

Test Type:	Emissions [X] Immunity []
Product Type:	<u>Wireless module</u>
Product Name/Number:	Bose® model 416549 Wireless Module
FCC ID: IC:	A94416549 3232A-416549
Prepared For:	Design Compliance Engineering Department, Bose Corporation
Test Results:	Pass [X] Fail []
Applicable Standards:	FCC part 15, RSS210 , RSS-gen and ICES-003
Report Number:	EMC.416549.15.15.1

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for *Enter product and any special modifications or test conditions.*

	Print Name	Signature	Date
Prepared By:	Chad Bell	Chad Bell	1/22/15
Electrical Engineer Review* By:	Bryan Cerqua	Bry agen	2/20/15

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher level review to ensure this report lists and contains all applicable and appropriate requirements. *If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.*

Table of Contents

1.0	Test Report Summary	3
2.0	Test Standards	
3.0	Environmental Conditions	4
4.0	Test Results Summary	5
5.0	Individual Test Reports and Data	6
5.1	On time and Duty Cycle	
5.2	20 dB AND 99% Bandwidth	7
5.3	Hopping frequency separation	10
5.4	Number of hopping channels	
5.5	Average time of occupancy	12
5.6	Output power	
5.7	Conducted Spurious Emissions	15
5.8	Radiated Emissions Below 1GHz	17
5.9	Radiated Emissions Above 1GHz	19
5.9.1	Restricted Band edge	22
5.10	AC Power Line Conducted Emissions	25
6.0	Test Equipment Used	
7.0	Measurement Uncertainty	29

1.0 Test Report Summary

1.1 Product Information

Description:

Bose® model 416549 is a 2.4Ghz and 5GHz wireless module.

EUT Condition/Setup:

For conducted RF testing the antennas were disconnected and U.fl connectors were soldered to the board. U.fl to SMA cables were used to connect to test equipment. The loss of these cables was accounted for via transducer factors. For radiated measurements the long ribbon cables were used to extend the module as far from the enclosure as possible and the module was tested in 3 orthogonal orientations.

Scope

This report covers EMC requirements as defined by the standards indicated in section 2 of this report.

Test Objective

Verify product meets all applicable EMC requirements.

Results

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

1.2 Conclusions

The device under test (D.U.T.):

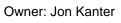
[X] meets all test standards selected in section 2 of this report.

[] does not meet all test standards selected in section 2 of this report.

Affirmation of Test Results:

	Print Name	Signature	Date
Testing Engineer/Technician	Chad Bell	Chad Bell	1/22/15

2.0 Test Standards


2.1	Emissions: Standard	
[]	FCC Part 15B/Canada ICES-003	Class A [] B []
[X]	FCC Part 15C	
[X]	Canada RSS-210/RSS-310/RSS-GEN	
[]	EN 55013/CISPR-13/AS-NZS CISPR13/GB	13837/CNS13439
[]	EN 55022/CISPR-22/AS-NZS CISPR22	Class A [] B []
[]	EN 55103-1	
[]	EN 61000-3-2/GB17625.1	
Ē	EN 61000-3-3/GB17625.2	
Ö	EN 61000-6-3	
Ö	EN 61000-6-4	
Ö	EN 300 220/AS 4268.2	
Ö	EN 300 328	
ö	EN 300 440	
ö	EN 301 489	
2.2	Immunity:	
	Standard	
[]	EN 55020/CISPR-20	
Ï	EN 55024/CISPR-24	

EN 55024/CISPR-24 [] [] [] [] EN 55103-2 EN 61000-4-2 EN 61000-4-3 [] EN 61000-4-4 [] EN 61000-4-5 [] EN 61000-4-6 [] EN 61000-4-8 [] EN 61000-4-11 [] EN 61000-6-1 EN 61000-6-2 [] EN 301 489 []

3.0 Environmental Conditions

3.1 Ambient:

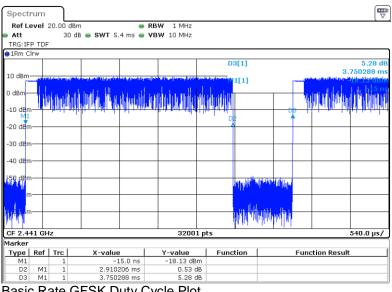
Temperature:	22±4°C
Humidity:	30-60%RH
Mains Voltage:	[] 100VAC
	[X] 120VAC
	[]230VAC

4.0 Test Results Summary

FCC part 15	RSS210	RSS- Gen	Test references.	Result / Data section	Test Date
15.15(b)		6.3	There are no user-accessible controls for the adjustment of any transmitter parameters in the device under test.Complies		N/A
15.27			There are no special devices such as shielded cables or special connectors required for compliance to the applicable standards.	shielded cables or special connectors required for compliance to the applicable	
15.203			An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antennas are not accessible by the user.	Complies	N/A
15.205	2.2		The device does not operate in either the US or Canadian restricted bands.	Complies Section 5.9	1/22/2015
15.247 (a)(2)		6.6	20 dB AND 99% Bandwidth	Complies Section 5.2	<u>12/2/2014</u>
FCC 15.247 (a) (1)	A8.1 (b)		Hopping frequency separation	Complies Section 5.3	12/11/2014
15.247 (a) (1) (iii)	A8.1 (d)		Number of hopping channels	Complies Section 5.4	12/11/2014
5.247 (a) (1) (iii)	A8.1 (d)		Average Time of Occupancy	Complies Section 5.5	12/11/2014
15.247 (b)(3)	A8.4 (2)	6.12	Maximum peak conducted output power	Complies Section 5.6	<u>12/2/2014</u>
15.247(d)	A8.5	6.13	Conducted spurious emissions		
15.109 15.209		8.9	Radiated emissions < 1GHz	Complies Section 5.8	<u>12/8/2014</u>
15.247(d)		8.9, 8.10	Radiated emissions > 1 GHz, Transmitter harmonics.	Complies Section 5.9	<u>1/22/2015</u>
15.107 15.207		8.8	Conducted emissions, 150kHz–30 MHz	Complies Section 5.10	<u>12/2/2014</u>
		5.2, 7.1	Receiver Spurious emissions	Not applicable only applies to stand-alone receivers	N/A
		6.11, 8.11	Frequency Stability	Not applicable since the occupied bandwidth lies outside the restricted bands and the prohibited TV bands	N/A

