FCC ID: A92S251B

TTI - P-G 009 / 98-00
TTI - P-G 089 / 94-50

EMISSION -- TESTREPORT

Test result accrdg. to the
regulation(s) at page 3

POSITIVE

This testreport with appendix consists of 49 pages.
The testresult only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the testlaboratory.

A) Documentation

Directory \qquad
3
\qquad
\qquad

Conducted power of the fundamental wave measured on \qquad
A) Testdata
\qquad B1
C) Photos of the test setup
D) Technical description of the test sample (e.g.CDF, Declaration)
E) Photos of the EuT

E1-E12
F) Measurement Protocol for FCC, VCCI and AUSTEL

FCC ID: A92S251B

TESTREGULATIONS

- - Part 15 Subpart C (15.209)
- - Part 15 Subpart C (15.231)

ADDRESS OF THE TEST LABORATORY

- - MIKES BABT PRODUCT SERVICE GmbH

Ohmstrasse 2-4
D - 94342 Strasskirchen
\circ \qquad

ENVIRONMENTAL CONDITIONS

Temperature:

Humidity
Atmospheric pressure

Power supply system

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities that can account for a nominal measurement error of $\pm 4 \mathrm{~dB}$. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

SHORT DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)

```
The Reader provides all of the \(R F\) and control functions required to communicate with TIRIS LF transponders.It is operating on a fundamental frequency of approx. 134.2 kHz .
Number of received/tested samples: 1/1
Serial Number: 000049
```


DEFINITIONS FOR SYMBOLS USED IN THIS TEST REPORT

- Black box indicates that the listed condition, standard or equipment is Report.
o - Blank box indicates that the listed condition, standard or equipment was this Report.
applicable for this not applicable for

FCC ID: A92S251B

MEASUREMENTPRROTOCOLFORFCC,VCCI
 ANDAUSTEI

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in International Special Committee on Radio Interference (CISPR) Publication 22 (1993), European Standard EN 55022 and Australian Standard AS 3548 (which are based on CISPR 22).

The Japanese standard, "Voluntary Control Council for Interference (VCCI) by Data Processing Equipment and Electronic Office Machines, Technical Requirements" is technically equivalent to CISPR 22 (1993). For official compliance, a conformance report must be sent to and accepted by the VCCI.

In compliance with FCC Docket 92-152, "Harmonization of Rules for Digital Devices Incorporate International Standards", testing for FCC compliance may be done following the ANSI C63.4-1992 procedures and using the FCC limits or the CISPR 22 Limits.

Measurement Error

The test system for conducted emissions is defined as the LISN, tuned receiver and coaxial cable. The test system for spurious emissions is defined as the antenna, the pre-amplifier, the tuned receiver and the coaxial cable. These test systems have an expected error of $\pm 3 \mathrm{~dB}$. The equipment comprising the test systems are calibrated on an annual basis.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

General Standard Information

The test methods used comply with CISPR Publication 22 (1993), EN 55022 (1987) and AS 3548 (1992) - "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment" and with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to $40 \mathrm{GHz} . "$

For detailed description of each measurement please refer to section testresults.

FCC ID: A92S251B

DISCOVERY OF WORST CASE MEASUREMENT CONDITION:

The Reader is designed for the operation on the fixed transmitter frequency of approx. 134.2 kHz .
To find out the worst case conditions for the complete measurement the following tests have been performed:

- Measurement of the conducted emissions measured in permanent operation mode in the specified channel with the frame antenna: RI-ANT-G01E and with the stick antenna: RI-ANT-S01C. This measurement have been performed in order to find out the maximum transmitted fieldstrength of the Reader.
- Measurement of the radiated fieldstrength of the operating frequency measured in permanent operation mode in the specified channel with the frame antenna: RI-ANT-G01E and with the stick antenna: RI-ANT-SO1C. This measurement have been performed in order to find out the maximum transmitted fieldstrength of the Reader.
- Measurement of the radiated spurious emissions measured in permanent operation mode in the specified channel with the frame antenna: RI-ANT-G01E and with the stick antenna: RI-ANT-S01C. This measurement have been performed in order to find out the maximum spurious emissions of the Reader.

