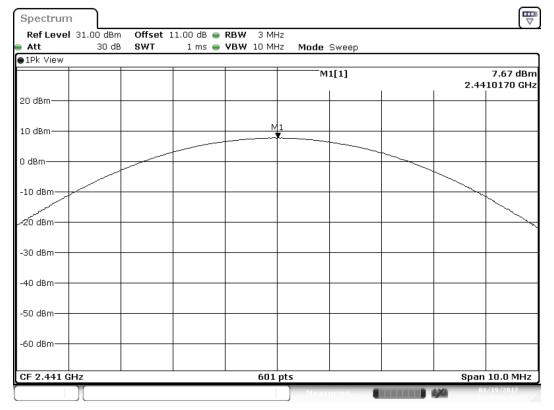


FCC ID: A94423816 IC: 3232A-423816

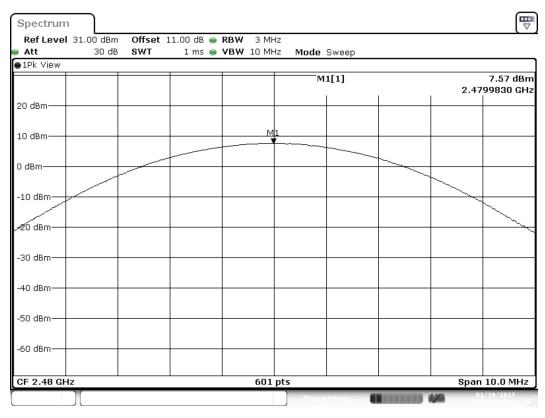
Plot5 Power 2DH5 2441 MHz

Plot7 Power 3DH5 2402 MHz

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA


Tel: (508) 766-6000 Fax: (508) 766-1145

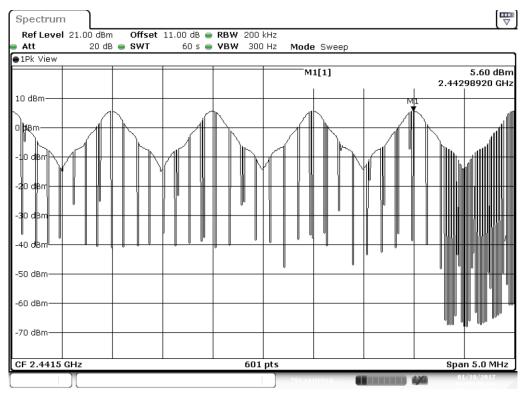
Without written permission of laboratory, this report shall not be reproduced except in full.



FCC ID: A94423816 IC: 3232A-423816

Plot9 Power 3DH5 2480 MHz

Model 423816 meets the conducted power limit of 1W (30dBm) by 17.70dB in DH5 mode at 2480MHz.


FCC ID: A94423816 IC: 3232A-423816

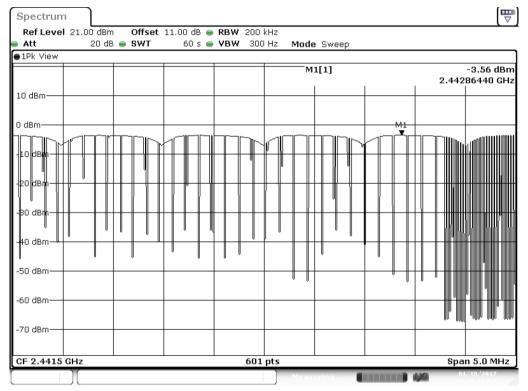
Hopping Frequency Separation Requirements:

FCC 15.247 (a) (1), IC RSS-247 5.1 (2)

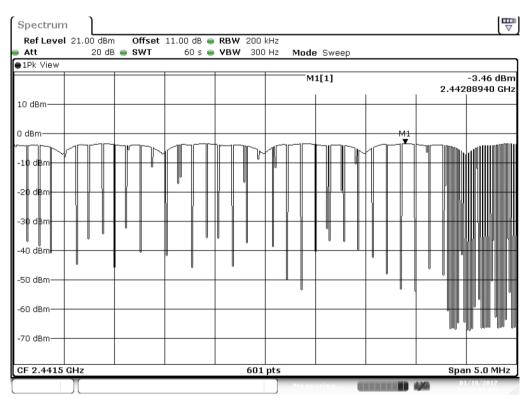
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Plot1 Frequency Separation DH5 Hopping

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145


Form FL300959 Rev 04 BOSE CONFIDENTIAL

Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2



FCC ID: A94423816 IC: 3232A-423816

Plot2 Frequency Separation 2DH5 Hopping

Plot3 Frequency Separation 3DH5 Hopping

Hopping frequencies are separated by 1MHz which is more than the required minimum of 25kHz and more than 2/3 of the 20dB bandwidth of the hopping channel which would be 842kHz.

FCC ID: A94423816 IC: 3232A-423816

Conducted Spurious Emissions Requirements:

FCC 15.247 (d)

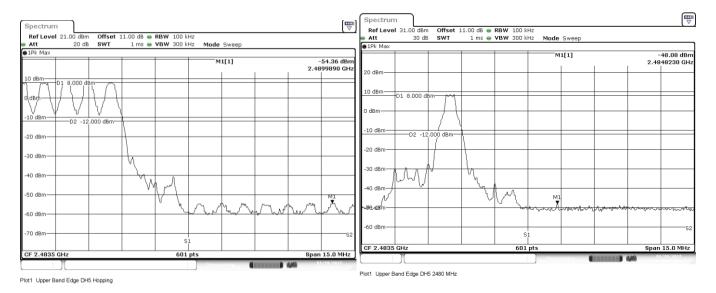
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Note: Antenna gain outside of the wanted band was assumed to be zero. The conducted spurious readings are for additional information as the radiated readings take precedence.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2


FCC ID: A94423816 IC: 3232A-423816

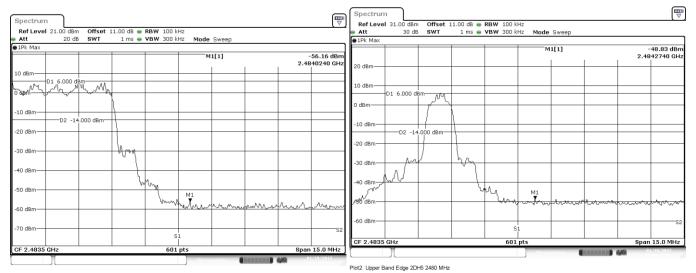
Spurious Band-edge Emissions

Upper Band Edge (Basic Rate: 1 Mbps) (Hopping Mode)								
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result		
Hopping	All	DH5	62.36	20	42.36	Pass		

Upper Band Edge (Basic Rate: 1 Mbps) (Non-Hopping Mode)								
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result		
High	2480	DH5	56.08	20	36.08	Pass		

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



FCC ID: A94423816 IC: 3232A-423816

	Upper Band Edge (Enhanced Rate: 2 Mbps) (Hopping Mode)										
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result					
Hopping	All	2-DH5	62.16	20	42.16	Pass					

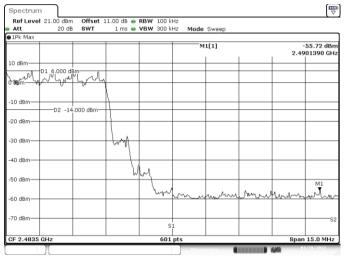
l	Upper Band Edge (Enhanced Rate: 2 Mbps) (Non-Hopping Mode)									
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
High	2480	2-DH5	54.83	20	34.83	Pass				