Owner: Jon Kanter

DESIGN COMPLIANCE ENGINEERING EMC TEST REPORT



5.0 Individual Test Reports and Data

5.1 On time and Duty Cycle

Mode	Pulse Width (uS)	Period (us)	Duty Cycle	Duty Cycle Correction Factor
GFSK	2910	3750	0.776	1.101
8PSK	2910	3750	0.776	1.101

There are no limits for this test. It is used to determine the duty cycle correction factor.

Basic Rate GFSK Duty Cycle Plot

Spect		L					7
		20.00 dB		RBW 1 MHz			
Att			dB 👄 SWT 5.4 ms 👄	VBW 10 MHz			
TRG: IF							
∎1Rm C	Irw						
					D3[1]		5.76 d
10 dBm	_						3.750288 m -20.27 dB
							- <u></u>
0 dBm							-131
-10 dBm	-				4	D3	
M1							
-20 dBm							
-30 dBm							
-50 021	'						
-40 dBm							
-50 dBm					والمراجع المراجع	di a girta	
					1. Marilloute a	All a start a start	
n	·+-						
out at a						and ante	
No P u	·+-				in in physical states in the second states in the s	distriction of the second s	
1					Lot	1911 (1917) - E	
CF 2.4	41 GH	z		32001 pt	5		540.0 µs/
4arker							
Туре	Ref	Trc	X-value	Y-value	Function	Functi	on Result
M1		1	-15.0 ns	-20.27 dBm			
D2	M1	1	2.910206 ms	9.43 dB			
D3	M1	1	3.750288 ms	5.76 dB			

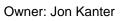
Enhanced Rate 8DPSK Duty Cycle Plot

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

Without written permission of laboratory, this report shall not be reproduced except in full. BOSE CONFIDENTIAL

FL300959

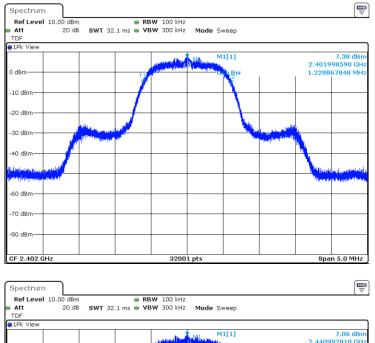
Owner: Jon Kanter

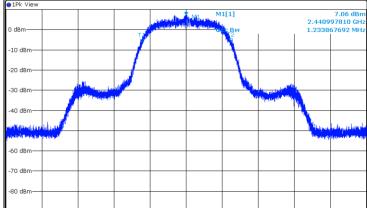


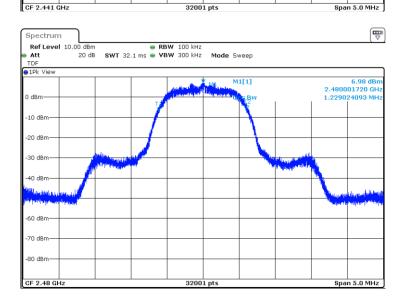
5.2 20 dB AND 99% Bandwidth

Requirement(s)

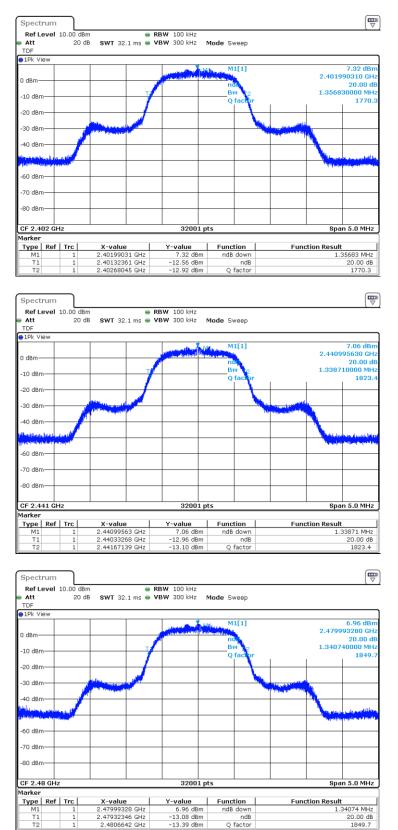
None, for reporting purposes only.


