

_BOSE

Certificate # 1514.1	
Test Type:	Emissions
Product Type:	Wireless Earbud
Product Name/Number:	Model 408L
	A94408L 3232A-408L
Prepared For:	Product Assurance Engineering Department, Bose Corporation
Name of manufacturing agency applying for equipment type approval	Bose Corporation
Postal Address of manufacturing Agency	
Test Results:	Pass
Applicable Standards:	FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5
Report Number:	EMC.441408.23.167.3

General Comments/Special Test Conditions: This report relates only to the items tested.

	Print Name	Signature	Date
Prepared By:	Bryan Cerqua	Bryon H Cerque	8/14/2023
Electrical Engineer Review* By:	Kenneth Lee	Henry	8/15/2023

* Since every test result is separately reviewed after its completion, the electrical engineer review indicated above represents a higher-level review to ensure this report lists and contains all applicable and appropriate requirements.

If the report carries the "accredited" logo, the reviewer must verify all the tests in this report are covered under the current ISO17025 accreditation. The A2LA-accredited logo must be removed if any of the tests in the report are not performed under the current scope of accreditation. It is the responsibility or the reviewer to ensure the A2LA advertising policy is followed.

Table of Contents

Tests Performed (Table of Contents):

Test Report Summary	3
Test Results Summary	4
Environmental Conditions	4
FCC Test Site Accreditation:	4
Canadian Test Site Registration:	4
RF Conducted Measurements	
On Time and Duty Cycle	5
99% Occupied Bandwidth	7
6dB Occupied Bandwidth	
Output Power	13
Power Spectral Density	
Conducted Spurious Emissions	
RF Radiated Emissions 30MHz -1GHz	
Radiated Spurious Emissions 1-25GHz	
Radiated Band Edge	38

_8	E

Test Report Summary

Product Information:

Description

Truly Wireless In Ear (TWIE) earbud. The bud uses Bluetooth classic (BT) Bluetooth Low Energy (BLE), and Qualcomm High Speed (QHS). The QHS is used for bud-to-bud communications. The role of master/puppet can be changed to best meet radio link conditions during operation. The unit is not supplied with an AC to USB adapter. The antenna is an inverted F with a maximum gain of 0.58 dBi (Left Earbud) and 0.86 dBi (Right Earbud) formed by Laser Direct Sequence on the inside of the top cover of the earbud.

EUT Condition

Product was as built in the factory. And for the conducted measurements the antenna was removed, and coaxial cable was installed in its place. Where necessary USB debug wires were added to allow control of the Radio.

Bluetest3 Version

Bluesuite 3.3.12

Setup (Cables and Accessories)

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
AC Adapter	Bose	S008VU0500160	072246Z00802252AE	N/A		

Test Objective:

Verify product meets all applicable EMC requirements for the Bluetooth Low Energy mode.

Results:

Product complies with all applicable EMC requirements. All final results represent worst-case emissions and/or immunity.

Conclusions:

The device under test (D.U.T.):

[X] meets all test standards on page 1 of this report.

1	37	77	7	_
_	- /	. /	.,	_

Test Results Summary

	TEST RESULT	
TEST NAME	PASS or N/A	COMMENT(S)
On Time and Duty Cycle	N/A	No limits, for information only
99% Occupied Bandwidth	N/A	No limits, for information only
6dB Occupied Bandwidth	Pass	
Output Power	Pass	
Power Spectral Density	Pass	
Conducted Spurious Emissions	Pass	
RF Conducted Emissions – AC Mains	Pass	
RF Radiated Emissions 30MHz -1GHz	Pass	
Radiated RF Emissions 1-25GHz	Pass	
Radiated Band Edge	Pass	

Environmental Conditions

Am	bient:	
/	biont.	

Temperature:22±4°CHumidity:30-60%RHMains Voltage:120VAC, 5VDC USB

FCC Test Site Accreditation:

Display Display ExhibitsCorresp		Location	Accreditation	<u>MRA Designatio</u> <u>Number</u>	n Expiration Date	<u>Contact</u> Contac <u>Title</u>	t <u>Address</u>	<u>P.O. Mail City</u> Box Stop	<u>State</u>	<u>Zip</u>	Country	E-mail Address	<u>Phone</u> Numbe	<u>Fax</u> rNumber
(2)	Scopes Bose Corporation	1 New York Avenue, Framingham MA	American Association for 'Laboratory Accreditation	N/A US1088	07/31/2022	Mr. Cable Quality Best Manag	Mail Stop 450 erThe Mountair		im Massachusett:	٥1701 s	United States	Cable_Best@bose.com	1 508 766 6137	508 766 1145

Canadian Test Site Registration:

Organization	<u>CAB</u> identifier	Scope/Recognition Date (yyyy-mm-dd)	Expiration (yyyy-mm-dd)
BOSE CORPORATION	US0210	RSS-GEN (2019-02-11)	RECOGNIZED UNTIL:
1 New York Avenue		RSS-210 (2019-02-11)	2022-07-31
Framingham, MA		RSS-247 (2019-02-11)	
01701		RSS-248 (2021-11-19)	A2LA
UNITED STATES			ISO/IEC
			17025:2017
Company Number: 3232A			Expires:
			2022-07-31
Contact: Mario Espinal <u>mario_espinal@bose.com</u>			

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.441408.23.167.3 Form FL300959 Rev 06 BOSE CONFIDENTIAL

E	777	7	-
_			

RF Conducted Measurements

On Time and Duty Cycle

Model number	408L	Build Phase:	C1.5							
Tested by:	Mike Royer		Date:	May 12, 202	23					
					-					
Requirements Standard(s):			Referenced S	tandard(s):	ANSI C63.10-2013					
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	tion: Braun Room					
Test equipment used TN's:	2409									
EUT Serial number(s):	084803M3051E02	21A1								
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594								
EUT Modification(s):	Product was tes installed.	ted as built except the	e antenna was d	isconnected a	Product was tested as built except the antenna was disconnected and a coaxial cable was					

Conclusion:

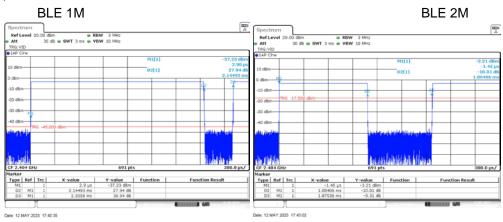
This test is for information only.

Limits:

None; for reporting purposes only.

Procedure:

ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.


