

Certificate # 1514.1	
Test Type:	Emissions
Product Type:	Wireless Earbud
Product Name/Number:	Model 408R
	A94408R 3232A-408R
Prepared For:	Product Assurance Engineering Department Bose Corporation
Name of manufacturing agency applying for equipment type approval	Bose Corporation
Postal Address of manufacturing Agency	The Mountain Framingham MA 01701 USA
Test Results:	Pass
Applicable Standards:	FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5
Report Number:	EMC.441408.23.167.6

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for *Enter product and any special modifications or test conditions.*

	Print Name	Signature	Date
Prepared By:	Bryan Cerqua	Bryon H Cerque	8/15/2023
Electrical Engineer Review* By:	Kenneth Lee	Henry	8/16/2023

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

_805E	_

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
Test Results Summary	4
Environmental Conditions	4
FCC Test Site Accreditation:	4
Canadian Test Site Registration:	
RF Conducted Measurements	5
On Time and Duty Cycle	5
99% Occupied Bandwidth	7
20dB Occupied Bandwidth	10
Hopping Frequency Separation	13
Number of Hopping Channels	15
Average Time of Occupancy	17
Output Power	19
Conducted Spurious Emissions	
RF Radiated Emissions 30MHz -1GHz	25
Radiated Spurious Emissions 1-25GHz	31
Radiated Band Edge	40

_BOSE	

Test Report Summary

Product Information:

Description

Truly Wireless In Ear (TWIE) earbud. The bud uses Bluetooth classic (BT) Bluetooth Low Energy (BLE), and Qualcomm High Speed (QHS). The QHS is used for bud-to-bud communications. The role of master/puppet can be changed to best meet radio link conditions during operation. The unit is not supplied with an AC to USB adapter. The antenna is an inverted F with a maximum gain of 0.58 dBi (Left Earbud) and 0.86 dBi (Right Earbud) formed by Laser Direct Sequence on the inside of the top cover of the earbud.

EUT Condition

Product was as built in the factory. For the conducted measurements the antenna was removed, and coaxial cable was installed in its place. Where necessary USB debug wires were added to allow control of the Radio.

Scope:

This report covers EMC requirements. FCC or ISED, FHSS low power transceiver.

Test Objective:

Verify product meets all applicable EMC requirements.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards on page 1 of this report.

Test Results Summary

TEST NAME	TEST RESULT PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	
99% Occupied Bandwidth	N/A	
20dB Occupied Bandwidth	Pass	
Hopping Frequency Separation	Pass	
Number of Hopping Channels	Pass	
Average Time of Occupancy	Pass	
Output Power	Pass	
Conducted Spurious Emissions	Pass	
RF Conducted Emissions – AC Mains	Pass	
RF Radiated Emissions 30MHz -1GHz	Pass	
Radiated RF Emissions 1-25GHz	Pass	
Radiated Band Edge	Pass	

Environmental Conditions

-		
Am	hia	nt.
АШ	ne	III.

Temperature:	22±4°C
Humidity:	30-60%RH
Mains Voltage:	120VAC, 5VDC USB

FCC Test Site Accreditation:

<u>Firm</u> <u>Name</u>	Location	Expiration Date	Accreditation	MRA	Designation Number	Contact	Contact Title	Address	PO Box	<u>Mail</u> Stop	<u>City</u>	<u>State</u>	Zip Code	<u>Country</u>	<u>Email</u>	Phone	<u>Fax</u>
Bose Corporation	1 New York Avenue, Framingham, MA		American Association for Laboratory Accreditation	N/A	US1088	Mr. Cable Best	Quality Manager	Mail Stop 450 The Mountain	N/A	450	Framingham	Massachusetts	01701	United States	Cable_Best@bose.com	1 508 766 6137	508 766 1145

Canadian Test Site Registration:

BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2024-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701		RSS-248 (2021-11-19)	A2LA
UNITED STATES			ISO/IEC
			17025:2017
Company Number: 3232A			Expires:
			2024-07-31
Contact:			
Mario Espinal			
<u>mario_espinal@bose.com</u>			

_/	://	T	E

RF Conducted Measurements

On Time and Duty Cycle

Project number (Integrity):	408R	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	May 12, 202	23		
					-		
Requirements Standard(s):			Referenced S	tandard(s):	ANS	GI C62.10:2013-11.6-b	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room	
Test equipment used TN's:	2409	2409					
EUT Serial number(s):	084808M3051E0	084808M3051E012A1					
EUT Software installed:	1.4.10+g2edc594						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.						

Conclusion:

This test is for information only.

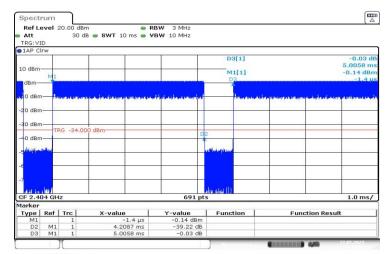
Limits:

None; for reporting purposes only.

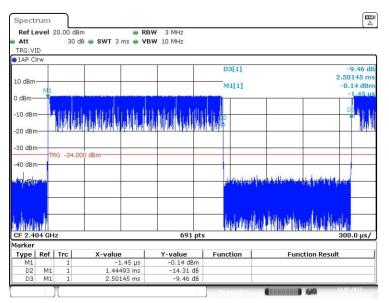
Procedure:

ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.

Equipment Used:


TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

BOSE


Duty cycles shown in the table below represent maximum duty cycle in test mode using maximum packet length.

Mode	ON Time (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
QHS-P2	4.209	5.006	0.841	84	237.6
QHS-P6	1.445	2.501	0.577	58	692.0

Date: 12.MAY.2023 17:30:01

QHS-P6

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.441408.23.167.6 Form FL300959 Rev 06 BOSE CONFIDENTIAL

_/	:////=	

99% Occupied Bandwidth

Project number (Integrity):	408R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 15, 202	23	
					•	
Requirements Standard(s):			Referenced S	tandard(s):	ANS	GI C63.10:2013-6.9.3
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084808M3051E0	12A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	ted as built except the	e antenna was di	isconnected a	and a	coaxial cable was
	installed.	-				

Conclusion:

This test is for information only.