Frequency (MHz)	Data Rate	Measurement Type	Bandwidth (kHz)
2402	DH5	99%_OBW	916.3776
2441	DH5	99%_OBW	915.1277
2480	DH5	99%_OBW	917.3151
2402	3-DH5	99%_OBW	1228.8678
2441	3-DH5	99%_OBW	1233.8677
2480	3-DH5	99%_OBW	1229.0241
2402	DH5	20dB_OBW	1007.7800
2441	DH5	20dB_OBW	984.0300
2480	DH5	20dB_OBW	972.4700
2402	3-DH5	20dB_OBW	1356.8300
2441	3-DH5	20dB_OBW	1338.7100
2480	3-DH5	20dB_OBW	1340.7400




EMC TEST REPORT

Representative 99% Bandwidth Plots


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

Without written permission of laboratory, this report shall not be reproduced except in full. BOSE CONFIDENTIAL Owner: Jon Kanter

EMC TEST REPORT

Representative 20dB Bandwidth Plots

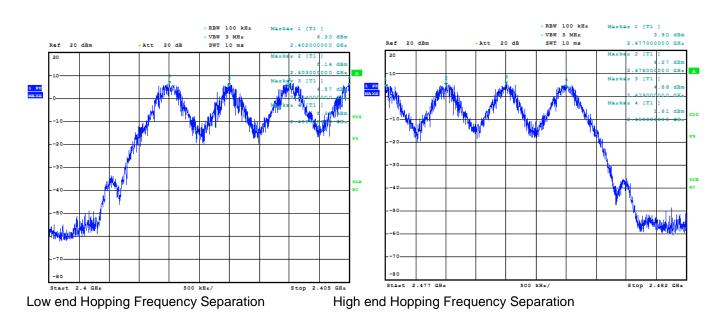
Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

Without written permission of laboratory, this report shall not be reproduced except in full. BOSE CONFIDENTIAL

FL300959

ACCREDITED Certificate # 1514.1

5.3 Hopping frequency separation


Requirement(s)

FCC 15.247 (a) (1)

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

IC RSS-210 A8.1 (b)

Alternatively, frequency hopping systems operating in the band 2400–2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

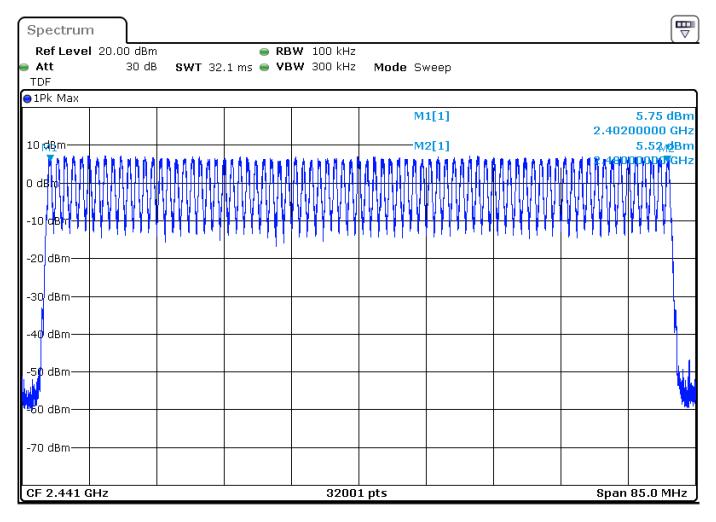
Test Results

Since the 1MHz hopping frequency seperation is less than the highest 20dB occupied bandwidth of 1.357MHz but greater than 2/3 of the highest 20dB occupied bandwidth the output power no greater than 125 mW.

DESIGN COMPLIANCE ENGINEERING

EMC TEST REPORT

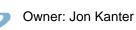
5.4 Number of hopping channels


Requirement(s)

FCC 15.247 (a) (1) (iii)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

IC RSS-210 A8.1 (d)


Frequency hopping systems operating in the band 2400–2483.5 MHz shall use at least 15 hopping channels.

Test Results

In normal hopping mode there are 79 hopping channels observed which is greater than the minimum required 15 hopping channels. The specification requires a minimum set of at least twenty channels.

Rev F

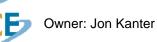
DESIGN COMPLIANCE ENGINEERING

EMC TEST REPORT

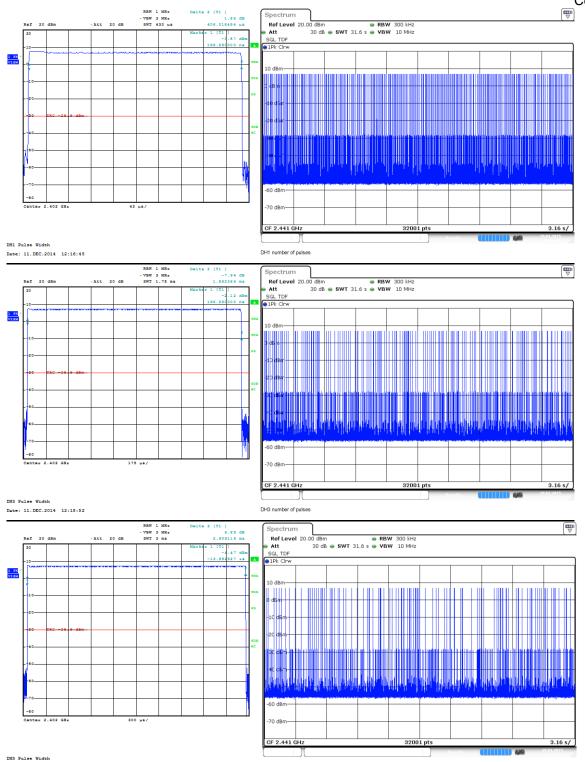
5.5 Average time of occupancy

FCC 15.247 (a) (1) (iii) IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


Test Method

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

Test Results

Mode	# of Slots	Pulse Width (uS)	Number of pulses in 31.6 seconds	Dwell Time (s)	Limit (s)	Result
DH1	2	406	196	0.080	0.400	Pass
DH3	4	1662	130	0.216	0.400	Pass
DH5	6	2909	87	0.253	0.400	Pass

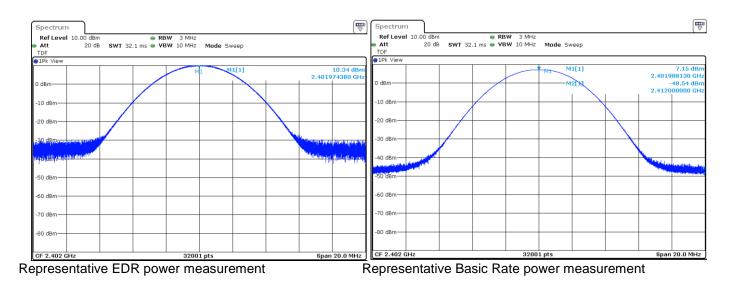
DH5 number of pulses

Date: 11.DEC.2014 12:23:54

5.6 Output power

Requirement(s)

Since the 1MHz hopping frequency seperation is less than the highest 20dB occupied bandwidth of 1.357MHz but greater than 2/3 of the highest 20dB occupied bandwidth the output power no greater than 125 mW.