Data Collection:

Duty cycles shown in the table below represent maximum duty cycle in test mode using maximum packet length.

Mode	ON Time (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	1/Ton Hz
BLE 1M	2.115	2.506	.844	84	466
BLE 2M	1.084	1.875	.578	58	922

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

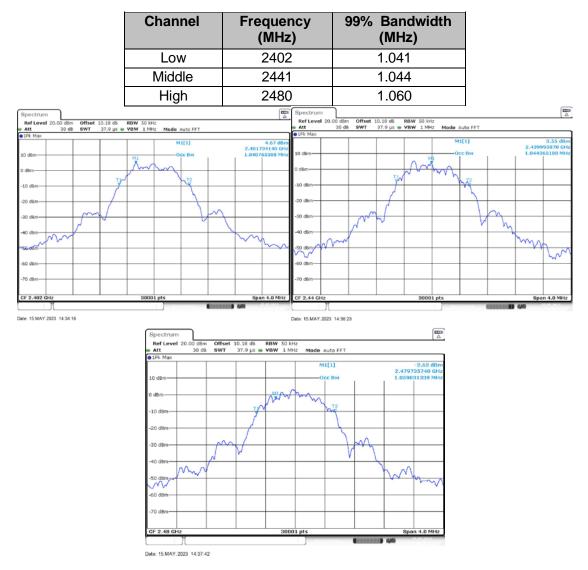
 717	-7	=

99% Occupied Bandwidth

Model number	408L	Build Phase:	C1.5					
Tested by:	Mike Royer		Date:	15 May 202	3			
Requirements Standard(s):	CFR 47 Part 15.	.247	Referenced S	tandard(s):	ANS	SI C.63.10-2013 6.9.3		
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test location: Braun Room				
	-							
Test equipment used TN's:	2409							
084803M3051E021A1	084803M3051E02	21A1						
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594						
EUT Modification(s):	Product was tes	ted as built except the	e antenna was di	sconnected a	and a	coaxial cable was		
	installed.							

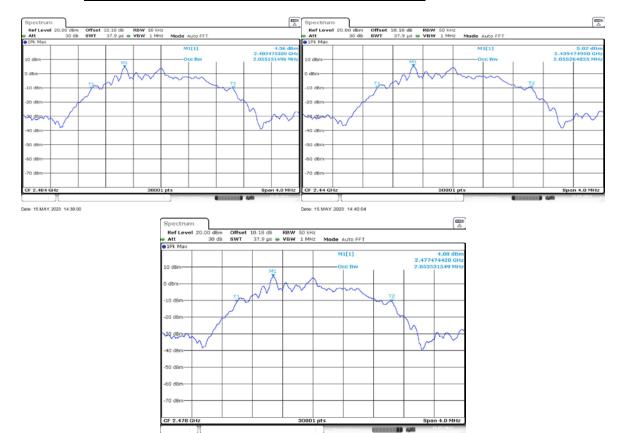
Conclusion:

This test is for information only.


Limits:

None; for reporting purposes only.

BUSE


BLE 1M Data Collection:

BLE 2M Data Collection:

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.050
Middle	2441	2.054
High	2478	2.050

Date: 15.MAY.2023 14:42:34

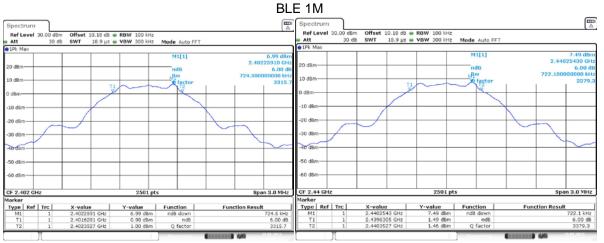
TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

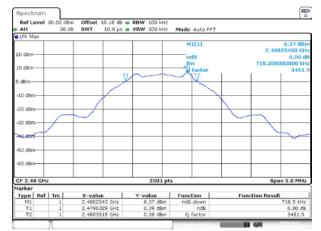
 717	-7	=

6dB Occupied Bandwidth

Model	408L	Build Phase:	C1.5				
Tested by:	Mike Royer		Date:	May 19, 202	23		
Requirements Standard(s):	FCC §15.247 (a RSS-247 5.2 (a)		Referenced S	tandard(s):	ANSI 63.10:2013 - 11.8		
EUT powered with:	5V USB	Temp / Humidity:	n/a	Test locat	tion: Braun Room		
	-						
Test equipment used TN's:	2409						
EUT Serial number(s):	084803M3051E02	21A1					
EUT Software installed:	1.4.10+g2edc594	1.4.10+g2edc594					
EUT Modification(s):	Product was tes	ted as built except the	e antenna was d	isconnected a	and a coaxial cable was		
	installed.						

Conclusion:

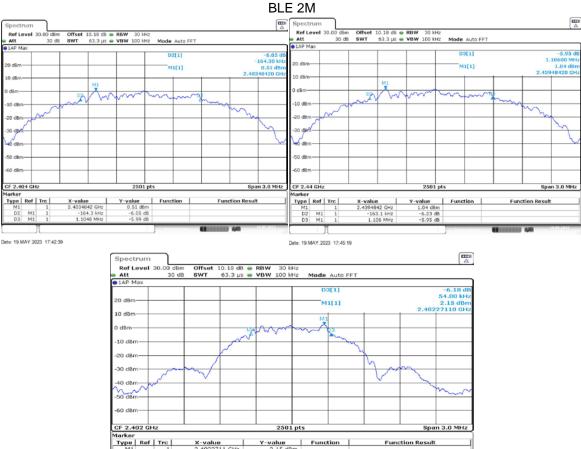

The lowest recorded 6dB bandwidth measured was 719 kHz which is more than the required minimum of 500 kHz by 219 kHz.