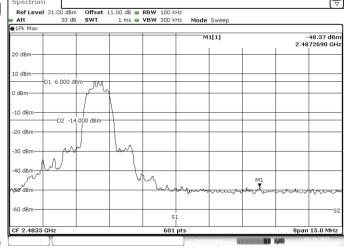
Plot2 Upper Band Edge 2DH5 Hopping

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



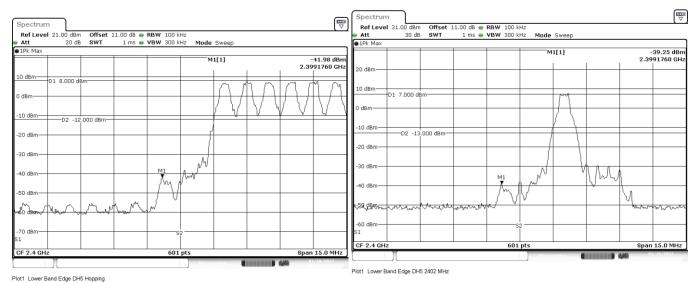

FCC ID: A94423816 IC: 3232A-423816

	Upper Band Edge (Enhanced Rate: 3 Mbps) (Hopping Mode)									
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
Hopping	All	3-DH5	61.72	20	41.72	Pass				

l	Upper Band Edge (Enhanced Rate: 3 Mbps) (Non-Hopping Mode)									
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
High	2480	3-DH5	54.37	20	34.37	Pass				

Plot3 Upper Band Edge 3DH5 Hopping

Plot3 Upper Band Edge 3DH5 2480 MHz



FCC ID: A94423816 IC: 3232A-423816

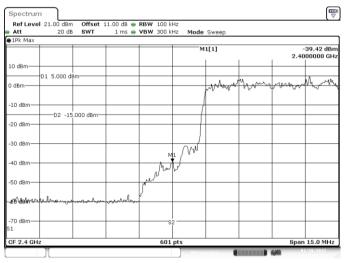
	Lower Band Edge (Basic Rate: 1 Mbps) (Hopping Mode)									
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
Hopping	All	DH5	49.98	20	29.98	Pass				

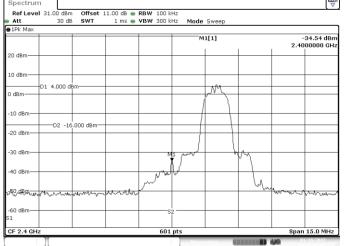
	Lower Band Edge (Basic Rate: 1 Mbps) (Non-Hopping Mode)										
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result					
Low	2402	DH5	46.72	20	26.72	Pass					

Plot1 Lower Band Edge DH5 Hoppin

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



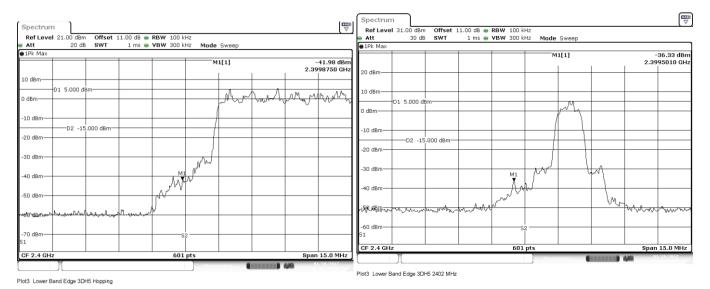

FCC ID: A94423816 IC: 3232A-423816

	Lower Band Edge (Enhanced Rate: 2 Mbps) (Hopping Mode)									
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
Hopping	All	2-DH5	44.42	20	24.42	Pass				

L	Lower Band Edge (Enhanced Rate: 2 Mbps) (Non-Hopping Mode)									
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
Low	2402	2-DH5	38.54	20	18.54	Pass				

Plot2 Lower Band Edge 2DH5 Hopping

Plot2 Lower Band Edge 2DH5 2402 MHz



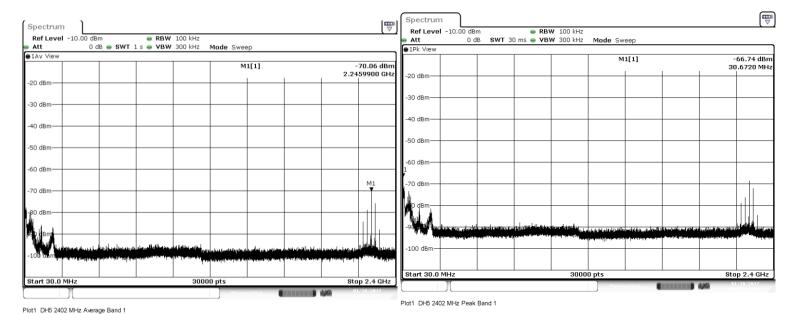
FCC ID: A94423816 IC: 3232A-423816

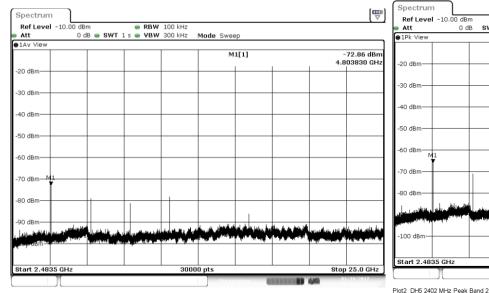
	Lower Band Edge (Enhanced Rate: 3 Mbps) (Hopping Mode)										
Mode	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result					
Hopping	All	3-DH5	46.98	20	26.98	Pass					

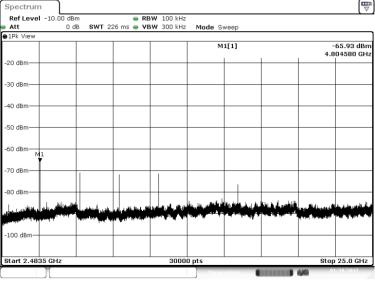
L	Lower Band Edge (Enhanced Rate: 3 Mbps) (Non-Hopping Mode)									
Channel	Frequency (MHz)	Mode	Worst Case (dBc)	Limit (dBc)	Margin (dB)	Result				
Low	2402	3-DH5	41.81	20	21.81	Pass				

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.


FCC ID: A94423816 IC: 3232A-423816




Spurious Emissions

For these readings, a notch filter was used to protect the EMI receiver from overload. A correction factor was applied to account for the effect of the notch filter.

				Spu	ırious Summa	ry Table (Basic Rate:	L Mbps)					
Channel	Band Range (MHz)	Mode	Raw Measuremei (dBm)	Test Cable (dB)	Loss Pad A1			Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result
Low	30 To 1000	DH5	-70.1	1.0	10.0	0.0		-59.1	36.17	54	17.83	Pass
Low	2483.5 To 25000	DH5	-72.9	1.0	10.0	0.0		-61.9	33.37	54	20.63	Pass
				S	purious Summa	ary Table (Basic Rate: 1	Mbps)					
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequen (dBi)		rected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result
Low	30 To 1000	DH5	-66.7	1.0	10.0	0.0		-55.7	39.49	74	34.51	Pass
Low	2483.5 To 25000	DH5	-65.9	1.0	10.0	0.0		-54.9	40.30	74	33.70	Pass

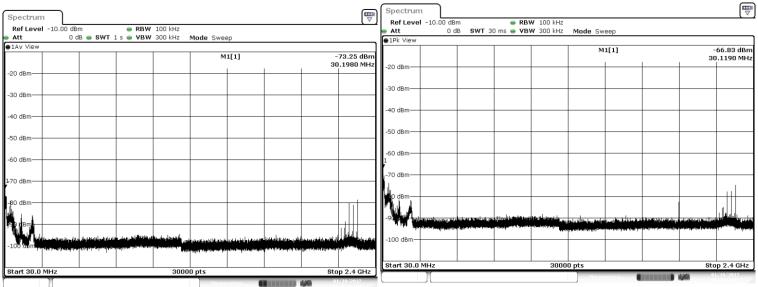
Plot2 DH5 2402 MHz Average Band 2

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

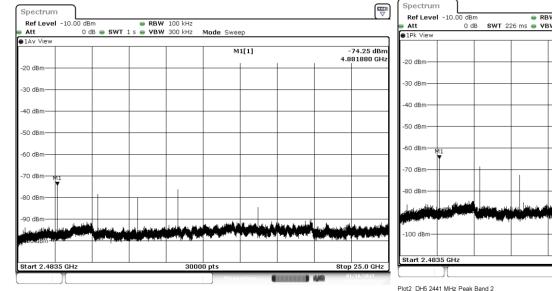
Without written permission of laboratory, this report shall not be reproduced except in full.