Limits:

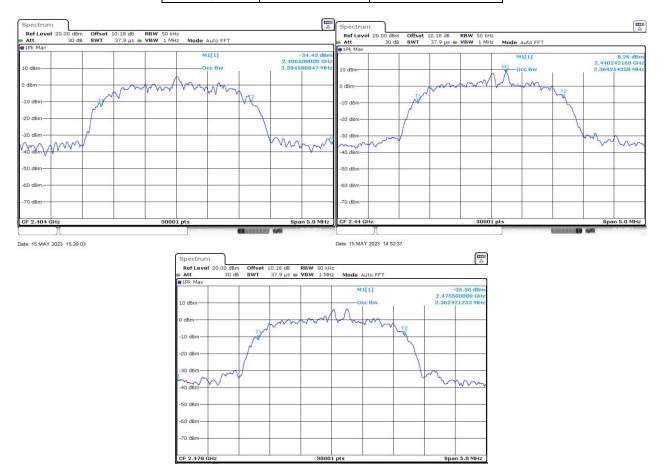
None; for reporting purposes only.

Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW.

QHS-P2 Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.384
Middle	2440	2.381
High	2478	2.358



Date: 15.MAY.2023 15:18:56

QHS-P6 Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.394
Middle	2440	2.369
High	2478	2.362

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

Date: 15.MAY.2023 15:30:57

_/	:////=	

20dB Occupied Bandwidth

Project number (Integrity):	408R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 12, 202	23	
			-			
Requirements	FCC §15.247 (2		Referenced S	tandard(s).	ANSI 63.10:2013 - 6.9.2	
Standard(s):	RSS-247 5.2 (a)		Referenced Standard(s):		ANSI 05.10.2015 - 0.9.2	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion: Braun Room	
Test equipment used TN's:	2409					
EUT Serial number(s):	084808M3051E0	084808M3051E012A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was				
	installed.					

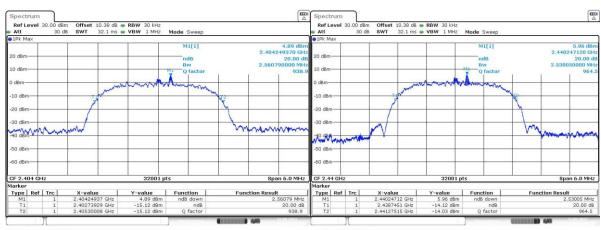
Conclusion:

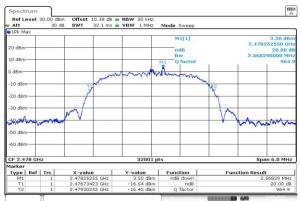
This test is for information only.

Limits:

None; for reporting purposes only.

Procedure:

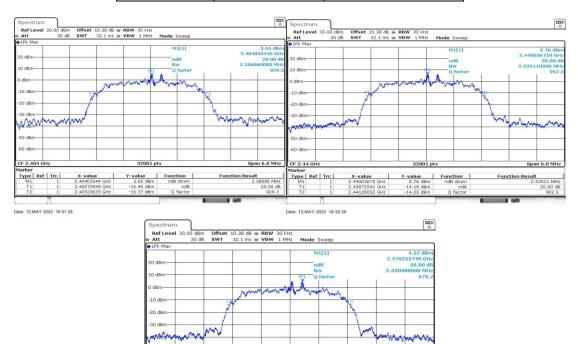

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 20dB bandwidth. The VBW is set to \geq RBW.


QHS-P2 Data Collection:

Setting	BW MHz
Low	2.561
Mid	2.530
High	2.586

Date: 12.MAY.2023 16:23:55

Date: 12.MAY.2023 16:26:50



Date: 12.MAY.2023 16:29:25

QHS-P6 Data Collection:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	2.587
Middle	2441	2.535
High	2480	2.531

Date: 12.MAY.2023 16:34:09

X-value .47825574 GH

CF 2.478

Type Ref Trc

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

 Y-value
 Function

 4.52 dBm
 ndB down

 -15.50 dBm
 ndB

 -15.49 dBm
 Q factor

Function Result 2.53098

 747	

Hopping Frequency Separation

Project number (Integrity):	408R	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	May 15, 2023				
		()						
Requirements	FCC 15.247 (a)		Referenced Standard(s): ANSI		ANSI C63.10-2013 7.8.2			
Standard(s):	RSS-247 5.1 (b)				ANOI 003.10-2013 7:0.2			
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	tion: Braun room			
Test equipment used TN's:	2409							
EUT Serial number(s):	084808M3051E0	12A1						
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594						
EUT Modification(s):	Product was tes	roduct was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.							

Conclusion:

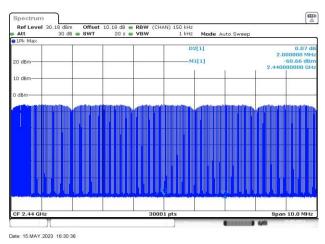
Hopping frequencies are separated by 2 MHz which is more than the required minimum of 25kHz and more than 2/3 of the 20dB bandwidth of the hopping channel which would be 1.8 MHz.

Limits:

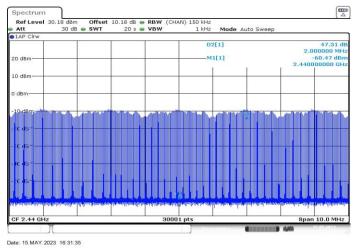
FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Equipment Used:


TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

QHS-P2 hopping

QHS-P6 hopping

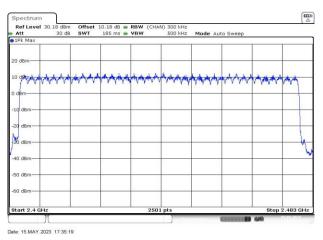
Note: slight dips in the profile are visible every 2 divisions.

_/	:7	77	7	-
				_

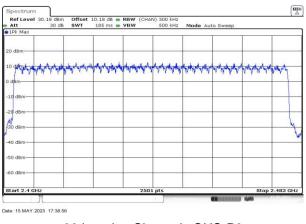
Number of Hopping Channels

Project number (Integrity):	408R	Build Phase:	C1.5					
Tested by:	Mike Royer		Date: May 15, 2023					
Requirements	FCC 15.247 (a)	(1) (iii)	Referenced Standard(s): ANSI C63		ANSI C63.10-2013 7.8.3			
Standard(s):	RSS-247 5.1 (d)				ANSI C03.10-2013 7.8.3			
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location: Braun Room					
Test equipment used TN's:	2409							
EUT Serial number(s):	084808M3051E0	12A1						
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.	•						

Conclusion:


Bose Model 408R uses 38 hopping channels in normal operation and always uses at least 20, both of which are more than the required 15.