15.247 (b) (1)

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Method

Measure per KDB 558074 v03r02 section 9.1.1 RBW ≥ DTS bandwidth

Frequency (MHz)	Data Rate	Output Power (dBm)	Limit (dBm)	Margin (dBm)
2402	DH5	7.15	21.00	13.8500
2441	DH5	6.82	21.00	14.1800
2480	DH5	6.75	21.00	14.2500
2402	3-DH5	10.34	21.00	10.6600
2441	3-DH5	10.16	21.00	10.8400
2480	3-DH5	10.04	21.00	10.9600

Owner: Jon Kanter

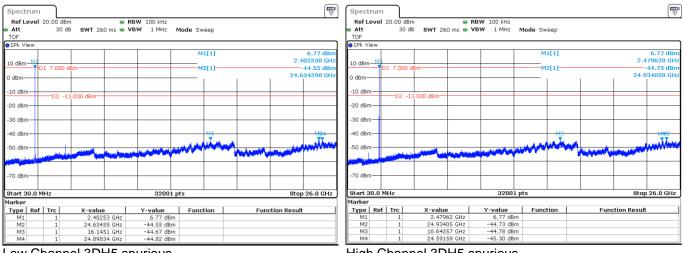
DESIGN COMPLIANCE ENGINEERING **EMC TEST REPORT**

TED ACCRED Certificate # 1514.1

Conducted Spurious Emissions 5.7

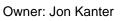
Requirement(s)

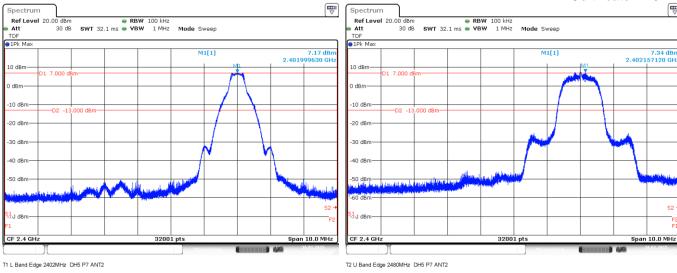
FCC 15.247 (d)/ IC RSS-210 A8.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth.

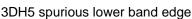
Test Method

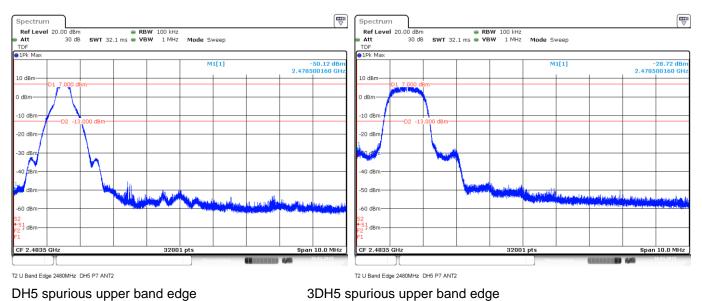
Measure per KDB 558074 v03r02 section 11.0


Test Results



Low Channel 3DH5 spurious


High Channel 3DH5 spurious



Test Results

All emissions outside of the 2.4-2.4835GHz band are more than the required 20dB below the fundamental.

5.8 Radiated Emissions Below 1GHz

Requirement(s)

FCC 15.205 and 15.209

Frequency	Limit in uV/m @ 3m	Limit in dBµV/m @3m
MHz	Quasi-peak	Quasi-peak
30 – 88	100	40
88 - 216	150	43.5
216-960	200	46
Above 960	500*	54*

Test setup details

The EUT was placed on an 80 cm high table and configured for worst case emissions based on previous testing. EUT was maximized in 3 orthogonal planes for radiated spurious emissions; plots shown represent worst case orientation.

Photos of the orientations are included in the Test Setup Photos document.

Test Results

Emission	Measured	Measured		FCC	15B		Table	Receiving	g Antenna	*Average detector used for frequencies
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	above 1 GHz.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG*	Peak	to ant)			Notes / Mode
30.000	23.00	29.00	40.0	N/A	17.0	N/A	330	V	1.0	Hopping in EDR Mode
46.240	25.20	28.30	40.0	N/A	14.8	N/A	146	V	1.0	Hopping in EDR Mode
57.390	29.60	32.80	40.0	N/A	10.4	N/A	280	V	1.0	Hopping in EDR Mode
30.000	23.00	29.00	40.0	N/A	17.0	N/A	330	V	1.0	Hopping in Basic Rate Mode
46.240	25.20	28.30	40.0	N/A	14.8	N/A	146	V	1.0	Hopping in Basic Rate Mode
57.390	29.60	32.80	40.0	N/A	10.4	N/A	280	V	1.0	Hopping in Basic Rate Mode