Data Collection:

DTS Bandwidth Summary Table (BLE)								
Channel	Frequency	Mode	DTS BW	Limit	Margin	Result		
	MHz		kHz	kHz	kHz			
Low	2402	BLE 1M	725	500	225	Pass		
Middle	2440	BLE 1M	722	500	222	Pass		
High	2480	BLE 1M	719	500	219	Pass		
Low	2404	BLE 2M	1269	500	726	Pass		
Middle	2440	BLE 2M	1269	500	769	Pass		
High	2478	BLE 2M	1268	500	768	Pass		

Date: 19.MAY.2023 17:09:45

Date: 19.MAY.2023 17:11:20



Date: 19.MAY.2023 17:12:19

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.441408.23.167.3 Form FL300959 Rev 06 BOSE CONFIDENTIAL

-5.67 dB

Date: 19.MAY.2023 17:53:35

614.2 kHz 54.0 kHz

M1 M1

Limits:

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

ANSI 63.10:2013 - 11.8

The minimum 6 dB bandwidth shall be at least 500 kHz.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

_/	:7	77	7	E
	_			

Output Power

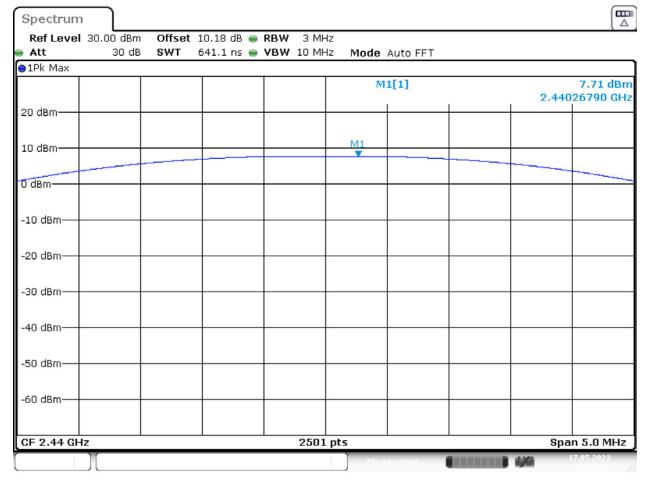
Model number	408L	Build Phase:	C1.5			
Tested by:	Mike Royer		Date: 17 May, 2023			
				•		
Requirements		FCC §15.247 (b) (3)				SI C63.10-2013
Standard(s):	RSS-247 5.4	(d)	Referenced Standard(s): 11.9.1.1			9.1.1
EUT powered with:	5V USB Temp / Humidity:		n/a	Test location: Braun F		Braun Room
Test equipment used TN's:	2409					
EUT Serial number(s):	084803M3051	084803M3051E021A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was					coaxial cable was
	installed.	•				

Conclusion:

The Bose Model 408L passes output power by 22.29 dB.

Method from ANSI C63.10-2013 section 11.9.1.1 was used.

Cable loss was accounted for in the Spectrum Analyzer offset.



Data Collection:

	Output Power Summary Table							
Channel	Frequency	Mode	Output Power dBm	Directional Gain dBi	Limit	Margin	Result	
Low	2402	BLE 1M	7.27	1	30	22.73	Pass	
Middle	2440	BLE 1M	7.71	1	30	22.29	Pass	
High	2480	BLE 1M	6.47	1	30	23.53	Pass	
Low	2404	BLE 2M	6.96	1	30	23.04	Pass	
Middle	2440	BLE 2M	7.48	1	30	22.52	Pass	
High	2478	BLE 2M	6.72	1	30	23.28	Pass	

Example Plot, Mid, BLE 1M

Date: 17.MAY.2023 11:04:08

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

 ://	F7	E
 	- /	_

Power Spectral Density

Model Number	408L	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	May 17, 202	23	
Requirements	FCC §15.247		Referenced Standard(s): ANSI 63.10 (11.			SI 62 10 (11 10 2)
Standard(s):	RSS-247 (5.2	2) (b)				51 03.10 (11.10.2)
EUT powered with:	5V USB Temp / Humidity: n/a Test location		ion:	Braun Room		
		-		-		
Test equipment used TN's:	2409					
EUT Serial number(s):	084803M3051	084803M3051E021A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.	nstalled.				

Conclusion:

The Bose Model 408L passes spectral density by 0.65 dB.

Test method is ANSI C63.10-2013 (11.10.2)

The cable loss is accounted for in the Spectrum Analyzer offset. The earbud is set to transmit continuously, duty cycle = 100%.

Limits:

FCC §15.247 (e) RSS-247 (5.2) (b) ANSI 63.10 (11.10.2)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Data Collection:

Mode	Channel	Frequency MHz	Max reading from SA dBm	Limit dBm	Margin dB	Result
BLE 1M	Low	2402	6.79	8	1.21	Pass
BLE 1M	Middle	2440	7.35	8	0.65	Pass
BLE 1M	High	2480	6.32	8	1.68	Pass
BLE 2M	Low	2404	6.56	8	1.44	Pass
BLE 2M	Middle	2440	7.16	8	0.84	Pass
BLE 2M	High	2478	6.37	8	1.63	Pass

BLE 1M Mid channel Power Spectral Density measurement.

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer	FSV40	101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

:77	L-7	_
 		_

Conducted Spurious Emissions

Model number:	408L	Build Phase:	C1.5			
Tested by:	Mike Royer		Date:	July 19, 202	23	
	-		-		-	
Requirements		CC §15.247 (d) Referenced Standard(s): ANSI 6			SI 63.10 11.11	
Standard(s):	RSS-247 5.5		Referenced Standard(S). ANSI 03.10 1			51 05.10 11.11
EUT powered with:	5V USB Temp / Humidity:		n/a	Test location: Bra		Braun Room
		-	•			
Test equipment used TN's:	2409					
EUT Serial number(s):	084803M3051	084803M3051E021A1				
EUT Software installed:	1.4.10+g2edc594					
EUT Modification(s):	Product was tested as built except the antenna was disconnected and a coaxial cable was					
	installed.					

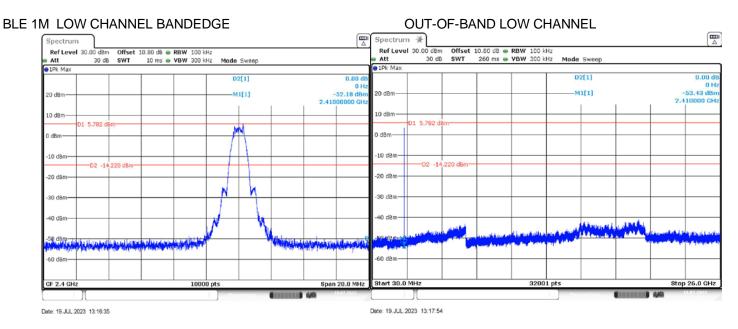
Conclusion:

The Bose Model 408L passes Conducted Spurious Emissions by more than 10dB.

