

_	://///=

ACCREDITED Certificate # 1514.1	
Test Type:	Emissions
Product Type:	Wireless Earbud
Product Name/Number:	Model 408L
	A94408L 3232A-408L
Prepared For:	Product Assurance Engineering Department, Bose Corporation
Name of manufacturing agency applying for equipment type approval	Bose Corporation
Postal Address of manufacturing Agency	The Mountain Framingham MA 01701 USA
Test Results:	Pass
Applicable Standards:	FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5
Report Number:	EMC.441408.23.167.5

General Comments/Special Test Conditions:

This report relates only to the items tested. This report covers EMC marking requirements for Enter product and any special modifications or test conditions.

	Print Name	Signature	Date
Prepared By:	Bryan Cerqua	Bryon H Cerqua	8/14/2023
Electrical Engineer Review* By:	Kenneth Lee	Henry	8/15/2023

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
Test Results Summary	
Environmental Conditions	4
FCC Test Site Accreditation:	4
Canadian Test Site Registration:	4
RF Conducted Measurements	5
On Time and Duty Cycle	5
99% Occupied Bandwidth	7
20dB Occupied Bandwidth	10
Hopping Frequency Separation	
Number of Hopping Channels	
Average Time of Occupancy	
Output Power	
Conducted Spurious Emissions	
RF Radiated Emissions 30MHz -1GHz	
Radiated Spurious Emissions 1-25GHz	32
Radiated Band Edge	41

_/	:7	77	-7	=	1

Test Report Summary

Product Information:

Description

Truly Wireless In Ear (TWIE) earbud. The bud uses Bluetooth classic (BT) Bluetooth Low Energy (BLE), and Qualcomm High Speed (QHS). The QHS is used for bud-to-bud communications. The role of master/puppet can be changed to best meet radio link conditions during operation. The unit is not supplied with an AC to USB adapter. The antenna is an inverted F with a maximum gain of 0.58 dBi (Left Earbud) and 0.86 dBi (Right Earbud) formed by Laser Direct Sequence on the inside of the top cover of the earbud.

QHS mode is a Qualcomm proprietary FHSS operation mode. The following information was obtained from Qualcomm:

QHS is a proprietary PHY to Qualcomm and may be enabled between Qualcomm devices in either a Bluetooth Classis or Bluetooth LE mode of operation. QHS has 2 MHz channel bandwidth and, therefore, uses 2 MHz channel center spacing for hopping. When enabled on a Bluetooth classic link, QHS uses the adapted hopping kernel used by BR/EDR with the exception that only even channel are allowed in the AFH channel map.

EUT Condition

Product was as built in the factory. For the conducted measurements the antenna was removed, and coaxial cable was installed in its place. Where necessary USB debug wires were added to allow control of the Radio.

Scope:

This report covers EMC requirements. FCC or ISED, FHSS low power transceiver.

Test Objective:

Verify product meets all applicable EMC requirements.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards on page 1 of this report.

_ =/ 1 / = =	-

Test Results Summary

TEST NAME	TEST RESULT PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	
99% Occupied Bandwidth	N/A	
20dB Occupied Bandwidth	Pass	
Hopping Frequency Separation	Pass	
Number of Hopping Channels	Pass	
Average Time of Occupancy	Pass	
Output Power	Pass	
Conducted Spurious Emissions	Pass	
RF Conducted Emissions – AC Mains	Pass	
RF Radiated Emissions 30MHz -1GHz	Pass	
Radiated RF Emissions 1-25GHz	Pass	
Radiated Band Edge	Pass	

Environmental Conditions

Ambient:

Temperature:	22±4°C
Humidity:	30-60%RH
Mains Voltage:	120VAC, 5VDC USB

FCC Test Site Accreditation:

Firm Name	Location	Expiration Date	Accreditation	MRA	<u>Designation</u> <u>Number</u>	Contact	Contact Title	<u>Address</u>	PO Box	<u>Mail</u> Stop	<u>City</u>	<u>State</u>	<u>Zip</u> Code	<u>Country</u>	<u>Email</u>	Phone	<u>Fax</u>
Bose Corporation	1 New York Avenue, Framingham, MA	07/31/2024	American Association for Laboratory Accreditation	N/A	US1088	Mr. Cable Best	Quality Manager	Mail Stop 450 The Mountain	N/A	450	Framingham	Massachusetts	01701	United States	Cable_Best@bose.com	1 508 766 6137	508 766 1145

Canadian Test Site Registration:

BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2024-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701		RSS-248 (2021-11-19)	A2LA
UNITED STATES			ISO/IEC
			17025:2017
Company Number: 3232A			Expires:
			2024-07-31
Contact:			
Mario Espinal			
mario espinal@bose.com			

RF Conducted Measurements

On Time and Duty Cycle

Project number (Integrity):	408L	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	May 12, 202	23			
Requirements Standard(s):			Referenced S	tandard(s):	ANSI C62.10:2013-11.6-b			
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion: Braun Room			
			2					
Test equipment used TN's:	2409							
EUT Serial number(s):	084803M3051E02	084803M3051E021A1						
EUT Software installed:	1.4.10+g2edc594							
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.	-						

Conclusion:

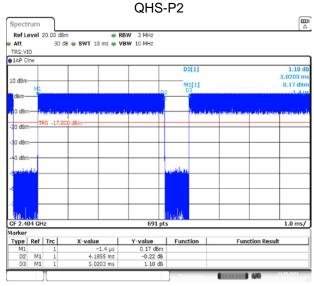
This test is for information only.

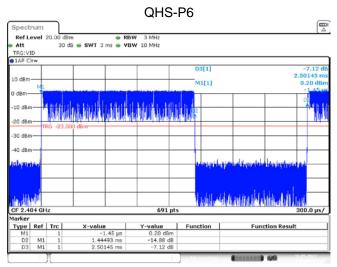
Limits:

None; for reporting purposes only.

Procedure:

ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.


TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024


_ =	777	7	-
_		• / •	_

Duty cycles shown in the table below represent maximum duty cycle in test mode using maximum packet length.