Limits:


FCC 15.247 (a) (1) (iii), RSS-247 5.1 (d) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

38 hopping Channels QHS-P2

38 hopping Channels QHS-P6

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

:7	14-	
	_	

Average Time of Occupancy

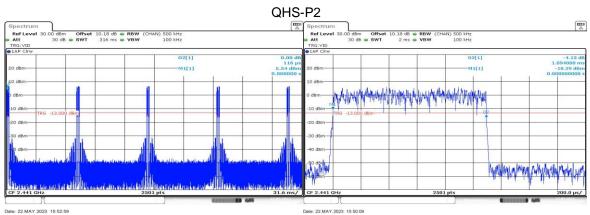
Project number (Integrity):	408R	Build Phase:	C1.5				
Tested by:	Mike Royer Date: May 22, 2023						
			-		-		
Requirements	FCC 15.247 (a)		Referenced Standard(s): ANSI		SI C63.10-2013 7.8.4		
Standard(s):	RSS-247 5.1 (d)					01 003.10-2013 1.0.4	
EUT powered with:	5V USB	Temp / Humidity:	dity: n/a Test location: Braun Room			Braun Room	
Test equipment used TN's:	2409						
EUT Serial number(s):	084808M3051E0	12A1					
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.	-					

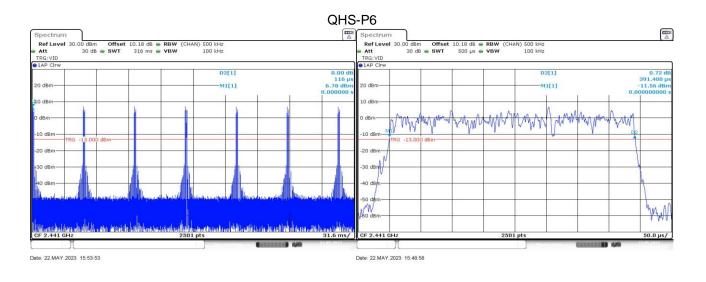
Conclusion:

The highest time of occupancy in any mode is 276 mS which meets the 400mS limit by 124mS.

Limit:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


When hopping with Bluetest3 as in this test, there are 40 hopping channels * 400 mS = 16 seconds. Set the observation time to 0.316 seconds and count the pulses. Then multiply by 16/0.316=50.6 to get the number of pulses in 16 seconds.



_E/	747	E

Data Collection:

Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 0.316 S	Number of pulses in 16S (X 50.6)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
Middle	2440	QHS-P2	1.094	5	253	276	400	124	Pass
Middle	2440	QHS-P6	0.391	7	354	138	400	262	Pass

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

|--|

Output Power

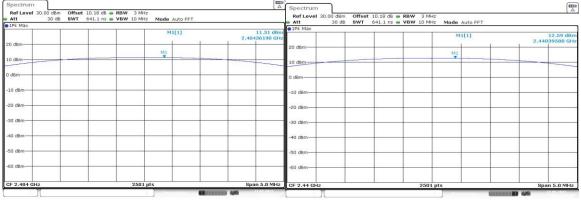
Project number (Integrity):	408R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 17, 2023		
Requirements	FCC 15.247	(b) (3)	Reference	d ANSI 63.10:20	13 11 0 1 1	
Standard(s):	RSS-247 5.4	(b)	Standard(s)	: ANSI 03.10.20	15 - 11.9.1.1	
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test location:	Braun Room	
Test equipment used TN's:	2409					
EUT Serial number(s):	084808M3051	084808M3051E012A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was installed.	tested as built excep	t the antenna was di	sconnected and a	coaxial cable was	

Conclusion:

The unit passes output power by 8.41 dB.

Limits:

FCC §15.247 (b) (1)


RSS-247 5.4 (b)

The device maintains a minimum of 20 hopping channels. The limit is 21 dBm.

QHS-P2 Data Collection:

Cł	hannel	Frequency (MHz)	Output Power (dBm)	Limit (dB)	Margin (dB)	Result
	Low	2404	11.31	21	9.69	Pass
Ν	∕liddle	2440	12.59	21	8.41	Pass
	High	2478	11.48	21	9.52	Pass

Date: 17.MAY.2023 15:24:55

Date: 17.MAY.2023 15:26:32

Ref Level 30.00 dBm Att 30 dB	0.18 dB 👄 41.1 ns 👄			Auto FFT		
1Pk Max	 					
			M	1[1]		11.48 dB
20 dBm		2			 2.4//	00010 0
56539-45-1333	 	MI				
10 dBm	 	-	-		 	
0 dBm			-		1	
-10 dBm						
-20 dBm						
20 0011					1	
-30 dBm		_				
0.04035-80300						
-40 dBm					-	
-50 dBm			-			<u> </u>
-60 dBm						
-oo ubiii						
CF 2.478 GHz		0.50	1 pts		0	in 5.0 MH:

Date: 17.MAY.2023 15:28:40

_B05/E

QHS-P6Data Collection:

hannel	Frequency (MHz)	Output Power (dBm)			onal Gain IBi)	Limit (dB)	Margin (dB)	Result
Low	2404	11.2	<u>29</u>		1	21	8.71	Pass
Viddle	2440	12.5	56		1	21	7.44	Pass
High	2478	11.4	19		1	21	8.51	Pass
Spectrum Ref Level 30.00	dBm Offset 10.18 dB - RBW 3 80 dB SWT 641.1 ns - VBW 10	MHz MHz Mode Auto FFT		Ref Le	rum evel 30.00 dBm Offset 1 30 dB SWT 6	0.18 dB • RBW 3 MHz	Mode Auto FFT	
• 1Pk Max		M1[1]		11.29 dBm	ы		M1[1]	12.56 dBm
20 dBm		M1	2	40436390 GHz 20 dBm		MI		2.44010800 GHz
10 dBm				10 dBm		¥		
0 dBm				0 dBm-				
-10 dBm				-10 dBm				
-20 dBm				-20 dBm				
-30 dBm				-30 dBm				
-40 dBm				-40 dBm				· · · · · · · · · · · · · · · · · · ·
-50 dBm				-50 dBm				
-60 dBm				-60 dBm	<u> </u>			
CF 2.404 GHz	532.40 Spectrun		6		+ GHz	2501 pts		Spon 5.0 MHz
	532.40 Spectrum Ref Leve ● Att ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm		et 10.18 dB 😁	Date: 17.N	Π		Constant P	Span 3.0 MHz
	532.40 Ref Love ● Att ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 30.00 dBm Offs	et 10.18 dB 😁	Date: 17.M RBW 3 MHz VBW 10 MHz M	JL IAY 2023 15:36:47 Ode Auto FFT		() () 1.49 dBm	Span S.U.MHz
	532.40 Spectrum Ref Leve ● Att ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	30.00 dBm Offs 30 dB SWT	et 10.18 dB 😁	Date 17.4 D	JL IAY 2023 15:36:47 Ode Auto FFT		1.49 dBm 22000 GHz	Span S.U.MHz
	532.40 Spectrun Ref Leve → Att ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30.00 dBm Offs 30 dB SWT	et 10.18 dB 😁	Date: 17.M RBW 3 MHz VBW 10 MHz M	M1[1]		() () 1.49 dBm	Span S.U.MHz

Equipment Used:

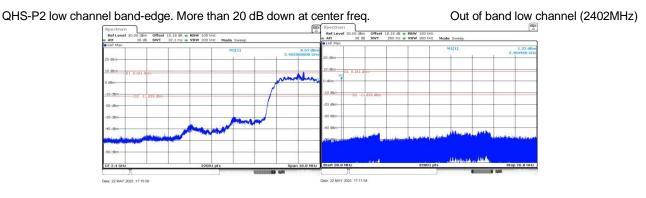
TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

1	:7	77	7	-
			. /	_

Conducted Spurious Emissions

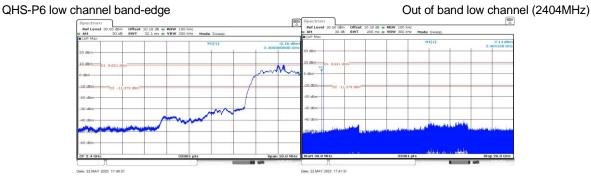
Project number (Integrity):	408R	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 22, 202	23	
					-	
Requirements	FCC §15.247	7 (d)	Referenced S	tandard(c)		SI 63.10 (7.8.8)
Standard(s):	RSS-247 5.5		Keleleliceu 3	lanuaru(s).	AINC	51 03. 10 (7.0.0)
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084808M3051	LE012A1				
EUT Software installed:	1.4.10+g2edc5	1.4.10+g2edc594				
EUT Modification(s):	Product was	tested as built excep	ot the antenna was d	isconnected a	and a	coaxial cable was
	installed.					

Conclusion:

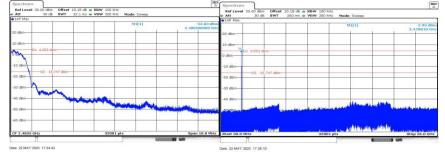

The Bose Model 408R passes Conducted Spurious Emissions by more than 10dB.

Limits

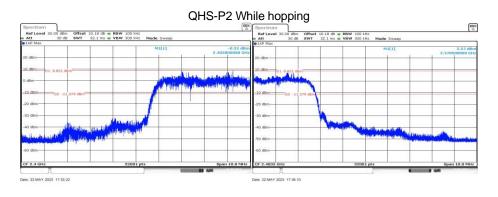
FCC §15.247 (d), RSS-247 5.5


Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.

Data Collection:



 :///	47	-


QHS-P2 high channel band-edge

Out of band high channel (2480MHz)

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2023	22-Mar-2024

RF Radiated Emissions 30MHz -1GHz

Test Information:

Project number (Integrity):		Build Phase:	Pre-C1		
Tested by:	M. Mehrmann		Date:	8+9 Februar	ry 2023
				-	
Requirements Standard(s):	FCC §15.247 (d section 5.5) and RSS-247	Referenced S	tandard(s):	
EUT powered with:		Temp / Humidity:		Test locat	ion: Maxwell House
Test equipment used TN's:	644,2319,1541,2	2077,1277-22			
EUT Serial number(s):	Left; 084803M30	Left; 084803M3003B005A			
EOT Serial humber(s).	Right: 084803M	3003B004A			
EUT Software installed:	0.0.19 diag code	9			
EUT Modification(s):	None				

Objective/Summary/Conclusion:

Passes FCC 15.247 and RSS-247 Section 5.5 requirements with a worst-case passing margin of 16.0 dB at 700 MHz.

Additional EUT Information:

The EUT was tested in a 3m Semi Anechoic Chamber on an insulating turntable 80 cm high.

The device was scanned in three orthogonal axis and no signals were detected.

Test Setup Details:

EUT Emissions levels contained within this report are calculated on the following basis:

Radiated Emission Level (dBµV/m) = EMI Receiver Reading (dBµV) + Antenna Correction Factor (dB/m) – Preamplifier Gain (dB) + Cable Loss (dB)

_8051

Data Collection:

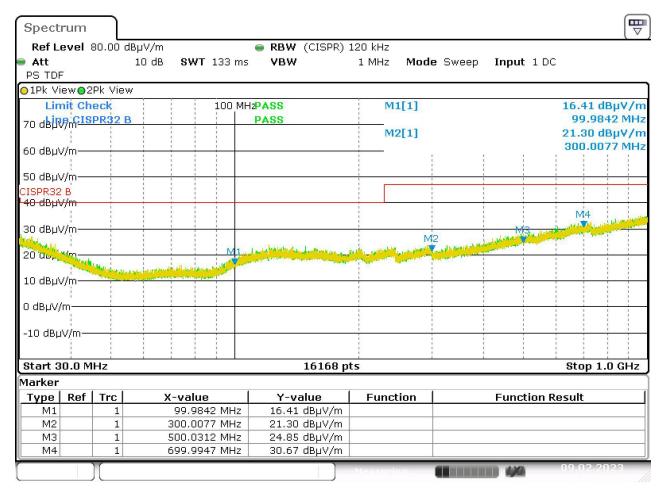
EUT S/N:	Right Bud	Power applied:		Plot#	1
EUT Mods:					
EUT Setup:					
Comments:	Position X				