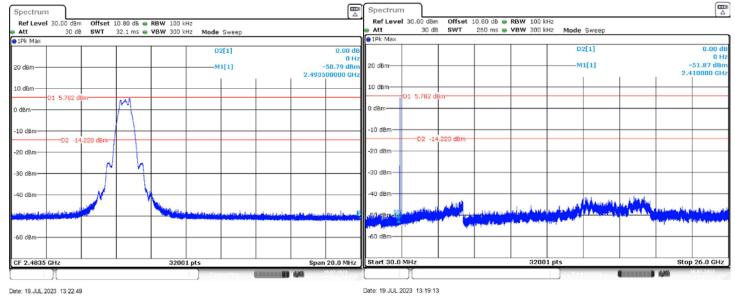
Limits

FCC §15.247 (d)

RSS-247 5.5

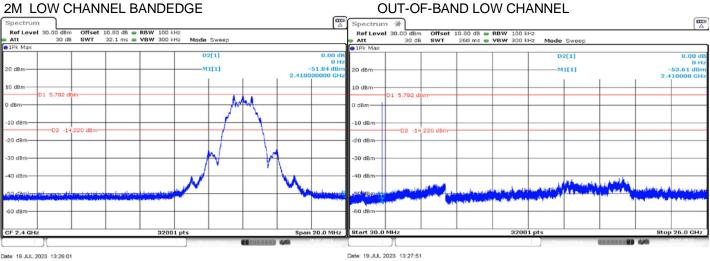

Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.

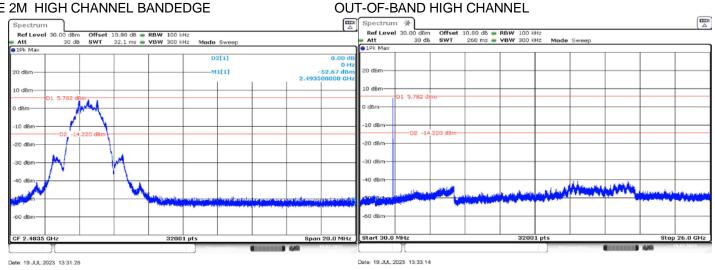
Note: Note that the BLE 2M rate does not support operation on channels 0 and 39 (2402, 2480).


_80se

Data Collection:

BLE 1M HIGH CHANNEL BANDEDGE


OUT-OF-BAND HIGH CHANNEL



_8/1/5/E

BLE 2M LOW CHANNEL BANDEDGE

BLE 2M HIGH CHANNEL BANDEDGE

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date
2409	Signal and Spectrum Analyzer		101413	Rohde & Schwarz	22-Mar-2023	21-Mar-2024

RF Radiated Emissions 30MHz -1GHz

Test Information:

Project number (Integrity):		Build Phase:	Pre-C1				
Tested by:	M. Mehrmann		Date:	8+9 Februar	ry 2023		
Requirements Standard(s):	FCC §15.247 (d section 5.5) and RSS-247	Referenced Standard(s):				
EUT powered with:		Temp / Humidity:		Test locat	ion: Maxwell House		
Test equipment used TN's:	644,2319,1541,2	2077,1277-22					
EUT Serial number(s):	Left; 084803M3003B005A						
EUT Senai number(s).	Right: 084803M3003B004A						
EUT Software installed:	0.0.19 diag code	0.0.19 diag code					
EUT Modification(s):	None						

Objective/Summary/Conclusion:

Passes FCC 15.247 and RSS-247 Section 5.5 requirements with a worst-case passing margin of 16.0 dB at 700 MHz.

Additional EUT Information:

The EUT was tested in a 3m Semi Anechoic Chamber on an insulating turntable 80 cm high.

The device was scanned in three orthogonal axis and no signals were detected.

Test Setup Details:

EUT Emissions levels contained within this report are calculated on the following basis:


Radiated Emission Level (dBµV/m) = EMI Receiver Reading (dBµV) + Antenna Correction Factor (dB/m) – Preamplifier Gain (dB) + Cable Loss (dB)

_BOSE	

Data Collection:

S/N: Left bud	Power	applied:			P
ods:					
tup:					
nts: Position X					
2011					~~
Spectrum)				l ∰
Ref Level 80.0	L dBuV/m	e RBW (CISPR	120 kHz		(v
Att	10 dB SWT 133 n		1 MHz Mode Sw	veep Input 1 DC	
PS TDF	10 45 611 100 1		Think hous of	ioop input i bo	
●1Pk View●2Pk V	/iew				
Limit Check		MH2PASS	M1[1]		16.83 dBµV/n
70 dbippnCISPR3	2 B	PASS			99.9842 MH
/ C CDp .)			M2[1]		21.60 dBµV/n
60 dBµV/m				· · ·	300.0077 MH
50 dBµV/m					
CISPR32 B L40 dBµV/m					
HO GDDV/III					M4
30 dBµV/m			1	M3	المجارية الدور المحدود ورو
Stand .		a coloridad da coloridad	M2	and the straight of the straight of the	
20 us, 1/m		والرابط المعالي والمتناف المتحد والمستوية		and statements	
10 dBµV/m	and the second s				
10 UBHV/III					
0 dBµV/m					
-10 dBµV/m					
Start 30.0 MHz		16168	pts		Stop 1.0 GHz
Marker					
Type Ref Tro		Y-value	Function	Function R	esult
	1 99.9842 MHz				
	1 300.0077 MHz				
	1 500.0312 MHz				
M4	1 699.9947 MHz	: 30.48 dBµV/n	n		

LEOSE

EUT S/N:	Left bud	Power applied:		Plot#	2
EUT Mods:					
EUT Setup:					
Comments:	Position Y				

Ref Level 8	0.00 dBuV	/m	RBW (CISPR) 1	20 kHz		
Att	10		VBW	1 MHz Mode Sw	veep Input 1 DC	
PS TDF			5.77 S.A.		and and and a set	
) 1Pk View () 2P	k View					
Limit Che		100 MH:	PASS	M1[1]		16.65 dBµV/r
70 dbippn <mark>CISP</mark>	R32 B		PASS	1000 CON 1000		99.9842 MH
/0 ubµv/m				M2[1]		22.10 dBµV/r
60 dBµ∨/m	1					300.0077 MH
1	1 1					
50 dBµV/m	1 1 1 1					
CISPR32 B						
48 dBµV/m	+ +					
						M4
30 dBµV/m	1 1 1 1 1 1			MO	M3	The second s
ALL A		MI	المراجع واللباسية فالمراجع		and the state of the	
20 Ger. (m	1. 1		and the second sec	M2		
20 аз, Wm	We the second second	Lander Strendenkarden Landaren Miller				
10 UBµV/III						
0 dBµV/m						
o appryni						
-10 dBµV/m	1			<u> </u>		
Start 30.0 MH	<u> </u>		16168 pt			Stop 1.0 GHz
Marker	12		10100 pt	3		Stup 1.0 GH2
	Tral	X-value	Y-value	Function	Function Re	
Type Ref M1	1	99,9842 MHz	16.65 dBµV/m	Function	Function R	suit
M2	1	300.0077 MHz	22.10 dBµV/m			
M3	1	500.0312 MHz	25.70 dBuV/m			
M4	1	699.9947 MHz	30.08 dBµV/m			
			serve deprym			