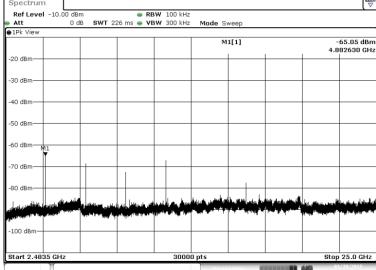
Report Number: EMC.423816.17.41.2

Form FL300959 Rev 04 BOSE CONFIDENTIAL



FCC ID: A94423816 IC: 3232A-423816


	Spurious Summary Table (Basic Rate: 1 Mbps)											
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result	
Mid	30 To 1000	DH5	-73.2	1.0	10.0	0.0	-62.2	32.98	54	21.02	Pass	
Mid	2483.5 To 25000	DH5	-74.3	1.0	10.0	0.0	-63.3	31.98	54	22.02	Pass	


				SI	ourious Summai	ry Table (Basic Rate: 1 Mbps)				
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result
Mid	30 To 1000	DH5	-66.8	1.0	10.0	0.0	-55.8	39.40	74	34.60	Pass
Mid	2483.5 To 25000	DH5	-65.0	1.0	10.0	0.0	-54.0	41.18	74	32.82	Pass

Plot1 DH5 2441 MHz Peak Band 1

Plot2 DH5 2441 MHz Average Band 2

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

2483.5 To 25000

DH5

-66.2

1.0

10.0

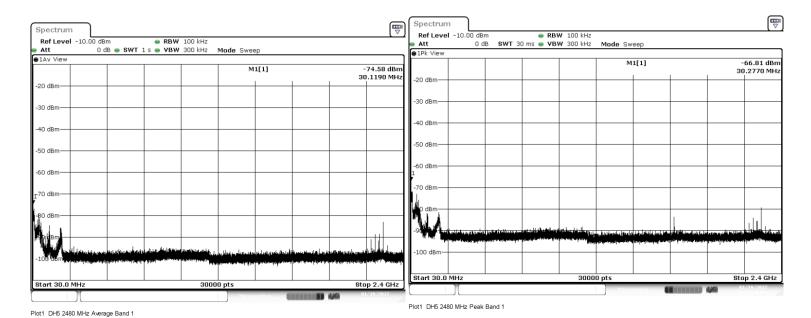
High

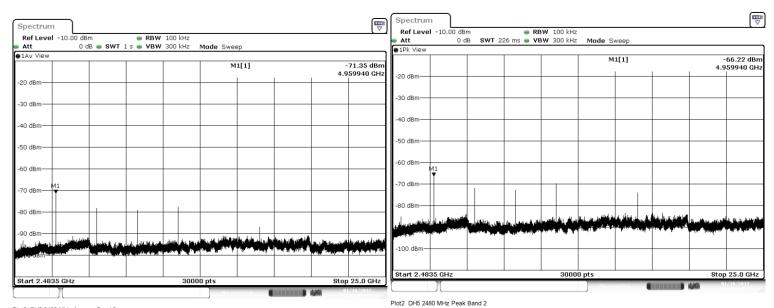
DESIGN ASSURANCE ENGINEERING Wireless Transceiver Bluetooth Test Report

FCC ID: A94423816 IC: 3232A-423816

74

33.99


Pass


				Spur	rious Summar	y Table (Basic Rate: 1 Mbp	os)				
Channel	Band Range (MHz)	Mode	Raw Measuremen (dBm)	Test Cable Lo	oss Pad ATT	EUT Antenna Gain At Harmonic Frequenc (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result
High	30 To 1000	DH5	-74.6	1.0 10.0		0.0	-63.6	31.65	54	22.35	Pass
High	2483.5 To 25000	00 DH5 -71.4 1.0 10.0		0.0	-60.4	34.88	54	19.12	Pass		
				Sp	urious Summar	y Table (Basic Rate: 1 Mbps)					
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	est Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result
High	30 To 1000	DH5	-66.8	1.0	10.0	0.0	-55.8	39.42	74	34.58	Pass

0.0

-55.2

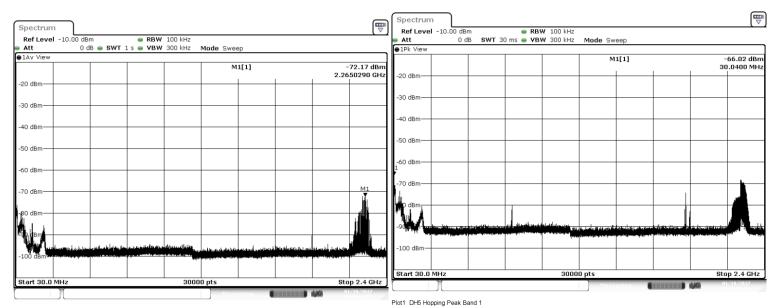
40.01

Plot2 DH5 2480 MHz Average Band 2

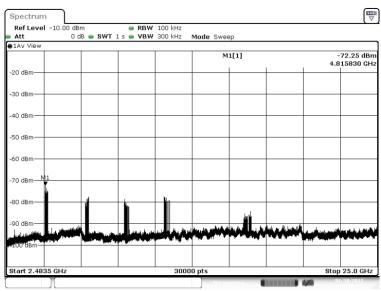
Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

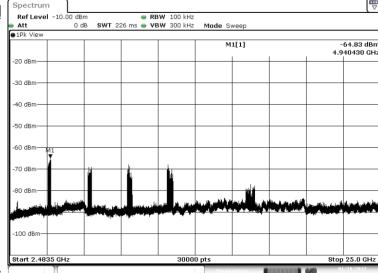
Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



FCC ID: A94423816 IC: 3232A-423816




				Spur	ious Summary	Table (Basic Rate: 1Mbp	s)				
Channel	Band Range (MHz)	Mode Raw Test Cable Loss Pa (dBm)		Pad ATT (dB)	EUT Antenna N Gain At Harmonic Frequenc (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Result	
Hopping	30 To 1000	DH5	-72.2	1.0	10.0	0.0	-61.2	34.06	54	19.94	Pass
Hopping	2483.5 To 25000	83.5 To 25000 DH5 -72.2		1.0	10.0	0.0	-61.2	33.98	54	20.02	Pass
				Spı	urious Summary	Table (Basic Rate: 1Mbps)					
	Band Range		Raw	est Cable Loss	Pad ATTN	EUT Antenna Gain At	Corrected Reading	Convert to E-Field	Peak Limit	Margin	

				S	purious Summa	ry Table (Basic Rate: 1Mbps)				
Channel	Band Range (MHz)	Mode	Raw Measurement (dBm)	Test Cable Loss (dB)	Pad ATTN (dB)	EUT Antenna Gain At Harmonic Frequency (dBi)	Corrected Reading (dBm)	Convert to E-Field at 3 meters (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Result
Hopping	30 To 1000	DH5	-66.0	1.0	10.0	0.0	-55.0	40.21 74		33.79	Pass
Hopping	2483.5 To 25000	DH5	-64.8	1.0	10.0	0.0	-53.8	41.40	74	32.60	Pass

Plot1 DH5 Hopping Average Band 1

Plot2 DH5 Hopping Average Band 2

Plot2 DH5 Hopping Peak Band 2

FCC ID: A94423816 IC: 3232A-423816

Average Time of Occupancy Requirements:

FCC 15.247 (a) (1) (iii), IC RSS-247 5.1 (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test setup details

The EUT is controlled via the USB cable with CSR's Blue Suite software which is used to set the test modes of EUT. The EUT is programmed to operate at fixed frequencies at the low, middle, and high end of the authorized frequency band.