Spectrum												₽
Ref Level	لل 80.00 (dBµV/m			RBW (CISPR)	120 kHz						
🖷 Att		10 dB	SWT	133 ms		1 MHz	Mode	sweep	Input 1	DC		
PS TDF												
<mark>⊙</mark> 1Pk View ⊙ 2	2Pk Vie	W										
Limit Ch				100 MH	PASS	M	1[1]			18.)1 dB	βµV/m
70 dbippnCIS	PR32	3		-	PASS	1				99	9.984	2 MHz
/odbpv/m	1			1		M	2[1]			21.	12 dB	βµV/m
60 dBµV/m				1						300	1.007	7 MHz
	1					1				1		
50 dBµV/m	1			1		1				1		
CISPR32 B							1					
40 dBµV/m	-											
				i.						1.1	4	والالبارية
30 dBµV/m—			-			1	M	2	N/S	Part of the second	Participant of	
20 со., Vm 10 dBµV/m—				M1	معتواسية فمليوهما والتقالقيقوس	and a second	ALCONTRACT.	CANNER STRATE	and the second se			
20 00, 01	heles and			and the	and the second	and the second second	a second by	and a second second second				
10 dBuV/m-	and	and the second sec	a state of the state of	and the second se		1						
				1			-					1
0 dBµV/m				1		-						
				ł.		1	-					-
-10 dBµV/m—				1		1				1		
	1			1			Į.					
Start 30.0 M	IHz	1 1		T.	16168 p	ts			I	Sto	p 1.0) GHz
Marker					•						· · · ·	
Type Ref	Trc	X	-value	1	Y-value	Func	tion 1		Eunctio	n Result		
M1	1		99.9842	2 MHz	18.01 dBµV/m							
M2	1		800.0077		21.12 dBµV/m							
M3	1		00.0312		25.51 dBµV/m							
M4	1	6	99.9947	7 MHz	30.99 dBµV/m							
	1					Measur	in a		B 43/2	09.0	2.20	23
	Л								a second			

Date: 9.FEB.2023 13:00:32

ACCREDITED	
Certificate # 1514.1	l

~


DESIGN ASSURANCE ENGINEERING COMPLIANCE EMC TEST REPORT

_605€

Plot#

2

Centificate #	+ 1314.1		
EUT S/N:	Right bud	Power applied:	
EUT Mods:			
EUT Setup:			
Comments:	Position Y		

Date: 9.FEB.2023 13:10:18

ACCREDITED	
ertificate # 1514.1	I

_805E

Plot#

3

 Certificate # 1514.1

 EUT S/N:
 Right bud
 Power applied:

 EUT Mods:
 EUT Setup:
 EUT Setup:

Comments: Position Z

Spectrum	ר						
Ref Level 80.	00 dBµV/m		💿 RBW (CISPR)	120 kHz			
🖷 Att	10 dB	SWT 133	ms VBW	1 MHz M	ode Sweep	Input 1 DC	
PS TDF					67.	DOMU:	
⊙1Pk View⊙2Pk	View						
Limit Chec		100	MHZPASS	M1[1]	1		16.51 dBµV/m
70 dbing CISPR	32 B		PASS				99.9842 MHz
				M2[1]			19.58 dBµV/m
60 dBµV/m							300.0077 MHz
1							
50 dBµV/m							
CISPR32 B							
40 dBµV/m					1	1	
						MO	M4 interior
30 dBµV/m					MO	and a state of the	
20 00 000		M	1	and the state of the state	VIZ a maintenting	and a state of the	
20 ос., "/m	a contration	Santa Labora and	and a state of the	and the second	C. Second Contraction		
10 dBµV/m	A second	and the state of the		1	-		
0 dBµV/m							
-10 dBµV/m					1 1	1 1	
1							
Start 30.0 MHz	:		16168 p	ots	i	· · ·	Stop 1.0 GHz
Marker							
Type Ref T	rc >	(-value	Y-value	Function	1	Function Re	esult l
M1	1 ,	99.9842 MH		- anoton			
M2	1	300.0077 MH					
M3		500.0312 MH					
M4	1	699.9947 MH	z 29.03 dBµV/m				
				Maacuving		B 4.345	09.02.2023
						and the second s	

Date: 9.FEB.2023 13:20:21

Limits:

	Freq Range L		nits (dBuV Q	P ¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m ²	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC §15.247 (d)	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
	andwidth and De	etector Settings	6:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Detector		
30 – 1000	120	>300	QP		
> 1000	1000	>1000	Pk an	d AVG	

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1541	Antenna 30MHz - 6GHz	JB6	A050807	Sunol Sciences Corp	14-Dec-2021	14-Dec-2023		
3062	RF Cable 10MHz- 18GHz, low loss LL142 coax, 26 feet, "N" connectors	SCE18110505- 312	N/A	Fairview Microwave[2]			01-Sep-2022	01-Sep-2023
2077	Maxwell House RE Pre-amp (20MHz- 3GHz)	N/A	N/A	Bose Corporation			01-Sep-2022	01-Sep-2023
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	29-Mar- 2023	28-Mar- 2024		

Uncertainty:

Uncertainty Budget						
Title:	Radiat	ed RF Emissio	ons (30MH	z-1GHz)		
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)		
Receiver - absolute level	0.3	Rect.	1.73	0.17		
Receiver - frequency response	0.8	Rect.	1.73	0.46		
Receiver - attenuator switching	0.2	Rect.	1.73	0.12		
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12		
Receiver - display	0.5	Rect.	1.73	0.29		
Antenna factor	0.8	Norm.	2.00	0.38		
Antenna directivity	1.0	Norm.	2.00	0.50		
Preamp correction factor	0.5	Norm.	2.00	0.25		
Cable correction factor	0.5	Norm.	2.00	0.25		
Site imperfection - NSA	4.0	Triang.	2.45	1.63		
Test table impact	1.1	Rect.	1.73	0.64		
	,					
	1.98					
	2.00					
Exte	ended uncert	ainty (95% coi	nfidence):	3.97		

Radiated Spurious Emissions 1-25GHz

Project number (Integrity):	408R	Build Phase:	C1.5		
Tested by:	Mike Royer		Date:	June 12, 2023	3
					1
Requirements	FCC §15.247 (d)		Deferenced	Standard(a)	ANSI C63.10-2013
Standard(s):	RSS-247 Section	n 5.5	Referenced	I Standard(s):	ANSI C03.10-2013
EUT powered with:	Battery	Temp / Humidity:	N/A	Test locat	ion: Marconi Manor
Test equipment used TN's:	1663,3685,2349	,2602,2414			
EUT Serial	Left	084803M30	51D038A1		
number(s):	Right	084808M30	51D019A1		
EUT Software	0.4.10				
installed:					
EUT Modification(s):	USB Debug wire	es were attached to the	earbud to allow cor	ntrol of the radio).