Date: 9.FEB.2023 13:58:19

EUT S/N:	Left bud	Power applied:		Plot#	3
EUT Mods:					
EUT Setup:					
Comments:	Position Z				

Ref Level 80.00	∣dBµV/m		RBW (CISPR)	120 kHz			
Att	10 dB SWT	133 ms	VBW	1 MHz M	ode Sweep	Input 1 D)C
PS TDF						an an H aran An Ana	
)1Pk View⊚2Pk Vi	ew						
Limit Check		100 MHzP	ASS	M1[1]]		16.13 dBµV/r
70 dbing CISPR32	B	P	ASS				99.9842 MH
		1		M2[1]]		21.36 dBµV/r
60 dBµV/m		1					300.0077 MH
		1			1 1		
50 dBµV/m		1					
ISPR32 B							
40 dBµV/m							
							M4 Malale
30 dBµV/m		1				M3	the state of the s
No. Contraction			I when the state of	1.0	M2	A LONG BOLL	
20 as, 10m			A sticle internet is the set of the		M2		
	a survive and balance						
10 dBµV/m		1					
0 dBµV/m		1					
-10 dBµV/m		I I					
-10 ubpv/m		1					
Start 30.0 MHz			16168 p	ts			Stop 1.0 GHz
Marker							
Type Ref Trc	X-value	<u> </u>	Y-value	Function	ŭ	Function	Result
M1 1		12 MHz	16.13 dBµV/m				
M2 1			21.36 dBµV/m				
M3 1			25.43 dBµV/m				
M4 1	699.994	17 MHz	29.05 dBµV/m				

Date: 9.FEB.2023 14:07:37

Limits:

	Freq Range	Lim	nits (dBuV QP ¹)		Comments		
Standard	(MHz)			Class B	Measurements above 1 GHz are made using		
		10 m	3 m ²	3 m	average and peak detectors.		
	30-88	39	49	40	Mains cables draped to floor, not bundled.		
FCC §15.247 (d)	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak		
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB		
	>960	49.5*	59.5*	54*	higher than average limits.		
	andwidth and De	etector Settings	8:				
Freq. Range (MHz)	q. Range (MHz) RBW (kHz) VBW (kHz) Detector						
30 - 1000	120	>300	QP				
> 1000	1000	>1000	Pk and AVG				

TN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1541	Antenna 30MHz - 6GHz	JB6	A050807	Sunol Sciences Corp	14-Dec-2021	14-Dec-2023		
3062	RF Cable 10MHz- 18GHz, low loss LL142 coax, 26 feet, "N" connectors	SCE18110505- 312	N/A	Fairview Microwave[2]			01-Sep-2022	01-Sep-2023
2077	Maxwell House RE Pre-amp (20MHz- 3GHz)	N/A	N/A	Bose Corporation			01-Sep-2022	01-Sep-2023
2319	EMI Test Receiver	ESR26	101276	Rohde & Schwarz	29-Mar- 2023	28-Mar- 2024		

Uncertainty:

Ur	ncertainty Bu	dget							
		0							
Title:	Radiat	Radiated RF Emissions (30MHz-1GHz)							
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)					
Receiver - absolute level	0.3	Rect.	1.73	0.17					
Receiver - frequency response	0.8	Rect.	1.73	0.46					
Receiver - attenuator switching	0.2	Rect.	1.73	0.12					
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12					
Receiver - display	0.5	Rect.	1.73	0.29					
Antenna factor	0.8	Norm.	2.00	0.38					
Antenna directivity	1.0	Norm.	2.00	0.50					
Preamp correction factor	0.5	Norm.	2.00	0.25					
Cable correction factor	0.5	Norm.	2.00	0.25					
Site imperfection - NSA	4.0	Triang.	2.45	1.63					
Test table impact	1.1	Rect.	1.73	0.64					
Combined uncertainty (RSS): 1.98									
		verage factor (2.00					
Exte		ainty (95% coi		3.97					

Radiated Spurious Emissions 1-25GHz

Project code name:	Scotty	Marketing name:	QC Earbuds Ultra	ì	Model#:	408L, 408 R		
Project number (Integrity):	435911	Build Phase:	C1.5		·			
Tested by:	M. Royer		Date:	June 7, 202	3			
Requirements Standard(s):	FCC part 15.24	7	Referenced St					
EUT powered with:	Battery	BatteryTemp / Humidity:N/ATest location:Marconi Manor						
Test equipment used TN's:	1663,3685,2349	9,2602,2414						
EUT Serial number(s):	Left Right							
EUT Software installed:	1.4.10							
EUT Modification(s):	The unit had a s	short USB connection	for control of the ra	adio				

Conclusion:

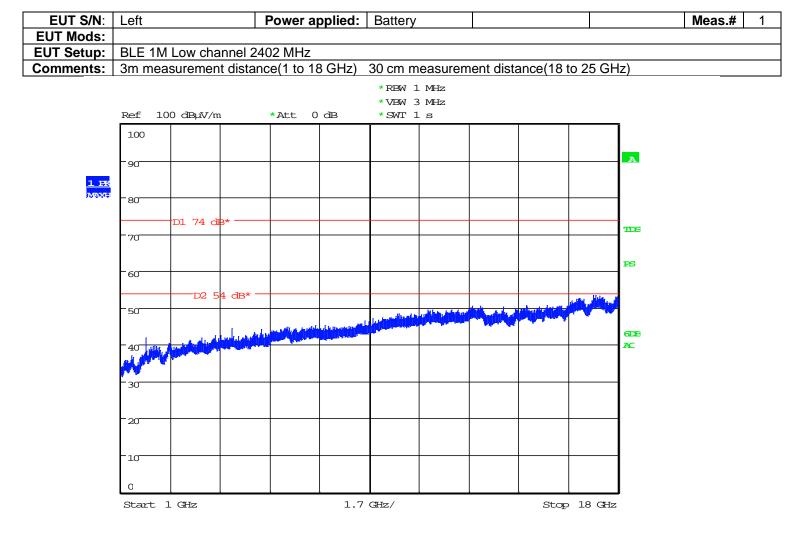
The Bose model 408L passes radiated emissions from 1-25GHz.