Mode	ON Time (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	1/Ton Hz
QHS-P2	4.186	5.020	0.833	83	239
QHS-P6	1.445	2.502	0.577	58	692

Date: 12.MAY.2023 17:45:51

Date: 12.MAY.2023 17:48:02

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.441408.23.167.5 Form FL300959 Rev 06 BOSE CONFIDENTIAL

_ =// / / =	

99% Occupied Bandwidth

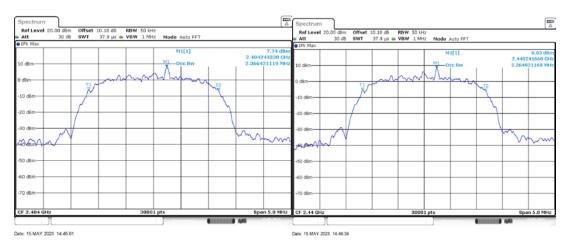
Project number (Integrity):	408L	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 15, 202	23	
	•					
Requirements Standard(s):			Referenced S	tandard(s):	ANS	SI C63.10:2013-6.9.3
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	tion:	Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084803M3051E02	21A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tes installed.	ted as built except the	e antenna was d	isconnected a	and a	coaxial cable was

Conclusion:

This test is for information only.

Limits:

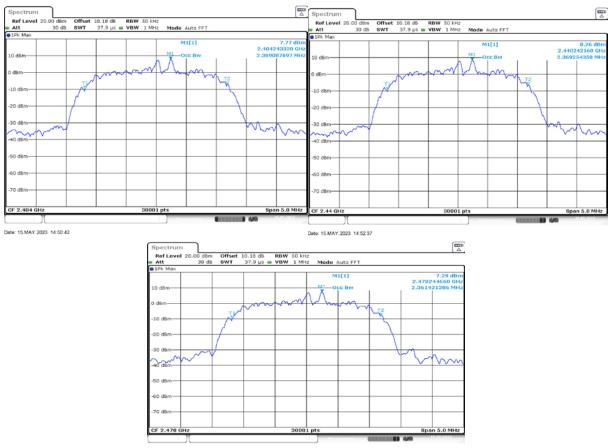
None; for reporting purposes only.


Procedure:

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 99% Occupied Bandwidth. The VBW is set to \geq RBW.

QHS-P2 Data Collection:

	Channel	Frequency (MHz)	99% Bandwidth (MHz)
	Low	2404	2.366
ĺ	Middle	2440	2.365
ĺ	High	2478	2.363



QHS-P6 Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.369
Middle	2440	2.369
High	2478	2.361

Date: 15.MAY.2023 14:53:34

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:/	77	-7	F	

20dB Occupied Bandwidth

Project number (Integrity):	408L	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 12, 202	23	
	· · ·		•			
Requirements	FCC §15.247 (2	2)	Referenced S	tandard(c).		l 63.10:2013 - 6.9.2
Standard(s):	RSS-247 5.1 (a)		Referenced 3	nanuaru(s).	ANO	103.10.2013 - 0.9.2
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	ion:	Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084803M3051E02	21A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	ted as built except the	e antenna was d	isconnected a	and a d	coaxial cable was
	installed.					

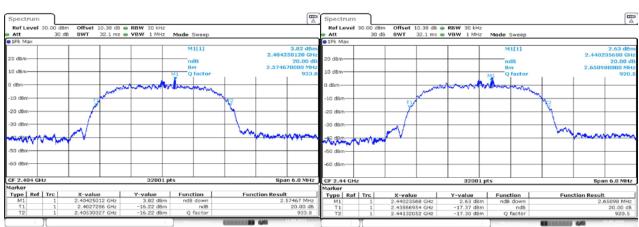
Conclusion:

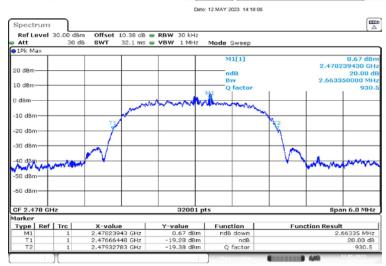
This test is for information only.

Limits:

None; for reporting purposes only.

Procedure:

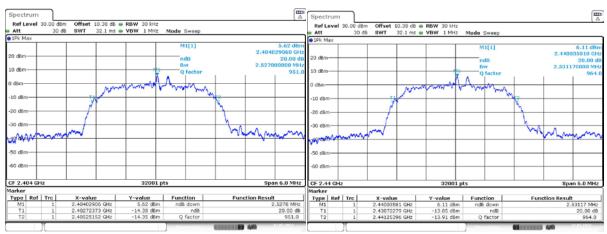

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1-5% of the 20dB bandwidth. The VBW is set to \geq RBW.


_#/**//**5/E

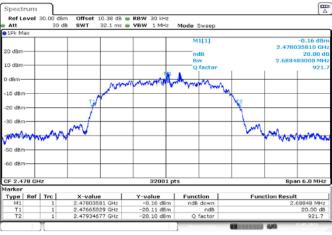
QHS-P2 Data Collection:

Setting	BW MHz
Low	2.575
Mid	2.651
High	2.663

Date: 12.MAY.2023 14:15:54



Date: 12.MAY.2023 14:23:03


QHS-P6 Data Collection:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	2.528
Middle	2441	2.531
High	2480	2.688

Date: 12.MAY.2023 14:28:31

Date: 12.MAY.2023 14:30:19

Date: 12.MAY.2023 14:42:19

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:/	77	-7	E

Hopping Frequency Separation

Project number (Integrity):	408L	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	May 15, 202	23			
Requirements	FCC 15.247 (a)		Referenced Standard(s)			C62 10 2012 7 8 2		
Standard(s):	RSS-247 5.1 (b)		Referenced 3	itanuaru(s).	ANSI C63.10-2013 7.8.2			
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test location: Braun room		Braun room		
			•	-				
Test equipment used TN's:	2409							
EUT Serial number(s):	084803M3051E02	21A1						
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594						
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.							

Conclusion:

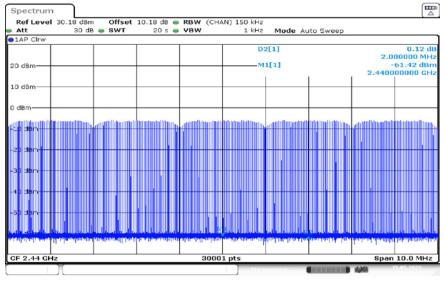
Hopping frequencies are separated by 2 MHz which is more than the required minimum of 25kHz and more than 2/3 of the 20dB bandwidth of the hopping channel which would be 1.8 MHz.