Conclusion:

The Bose model 408R passes radiated emissions from 1-25GHz.

The peak emissions maximum is below the average limit in all cases.

1-18 GHz, the maximum emission was 53.1 dBuV/m peak, noise floor. The limit is 54 dBuV/m and the margin is 0.9 dB. 18-25 GHz. The maximum emission was 59.2. The limit is 74 dBuV/m, and the margin is 14.8 dB.

Procedure:

Per 558074 D01 15.247 Meas Guidance v05r02:

Each mode tested was measured at all 10 Harmonics, at the low, middle, and high transmit frequencies.

EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

A notch filter was used to block the fundamental emission from overloading the measurement equipment including the preamplifier and the spectrum analyzer.

The signal duty cycle was set to 100%

Limit calculation:

The E field in the far field observes the inverse square law. So that the difference in field strength difference in decibels is;

$$20 \log\left(\frac{D1}{D2}\right) = 20 \log 10 = 20$$

Peak limit of 74 becomes 94 dBuV at 30cm.

Average limit of 54 becomes 74 dBuV at 30cm.

_		
/	147=	

Data Collection:

							-								
	EUT S/N:	Right		Ρο	wer a	pplied:	Batte	ery						Plot#	1
	EUT Mods:														
		QHS P2 Low ch	nannel												
	Comments:	1-18 GHz meas	ured at	3m d	istanc	e. 18-2			ured	at 300	m dis	stance.	_		
							* VBW	3 MHz							
		1		dBµV/m	* A	tt 0 dB	* SWT	1 5							
			90												
		1 PK													
			-80	.74 dB*											
												TDS			
			-eo				_					DS			
			-50-	—D2 54 a	is* —						and in a first				
						A. MARKAN				Notician	and the second				
												AC			
			30									_			
			20									_			
and 100 day and a		l		Hz			1.7 GHz/			Sto	p 18 GI	Hz			
and 100 day and a															
		Date:	12.JUN.202	12:44	:06										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	dBµV/m	*:	Att 0 dB						-			
Image: Sector			100		dB*							-			
1 1		1 98	*									A			
-70 Image: state		CLRW	R - 80					+				-			
			- 70	D1 74 dB	·			-				TDS			
			- 60									PS			
				atherickst free	in the state	in the second second	in out to be not	it film the from	elevellet site for	المراجع مع المالية الم	and states of				
			ual de la come	- Carrie Martin	- Contraction of the Contraction					engener	Sparster and	6DB			
30-30-20-20-20-20-20-20-20-20-20-20-20-20-20			- 40					-							
20 Image: Constraint of the second			- 30					-				-			
10 10 10 0 10 10 Start 18 GHz 700 MHz/ Stop 25 GHz			- 20									_			
10 0 0 0 0 3 Start 18 GHz 700 MHz/ Stop 25 GHz															
a start 18 GHz 700 MHz/ Stop 25 GHz			-10												
			0 Start 11	8 GHz		[700 MHz/			Stop	25 GHz	J			
Date: 13.JUN.2023 15:49:10		Date	: 13.JUN.2	023 15:	49:10										

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters											
MK	Emission	Measured	Measured	FCC 15	FCC 15.247d and RSS-247 Section 5.5				Receivi	ng Antenna	*Average detector	
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.	
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode	
1	4806	36.70	48.70	54.0	74.0	17.3	25.3	0	V	1.50	Signal Maximized	
2	7212	31.30	44.50	54.0	74.0	22.7	29.5	0	Н	1.50	Noise floor	
3	9611	41.70	51.80	54.0	74.0	12.3	22.2	0	Н	1.50	Signal Maximized	
4	12020	34.80	48.20	54.0	74.0	19.2	25.8	0	V	1.50	Noise floor	
5	14424	34.70	48.20	54.0	74.0	19.3	25.8	0	Н	1.50	Noise floor	
6	16828	38.20	51.80	54.0	74.0	15.8	22.2	0	V	1.50	Noise floor	

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19230	46.80	59.20	74.0	94.0	27.2	34.8				Signal Maximized
2	21636	40.70	54.20	74.0	94.0	33.3	39.8				Noise floor
3	24040	40.90	54.40	74.0	94.0	33.1	39.6				Noise floor

ACCREDITED	
Certificate # 1514.	1

_805E

Plot#

o or anotato i	,				
EUT S/N:	Right		Power applied:	Battery	
EUT Mods:					
EUT Setup:	QHS P2	Mid channel			
Comments:					

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters										
MK	Emission	Measured	Measured	FCC 15	FCC 15.247d and RSS-247 Section 5.5				Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	4880	36.80	48.80	54.0	74.0	17.2	25.2	0	V	1.50	Signal Maximized
2	7320	31.90	45.00	54.0	74.0	22.1	29.0	0	Н	1.50	Noise floor
3	9761	41.90	52.20	54.0	74.0	12.1	21.8	0	Н	1.50	Signal Maximized
4	12200	36.40	49.80	54.0	74.0	17.6	24.2	0	V	1.50	Noise floor
5	14640	36.10	49.50	54.0	74.0	17.9	24.5	0	Н	1.50	Noise floor
6	17080	38.80	52.20	54.0	74.0	15.2	21.8	0	V	1.50	Noise floor

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19518	45.20	58.80	74.0	94.0	28.8	35.2				Signal Maximized
2	21960	41.60	55.50	74.0	94.0	32.4	38.5				Noise floor
3	24400	44.60	57.20	74.0	94.0	29.4	36.8				Noise floor