For 1 to 18 GHz, The strongest emission measurement in Peak mode is 51.1 dBuV/m. This meets the average limit of 54 dBuV/m by 2.9 dB.

For 18 to 25 GHz, the strongest emission measurement in Peak mode is 64.5 dBuV/m. This meets the average limit of 74 dBuV/m by 9.5 dB

Procedure:

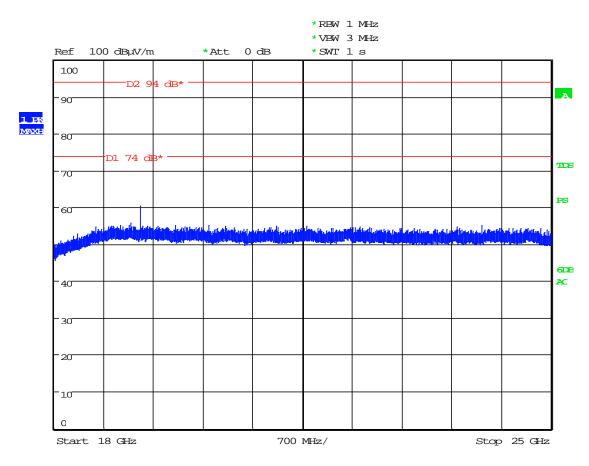
Each mode tested was measured at all 10 Harmonics, at the low, middle, and high transmit frequencies.


Pretesting showed that the worst orientation was a vertical position. The EUT was taped to a bamboo skewer and stuck into the test support at 150cm above the floor. From there the table was rotated and the antenna scanned up down and horizontal and vertical polarizations.

The 2.4 GHz band is notched out with a filter to protect the pre-amplifier from overloading.

The duty cycle used is shown in the table on page 5.

Data Collection:



Date: 7.JUN.2023 16:03:40

Measurement Distance 3m

_805E

Date: 14.JUN.2023 17:36:06

Measurement distance 30cm

Limit calculation:

The E field in the far field observes the inverse square law. So that the difference in field strength difference in decibels is;

$$20 \log\left(\frac{D1}{D2}\right) = 20 \log 10 = 20$$

Peak limit of 74 becomes 94 dBuV at 30cm by adding 20 to 74.

Average limit of 54 becomes 74 dBuV at 30cm by adding 20 to 54.

Bose Corporation, 1 New York Ave, Framingham, MA 01701, USA Tel: (508) 766-6000 Fax: (508) 766-1145 Without written permission of laboratory, this report shall not be reproduced except in full. Report Number: EMC.44108.23.167.3 Form FL300959 Rev 07 BOSE CONFIDENTIAL

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters												
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receivi	ng Antenna	*Average detector		
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies		
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.		
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode		
1	4804	34.80	45.90	54.0	74.0	19.2	28.1	0	V	1.60	Signal Maximized		
2	7206	31.40	44.80	54.0	74.0	22.6	29.2	0	Н	1.50	Noise floor		
3	9607	36.90	49.20	54.0	74.0	17.1	24.8	0	Н	1.50	Signal Maximized		
4	12010	34.60	48.00	54.0	74.0	19.4	26.0	0	V	1.50	Noise floor		
5	14412	34.70	47.80	54.0	74.0	19.3	26.2	0	Н	1.50	Noise floor		
6	16814	38.30	52.80	54.0	74.0	15.7	21.2	0	V	1.50	Noise floor		

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm											
MK	Emission	Measured	Measured	FCC 15	FCC 15.247d and RSS-247 Section 5.5			Table	Receiving Antenna		*Average detector	
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.	
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode	
1	19214	48.80	59.70	74.0	94.0	25.2	34.3				Signal Maximized	
2	21618	41.00	53.90	74.0	94.0	33.0	40.1				Noise floor	
3	24017	46.30	58.40	74.0	94.0	27.7	35.6				Signal Maximized	

_805E	

EUT S/N:	Left	Power applied:	Battery		Plot#	2
EUT Mods:						
EUT Setup:	BLE 1M Mid channel					
Comments:						

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters												
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receiving Antenna		*Average detector		
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies		
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.		
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode		
1	4880	34.60	45.20	54.0	74.0	19.4	28.8	0	V	1.50	Signal Maximized		
2	7320	31.90	45.10	54.0	74.0	22.1	28.9	0	Н	1.50	Noise floor		
3	9759	37.60	49.50	54.0	74.0	16.4	24.5	0	Н	1.50	Signal Maximized		
4	12200	35.90	49.10	54.0	74.0	18.1	24.9	0	V	1.50	Noise floor		
5	14640	36.10	49.30	54.0	74.0	17.9	24.7	0	Н	1.50	Noise floor		
6	17080	38.80	52.00	54.0	74.0	15.2	22.0	0	V	1.50	Noise floor		

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm											
MK	Emission	Measured	Measured	FCC 15	tion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies	
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.	
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode	
1	19518	52.50	64.20	74.0	94.0	21.5	29.8				Signal Maximized	
2	21958	43.50	56.30	74.0	94.0	30.5	37.7				Noise floor	
3	24397	49.40	60.50	74.0	94.0	24.6	33.5				Signal Maximized	

BOSE

EUT S/N:	Left	Power applied:	Battery		Plot#	3
EUT Mods:						
EUT Setup:	BLE 1M High channel					
Comments:						

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters												
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receiving Antenna		*Average detector		
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies		
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.		
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode		
1	4960	33.90	44.90	54.0	74.0	20.1	29.1	0	V	1.60	Signal Maximized		
2	7440	32.40	45.70	54.0	74.0	21.6	28.3	0	н	1.50	Noise floor		
3	9920	36.00	48.80	54.0	74.0	18.0	25.2	0	Н	1.50	Signal Maximized		
4	12400	35.10	49.00	54.0	74.0	18.9	25.0	0	V	1.50	Noise floor		
5	14880	36.80	51.00	54.0	74.0	17.2	23.0	0	Н	1.50	Noise floor		
6	17360	39.10	52.10	54.0	74.0	14.9	21.9	0	V	1.50	Noise floor		