Using zero span mode on the channel center frequency the transmit pulse width was measured for each of the following modes, DH1, DH3 & DH5 with the maximum payload size for basic and enhanced data rates.

```
Dwell Time = (TX Pulse Width) * (Hop Rate) / (# of Channels) / (# of slots) * 31.6

= (TX Pulse Width) * 1600 / 79 / (# of Slots) * 31.6

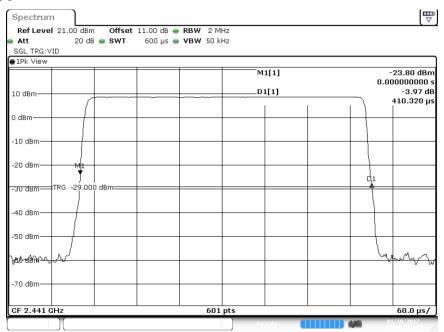
= (TX Pulse Width) * 640 / (# Slots)

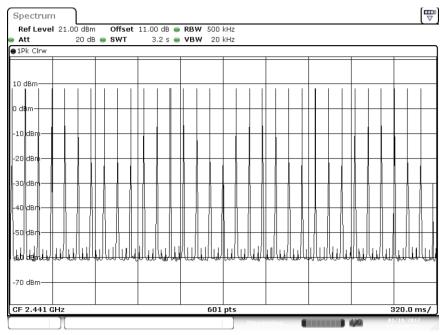
Hop Rate = 1600 hops / S

# of channels = 79
```

of slots = number of slots used per packet in a given mode: DH1 = 2, DH3 = 4, DH5 = 6

31.6 Seconds = (79 channels) * 0.4 Seconds


8 Seconds = (20 channels) * 0.4 Seconds


FCC ID: A94423816 IC: 3232A-423816

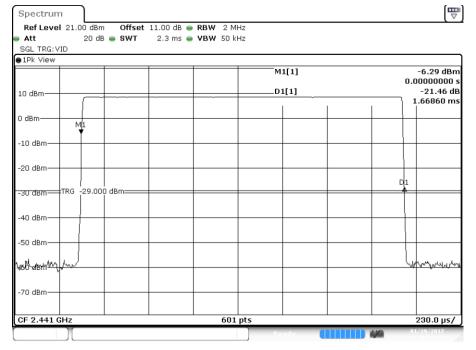
Test Results:

Plot1 2441 TX pulse width DH1

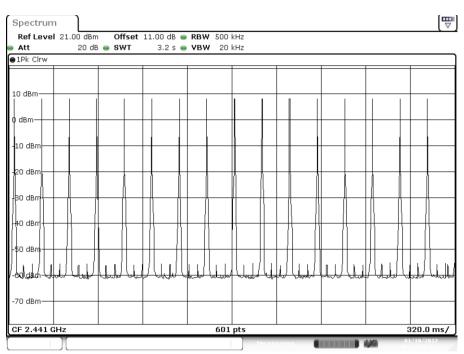
Plot10 2441 TX pulse count DH1

	TX Pulse Wid	th (xDH1)				79 Channels				20 Channels					
Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 3.16 S	Number of pulses in 31.6 S (X 10)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result	Number of pulses in 0.8 S	of pulses in	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
Middle	2441	DH1	0.409	33	330	135.1	400	264.93	Pass	8	83	33.8	400	366.23	Pass
Middle	2441	2-DH1	0.422	32	315	133.0	400	266.98	Pass	8	79	33.3	400	366.74	Pass
Middle	2441	3-DH1	0.422	32	320	135.1	400	264.87	Pass	8	80	33.8	400	366.22	Pass

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA


Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



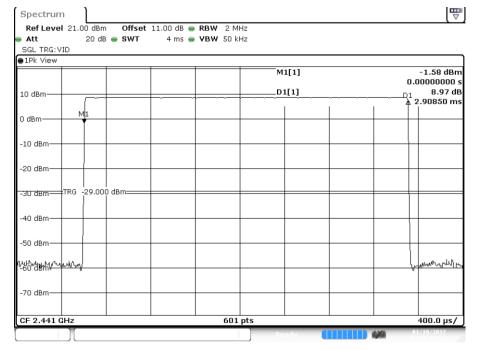
FCC ID: A94423816 IC: 3232A-423816

Plot4 2441 TX pulse width DH3

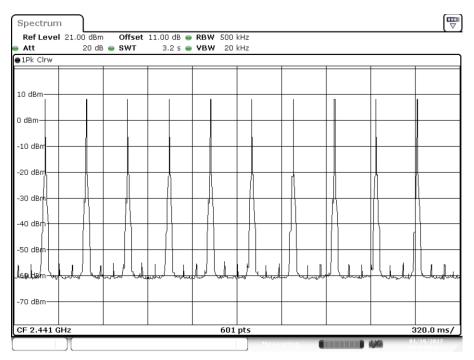
Plot13 2441 TX pulse count DH3

	TX Pulse Wid	lth (xDH3)									20 Channels					
Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 3.16 S	Number of pulses in 31.6 S (X 10)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result	Number of pulses in 0.8 S	of pulses in	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result	
Middle	2441	DH3	1.669	16	160	267.0	400	133.03	Pass	4	40	66.7	400	333.26	Pass	
Middle	2441	2-DH3	1.676	17	170	285.0	400	115.04	Pass	4	43	71.2	400	328.76	Pass	
Middle	2441	3-DH3	1.672	17	170	284.3	400	115.70	Pass	4	43	71.1	400	328.92	Pass	

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA


Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.



FCC ID: A94423816 IC: 3232A-423816

Plot7 2441 TX pulse width DH5

Plot16 2441 TX pulse count DH5

	TX Pulse Wid	lth (xDH5)								20 Channels					
Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 3.16 S	Number of pulses in 31.6 S (X 10)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result	Number	of pulses in	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
Middle	2441	DH5	2.908	10	100	290.8	400	109.15	Pass	3	25	72.7	400	327.29	Pass
Middle	2441	2-DH5	2.915	11	110	320.7	400	79.33	Pass	3	28	80.2	400	319.83	Pass
Middle	2441	3-DH5	2.922	11	110	321.4	400	78.60	Pass	3	28	80.3	400	319.65	Pass

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145

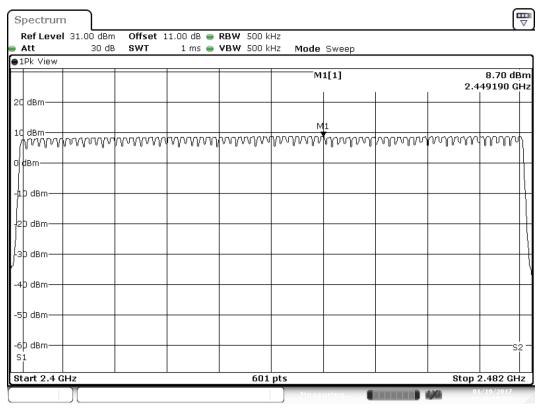
Without written permission of laboratory, this report shall not be reproduced except in full.

FCC ID: A94423816 IC: 3232A-423816

Number of Hopping Channels

Requirements:

FCC 15.247 (a) (1) (iii), IC RSS-247 5.1 (4)

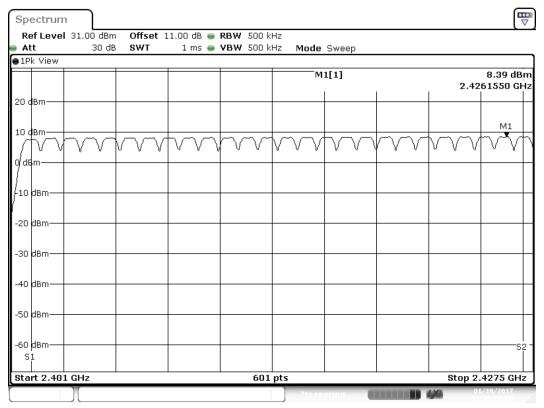

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

Test Setup:

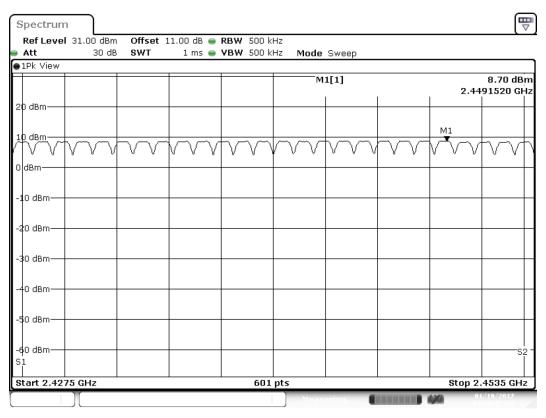
EUT is controlled by CSR's Blue Suite software to enable testing of the spurious output in specific operational modes.

Measurements are made with the EUT in normal operation (hopping through all available channels) in basic and enhanced data rate modes.