ACCREDITED	
Certificate # 1514.	1

_6/0/5/E

Plot#

Certificate #	7 1314.1				
EUT S/N:	Right	Power applied:	Battery		
EUT Mods:					
EUT Setup:	QHS P2 High channel				
Comments:					

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters											
MK	Emission	Measured	Measured	FCC 15	FCC 15.247d and RSS-247 Section 5.5				Receivi	ng Antenna	*Average detector	
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.	
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode	
1	4957	33.00	45.50	54.0	74.0	21.0	28.5	0	V	1.50	Signal Maximized	
2	7434	32.00	45.10	54.0	74.0	22.0	28.9	0	Н	1.50	Noise floor	
3	9913	40.10	51.50	54.0	74.0	13.9	22.5	0	Н	1.50	Signal Maximized	
4	12390	35.10	48.10	54.0	74.0	18.9	25.9	0	V	1.50	Noise floor	
5	14868	37.30	50.50	54.0	74.0	16.7	23.5	0	Н	1.50	Noise floor	
6	17346	39.50	53.10	54.0	74.0	14.5	20.9	0	V	1.50	Noise floor	

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19822	43.80	56.80	74.0	94.0	30.2	37.2				Signal Maximized
2	22302	40.40	53.70	74.0	94.0	33.6	40.3				Noise floor
3	24780	40.70	53.90	74.0	94.0	33.3	40.1				Noise floor

ACCREDITED	
Certificate # 1514	1

_805E

Plot#

Continiouto	1011.1			
EUT S/N:	Right	Power applied:	Battery	
EUT Mods:				
EUT Setup:	QHS P6 Low channel			
Comments:				

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit Limit Margin A				Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	4808	36.60	47.80	54.0	74.0	17.4	26.2	0	V	1.50	Signal Maximized			
2	7212	31.30	44.90	54.0	74.0	22.7	29.1	0	Н	1.50	Noise floor			
3	9616	38.00	51.30	54.0	74.0	16.0	22.7	0	Н	1.50	Signal Maximized			
4	12020	35.30	48.40	54.0	74.0	18.7	25.6	0	V	1.50	Noise floor			
5	14424	34.80	47.70	54.0	74.0	19.2	26.3	0	Н	1.50	Noise floor			
6	16828	38.20	51.90	54.0	74.0	15.8	22.1	0	V	1.50	Noise floor			

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19232	41.70	55.30	74.0	94.0	32.3	38.7				Signal Maximized			
2	21636	41.20	54.70	74.0	94.0	32.8	39.3				Noise floor			
3	24040	41.70	55.20	74.0	94.0	32.3	38.8				Noise floor			

ACCRE	DITED
Certificate	# 1514.1

_805E

Plot#

5

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters												
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector		
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies		
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.		
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode		
1	4880	35.90	47.40	54.0	74.0	18.1	26.6	0	V	1.50	Signal Maximized		
2	7320	31.80	45.10	54.0	74.0	22.2	28.9	0	Н	1.50	Noise floor		
3	9760	39.40	51.90	54.0	74.0	14.6	22.1	0	Н	1.50	Signal Maximized		
4	12200	36.60	49.70	54.0	74.0	17.4	24.3	0	V	1.50	Noise floor		
5	14640	36.20	49.80	54.0	74.0	17.8	24.2	0	Н	1.50	Noise floor		
6	17080	38.80	52.20	54.0	74.0	15.2	21.8	0	V	1.50	Noise floor		

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receiving Antenna		*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19520	41.00	54.40	74.0	94.0	33.0	39.6				Noise floor			
2	21960	40.50	53.80	74.0	94.0	33.5	40.2				Noise floor			
3	24400	40.50	53.50	74.0	94.0	33.5	40.5				Noise floor			

ACCREDITED
Certificate # 1514.1

_6/0/5/E

6

Certificate #	7 1314.1				
EUT S/N:	Right	Power applied:	Battery	Plo	ot#
EUT Mods:					
EUT Setup:	QHS P6 High channe	əl			
Comments:					

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	4960	33.60	45.10	54.0	74.0	20.4	28.9	0	V	1.50	Signal Maximized			
2	7434	32.00	45.50	54.0	74.0	22.0	28.5	0	Н	1.50	Noise floor			
3	9920	38.90	51.40	54.0	74.0	15.1	22.6	0	Н	1.50	Signal Maximized			
4	12390	34.90	48.00	54.0	74.0	19.1	26.0	0	V	1.50	Noise floor			
5	14868	36.80	50.10	54.0	74.0	17.2	23.9	0	Н	1.50	Noise floor			
6	17346	39.50	52.90	54.0	74.0	14.5	21.1	0	V	1.50	Noise floor			

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19824	41.00	54.30	74.0	94.0	33.0	39.7				Noise floor			
2	22302	40.60	54.20	74.0	94.0	33.4	39.8				Noise floor			
3	24780	40.40	53.90	74.0	94.0	33.6	40.1				Noise floor			

Limits:

	Freq Range	Lim	nits (dBuV Q	P ¹)	Comments
Standard	dard (MHz)		Class A		Measurements above 1 GHz are made using
			3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC 15.247d and	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
E	Bandwidth and De	etector Setting	IS:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Detector QP		
30 – 1000	120	>300			
> 1000	1000	>1000	Pk an	d AVG	

_BOSE	

Equipment Used:

т	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar- 2023	19-Mar- 2024		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb- 2023	23-Feb- 2025		
2602	Miteq pre- amp 1-18GHz 35dB	AFS42- 01001800-28- 10P-42	N/A	Miteq			07-Jul-2022	07-Jul-2023
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	13-Jan-2015		28-Mar-2023	27-Mar-2024
1757	18GHz-40GHz Preamp	JS4018004000- 30-8P-A1	1406279	Miteq			07-Jul-2022	07-Jul-2023
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research				
2368	RF Cable 30MHz- 26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation			28-Mar-2023	27-Mar-2024

Uncertainty:

Unce	ertainty Budget						
Ti	tle: Radiated	Radiated Emissions (>1GHz)					
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)			
Receiver - absolute level	0.3	Rect.	1.73	0.17			
Receiver - frequency response	2.0	Rect.	1.73	1.16			
Receiver - attenuator switching	0.2	Rect.	1.73	0.12			
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12			
Receiver - display	0.5	Rect.	1.73	0.29			
Antenna factor	0.4	Norm.	2.00	0.20			
Antenna directivity	1.0	Norm.	2.00	0.50			
Preamp correction factor	0.5	Norm.	2.00	0.25			
Cable correction factor	0.5	Norm.	2.00	0.25			
Site imperfection - NSA	3.0	Triang.	2.45	1.22			
Test table impact	1.7	Rect.	1.73	0.98			
Combined uncertainty (RSS):							
Coverage factor (2 sigma): Extended uncertainty (95% confidence):							

_/	://	47	E

Radiated Band Edge

Project number (Integrity):	408R	Build Phase:	C1.5						
Tested by:	Mike Royer		Date: 2 June, 2023		3	3			
	FCC §15.247 (d)								
Requirements Standard(s):	RSS -247 Section 5.5		Referenced Standard(s): A		ANS	ANSI C63.10-2013			
EUT powered with:	Battery	Temp / Humidity:	N/A Test loca		ion: Marconi Manor				
			*			•			
Test equipment used TN's:	1663,2929,2349,3685								
EUT Serial number(s):	084803M3051E02	21A1							
EUT Software installed:	1.4.10+g2edc594								
EUT Modification(s):	USB Debug wires were attached to the earbud to allow control of the radio.								

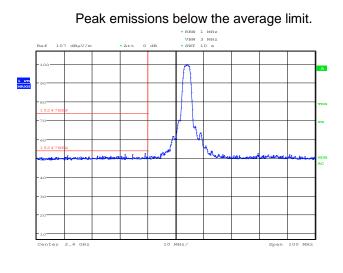
Conclusion:

The Bose model 408R passes Radiated Band Edge.

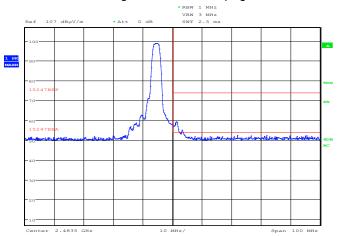
Procedure:

The EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

A high dynamic range pre-amp was used to ensure that overloading was avoided.


For lower band edge measurements, the transmit frequency was 2404 MHz.

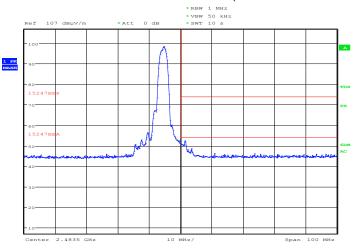
For upper band edge measurements, the transmit frequency was 2478 MHz.


QHS-P2 low channel band edge

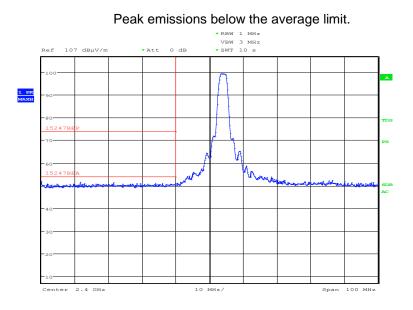
Date: 2.JUN.2023 17:30:53

QHS-P2 high channel band edge Peak measurement

Peak emissions not below the average limit, see next page for reduced video bandwidth method.


Date: 2.JUN.2023 17:03:06

Form FL300959 Rev 06 BOSE CONFIDENTIAL

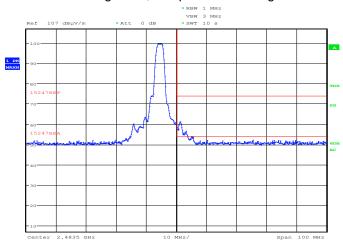


QHS-P2 high channel band edge Average measurement

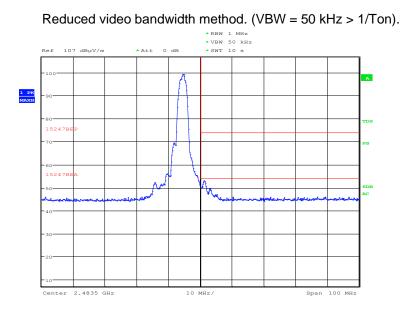
Reduced video bandwidth method. (VBW = 50 kHz > 1/Ton).

Date: 2.JUN.2023 17:05:09

QHS-P6 low channel band edge


Date: 2.JUN.2023 17:36:42

_/	:7	77	7	-
	_	_		- 1


QHS-P6 high channel band edge Peak Measurement

Peak emissions not below average limit, see plot below using reduced video bandwidth method.

Date: 2.JUN.2023 17:12:04

QHS-P6 high channel band edge Average Measurement.

Date: 2.JUN.2023 17:13:52

Limits:

	Freq Range Limits (dBuV QP ¹)				Comments
Standard	(MHz)	Class A		Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
or RSS-GEN	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average limits.
CISER 32	Freq Range (GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
E	andwidth and D				
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)) Detector		
30 - 1000	120	>300	QP		
> 1000	1000	>1000	Pk and AVG		

Equipment Used:

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar-2023	19-Mar-2024		
2929	Mini-circuits band-edge pre-amp 300 MHz - 8 GHz 20 dB	ZX60HV-83LN+	N/A	Mini-Circuits			28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2023	23-Feb-2025		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024

Uncertainty:

Uncertainty Budget							
Title:	Radiated	Radiated Emissions (>1GHz)					
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)			
Receiver - absolute level	0.3	Rect.	1.73	0.17			
Receiver - frequency response	2.0	Rect.	1.73	1.16			
Receiver - attenuator switching	0.2	Rect.	1.73	0.12			
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12			
Receiver - display	0.5	Rect.	1.73	0.29			
Antenna factor	0.4	Norm.	2.00	0.20			
Antenna directivity	1.0	Norm.	2.00	0.50			
Preamp correction factor	0.5	Norm.	2.00	0.25			
Cable correction factor	0.5	Norm.	2.00	0.25			
Site imperfection - NSA	3.0	Triang.	2.45	1.22			
Test table impact	1.7	Rect.	1.73	0.98			
Combined uncertainty (RSS):							
Coverage factor (2 sigma):							
Extended uncertainty (95% confidence):							

End of report