Based on this testresults, the measurements have been performed completely on the specified channel. This testresults are documented in the following sections of the testreport.

FCC ID: A92S251B

TESTRESULT

CONDUCTED EMISSIONS - $10 / 150 \mathrm{kHz}-30 \mathrm{MHz}$

```
o - Test not applicable
Testlocation :
o - Shielded room no. 1
- Shielded room no. 2
o - Shielded room no. }
o - Shielded room no. 4
o - Shielded room no. 5
o - Shielded room no. 6
o - Shielded room no. }
O - Anechoic chamber
o - Full compact chamber
For TEST EQUIPMENT USED please refer to ATTACHMENT D: A4
```


Description of Measurement

The final level, expressed in $d B \mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit, which is equivalent to the Australian AS 3548 limit.

To convert between $d B \mu \mathrm{~V}$ and $\mu \mathrm{V}$, the following conversions apply:

$$
\begin{aligned}
& \mathrm{dB} \mu \mathrm{~V}=20(\log \mu \mathrm{~V}) \\
& \mu \mathrm{V}=\text { Inverse } \log (\mathrm{dB} \mu \mathrm{~V} / 20)
\end{aligned}
$$

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz . The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasipeak detection, and a Line Impedance Stabilization Network (LISN), with 50 $\Omega / 50 \mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasipeak and average detection and recorded on the data sheets.

Testresult

1) with the stick antenna: RI-ANT-S01C

The requirements are	MET		O - NOT MET		
Min. limit margin	8.4	dB	at	28.98	MHz
Max. limit exceeding		dB	at		MHz

Remarks: \qquad

2) with the frame antenna: RI-ANT-G01E

The requirements are	- MET	O - NOT MET		
Min. limit margin	-2.2	dB	at	$17.18 \quad \mathrm{MHz}$
Max. limit exceeding	-	dB	at	$-\quad$ -

Remarks:

FCC ID: A92S251B

SPURIOUS EMISSION

Spurious emissions from the EUT are measured in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The antenna was positioned 3, 10 or 30 meters horizontally from the EUT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions.

Spurious emissions from the EUT are measured in the frequency range of 30 MHz to 10 times the highest used frequency using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with $120 \mathrm{kHz/6} \mathrm{~dB}$ bandwidth and quasipeak detection and measurements above 1000 MHz are made with a $1 \mathrm{MHz/6} \mathrm{~dB}$ bandwidth and peak detection, remeasurement of results which may be critical will be repeated in average mode. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

- Test not applicable

- - in a shielded room
- at a non - reflecting open-site
and
- - in a testdistance of 3 meters.
- in a testdistance of 30 meters.

For TEST EQUIPMENT USED please refer to ATTACHMENT B: SER1

Description of Measurement

The final level, expressed in $d B \mu V / m$, is arrived at by taking the reading from the EMI receiver (Level dB $\mu \mathrm{V}$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has to be compared with the relevant FCC limit.

The resolution bandwidth during the measurement is as follows:
$9 \mathrm{kHz}-150 \mathrm{kHz}:$ ResBW: 200 Hz
$150 \mathrm{kHz}-30 \mathrm{MHz}$: ResBW: 10 kHz

Example:

Frequency	Level	+	Factor	$=$	Level	Limit	Delta
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$		(dB)		$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)
1.705	5	+	20	25	30	$=$	5

Testresult in detail:

1) with the stick antenna: RI-ANT-S01C

$\begin{gathered} \text { Frequency } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{aligned} & \text { L: PK } \\ & \text { [dBuV] } \end{aligned}$	$\begin{aligned} & \text { L: QP } \\ & {[\mathrm{dBuv}]} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L}: \mathrm{AV} \\ & \text { [dBuV] } \\ & \hline \end{aligned}$	Correct. [dB]	$\begin{gathered} \mathrm{L}: \mathrm{PK} \\ {[\mathrm{~dB} \mathrm{\mu} / \mathrm{V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: Q P \\ {[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{AV} \\ {[\mathrm{~dB} \mathrm{\mu} / \mathrm{V} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$
0.268	41.7	37.0	33.2	-20	21.7	17.0	13.2	19