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19838	51.90	62.50	74.0	94.0	22.1	31.5				Signal Maximized			
2	22320	40.50	53.90	74.0	94.0	33.5	40.1				Noise floor			
3	24797	45.20	56.90	74.0	94.0	28.8	37.1				Signal Maximized			

 7E

EUT S/N:	Left	Power applied:	Battery		Plot#	4
EUT Mods:						
EUT Setup:	BLE 2M Low channel					
Comments:						

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	4809	33.10	45.40	54.0	74.0	20.9	28.6	0	V	1.60	Signal Maximized			
2	7212	31.30	45.40	54.0	74.0	22.7	28.6	0	V	1.60	Noise floor			
3	9616	33.50	46.50	54.0	74.0	20.5	27.5	0	Н	1.50	Signal Maximized			
4	12020	34.80	48.40	54.0	74.0	19.2	25.6	0	V	1.50	Noise floor			
5	14424	34.70	47.90	54.0	74.0	19.3	26.1	0	Н	1.50	Noise floor			
6	16828	38.20	52.20	54.0	74.0	15.8	21.8	0	V	1.50	Noise floor			

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	tion 5.5	Table	Receivi	ng Antenna	*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19228	52.50	63.30	74.0	94.0	21.5	30.7				Signal Maximized			
2	21636	40.70	54.20	74.0	94.0	33.3	39.8				Noise floor			
3	24035	46.80	58.80	74.0	94.0	27.2	35.2				Signal Maximized			

_8056	_

EUT S/N:	Left	Power applied:	Battery		Plot#	5
EUT Mods:						
EUT Setup:	BLE 2M Mid channel					
Comments:						

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Sect	ion 5.5	Table	Receiving Antenna		*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	4880	29.30	43.20	54.0	74.0	24.7	30.8	0	V	1.50	Noise floor			
2	7320	31.70	45.40	54.0	74.0	22.3	28.6	0	Н	1.50	Noise floor			
3	9760	33.20	46.80	54.0	74.0	20.8	27.2	0	Н	1.50	Noise floor			
4	12200	35.80	49.60	54.0	74.0	18.2	24.4	0	V	1.50	Noise floor			
5	14640	36.00	50.30	54.0	74.0	18.0	23.7	0	Н	1.50	Noise floor			
6	17080	38.80	51.90	54.0	74.0	15.2	22.1	0	Н	1.50	Noise floor			

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm													
MK	Emission	Measured	Measured	FCC 15	.247d and R	SS-247 Section 5.5		Table	Receiving Antenna		*Average detector			
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	19516	53.60	64.50	74.0	94.0	20.4	29.5				Signal Maximized			
2	21960	40.90	54.00	74.0	94.0	33.1	40.0				Noise floor			
3	24395	45.20	57.00	74.0	94.0	28.8	37.0				Signal Maximized			

 7E

EUT S/N:	Left	Power applied:	Battery		Plot#	6
EUT Mods:						
EUT Setup:	BLE 2M High channel					
Comments:						

	FCC 15.247d and RSS-247 Section 5.5 @ 3 Meters													
MK	Emission	Measured	Measured	FCC 15	ion 5.5	Table	Receivi	ng Antenna	*Average detector					
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies			
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.			
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode			
1	4957	32.30	44.40	54.0	74.0	21.7	29.6	0	V	1.50	Signal Maximized			
2	7434	32.10	46.10	54.0	74.0	21.9	27.9	0	н	1.50	Noise floor			
3	9914	36.40	49.20	54.0	74.0	17.6	24.8	0	Н	1.50	Signal Maximized			
4	12390	35.00	47.80	54.0	74.0	19.0	26.2	0	V	1.50	Noise floor			
5	14868	36.80	50.30	54.0	74.0	17.2	23.7	0	Н	1.50	Noise floor			
6	17346	39.40	52.90	54.0	74.0	14.6	21.1	0	V	1.50	Noise floor			

	FCC 15.247d and RSS-247 Section 5.5 @ 30 cm										
MK	Emission	Measured	Measured	FCC 15.247d and RSS-247 Section 5.5				Table	Receivi	ng Antenna	*Average detector
#	Frequency	Amplitude	Amplitude	Limit	Limit	Margin	Margin	Azimuth	Pol	Height	used for frequencies
	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(0°closest	(H/V)	(Meters)	above 1 GHz.
		QP/AVG*	Peak	QP/AVG*	Peak	QP/AVG	Peak	to ant)			Notes/Mode
1	19820	52.80	63.30	74.0	94.0	21.2	30.7				Signal Maximized
2	22302	40.60	53.60	74.0	94.0	33.4	40.4				Noise floor
3	24775	46.10	58.30	74.0	94.0	27.9	35.7				Signal Maximized

Limits:

	Freq Range	Lim	nits (dBuV QF	²¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC 15.247d and	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-247 Section 5.5	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average limits.
CIGEN 32	Freq Range				
	(GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
E	andwidth and De				
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	3W (kHz) Detector		
30 – 1000	120	>300	300 QP		
> 1000	1000	>1000	Pk and	d AVG	

ΤN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar- 2023	19-Mar- 2024		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb- 2023	23-Feb- 2025		
2602	Miteq pre- amp 1-18GHz 35dB	AFS42- 01001800-28- 10P-42	N/A	Miteq			07-Jul-2022	07-Jul-2023
2414	Band Reject Filter (2.4GHz)	BRM50702-07	003	Micro-Tronics	13-Jan-2015		28-Mar-2023	27-Mar-2024
1757	18GHz-40GHz Preamp	JS4018004000- 30-8P-A1	1406279	Miteq			07-Jul-2022	07-Jul-2023
1596	Horn Antenna 18GHz - 26.5GHz	AT4640	309234	Amplifier Research				
2368	RF Cable 30MHz- 26.5GHz	TRU-210	TRU- 12767-35	TRU Corporation			28-Mar-2023	27-Mar-2024

Uncertainty:

Uncertainty Budget									
Title:	Radiated	Radiated Emissions (>1GHz)							
Source of Uncertainty	Value	Distribution	Divisor	Uncertainty					
	units:± dB			(± dB)					
Receiver - absolute level	0.3	Rect.	1.73	0.17					
Receiver - frequency response	2.0	Rect.	1.73	1.16					
Receiver - attenuator switching	0.2	Rect.	1.73	0.12					
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12					
Receiver - display	0.5	Rect.	1.73	0.29					
Antenna factor	0.4	Norm.	2.00	0.20					
Antenna directivity	1.0	Norm.	2.00	0.50					
Preamp correction factor	0.5	Norm.	2.00	0.25					
Cable correction factor	0.5	Norm.	2.00	0.25					
Site imperfection - NSA	3.0	Triang.	2.45	1.22					
Test table impact	1.7	Rect.	1.73	0.98					
Combined uncertainty (RSS):									
Coverage factor (2 sigma):									
Ex	ended uncert	ainty (95% co	nfidence):	4.17					