Limits:

FCC §15.247 (a) (1)

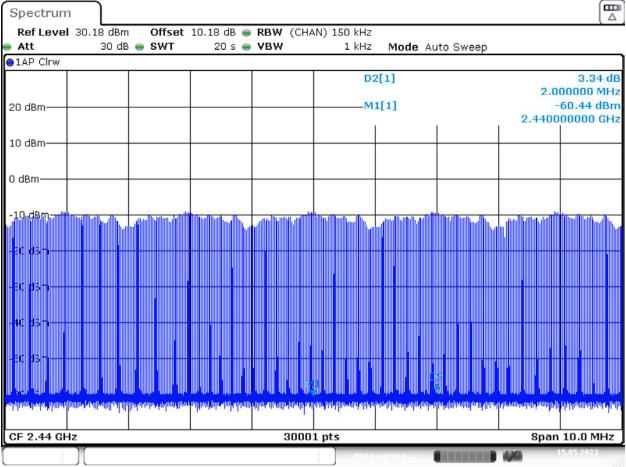
RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

Data Collection:



Date: 15.MAY.2023 16:39:11

QHS-P2 hopping

_805E

Date: 15.MAY.2023 16:39:49

QHS-P6 hopping

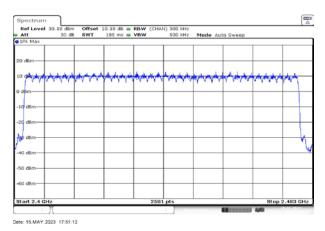
Note: slight dips in the profile are visible every 2 divisions.

_/	:/	1	-7	1	

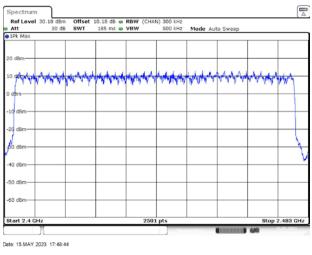
Number of Hopping Channels

Project number (Integrity):	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	May 15, 202	23		
Requirements	FCC 15.247 (a)	(1) (iii)	Referenced Standard(s): ANSI C63.10-		ANSI C63.10-2013 7.8.3		
Standard(s):	RSS-247 5.1 (d)				ANSI C03. 10-2013 7.8.3		
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location: Braun Room				
					·		
Test equipment used TN's:	2409						
EUT Serial number(s):	084803M3051E02	21A1					
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was						
	installed.						

Conclusion:


Bose Model 408L uses 79 hopping channels in normal operation and always uses at least 20, both of which are more than the required 15.

Limits:


FCC 15.247 (a) (1) (iii), RSS-247 5.1 (d) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

38 hopping Channels QHS-P2

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:/	1	-7	1	

Average Time of Occupancy

Project number (Integrity):	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	May 22, 202	23		
Requirements Standard(s):	FCC 15.247 (a) RSS-247 5.1 (d)		Referenced S	tandard(s):	ANSI C63.10-2013 7.8.4		
EUT powered with:	5V USB	Temp / Humidity: n/a Test location: Braun Room			ion: Braun Room		
Test equipment used TN's:	2409						
EUT Serial number(s):	084803M3051E02	21A1					
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.						

Conclusion:

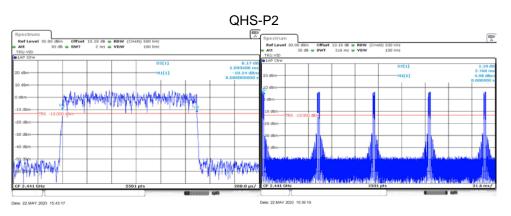
The highest time of occupancy in any mode is 276 mS which meets the 400mS limit by 124mS.

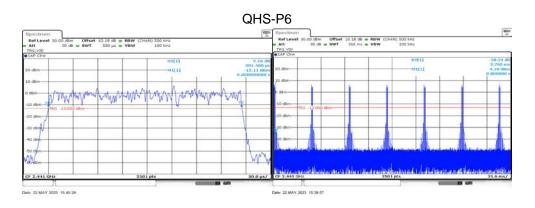
Limit:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Observation time = (38 hopping channels) * 400 mS = 15.2 seconds.

Set the observation time to 316ms and count the pulses.


Multiply number of pulses in 316ms by (15.2/0.316) = 48.1.



_/	:7	77	7	=
_	_			_

Data Collection:

Channel	Frequency (MHz)	Mode	Pulse Width (mS)	Number of pulses in 316ms	Number of pulses in 15.2s (X 48.1)	Time of occupancy (Pulse Width X Number of pulses) (mS)	Limit (mS)	Margin (mS)	Result
Middle	2440	QHS-P2	1.094	5	240.5	263.1	400	136.9	Pass
Middle	2440	QHS-P6	0.391	7	336.7	131.6	400	268.4	Pass

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:/	77	-7	E

Output Power

Project number (Integrity):	408L	Build Phase:	C1.5		
Tested by:	Mike Royer		Date:	May 16, 2023	
			-		
Requirements	FCC 15.247	(b) (3)	Reference	d ANSI 63.10:20	12 7 9 5
Standard(s):	RSS-247 5.4	(b)	Standard(s): ANSI 03.10.20	15 - 7.0.5
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test location:	Braun Room
				•	
Test equipment used TN's:	2409				
EUT Serial number(s):	084803M3051	E021A1			
EUT Software installed:	1.4.10+g2edc5	594			
EUT Modification(s):	Product was installed.	tested as built excep	ot the antenna was d	isconnected and a	coaxial cable was

Conclusion:

The unit passes output power by 8.46 dB for QHS-P2 mode and 8.40 dB for QHS-P6 mode.

Limits:

FCC §15.247 (b) (1)

RSS-247 5.4 (b)

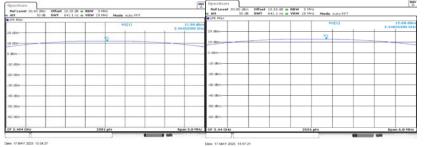
The device maintains a minimum of 20 hopping channels. The limit is 21 dBm.