Test Results:



Plot1 79 Hopping Frequency DH5

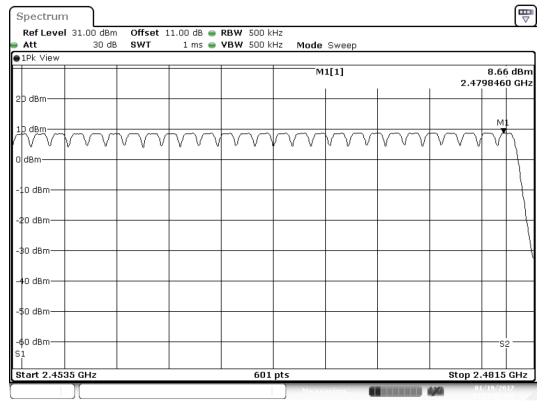

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA
Tel: (508) 766-6000 Fax: (508) 766-1145
Without written permission of laboratory, this report shall not be reproduced except in full.
Report Number: EMC.423816.17.41.2

FCC ID: A94423816 IC: 3232A-423816

Plot2 1st segment DH5 (26 Frequencies)

Plot3 2nd segment DH5 (26 Frequencies)

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA


Tel: (508) 766-6000 Fax: (508) 766-1145

Without written permission of laboratory, this report shall not be reproduced except in full.

FCC ID: A94423816 IC: 3232A-423816

Plot4 3rd segment DH5 (27 Frequencies)

Conducted Measurements Resources Used

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2409	Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	07-Apr-2016	07-Apr-2017	n/a	n/a
2342	Band Reject Filter	BRM50702- 07	001	Micro-Tronics	n/a	n/a	29-Mar-2016	29-Mar-2017

FCC ID: A94423816 IC: 3232A-423816

Radiated Emissions Test Results Requirements:

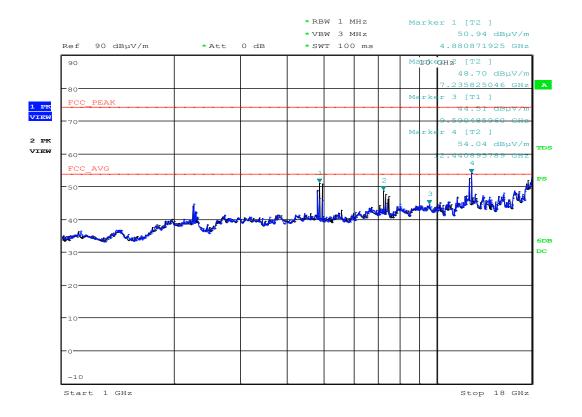
FCC 15.205, 15.209, 15.247 (d), IC RSS-GEN Clause 8.9 (Transmitter)

In any of the restricted bands defined in FCC part 15.209(a), the field strength at a distance of 3 meters shall not exceed 54dBµV/m (average) or 74dBµV/m (peak)

Test Setup

The EUT is placed in a standard ANSI C63.10 test setup. Standard Gain Horn Antennas and Double Ridged Guide Horn Antennas with suitable pre-amps mounted directly on the horn antennas are used for the measurement of the harmonics. The EUT hopping is stopped and measurements are made in the low, mid and high end of the frequency range at the defined limit distance of 3 meters. The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz measurements and 1.5 m above the ground plane for above 1GHz measurements. The EUT is rotated around the vertical axis, the antenna polarization changed from H to V and the antenna height is varied from 1 to 4 meters in order to find the maximum value of the harmonic emission. Account is taken of the beam width of the horn antennas to make sure the EUT remains in the main lobe of the antenna. EUT was tested in 3 orthogonal axes and the worst-case results are shown below.

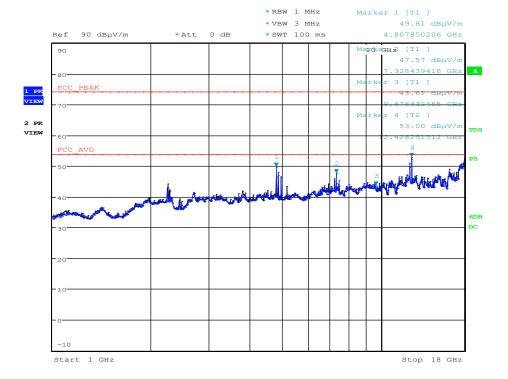
For measurements below 1 GHz the resolution bandwidth is set to 120 kHz and a quasi-peak detector was used. For peak measurements above 1 GHz, a resolution bandwidth of 1 MHz was used and video bandwidth of 3 MHz was used. For average measurements above 1GHz, the resolution bandwidth and video bandwidth are set as described in ANSI C63.10:2013 for the applicable measurement. An average detector was used and a duty cycle correction factor was added to correspond to the average during the transmission.



FCC ID: A94423816 IC: 3232A-423816

Transmitter Harmonics/Spurious

For these readings, a notch filter was used to protect the EMI receiver from overload. A correction factor was applied to account for the effect of the notch filter. For the plots capturing the entire frequency range the EUT was hopping on all channels to capture all emissions. For individual readings, the hopping was disabled to maximize the duty cycle.



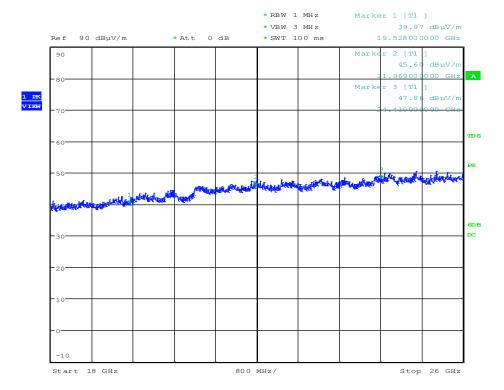
DH5, hopping, vertical orientation Date: 19.JAN.2017 17:15:07

FCC ID: A94423816 IC: 3232A-423816

OH5, hopping, horizontal orientation Date: 18.JAN.2017 19:34:19

DH5, hopping, 1 m antenna distance.
No harmonics visible.
Date: 24.JAN.2017 19:33:31

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145


Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2

Form FL300959 Rev 04 BOSE CONFIDENTIAL

FCC ID: A94423816 IC: 3232A-423816

 ${\tt DH5,\ hopping,\ 1\ m\ antenna\ distance.}$

No harmonics visible.

Date: 24.JAN.2017 19:33:31

_BOSE

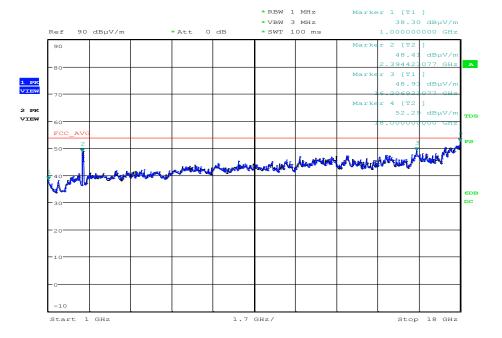
FCC ID: A94423816 IC: 3232A-423816

				FCC	Tx Harmon	ics @ 3 Met	ers			
Emission	Measured	Measured		FCC			Table	Receivin	g Antenna	
Frequency (MHz)	Amplitude (dBµV/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Margin (dB)	Azimuth (0° closest	Pol (H/V)	Height (Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes / Mode
<u>2402, vertic</u>	<u>al</u>									
<u>single frequ</u>										
4803.976	43.50	50.20	54.0	74.0	10.5	23.8	41	Н	1.6	
7205.961	41.70	50.40	72.1	80.8	30.4	30.4	325	H	2.6	
9608.000	32.20	46.20	72.1	80.8	39.9	34.6				noise floor
12010.024	37.50	51.10	54.0	74.0	16.5	22.9	135	Н	2.7	
14412.000	33.60	47.20	72.1	80.8	38.5	33.6				noise floor
16814.023	33.70	48.20	72.1	80.8	38.4	32.6				noise floor
2441, vertic	<u>al</u>									
<u>single frequ</u>	<u>iency</u>									
4881.957	43.30	49.80	54.0	74.0	10.7	24.2	40	Н	1.6	
7323.011	42.10	50.90	54.0	74.0	11.9	23.1	329	Н	2.6	
9764.000	31.60	45.40	72.1	80.8	40.5	35.4				noise floor
12204.939	39.60	52.40	54.0	74.0	14.4	21.6	139	Н	1.5	
14646.000	34.30	48.50	72.1	80.8	37.8	32.3				noise floor
17087.026	34.70	48.50	72.1	80.8	37.4	32.3				noise floor
2480, vertic	<u>al</u>									
single frequ	iency									
4959.955	44.10	50.80	54.0	74.0	9.9	23.2	38	Н	1.0	
7439.948		50.60	54.0	74.0	12.9	23.4	323	Н	2.4	
1439.940		47.20	72.1	80.8	38.8	33.6	32	Н	2.7	
9919.952	33.30									1
	33.30 43.50	55.40	54.0	74.0	10.5	18.6	139	Н	4.0	
9919.952	43.50		54.0 72.1	74.0 80.8	10.5 38.1	18.6 32.8	139	н	4.0	noise floor