Spectrun	n														T
Ref Leve	80.00	dBµV/m			👄 RE	W (CISP	PR) 12	0 kHz							<u>`</u>
Att PS TDF		10 dB	SWT	133 ms	VE	w		1 MHz	Mode	s Sw	еер	Input	t 1 DC		
01Pk Max															
Limit	theat				PASS										
					PASS										
70 dBuV/m-	ISPR13				PASS										
60 dBµV/m-		_			+										
50 dBµV/m-															
CISPR13					+		<u> </u>		<u> </u>						
CISHK13															
dBµV/m-					+		+						وسيلقاد والمحسب المقاديد	-	al for a state
LVA L						مربر جار المراجع المراجع . مربر جار المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال	L. L. Long In	Jun Banut	-deployed in	- Martines	and the second	a superior			
20 dBµV/m-			1. 1	and a state of the		ale the second						-			
10 dEu/m-	manyavior	without	and the second second												
0 dBµV/m—	<u> </u>				+		<u> </u>								
-10 dBuV/m															
10 00001,000															
Start 30.0	MHz					2001	1 pts						Sto	p 1.0 G	Hz
Marker															
Type Re	f Trc	X	-value			-value		Func	tion			Func	tion Result		
M1	1			39 MHz		.38 dBµV,									
M2	1			4 MHz		.90 dBµV,									
M3	1		30.	0 MHz	25	.93 dBµV/	/m								

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

Without written permission of laboratory, this report shall not be reproduced except in full. BOSE CONFIDENTIAL

Spect	rum	Υ	Receiver	×								
Ref Le Att PS TDF		80.00	İBµV/m 10 dB SWT	133 ms	RBW VBW	(CISPR)	120 kHz 1 MHz	Mode	Sweep	Inpu	t 1 DC	, , , , , , , , , , , , , , , , , , ,
01Pk Ma	эх											
70 dBuy	hit Cho e FCC 7m e CISI				PASS PASS PASS							
60 dBµV	//m-				_							
50 dBµV	//m-											
	/m											
20 dBµV	//m	hancia	Non-March - Jacob - Ja	et and	landaria di Santa di	والمصامر فيلينها والمسري	herenterste	ny aya a bi bi bi a sa a sa a sa a sa a sa a	Lophateralities	in the second second		al anni alainn inn hi
0 dBµV/	m+				_							
-10 dBµ	v/m											
Start 3	0.0 M	Hz				2001 pt	s				S	top 1.0 GHz
Marker												
Туре	Ref	Trc	X-value		Y-va		Func	tion		Fund	tion Resu	lt
M1		1		42 MHz		dBµV/m						
M2 M3		1		.3 MHz .0 MHz		dBµV/m dBµV/m						

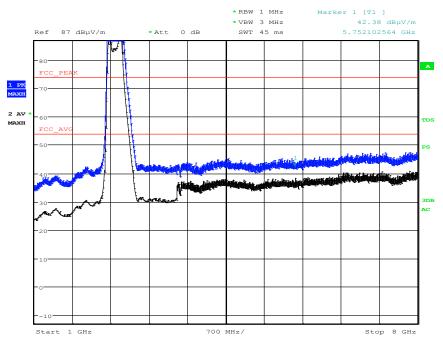
Test Results Summary

Worst case emission is passing Class B by 10.4dB.

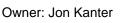
5.9 Radiated Emissions Above 1GHz

Requirement(s)

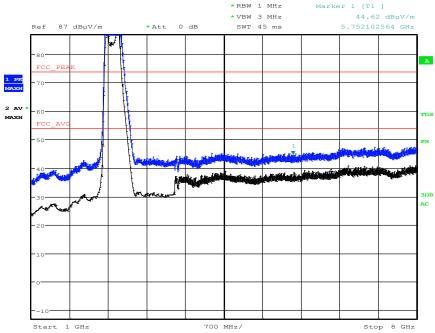
FCC 15.205 and 15.209

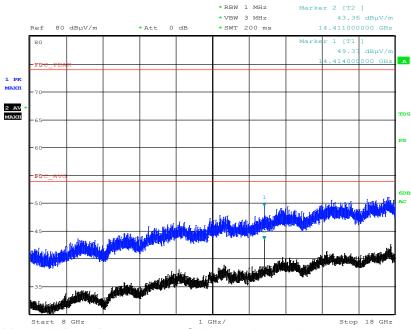

Frequency	Limit in uV/m @ 3m	Limit in dBµV/m @3m
MHz	Quasi-peak	Quasi-peak
30 – 88	100	40
88 - 216	150	43.5
216-960	200	46
Above 960	500*	54*

Test setup details

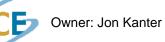

The EUT was placed on an 80 cm high table and configured for worst case emissions based on previous testing. EUT was maximized in 3 orthogonal planes for radiated spurious emissions; plots shown represent worst case orientation.

Photos of the orientations are included in the Test Setup Photos document.

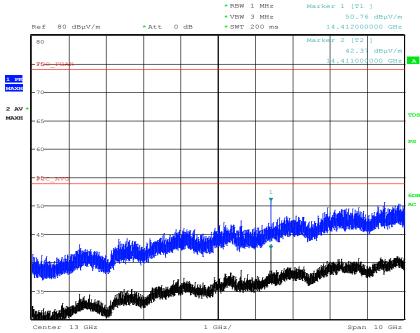

Test Results


Max-Hold Peak Pre-scan, 1 - 8GHz, 3 orthogonal axes measured representative plot shown, Basic Rate Mode, The spike above the limit is due to the correction factor for the 2.4GHz band reject filter, this will be examined more closely during band-edge measurements. Trace shows Horizontal and Vertical polarity. There are no emissions within 10dB of the limit line.