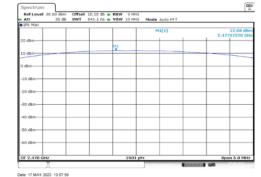
QHS-P2 Data Collection:

Channel	Frequency (MHz)	Output Power (dBm)	Limit (dB)	Margin (dB)	Result
Low	2404	11.98	21	9.02	Pass
Middle	2440	12.54	21	8.46	Pass
High	2478	12.01	21	8.99	Pass

17 MAY 2023 15 48 22

ne: 17 MAY 2023 13:50:10


Ref Level 30.00 dB			Mode Auto FFT	
• 1Pk Max				
			M1[1]	12.01 d8 2.47766010 G
20 dBm	+ +			
10 dBm		M1.		
0 dBm				
-10 dBm				
-20 dBm				
=30 d8m				
-40 dBm				
-50 dBm				
-60 dBm	+ +	+ +		
CF 2.478 GHz		2501 p		Span 5.0 MH


Date: 17.MAY.2023 13:51:18

QHS-P6Data Collection:

Channel	Frequency (MHz)	Output Power (dBm)	Limit (dB)	Margin (dB)	Result
Low	2404	11.99	21	9.01	Pass
Middle	2440	12.60	21	8.40	Pass
High	2478	12.08	21	8.92	Pass

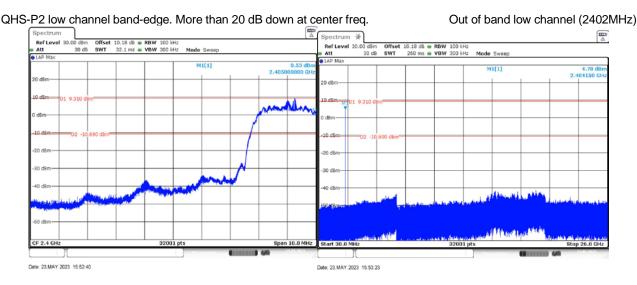
TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:7	17	-7	E

Conducted Spurious Emissions

Project number (Integrity):	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date: May 23, 2023				
Requirements	FCC §15.247	7 (d)	Deferenced S	tondord(c)		SI 63.10 (7.8.8)	
Standard(s):	RSS-247 5.5		Referenced Standard(s): ANSI 6			51 03.10 (7.0.0)	
EUT powered with:	5V USB	Temp / Humidity:	n/a Test location: Braur		Braun Room		
Test equipment used TN's:	2409						
EUT Serial number(s):	084803M3051	LE021A1					
EUT Software installed:	1.4.10+g2edc5	1.4.10+g2edc594					
EUT Modification(s):		Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.						

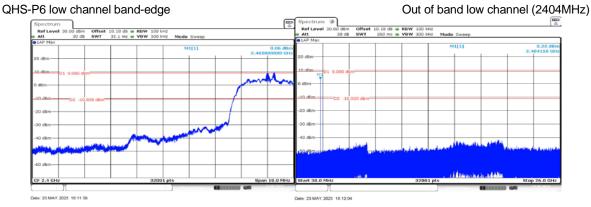
Conclusion:

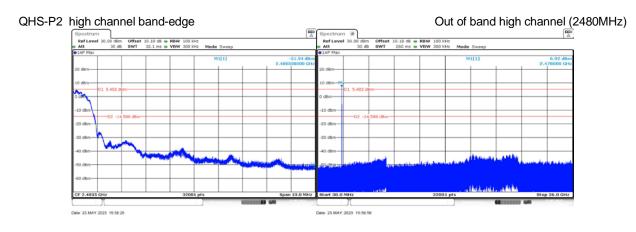

The Bose Model 408L passes Conducted Spurious Emissions by more than 10dB.

Limits

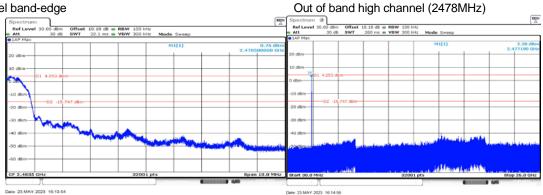
FCC §15.247 (d), RSS-247 5.5

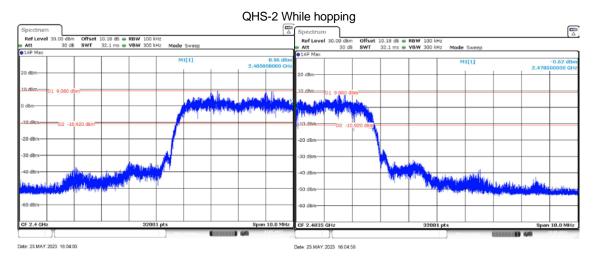
Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.

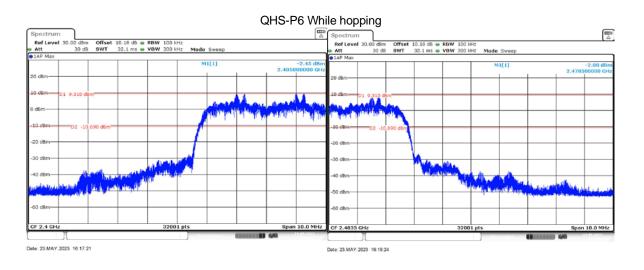

Data Collection:



Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.441408.23.167.5 Form FL300959 Rev 06 BOSE CONFIDENTIAL






QHS-P6 high channel band-edge

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	21-Mar-2023	22-Mar-2024

_/	://	67	E
			_

RF Radiated Emissions 30MHz -1GHz

Test Information:

Project number (Integrity):		Build Phase:	Pre-C1		
Tested by:	M. Mehrmann		Date:	8+9 Februar	ry 2023
Requirements Standard(s):	FCC §15.247 (d section 5.5) and RSS-247	Referenced S	tandard(s):	ANSI C63.10 6.5
EUT powered with:		Temp / Humidity:		Test locat	ion: Maxwell House
Test equipment used TN's:	644,2319,1541,2	2077,1277-22			
EUT Serial number(s):	Left; 084803M30	003B005A			
EOT Senai number(s):	Right: 084803M	3003B004A			
EUT Software installed:	0.0.19 diag code	;			
EUT Modification(s):	None				

Objective/Summary/Conclusion:

Passes FCC 15.247 and RSS-247 Section 5.5 requirements with a worst-case passing margin of 16.0 dB at 700 MHz.

Additional EUT Information:

The EUT was tested in a 3m Semi Anechoic Chamber on an insulating turntable 80 cm high.

The device was scanned in three orthogonal axis and no signals were detected.