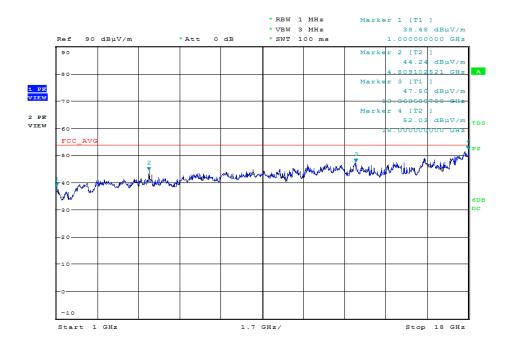
				FCC	Tx Harmon	ics @ 3 Met	ters			
Emission	Measured	Measured		FCC	15B		Table	Receivin	g Antenna	
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes / Mode
2402, horizo	ontal single	frequency								
4803.976	46.50	52.30	54.0	74.0	7.5	21.7	334	V	1.0	
7205.961	40.70	50.00	73.6	82.6	32.9	32.6	298	V	1.0	
9608.000	32.50	46.30	73.6	82.6	41.1	36.3				noise floor
12010.024	37.40	50.40	54.0	74.0	16.6	23.6	217	Н	2.3	
14412.000	33.60	47.90	73.6	82.6	40.0	34.7				noise floor
16814.023	33.70	48.40	73.6	82.6	39.9	34.2				noise floor
2441, horizo	ntal single	frequency								
4881.989	44.90	51.10	54.0	74.0	9.1	22.9	330	V	1.0	
7323.011	41.50	50.50	54.0	74.0	12.5	23.5	300	V	1.0	
9764.000	31.20	45.30	73.6	82.6	42.4	37.3				noise floor
12204.939	41.90	54.70	54.0	74.0	12.1	19.3	232	Н	2.2	
14646.000	34.30	48.40	73.6	82.6	39.3	34.2				noise floor
17087.026	34.70	47.90	73.6	82.6	38.9	34.7				noise floor
2480, horizo	ntal single	frequency								
4959.979	43.60	50.00	54.0	74.0	10.4	24.0	313	V	1.0	
7439.948	40.50	49.70	54.0	74.0	13.5	24.3	299	V	1.0	
9919.952	34.20	46.90	73.6	82.6	39.4	35.7	127	V	1.0	
12399.966	43.30	55.30	54.0	74.0	10.7	18.7	242	Н	2.2	
14880.000	33.90	48.10	73.6	82.6	39.7	34.5				noise floor
17360.019	38.10	52.00	73.6	82.6	35.5	30.6				noise floor

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA

Tel: (508) 766-6000 Fax: (508) 766-1145


Without written permission of laboratory, this report shall not be reproduced except in full.

Report Number: EMC.423816.17.41.2



FCC ID: A94423816 IC: 3232A-423816

Charging, pink noise at max volume. Horizontal orientation Date: 23.JAN.2017 22:58:26

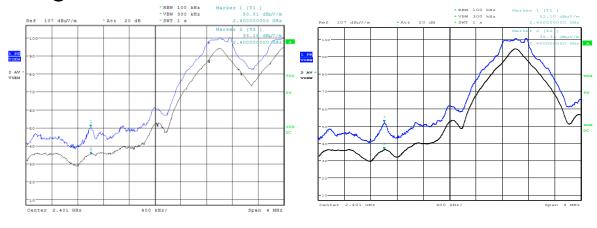
Charging, pink noise at \max volume. Vertical orientation

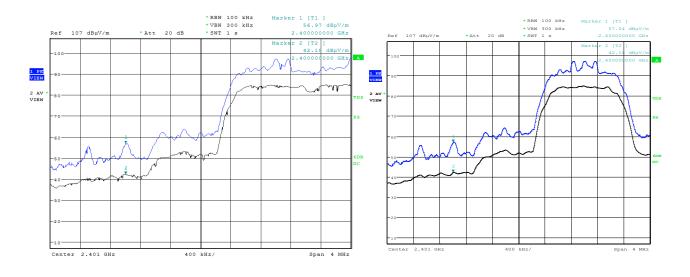
Date: 23.JAN.2017 22:11:03

Report Number: EMC.423816.17.41.2

FCC ID: A94423816 IC: 3232A-423816

				FCC 15	B Class B Pr	oduct (Resi	dential) @ 3 I	Meters		
Emission	Measured	Measured		FCC	15B	•	Table	Receiving	g Antenna	*Average detector used for
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	frequencies
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	QP	Peak	QP/AVG*	Peak	QP/AVG*	Peak	to ant)			Notes / Mode
Charging a	nd playing p	ink noise at	max volum	<u>e</u>						
Horizontal o	<u>orientation</u>									
1000.000	21.40	50.40	54.0	74.0	32.6	23.6	160	V	1.4	
2394.423			54.0	74.0						Tx fundamental
16206.923	37.20	51.80	54.0	74.0	16.8	22.2				noise floor
18000.000	40.70	55.20	54.0	74.0	13.3	18.8				noise floor
Charging a	nd playing p	ink noise at	max volum	<u>e</u>						
Vertical orio	<u>entation</u>									
1000.000	22.20	35.90	54.0	74.0	31.8	38.1	231	V	2.9	
4809.103			54.0	74.0						harmonic
13363.590	35.50	49.90	54.0	74.0	18.5	24.1				noise floor
18000.000	40.70	54.50	54.0	74.0	13.3	19.5				noise floor
On battery	and playing	pink noise a	ıt max volur	<u>ne</u>						
Vertical orio	<u>entation</u>									
2253.205	25.60	41.90	54.0	74.0	28.4	32.1				noise floor
4841.346			54.0	74.0						harmonic
13368.590	35.30	49.30	54.0	74.0	18.7	24.7				noise floor
18000.000	40.70	54.30	54.0	74.0	13.3	19.7	360	V	1.0	noise floor
On battery	and playing	pink noise a	ıt max volur	ne	<u></u>					
Horizontal o	<u>orientation</u>									
1108.974	22.30	36.10	54.0	74.0	31.7	37.9	360	V	1.0	
1417.051	23.40	37.40	54.0	74.0	30.6	36.6	0	V	1.0	
13322.500	35.10	49.00	54.0	74.0	18.9	25.0				noise floor
17844.936	39.70	54.10	54.0	74.0	14.3	19.9		•		noise floor

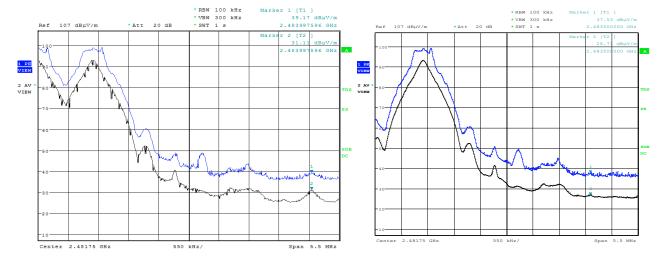

Report Number: EMC.423816.17.41.2


FCC ID: A94423816 IC: 3232A-423816

Band edge radiated emission measurements:

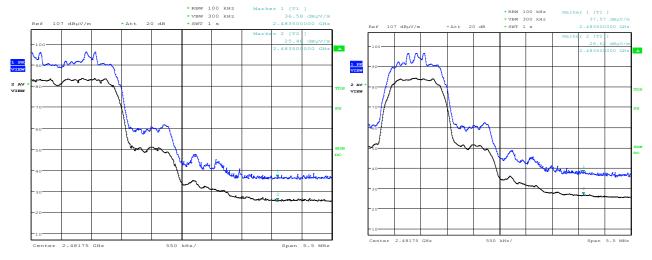
DH5 hopping, Lower band edge, vertical orientation Date: 19.JAN.2017 21:24:22 DH5, Lower band edge, vertical orientation Date: 19.JAN.2017 18:37:15