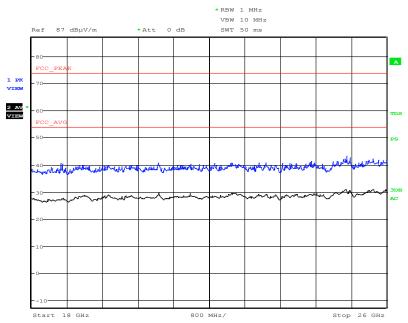
Max-Hold Peak Pre-scan, 1 - 8GHz, 3 orthogonal axes measured representative plot shown, EDR Mode, The spike above the limit is due to the correction factor for the 2.4GHz band reject filter, this will be examined more closely during band-edge measurements. Trace shows Horizontal and Vertical polarity. There are no emissions within 10dB of the limit line.



Max-Hold Peak Pre-scan, 8-18GHz, , 3 orthogonal axes measured representative plot shown, Basic Rate, Trace shows Horizontal and Vertical polarity. There are no emissions within 10dB of the limit line.

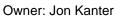

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

Report Number: EMC.416549.15.1


Page 20 of 29

Max-Hold Peak Pre-scan, 8-18GHz, , 3 orthogonal axes measured representative plot shown, EDR Mode, Trace shows Horizontal and Vertical polarity. There are no emissions within 10dB of the limit line.

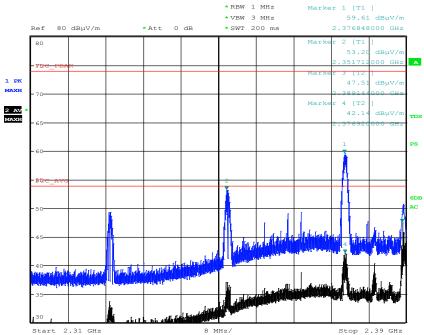
Max-Hold Peak Pre-scan, 18-26GHz, Analyzer was on max hold through all 3 orientations, Trace shows Horizontal and Vertical polarity.

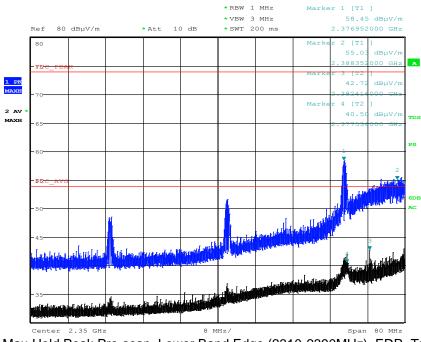

There are no emissions within 10dB of the limit.

Test Results Summary

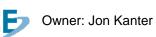
Bose® model 416549 Wireless Module passes radiated emissions above 1GHz since there were not any emissions observed during the pre-scan that were within 10dB of the limit

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

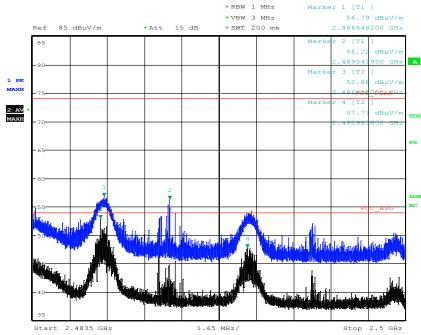

Report Number: EMC.416549.15.15.1



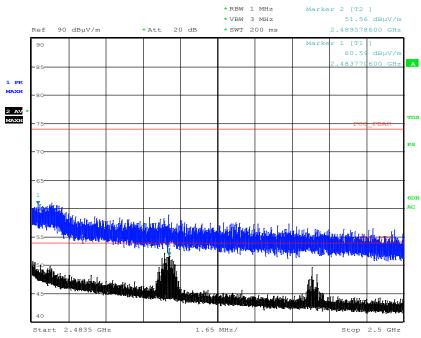
5.9.1 Restricted Band edge


Max-Hold Peak Pre-scan, Lower Band Edge (2310-2390MHz), Basic Rate Mode, Trace shows Horizontal and Vertical polarity.

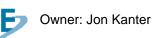
Max-Hold Peak Pre-scan, Lower Band Edge (2310-2390MHz), EDR, Trace shows Horizontal and Vertical polarity.


Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145

Report Number: EMC.416549.15.15.1



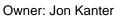
EMC TEST REPORT


Max-Hold Peak Pre-scan, Upper Band Edge (2483.5-2500MHz), Basic Rate Mode, Trace shows Horizontal and Vertical polarity.

Max-Hold Peak Pre-scan, Upper Band Edge (2483.5-2500MHz), EDR, Trace shows Horizontal and Vertical polarity.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Report Number: EMC.416549.15.15.1