_F/	167	F

Radiated Band Edge

Model Number:	408L	Build Phase:	C1.5							
Tested by:	Mike Royer		Date: May 24, 2023							
Requirements Standard(s):	CFR47 Part 15.2 Section 5.5	247, RSS-247	Referenced S	tandard(s):	ANSI C63.10-2013					
EUT powered with:	Battery	Temp / Humidity:	N/A	ion: Marconi Manor						
Test equipment used TN's:	1663,2929,2349	,3685								
EUT Serial number(s):	084803M3051D	084803M3051D038A1								
EUT Software installed:	1.4.10+g2edc594									
EUT Modification(s):	USB Debug wire	USB Debug wires were attached to the earbud to allow control of the radio.								

Conclusion:

The Bose model 408L passes Radiated Band Edge.

Note that the BLE 2M rate does not support channels 0 or 39 (2402 MHz, 2478 MHz)

Note that the EUT was placed on a skewer stick and rotated in 3 axes to find the maximum signal strength.

Procedure:

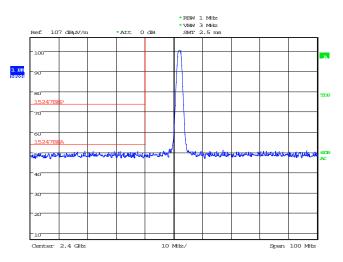
For BLE 1M lower band edge measurements the transmit frequency was 2402 MHz.

For BLE 1M upper band edge measurements the transmit frequency was 2480 MHz

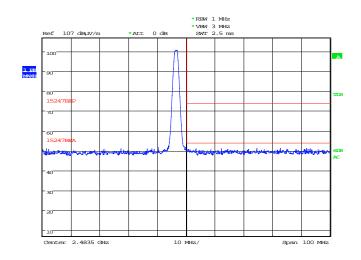
For BLE 2M lower band edge measurements the transmit frequency was 2404 MHz.

For BLE 2M upper band edge measurements the transmit frequency was 2478 MHz.

The duty cycle used is shown in the table on page 5.

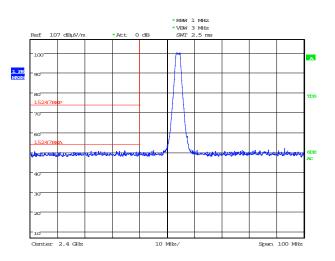


Data Collection:

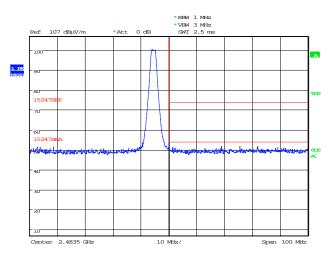

Lower Band edge, BLE 1M

Peak emissions below the average limit.

Upper Band edge, BLE 1M


Peak emissions below the average limit.

Date: 24.MAY.2023 19:00:08


Lower Band edge, BLE 2M

Peak emissions below the average limit.

Upper Band edge, BLE 2M

Peak emissions below the average limit.

Date: 24.MAY.2023 19:03:43

Date: 24.MAY.2023 19:11:48

Date: 24.MAY.2023 19:08:29

Limits:

	Freq Range	Lim	nits (dBuV QF	²¹)	Comments
Standard	(MHz)	Clas	ss A	Class B	Measurements above 1 GHz are made using
		10 m	3 m	3 m	average and peak detectors.
	30-88	39	49	40	Mains cables draped to floor, not bundled.
FCC	88-216	43.5	53.5	43.5	*For measurements above 1 GHz, peak
RSS-GEN	216-960	46.5	56.5	46	limits must also be met that are 20 dB
	>960	49.5*	59.5*	54*	higher than average limits.
			Class A	Class B	Mains cables bundled not draped to floor.
			3 m	3 m	*For measurements above 1 GHz, peak
	30-230		50	40	limits must also be met that are 20 dB
CISPR 32	230-1000		57	47	higher than average limits.
CIOPIN 32	Freq Range (GHz)				
	1-3		56*	50*	
	3-6		60*	54*	
E	Bandwidth and D				
Freq. Range (MHz)	RBW (kHz)	VBW (kHz)	(kHz) Detector		
30 – 1000	120	>300	QP		
> 1000	1000	>1000	Pk and	AVG	

ΤN	Description	Model	S/N	Manufacturer	Most Recent Calibration	Calibration Due Date	Most Recent Verification	Verification Due Date
1663	EMI Test Receiver	ESU40	100098	Rohde & Schwarz	20-Mar-2023	19-Mar-2024		
2929	Mini-circuits band-edge pre-amp 300 MHz - 8 GHz 20 dB	ZX60HV-83LN+	N/A	Mini-Circuits			28-Mar-2023	27-Mar-2024
2349	Double Ridge Waveguide Horn Antenna 1-18GHz	3117	00152406	ETS Lindgren	24-Feb-2023	23-Feb-2025		
3685	Marconi Manor 3M mast position RE cable set	3 cables (TN's 2373, 2479, 2357)					28-Mar-2023	27-Mar-2024

Uncertainty:

Uncertainty Budget								
Title:	Radiated							
Source of Uncertainty	Value units:± dB	Distribution	Divisor	Uncertainty (± dB)				
Receiver - absolute level	0.3	Rect.	1.73	0.17				
Receiver - frequency response	2.0	Rect.	1.73	1.16				
Receiver - attenuator switching	0.2	Rect.	1.73	0.12				
Receiver - bandwidth switching	0.2	Rect.	1.73	0.12				
Receiver - display	0.5	Rect.	1.73	0.29				
Antenna factor	0.4	Norm.	2.00	0.20				
Antenna directivity	1.0	Norm.	2.00	0.50				
Preamp correction factor	0.5	Norm.	2.00	0.25				
Cable correction factor	0.5	Norm.	2.00	0.25				
Site imperfection - NSA	3.0	Triang.	2.45	1.22				
Test table impact	1.7	Rect.	1.73	0.98				
Combined uncertainty (RSS):								
Coverage factor (2 sigma):								
Ext	ended uncert	ainty (95% co	nfidence):	4.17				

End of Report