3-DH5 hopping, Lower band edge, vertical orientation


Date: 19.JAN.2017 23:06:07

3-DH5, Lower band edge, vertical orientation Date: 19.JAN.2017 20:10:25

FCC ID: A94423816 IC: 3232A-423816



DH5 hopping, Upper band edge, vertical orientation Date: 19.JAN.2017 21:41:47 DH5, Upper band edge, vertical orientation Date: 19.JAN.2017 18:47:03

FCC ID: A94423816 IC: 3232A-423816

3-DH5 hopping, Upper band edge, vertical orientation Date: 19.JAN.2017 23:18:52

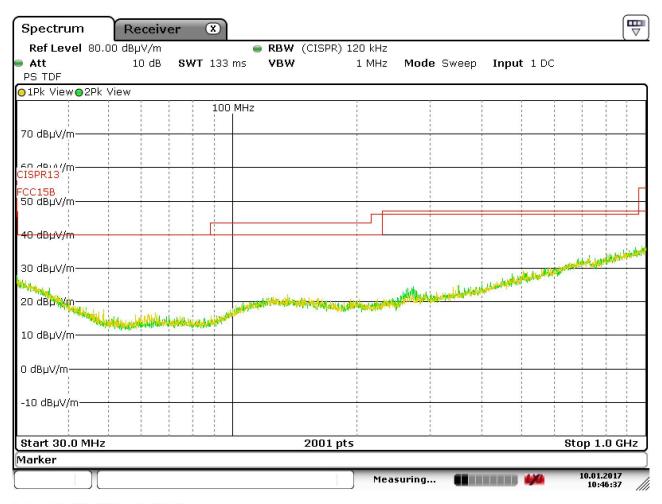
3-DH5, Upper band edge, vertical orientation Date: 19.JAN.2017 20:19:43

FCC ID: A94423816 IC: 3232A-423816

Facility :	Measured	Measured				uct (Reside	ntial) @ 3 Me			
Emission				FCC	-		Table		g Antenna	4
Frequency		Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	AVG	Peak	AVG	Peak	AVG	Peak	to ant)			Notes / Mode
<u> Marker-Delt</u>	a readings	_								
	98.00	103.00								1 MHz RBW, Max levels
2402.000	98.00	103.00					32	V	1.3	1 MHz
2441.000	96.20	101.80					105	Н	1.4	1 MHz
2480.000	96.90	102.70					117	Н	1.3	1 MHz
2402.000	92.10	100.80					32	V	1.3	100 kHz RBW
2441.000	91.20	99.40					105	Н	1.4	100 kHz RBW
2480.000	91.30	100.10					117	Н	1.3	100 kHz RBW
	92.10	100.80								100 kHz RBW, Max levels
2400.000	35.20	50.30					32	V	1.3	100 kHz RBW
2483.998	31.10	39.20					117	Н	1.3	100 kHz RBW
ower Band	l Edge	l .	Į.			l.	1		l.	•
2400.000		57.20	72.1	80.8	37.0	23.6	32	V	1.3	Standard method
Upper Band										
2483.998	34.30	49.10	54.0	74.0	19.7	24.9	117	Н	1.3	Standard method
2.00.000	000	10.10	00			20				Otaliaala motiloa
Marker-Delt	a readings	I	I			1	ı		ı	•
	92.30	97.90				1				1 MHz RBW, Max levels
2402.000	92.30	97.90					32	V	1.3	1 MHz
2441.000		97.00					105	H	1.4	1 MHz
2480.000	91.60	97.10					117	H	1.3	1 MHz
<u>-</u> +00.000	31.00	57.10					1111		1.0	1 1411 12
2402.000	82.40	97.30					32	V	1.3	100 kHz RBW
2441.000		96.60					105	H	1.4	100 kHz RBW
2480.000	81.70	96.60				 	117	<u>п</u>	1.4	100 kHz RBW
2400.000	82.40	97.30					117		1.3	100 kHz RBW, Max levels
	02.40	91.30				 			 	100 KI IZ KDVV, Wax levels
2400.000	42.20	57.00				1	32	V	1.2	100 kHz RBW
2400.000	42.20 25.50	36.60					117		1.3	100 kHz RBW
2483.500	∠5.50	30.00				-	117	Н	1.3	IOO KUZ KRAA
		<u> </u>	<u> </u>			L	ļl		<u> </u>	ļ
Lower Band						11.0	1 00 1	.,,	1	To
2400.000		66.00	62.4	77.3	26.7	11.3	32	V	1.3	Standard method
Upper Band							1		1	Territoria de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición dela composic
2483.500	34.20	47.90	54.0	74.0	19.8	26.1	117	Н	1.3	Standard method

FCC ID: A94423816 IC: 3232A-423816

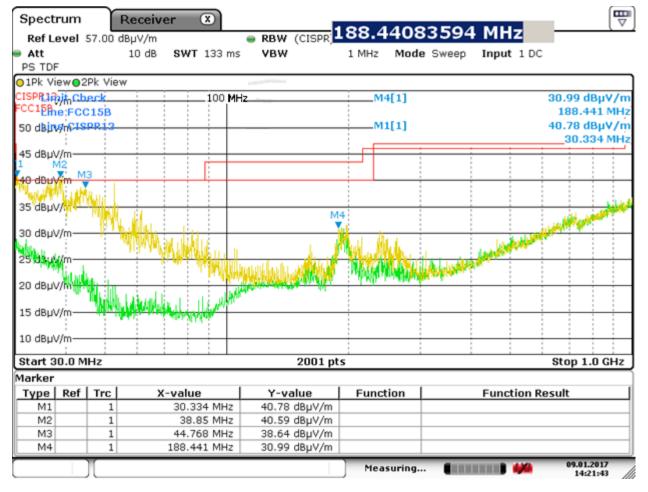
Resources Used


TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	06-Apr-2016	06-Apr-2017	n/a	n/a
2357	RF Cable 30MHz-18GHz	TRU-300	TRU- 12707-03	TRU Corporation	n/a	n/a	08-Jan-2016	07-Jan-2018
2373	RF Cable 30MHz-18GHz	TRU-300	N/A	TRU Corporation	n/a	n/a	12-Nov-2014	12-Nov-2017
2385	Marconi Manor	3 Meter Chamber	N/A	AP Americas	n/a	n/a	24-Nov-2015	24-Nov-2018
2478	RF cable 30MHz-18GHz	257-257- 3052640	N/A	SRC Haverhill	n/a	n/a	06-Jan-2016	05-Jan-2018
2342	Band Reject Filter	BRM50702-07	001	Micro-Tronics	n/a	n/a	29-Mar-2016	29-Mar-2017
2602	Miteq pre-amp 1-18GHz 35dB	AFS42- 01001800-28- 10P-42	N/A	Miteq	n/a	n/a	08-Jan-2016	07-Jan-2018
1757	18GHz-40GHz Preamp	JS4018004000- 30-8P-A1	1406279	Miteq	n/a	n/a	08-Jan-2016	07-Jan-2018
1596	Standard Gain Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research	n/a	n/a	n/a	n/a
2368	RF Cable 30MHz- 26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation	n/a	n/a	08-Jan-2016	07-Jan-2018
2349	Double Ridged Guide Horn Antenna 1- 18GHz	3117	00152406	ETS Lindgren	23-Nov-2016	23-Nov- 2017	n/a	n/a

FCC ID: A94423816 IC: 3232A-423816

30-1000MHz radiated emissions:

Date: 10.JAN.2017 10:46:37


Max-Hold Peak Pre-scan, 30 MHz to 1 GHz – max volume pink noise in BT mode, **battery powered (second sample).** Yellow trace is VERT, Green trace is HORZ

Playing max volume pink noise via Bluetooth while battery powered there were not any emissions close enough to the limit to maximize.