FL300959



0

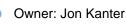
DESIGN COMPLIANCE ENGINEERING EMC TEST REPORT

						B Class B Pr	oduct (Resid			
Emission	Measured	Measured		FCC	: 15B		Table	Receiving	g Antenna	*Average detector used for frequencies
Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	above 1 GHz.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0° closest	(H/V)	(Meters)	
	QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG*	Peak	to ant)			Notes / Mode
										LOWER BAND EDGE
										EUT orientation 1. (Carrier antenna end facing horn antenna)
2351.712	28.70	51.90	54.0	74.0	25.3	22.1	160.0	Н	1.57	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2389.144		50.40	54.0	74.0	23.3	23.6	160.0	Н	1.57	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2326.944	26.80	48.90	54.0	74.0	27.2	25.1	160.0	Н	1.57	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2376.864		60.70	54.0	74.0	21.4	13.3	136.0	Н	2.06	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2376.864	35.70	60.80	54.0	74.0	18.3	13.2	136.0	Н	2.06	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2390.000		57.90	54.0	74.0	17.2	16.1	136.0	Н	2.06	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2377.096	35.80	60.60	54.0	74.0	18.2	13.4	136.0	Н	2.06	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
										EUT orientation 2. (Carrier antenna end facing horn antenna)
2376.864	27.90	51.10	54.0	74.0	26.1	22.9	160.0	Н	1.57	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2376.864	29.20	51.40	54.0	74.0	24.8	22.6	160.0	Н	1.57	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2390.000	29.20	51.40	54.0	74.0	24.8	22.6	160.0	Н	1.57	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2377.096	29.10	50.90	54.0	74.0	24.9	23.1	160.0	Н	1.57	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
										EUT orientation 3. (Carrier antenna end facing horn antenna)
2376.864	29.50	55.10	54.0	74.0	24.5	18.9	119.0	Н	1.4	Calibrator(4,2402, -60, -65535, 7,2) Basic Rate
2376.864	29.20	54.60	54.0	74.0	24.8	19.4	119	Н	1.4	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2390.000	28.90	43.90	54.0	74.0	25.1	30.1	124.0	Н	1.4	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
2377.096	29.20	54.50	54.0	74.0	24.8	19.5	118.0	Н	1.4	Calibrator(4,2402, -120, -65535, 7,2) EDR Rate
										UPPER BAND EDGE
										EUT orientation 1. (Carrier antenna end facing horn antenna)
2483.500	40.50	56.20	54.0	74.0	13.5	17.8	137	Н	1.4	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2486.518	35.30	55.20	54.0	74.0	18.7	18.8	137	Н	1.4	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2489.544	32.00	53.30	54.0	74.0	22.0	20.7	144	Н	1.4	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2492.986	34.10	54.70	54.0	74.0	19.9	19.3	144	Н	1.4	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2483.500	43.50	60.90	54.0	74.0	10.5	13.1	137	Н	1.4	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate
2489.579	37.70	58.10	54.0	74.0	16.3	15.9	143	Н	1.4	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate
										EUT orientation 2. (Carrier antenna end facing horn antenna)
2483.500	37.30	52.50	54.0	74.0	16.7	21.5	320	V	2.3	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2486.518	31.70	51.40	54.0	74.0	22.3	22.6	320	V	2.3	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2489.544	31.90	52.00	54.0	74.0	22.1	22.0	320	V	2.3	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2492.986	29.60	48.70	54.0	74.0	24.4	25.3	320	V	2.3	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2483.500	39.40	56.40	54.0	74.0	14.6	17.6	320	V	2.3	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate
2489.579	34.00	54.30	54.0	74.0	20.0	19.7	320	V	2.3	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate
	1				1					EUT orientation 3. (Carrier antenna end facing horn antenna)
2483.500	36.60	50.70	54.0	74.0	17.4	23.3	133	Н	1.1	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2486.518		51.10	54.0	74.0	21.9	22.9	133.0	H	1.1	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2489.544		45.60	54.0	74.0	24.2	28.4	133.0	Н	1.1	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2492.986		48.60	54.0	74.0	24.7	25.4	133	H	1.1	Calibrator(4,2480, -60, -65535, 7,2) Basic Rate
2483.500		57.00	54.0	74.0	14.5	17.0	133.0	H	1.1	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate
2489.579		52.80	54.0	74.0	20.0	21.2	133.0	H	1.1	Calibrator(4,2480, -120, -65535, 7,2) EDR Rate

ACCREDITED Certificate # 1514.1

5.10 AC Power Line Conducted Emissions

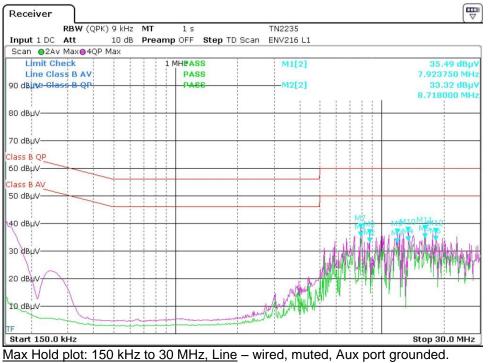
Requirement(s)


FCC rules part 15.207, RSS 210 section 7.2.4, RSS-Gen section 8.8

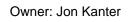
Frequency	Limits dB(μV)					
MHz	Quasi-peak	Average				
0.15 -0.5	66-56	56-46				
0.5 – 1.6	56	46				
1.6 - 30	60	50				

Test Method

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average. Line conducted data is recorded for both Line and Neutral.

EMC TEST REPORT


Test Results

120 V, 60 Hz

Frequency	MEAS	URED	LIN	ТІМ	MARGIN		
MHz	dBµV QP dBµV AVG		dBµV QP	dBµV QP dBµV AVG		dB AVG	
7.9238	38.50	35.50	60.0	50.0	21.5	14.5	
8.7180	36.30	33.30	60.0	50.0	23.7	16.7	
11.8928	36.50	33.10	60.0	50.0	23.5	16.9	
13.4205	37.10	33.70	60.0	50.0	22.9	16.3	
16.2285	37.80	34.70	60.0	50.0	22.2	15.3	
18.2445	36.80	33.80	60.0	50.0	23.2	16.2	

Bose® model 416549 Wireless Module PASSES FCC conducted emissions limits by 14.5 dB at 7.9238 MHz (AVG measurement) on the Line side.