Test Setup Details:

EUT Emissions levels contained within this report are calculated on the following basis:

Radiated Emission Level (dBµV/m) = EMI Receiver Reading (dBµV) + Antenna Correction Factor (dB/m) – Preamplifier Gain (dB) + Cable Loss (dB)

_805E

Data Collection:

S/N: Left bud	Power ap	plied:			P
ods:					
tup:					
nts: Position X					
Spectrum					E
	1		100 100		(v
Ref Level 80.00 dBµ∨ ● Att 10		RBW (CISPR)		usen Innut 1	
PS TDF	ub SWI 133 ms	APM	1 MHz Mode Sv	veep Input 1	
01Pk View 02Pk View					
Limit Check	100 MHzP	ASS	M1[1]		16.83 dBµV/n
70 dbj0/nCISPR32 B		ASS	and the second s		99.9842 MH
			M2[1]		21.60 dBµV/n
60 dBµV/m					300.0077 MH
50 dBµV/m					
CISPR32 B					
40 dBµV/m					5.44
30 dBµV/m				Ma	M4
MARKET			M2	and the stands with	
20 au, 1/m		a state of the state of the states	المنهما يستنع معالم المستنع معالم وم		
in the second of	and the house of the second				
10 dBµV/m					
0 dBµV/m					
o apprim					
-10 dBµV/m					
Start 30.0 MHz	I I I	16168 p	ts	<u> </u>	Stop 1.0 GHz
Marker					-
Type Ref Trc	X-value	Y-value	Function	Function	Result
M1 1	99.9842 MHz	16.83 dBµV/m			
M2 1	300.0077 MHz	21.60 dBµV/m			
M3 1	500.0312 MHz	25.41 dBµV/m			
M4 1	699.9947 MHz	30.48 dBµV/m			

Date: 9.FEB.2023 13:49:10

ACCREDITED	
ertificate # 1514	1

_ 5/1/-7	5
	_

2

Certificate #	# 1514.1		
EUT S/N:	Left bud	Power applied:	Plot
EUT Mods:			
EUT Setup:			
Comments:	Position Y		

IVEL FEAGL	80.00 dBµ'	√/m	🔵 RBW (CISPR) 1	20 kHz		
Att	and a state of the	dB SWT 133 m		1 MHz Mode Sv	weep Input 1 DC	
PS TDF					•	
01Pk View 02	2Pk View					
Limit Ch		100 M	HzPASS	M1[1]		16.65 dBµV/n
70 dbip?nCIS	SPR32 B		PASS			99.9842 MH
/ upp1)				M2[1]		22.10 dBµV/n
60 dBµV/m-				<u> </u>		300.0077 MH
1	1					
50 dBµV/m—						
CISPR32 B						
40 dBµV/m		1 1 1				M4
30 dBµV/m-					MAR	double out the
	1			M2	and the second second second	
20 apr. 1/m-		M1	an an an al a da an da line a da an	and the second	and the second	
	and the second					
114	and the second second	all and the brief that have been all and a state of the				
10 dBµV/m-		M1				
1		al televisione and a second				
10 dBµV/m— 0 dBµV/m—						
0 dBµV/m						
1						
0 dBµV/m						
0 dBµV/m			16168 pt			Stop 1.0 GHz
0 dBµV/m -10 dBµV/m- Start 30.0 M Marker	1Hz		16168 pt	s		-
0 dBµV/m	1Hz Trc	X-value	16168 pt		Function R	-
0 dBµV/m	1Hz	X-value 99.9842 MHz	16168 pt <u>Y-value</u> 16.65 dBµV/m	s		-
0 dBµV/m -10 dBµV/m Start 30.0 M Marker Type Ref M1 M2	1Hz	X-value 99.9842 MHz 300.0077 MHz	16168 pt Y-value 16.65 dBμV/m 22.10 dBμV/m	s		-
0 dBµV/m -10 dBµV/m Start 30.0 M Marker Type Ref M1	1Hz	X-value 99.9842 MHz	16168 pt Y-value 16.65 dBμV/m 22.10 dBμV/m 25.70 dBμV/m	s		-

Date: 9.FEB.2023 13:58:19

_://.7	1
	_

3

Certificate #	# 1514.1			
EUT S/N:	Left bud	Power applied:		Plot#
EUT Mods:				
EUT Setup:				
Comments:	Position Z			

Ref Level	80.00 dBµ'	√/m	RBW (CISPR)	120 kHz		
Att 🗧	10	dB SWT 133 n	ns VBW	1 MHz Mode	Sweep Input 1	. DC
PS TDF	10103		1016e (63-7-0296)	W 1999005 000000000	0.000000000000000000000000000000000000	
🔾 1Pk View 🔵	2Pk View	97 - 125 - 155 - 445				
Limit Cl		100	MHZPASS	M1[1]		16.13 dBµV/m
70 dbitym	SPR32 B		PASS			99.9842 MH
, о аврули 	1			M2[1]		21.36 dBµV/m
60 dBµV/m-	_					300.0077 MHz
1						
50 dBµV/m-						
CISPR32 B						
40 dBµV/m						
						M4 Material
30 dBµV/m-			1000 B 100 B	M2	M3	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER
20 as, 1 m	1 1	M	Land and Historica States	when we will not all the second	Harted Land	
20 USA	hata l	- A Laberton Long Labor	and the second	and the second		
10 dBµV/m-	a she she has			1		
	1				1 1	
0 dBµV/m				+ +		
-10 dBµV/m-	1 1			1		
Start 30.0 M	1Hz	1 1 1	16168 p	ts		Stop 1.0 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Functio	n Result
M1	1	99.9842 MHz				
M2	1	300.0077 MHz				
840	1	500.0312 MHz				
M3			29.05 dBµV/m			

Date: 9.FEB.2023 14:07:37

Limits:

	Freq Range	Lim	Limits (dBuV QP ¹)		Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m ²	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC §15.247 (d)	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
	andwidth and De	tector Settings	S:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Detector		
30 - 1000	120	>300	QP		
> 1000	1000	>1000	Pk and	d AVG	

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1541	Antenna 30MHz - 6GHz	JB6	A050807	Sunol Sciences Corp	14-Dec-2021	14-Dec-2023		
3062	RF Cable 10MHz- 18GHz, low loss LL142 coax, 26 feet, "N" connectors	SCE18110505- 312	N/A	Fairview Microwave[2]			01-Sep-2022	01-Sep-2023
2077	Maxwell House RE Pre-amp (20MHz- 3GHz)	N/A	N/A	Bose Corporation			01-Sep-2022	01-Sep-2023
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	29-Mar- 2023	28-Mar- 2024		

Uncertainty:

Uncertainty Budget					
Title:	Radiat	ed RF Emissio	ons (30MH	z-1GHz)	
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)	
Receiver - absolute level	0.3	Rect.	1.73	0.17	
Receiver - frequency response	0.8	Rect.	1.73	0.46	
Receiver - attenuator switching	0.2	Rect.	1.73	0.12	
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12	
Receiver - display	0.5	Rect.	1.73	0.29	
Antenna factor	0.8	Norm.	2.00	0.38	
Antenna directivity	1.0	Norm.	2.00	0.50	
Preamp correction factor	0.5	Norm.	2.00	0.25	
Cable correction factor	0.5	Norm.	2.00	0.25	
Site imperfection - NSA	4.0	Triang.	2.45	1.63	
Test table impact	1.1	Rect.	1.73	0.64	
	•				
	Comb	ined uncertair	ty (RSS):	1.98	
	Cov	verage factor (2 sigma):	2.00	
Exte	ended uncert	ainty (95% coi	nfidence):	3.97	