FCC ID: A94423816 IC: 3232A-423816

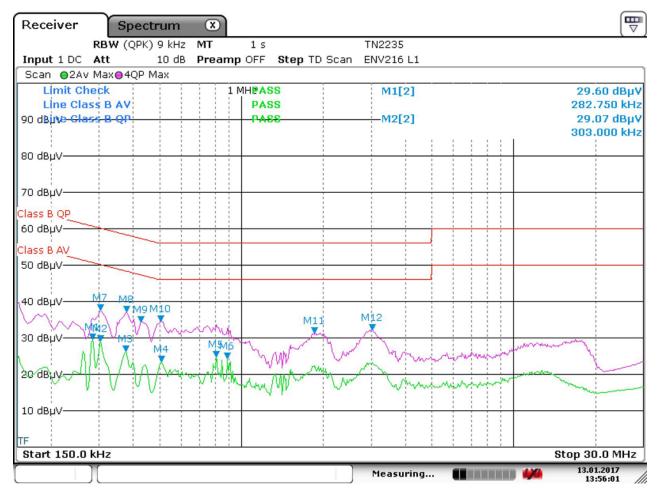
Max-Hold Peak Pre-scan, 30 MHz to 1 GHz – max volume pink noise in BT mode, 120V AC Mains Yellow trace is VERT, Green trace is HORZ

	FCC 15B Class B Product (Residential) @ 3 Meters													
Emission	Measured	Measured		FCC 15B			Table	Receiving	Antenna	*Average detector used for				
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	frequencies				
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)					
	QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG*	Peak	to ant)			Notes / Mode				
30.334	35.60	42.10	40.0	N/A	4.4	N/A	0	V	1.0					
38.850	34.40	42.20	40.0	N/A	5.6	N/A	200	V	1.0					
44.768	31.40	40.40	40.0	N/A	8.6	N/A	0	V	1.0					
52.802	26.40	38.20	40.0	N/A	13.6	N/A	0	V	1.0					
188.626	26.20	33.80	43.5	N/A	17.3	N/A	158	V	1.0					
197.425	25.90	33.50	43.5	N/A	17.6	N/A	187	V	1.0					

Model 423816 in Bluetooth mode powered at 120V passes FCC Class B by 4.4 dB at 30.3 MHz.

FCC ID: A94423816 IC: 3232A-423816

Resources Used


TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	14-Apr-2016	14-Apr-2017	n/a	n/a
644	Maxwell House 3 Meter Chamber	N/A	1698A	EM Test	n/a	n/a	23-Mar-2016	23-Mar-2018
1445	Maxwell House Cable Set	N/A	N/A	Bose Corporation	n/a	n/a	21-Mar-2016	21-Mar-2017
2077	Preamplifier	N/A	N/A	Bose Corporation	n/a	n/a	21-Mar-2016	21-Mar-2017
1541	Antenna 30MHz - 6GHz, Broadband Hybrid Antenna	JB6	A050807	Sunol Sciences Corp	24-Oct-2016	24-Oct-2017	n/a	n/a
1569	Comb Generator	CG- 520	451016	Com-Power Corporation	n/a	n/a	26-Jan-2016	25-Jan-2018
2281	iPod touch	16GB	CCQM2PAUFFCJ	Apple	Verify before use	Verify before use	Verify before use	Verify before use

FCC ID: A94423816 IC: 3232A-423816

AC Power Line Conducted Emissions

Max Hold plot with QP and Average detectors: 150 kHz to 30 MHz, Line/Neutral

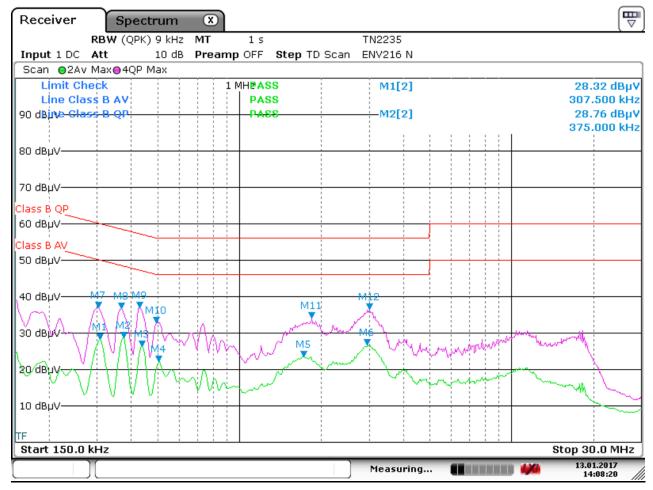
120 V - Max volume Pink noise via BT

	FCC 15B Class B, CISPR 13, CISPR 22 Class B Product												
Frequency	MEAS	URED	LIF	ΛΙΤ	MAF	RGIN							
MHz	dBµV QP	dB _µ V AVG	dBµV QP	dB _µ V AVG	dB QP	dB AVG	Notes						
0.2828	35.50	29.60	60.7	50.7	25.2	21.1	120V, max volume pink noise via BT						
0.3030	37.70	29.10	60.2	50.2	22.5	21.1	120V, max volume pink noise via BT						
0.3750	36.90	26.20	58.4	48.4	21.5	22.2	120V, max volume pink noise via BT						
0.3773	37.20	26.10	58.3	48.3	21.1	22.2	120V, max volume pink noise via BT						
0.4268	34.40	19.70	57.3	47.3	22.9	27.6	120V, max volume pink noise via BT						
0.5055	34.60	23.40	56.0	46.0	21.4	22.6	120V, max volume pink noise via BT						
0.5078	34.50	23.40	56.0	46.0	21.5	22.6	120V, max volume pink noise via BT						
0.8070	33.70	24.80	56.0	46.0	22.3	21.2	120V, max volume pink noise via BT						
0.8880	32.90	24.30	56.0	46.0	23.1	21.7	120V, max volume pink noise via BT						
1.8578	31.30	22.40	56.0	46.0	24.7	23.6	120V, max volume pink noise via BT						
3.0345	32.20	23.10	56.0	46.0	23.8	22.9	120V, max volume pink noise via BT						

DP1 Minnow Passes FCC Class B conducted emissions by 21.1 dB at 0.283 MHz when powered at 120V playing max volume pink noise via BT

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

BOSE CONFIDENTIAL


Form FL300959 Rev 04

Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2

FCC ID: A94423816 IC: 3232A-423816

Max Hold plot: 150 kHz to 30 MHz, Line/Neutral

120 V – Standby mode

	FCC 15B Class B, CISPR 13, CISPR 22 Class B Product													
Frequency	MEAS	URED	LIN	TIN	MAF	RGIN								
MHz	dBµV QP	dBµV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	Notes							
2.9513	36.30	26.70	56.0	46.0	19.7	19.3	120V, standby mode							
3.0165	36.40	26.50	56.0	46.0	19.6	19.5	120V, standby mode							
0.3750	35.80	28.80	58.4	48.4	22.6	19.6	120V, standby mode							
0.4290	36.90	24.80	57.3	47.3	20.4	22.5	120V, standby mode							
0.4380	36.20	26.40	57.1	47.1	20.9	20.7	120V, standby mode							
0.3683	36.70	27.70	58.5	48.5	21.8	20.8	120V, standby mode							
0.3075	36.80	28.30	60.0	50.0	23.2	21.7	120V, standby mode							
1.8443	34.10	22.80	56.0	46.0	21.9	23.2	120V, standby mode							
0.3030	37.00	27.90	60.2	50.2	23.2	22.3	120V, standby mode							
1.7250	32.90	23.50	56.0	46.0	23.1	22.5	120V, standby mode							
0.5055	32.80	22.10	56.0	46.0	23.2	23.9	120V, standby mode							
0.4965	32.80	21.30	56.1	46.1	23.3	24.8	120V, standby mode							

DP1 Minnow Passes FCC Class B conducted emissions by 19.3 dB at 2.9513 MHz when powered at 120V in Standby mode

FCC ID: A94423816 IC: 3232A-423816

Resources Used

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
2247	EMI Test Receiver, 7GHZ	ESR7	101263	Rohde & Schwarz	08-Apr-2016	08-Apr-2017	n/a	n/a
1380	Conducted Comb Generator	CGC- 510	311559	Com-Power Corporation	n/a	n/a	28-Mar-2016	28-Mar-2017
2235	2-LINE V- NETWORK	ENV216	101192	Rohde & Schwarz	03-Dec-2015	02-Dec-2017	n/a	n/a

End of Report

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.423816.17.41.2