RB	V (QPK) 9 kHz	MT 1	. s	TN2235		,
Input 1 DC Att		Preamp O	FF Step TD Sca	n ENV216 N		
Scan 💿2Av Max	4QP Max					
Limit Check Line Class B	AV	1 MH	PASS	M1[2]		34.82 dBµ 7.923750 MH
90 dBirve Class B			1455	M2[2]		32.70 dBµ
						11.892750 MH
80 dBµV						
70 dBµV						
Class B QP						
60 dBµV						
Class B AV					1	
50 dBµV						
7				1 1	4	C
40 dBμV					MB	MM10M1012
						MARA TO M6
30 dauv					in the state	<u> 14. A. Managula, 15</u>
						THE ALL AND A DAMA TO ALL A
20 dBuV				<u> </u>		
N				1 min your		a li - co
10 dBµV	-	imt	- manual and	Warman WWW		
IF	111				1 1 1 1 1	

Max Hold plot: 150 kHz to 30 MHz, Neutral - wired, muted, Aux port grounded. 120 V, 60 Hz

Frequency	MEAS	URED	LIN	ЛІТ	MARGIN		
MHz	dBµV QP	dBµV AVG	dBµV QP	dBµV AVG	dB QP	dB AVG	
7.9238	37.70	34.80	60.0	50.0	22.3	15.2	
11.8928	36.10	32.70	60.0	50.0	23.9	17.3	
13.4205	36.80	33.40	60.0	50.0	23.2	16.6	
16.2285	37.70	34.60	60.0	50.0	22.3	15.4	
18.2445	37.10	34.10	60.0	50.0	22.9	15.9	
23.1293	35.70	33.10	60.0	50.0	24.3	16.9	

Bose® model 416549 Wireless Module **PASSES** FCC conducted emissions limits by 15.2 dB at 7.9238 MHz (AVG measurement) on the Neutral side.

Test Results Summary

Bose® model 416549 Wireless Module PASSES FCC conducted emissions limits by worst case 14.5 dB at 7.9238 MHz (AVG measurement) on the Line side.

6.0 Test Equipment Used

Tracking Number	Description	Model	Manufacturer	Calibration due date	Verification due date	Calibration interval	Verification interval
1620	Comb Generator 1GHz -	CGO-5100	Com-Power	Verify before	Verify before	Verify before	Verify before
1020	10GHz	690-3100	Corporation	use	use	use	use
1663	ESU40 EMI Test Receiver	ESU40	Rohde & Schwarz	11-Apr-15	N/A	1 Year	N/A
1672	MITEQ pre-amp 100MHz- 20GHz	AFS4-00102000-30-10P-4	Bose Corporation	N/A	13-Nov-15	N/A	1 Year
2241	iPhone 5	16GB	Apple	Verify before	Verify before	Verify before	Verify before
2241	IFIIII 5	IOGB	Apple	use	use	use	use
2342	Band Reject Filter	BRM50702-07	Micro-Tronics	N/A	25-Aug-15	N/A	1 Year
2343	Band Reject Filter	BRM18192	Micro-Tronics	N/A	25-Aug-15	N/A	1 Year
2348	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	ETS Lindgren	16-Oct-15	N/A	1 Year	N/A
2367	RF Cable 30MHz-18GHz	TRU-300	TRU Corporation	N/A	12-Nov-15	N/A	1 Year
2373	RF Cable 30MHz-18GHz - 25 feet "N"	TRU-300	TRU Corporation	N/A	12-Nov-15	N/A	1 Year
2383	RF Cable 30MHz-18GHz - 20 feet, "N" connectors	TRU-300	TRU Corporation	N/A	12-Nov-15	N/A	1 Year
2385	Marconi Manor	3 Meter Semi Anechoic Chamber	AP Americas	N/A	18-Nov-15	N/A	1 Year
728	Microwave Horn Antenna 8GHz - 18GHz	AT4004	Amplifier Research	28-Feb-15	N/A	3 year	N/A
1307	Standard Gain Horn Antenna 18GHz - 26.5GHz	3160-09	EMCO	13-Mar-17	N/A	3 year	N/A
2368	RF Cable 30MHz-26.5GHz	TRU-210	TRU Corporation	12-Nov-15	N/A	1 Year	N/A
2397	MITEQ pre-amp 18-40GHz	TTA1840-35	Miteg	9-Dec-15	N/A	1 Year	N/A

7.0 Measurement Uncertainty

	Uncertainty E	Budget					
		J					
Title:	Cond	ucted Emissio	ons				
Source of Uncertainty	Value units:+/-dB	Distribution	Divisor	Uncertainty (± dB)			
RF spec anal-level-Ref.	0.6	Rect.	1.73	0.35			
RF spec anal-level-Freq resp.	1.0	Rect.	1.73	0.58			
RF spec anal-level-Display	0.3	Rect.	1.73	0.17			
RF spec anal-level-QP det.	1.0	Rect.	1.73	0.58			
Transient limiter loss	0.1	Rect.	1.73	0.06			
LISN impedance/loss	0.7	Norm.	2.00	0.35			
		oined uncertai					
	0.97						
	Co	overage factor	(2 sigma):	2.00			
Ex	tended uncer	tainty (95% co	onfidence):	1.94			

Uncertainty Budget				
Title:	Radiated Emissions			
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty
	units:+/-dB			(± dB)
RF spec anal-level-Ref.	0.6	Rect.	1.73	0.35
RF spec anal-level-Freq resp.	1.0	Rect.	1.73	0.58
RF spec anal-level-Display	0.3	Rect.	1.73	0.17
RF spec anal-level-QP det.	1.0	Rect.	1.73	0.58
Antenna factor	0.9	Norm.	2.00	0.45
Preamp corr. Factor	0.5	Rect.	1.73	0.29
Cable corr. Factor	0.5	Rect.	1.73	0.29
Combined uncertainty (RSS):				
Coverage factor (2 sigma):				2.00
Extended uncertainty (95% confidence):				2.18