_8	11-	E

Radiated Spurious Emissions 1-25GHz

Project number (Integrity):	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	June 12,	2023		
Requirements Standard(s):	FCC §15.247 (d RSS-247 Sectio	n 5.5	Referenced Star	ndard(s):	6.3 – 6.6 6.10.5 R 4.1.4.2.3		
EUT powered with:	Battery	Temp / Humidity:	N/A	Test I	est location: Marconi Manor		
Test equipment used TN's:	1663,3685,2349	,2602,2414					
EUT Serial number(s):	Left 084803M3051D038A1 Right 084808M3051D019A1						
EUT Software installed:	0.4.10						
EUT Modification(s):	USB Debug wire	es were attached to the	e earbud to allow con	ntrol of the	radio.		

Conclusion:

The Bose model 408L passes radiated emissions from 1-25GHz.

The peak emissions maximum is below the average limit in all cases.

1-18 GHz, the maximum emission was 53.1 dBuV/m peak, noise floor. The limit is 54 dBuV/m and the margin is 0.9 dB. 18-25 GHz. The maximum emission was 62.1. The limit is 74 dBuV/m, and the margin is 11.9 dB.

Procedure:

Per 558074 D01 15.247 Meas Guidance v05r02:

Each mode tested was measured at all 10 Harmonics, at the low, middle, and high transmit frequencies.

EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

A notch filter was used to block the fundamental emission from overloading the measurement equipment including the preamplifier and the spectrum analyzer.

The duty cycle used is shown in the table on page 6.

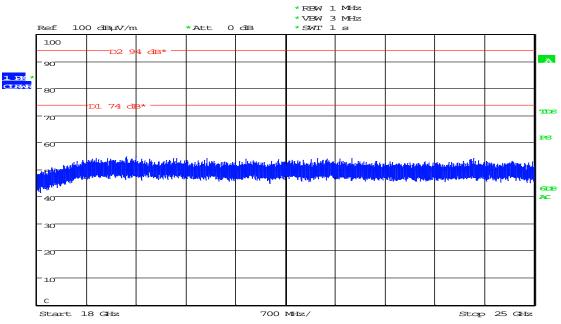
Limit calculation:

The E field in the far field observes the inverse square law. So that the difference in field strength difference in decibels is;

$$20 \log\left(\frac{D1}{D2}\right) = 20 \log 10 = 20$$

Peak limit of 74 becomes 94 dBuV at 30cm.

Average limit of 54 becomes 74 dBuV at 30cm.


6	[]]]_E	

Data Collection:

EUT S/N:	Left	Power applied:	Battery		Plot# 1						
EUT Mods:	None		· · ·	·	· ·						
EUT Setup:		VHS P2 Low channel									
Comments:			ress the fundamer	ntal.							
			*RBW 1 MHz								
			*VBW 3 MHz								
	Ref 100 dBµV/m	*Att 0 dB	*SWT 1 s		-						
	100										
					A						
	90				A						
1 PK MAXH											
MAXA	80										
	D1 74 dB*				l						
	70				TDS						
	60				PS						
	D2 54 dB*										
	50	t-lai			1						
	. U. Bullet	a lat set the set of the set of the set of the set	a distribution of the second	alle a she	6DE AC						
	40				A						
	30				1						
	20				1						
	-10				4						
	С				J						
	Start 1 GHz	1.7	GHz/	Stop 18 GHz	:						

Date: 12.JUN.2023 15:05:01

Date: 12.JUN.2023 18:46:15

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sec	tion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	4808	35.60	46.10	54.0	74.0	18.4	27.9	0	V	1.50	Signal Maximized
2	7212	31.40	44.80	54.0	74.0	22.6	29.2	0	Н	1.50	Noise floor
3	9617	37.90	49.80	54.0	74.0	16.1	24.2	0	Н	1.50	Signal Maximized
4	12020	35.30	48.20	54.0	74.0	18.7	25.8	0	V	1.50	Noise floor
5	14424	34.80	48.10	54.0	74.0	19.2	25.9	0	Н	1.50	Noise floor
6	16828	38.20	51.30	54.0	74.0	15.8	22.7	0	V	1.50	Noise floor

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19232	42.80	55.80	74.0	94.0	31.2	38.2				Noise floor
2	21636	40.80	54.80	74.0	94.0	33.2	39.2				Noise floor
3	24040	43.00	57.20	74.0	94.0	31.0	36.8				Noise floor

ACCREDITED	
ertificate # 1514	1

	:7	77	-7	1
_	- /		• /	_

Ce EUT S/N: Left

Power applied: Battery

Plot#

2

EUT Mods:		
EUT Setup:	QHS P2	Mid channel
Comments:		

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	4880	34.90	46.00	54.0	74.0	19.1	28.0	0	V	1.50	Signal Maximized
2	7320	31.90	44.80	54.0	74.0	22.1	29.2	0	н	1.50	Noise floor
3	9761	38.30	50.40	54.0	74.0	15.7	23.6	0	Н	1.50	Signal Maximized
4	12198	38.00	51.20	54.0	74.0	16.0	22.8	0	Н	1.50	Signal Maximized
5	14640	36.10	49.60	54.0	74.0	17.9	24.4	0	V	1.50	Noise floor
6	17080	38.80	52.20	54.0	74.0	15.2	21.8	0	Н	1.50	Noise floor

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19520	40.90	53.80	74.0	94.0	33.1	40.2	0	Н	1.50	Noise floor
2	21960	40.20	53.60	74.0	94.0	33.6	40.3	0	Н	1.50	Noise floor
3	24400	40.40	53.70	74.0	94.0	33.6	40.3	0	Н	1.50	Noise floor

ACCREDITED	
Certificate # 1514	1

_/	:7	11	45	
	_	-		_

Certificate # 1514.1 EUT S/N: Left

Power applied: Battery

Plot#

3

EUT Mods:	
EUT Setup:	QHS P2 High channel
Comments:	

FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters *Average detector MK Emission Measured Measured FCC 15.247d and RSS-247 Section 5.5 Table **Receiving Antenna** used for frequencies Margin Pol # Frequency Amplitude Amplitude Limit Limit Margin Azimuth Height (dBµV/m) above 1 GHz. (dBµV/m) (dB) (0°closest (H/V) (MHz) (dBµV/m) (dBµV/m) (dB) (Meters) Notes/Mode QP/AVG* Peak QP/AVG* Peak QP/AVG Peak to ant) 4956 34.10 45.10 54.0 74.0 19.9 V 1.50 Signal Maximized 1 28.9 0 2 7434 32.20 46.30 54.0 74.0 21.8 27.7 0 Н Noise floor 1.50 3 74.0 9913 41.10 51.50 54.0 12.9 22.5 0 Н 1.50 Signal Maximized 4 12388 36.70 49.80 54.0 74.0 17.3 24.2 0 Н 1.50 Signal Maximized Noise floor 5 14868 54.0 74.0 17.1 23.7 0 V 36.90 50.30 1.50 6 17346 39.50 53.10 54.0 74.0 14.5 20.9 0 Н 1.50 Noise floor

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19824	41.00	54.70	74.0	94.0	33.0	39.3				Noise floor
2	22302	40.60	55.10	74.0	94.0	33.4	38.9				Noise floor
3	24780	40.40	53.70	74.0	94.0	33.6	40.3				Noise floor

ACCREDITED	
Certificate # 1514	1

	:7	77	-7	1
_	- /		• /	_

Ce EUT S/N: Left

Power applied: Battery

Plot#

4

EUT Mods:	
EUT Setup:	QHS
Commontor	

SP6 Low channel Comments:

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters											
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector	
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.	
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode	
1	4808	34.60	46.10	54.0	74.0	19.4	27.9	0	V	1.50	Signal Maximized	
2	7212	31.50	44.90	54.0	74.0	22.5	29.1	0	Н	1.50	Noise floor	
3	9616	37.20	50.00	54.0	74.0	16.8	24.0	0	V	1.50	Signal Maximized	
4	12020	35.40	48.70	54.0	74.0	18.6	25.3	0	Н	1.50	Noise floor	
5	12020	35.40	48.70	54.0	74.0	18.6	25.3	0	V	1.50	Noise floor	
6	16828	38.20	51.30	54.0	74.0	15.8	22.7	0	Н	1.50	Noise floor	

MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19232	46.30	59.20	74.0	94.0	27.7	34.8				Noise floor
2	21636	40.70	54.60	74.0	94.0	33.3	39.4				Noise floor
3	24040	42.70	57.50	74.0	94.0	31.3	36.5				Noise floor

ACCREDITED	
ertificate # 1514	1

Certificate # 1514.1 EUT S/N: Left

Power applied: Battery

Plot#

5

EUT Mods:EUT Setup:QHS P6 Mid channelComments:

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	4880	35.20	46.90	54.0	74.0	18.8	27.1	0	V	1.50	Signal Maximized
2	7320	31.90	45.30	54.0	74.0	22.1	28.7	0	Н	1.50	Noise floor
3	9760	37.70	50.40	54.0	74.0	16.3	23.6	0	Н	1.50	Signal Maximized
4	12200	36.20	49.30	54.0	74.0	17.8	24.7	0	V	1.50	Noise floor
5	14640	36.10	49.80	54.0	74.0	17.9	24.2	0	Н	1.50	Noise floor
6	17080	38.80	52.30	54.0	74.0	15.2	21.7	0	V	1.50	Noise floor

FCC 15.247d and RSS-247 Section 5.5 @ 30 cm											
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19520	50.10	62.10	74.0	94.0	23.9	31.9				Noise floor
2	21960	40.70	54.20	74.0	94.0	33.3	39.8				Noise floor
3	24400	41.60	55.60	74.0	94.0	32.4	38.4				Noise floor

ACCREDITED	
Certificate # 1514.1	I

_/	:7	1	<u>L-</u>	7:	-
_		- 1	-	_	

EUT S/N: Left HS P6 High channel

Power applied: Battery

Plot#

6

EUT Mods:	
EUT Setup:	QI
Comments:	

FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters *Average detector MK Emission Measured Measured FCC 15.247d and RSS-247 Section 5.5 Table **Receiving Antenna** used for frequencies # Margin Pol Frequency Amplitude Amplitude Limit Limit Margin Azimuth Height (dBµV/m) above 1 GHz. (dBµV/m) (0°closest (H/V) (MHz) (dBµV/m) (dBµV/m) (dB) (dB) (Meters) Notes/Mode QP/AVG* Peak QP/AVG* Peak QP/AVG Peak to ant) 4956 33.50 45.00 54.0 74.0 20.5 29.0 V 1.50 Signal Maximized 1 0 2 7434 32.20 45.40 54.0 74.0 21.8 28.6 0 Н Noise floor 1.50 3 74.0 9912 35.60 48.40 54.0 18.4 25.6 0 V 1.50 Signal Maximized 4 12390 34.90 48.50 54.0 74.0 19.1 25.5 0 Н 1.50 Noise floor 5 54.0 74.0 17.1 0 V 14868 36.90 50.60 23.4 1.50 Noise floor 6 17346 39.50 52.70 54.0 74.0 14.5 21.3 0 Н 1.50 Noise floor

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receiving Antenna		*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19824	40.90	54.60	74.0	94.0	33.1	39.4				Noise floor
2	22302	40.40	54.20	74.0	94.0	33.6	39.8				Noise floor
3	24780	40.20	53.90	74.0	94.0	33.8	40.1				Noise floor

I imits.

	Freq Range	Lim	Limits (dBuV QP ¹)		Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC 15.247d and	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
E	andwidth and D	etector Setting	IS:		
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Dete	ector	
30 - 1000	120	>300	Q	P	
> 1000	1000	>1000	Pk and	d AVG	

_BOSE	
	ł

Equipment Used:

TN	Description	Model	S∕N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar- 2023	19-Mar- 2024		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb- 2023	23-Feb- 2025		
2602	Miteq pre- amp 1-18GHz 35dB	AFS42- 01001800-28- 10P-42	N/A	Miteq			07-Jul-2022	07-Jul-2023
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	13-Jan-2015		28-Mar-2023	27-Mar-2024
1757	18GHz-40GHz Preamp	JS4018004000- 30-8P-A1	1406279	Miteq			07-Jul-2022	07-Jul-2023
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research				
2368	RF Cable 30MHz- 26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation			28-Mar-2023	27-Mar-2024

Uncertainty:

Uncert	tainty Budget						
Title	Title: Radiated Emissions (>1GHz)						
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty			
	units:± dB			(± dB)			
Receiver - absolute level	0.3	Rect.	1.73	0.17			
Receiver - frequency response	2.0	Rect.	1.73	1.16			
Receiver - attenuator switching	0.2	Rect.	1.73	0.12			
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12			
Receiver - display	0.5	Rect.	1.73	0.29			
Antenna factor	0.4	Norm.	2.00	0.20			
Antenna directivity	1.0	Norm.	2.00	0.50			
Preamp correction factor	0.5	Norm.	2.00	0.25			
Cable correction factor	0.5	Norm.	2.00	0.25			
Site imperfection - NSA	3.0	Triang.	2.45	1.22			
Test table impact	1.7	Rect.	1.73	0.98			
	Comb	oined uncertair	nty (RSS):	2.09			
		verage factor (, ,	2.00			
E>	ktended uncert	ainty (95% co	nfidence):	4.17			

_/	:7	77	-7	Ξ	1

Radiated Band Edge

Project number (Integrity):	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	2 June, 202	3		
FCC §15.247 (d) Requirements Standard(s): RSS -247 Section 5.5			Referenced Standard(s):		ANSI C63.10-2013		
					/		
EUT powered with:	Battery	Temp / Humidity:	N/A	Test locat	ion:	Marconi Manor	
	•		•			•	
Test equipment used TN's:	1663,2929,2349	,3685					
EUT Serial number(s):	084803M3051E021A1						
EUT Software installed:	1.4.10+g2edc594						
EUT Modification(s):	USB Debug wire	es were attached to th	ne earbud to allow	w control of th	ne rad	dio.	

Conclusion:

The Bose model 408L passes Radiated Band Edge.

Procedure:

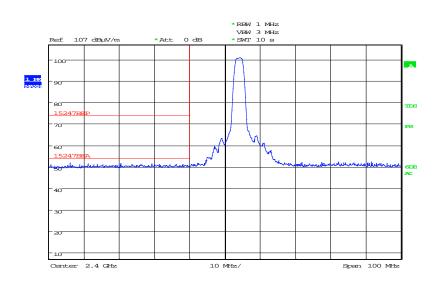
The EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

A low gain pre-amp was used to ensure that overloading was avoided. Care was taken in selecting input attenuation and reference level to avoid compression.

For lower band edge measurements, the transmit frequency was 2402 MHz.

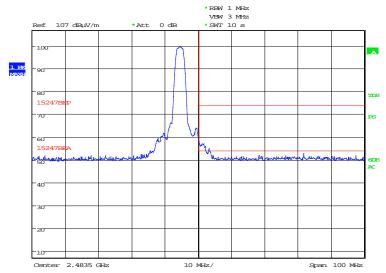
For upper band edge measurements, the transmit frequency was 2480 MHz.

The duty cycle used is shown in the table on page 6.


ANSI C63.10-2013 4.1.4.2.3: Reduced video bandwidth method used for making average measurements for lower and upper adjacent restricted bands

_6/0/5/=

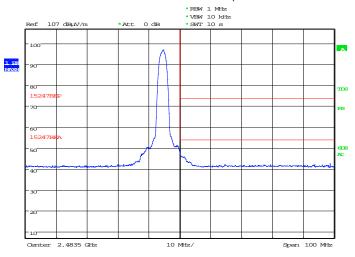
QHS-P2 low channel band edge.


Peak emissions are below the average limit.

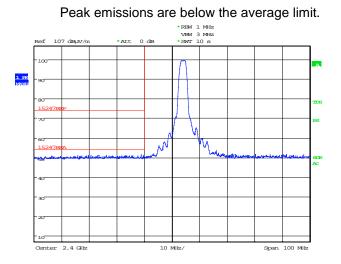
Date: 2.JUN.2023 17:51:03

QHS-P2 high channel band edge Peak measurement

Peak emissions are not above the average limit, see next page for reduced video bandwidth method.

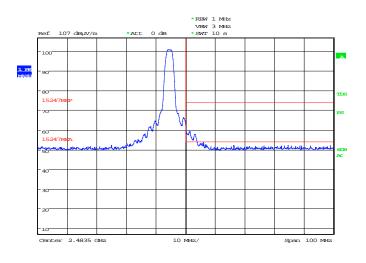


Date: 2.JUN.2023 18:08:26

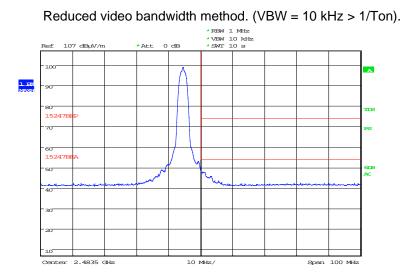

QHS-P2 high channel band edge Average measurement.

Reduced video bandwidth method. (VBW = 10 kHz > 1/Ton).

Date: 2.JUN.2023 18:09:44


Date: 2.JUN.2023 17:55:10

_/	:7	77	7	-
_		÷.,	· /	_


QHS-P6 high channel band edge Peak Measurement

Peak emissions are not above the average limit, see next plot for reduced video bandwidth method.

Date: 2.JUN.2023 18:15:11

QHS-P6 high channel band edge Average Measurement.

Date: 2.JUN.2023 18:16:41

_BOSE

Limits:

	Freq Range	Lim	nits (dBuV QF	²¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
or RSS-GEN	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
OF R53-GEN	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average limits.
CISPR 32	Freq Range				
	(GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
Bandwidth and Detector Settings:					
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	Detector		
30 – 1000	120	>300	QP		
> 1000	1000	>1000	Pk and	AVG	

τN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar-2023	19-Mar-2024		
2929	Mini-circuits band-edge pre-amp 300 MHz - 8 GHz 20 dB	ZX60HV-83LN+	N/A	Mini-Circuits			28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2023	23-Feb-2025		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024

Uncertainty:

Uncertainty Budget								
Title:	Radiated							
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	2.0	Rect.	1.73	1.16				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
Antenna factor	0.4	Norm.	2.00	0.20				
Antenna directivity	1.0	Norm.	2.00	0.50				
Preamp correction factor	0.5	Norm.	2.00	0.25				
Cable correction factor	0.5	Norm.	2.00	0.25				
Site imperfection - NSA	3.0	Triang.	2.45	1.22				
Test table impact	1.7	Rect.	1.73	0.98				
Combined uncertainty (RSS):								
Coverage factor (2 sigma):								
Extended uncertainty (95% confidence):								

End of report