The requirements are
Min. limit margin
Min. limit margin

■ - met
2.0 dB dB at

- dB

O - NOT MET
0.268 MHz
-
\qquad
Measurement has been performed up to the $10^{\text {th }}$ harmonic.
2) with the frame antenna: RI-ANT-G01E

$\begin{gathered} \text { Frequency } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{aligned} & \hline \text { L: PK } \\ & \text { [dBuV] } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L}: \mathrm{QP} \\ & \text { [} \mathrm{dBuV}] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L: AV } \\ & \text { [dBuV] } \\ & \hline \end{aligned}$	Correct. [dB]	$\begin{gathered} \mathrm{L}: \mathrm{PK} \\ {[\mathrm{~dB} \mathrm{\mu V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{QP} \\ {[\mathrm{dBuV} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{AV} \\ {[\mathrm{dBu} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { Limit } \\ {[\mathrm{dB} \mathrm{\mu V} / \mathrm{m}]} \\ \hline \end{gathered}$
0.268	40.3	34.4	32.3	-20	20.3	14.4	12.3	19

The requirements are

Min. limit margin
Min. limit margin
4.6 dB
4.6 dB dB at dB
O - NOT MET
$0.268 \quad \mathrm{MHz}$
MHz

Remarks:
Measurement has been performed up to the $10^{\text {th }}$ harmonic.

SPURIOUS EMISSIONS (electric field) 30 MHz - 1000 MHz

```
o - Test not applicable
```

■ - Open-site 1

- - Open-site 2

■ - 3 meters
o - 10 meters
o - 30 meters

FCC ID: A92S251B

For TEST EQUIPMENT USED please refer to ATTACHMENT B:

Description of Measurement

The final level, expressed in $d B \mu V / m$, is arrived by taking the reading from the EMI receiver (Level dB $\mu \mathrm{V}$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page 24 - 25. The CISPR 22 limit is equivalent to the Australian AS 3548 limit.

Example:

Frequency	Level	+	Factor	$=$	Level	Limit
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$		(dB)		$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$
719	75	+	32.6	$=$	107.6	110

1) with the stick antenna: RI-ANT-S01C

Frequency [MHz]	$\begin{aligned} & \text { L: PK } \\ & \text { [dBuV] } \end{aligned}$	$\begin{aligned} & \mathrm{L}: \mathrm{QP} \\ & {[\mathrm{dBuV}]} \end{aligned}$	$\begin{aligned} & \text { L: AV } \\ & \text { [dBuV] } \end{aligned}$	Correct. [dB]	$\begin{gathered} \mathrm{L}: \mathrm{PK} \\ {[\mathrm{~dB} \mathrm{\mu} \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{QP} \\ {[\mathrm{dBu} / \mathrm{V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{AV} \\ {[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { Limit } \\ {[\mathrm{dB} \mathrm{\mu} \mathrm{~V} / \mathrm{m}]} \\ \hline \end{gathered}$
31.67	32.2	26.8	19.6	9	41.2	35.8	28.6	40
33.18	31.7	28.1	26.4	9.5	41.2	37.6	35.9	40
38.71	29.8	22.9	18	10	39.8	32.9	28	40
55.3	18.4	12.4	21.6	13.2	31.6	25.6	34.8	40
66.36	15.4	11.2	9.8	15.3	30.7	26.5	25.1	40
68.71	24.6	20.5	16.4	15.3	39.9	35.8	31.7	40
171.78	28.5	23.3	19.9	15.9	44.4	39.2	35.8	43.5
206.13	16.5	13.3	11.1	16.3	32.8	29.6	27.4	43.5

Testresult

The requirements are

Min. limit margin

Min. limit margin
2.4
dB

O - NOT MET

$33.18 \quad \mathrm{MHz}$

Remarks:
\qquad

2) with the frame antenna: RI-ANT-G01E

Frequency [MHz]	L: PK [dBuV]	L: QP [dBuV]	L: AV [dBuV]	Correct. [dB]	L: PK [dBuV/m]	L: QP [dBuV/m]	L: AV $[\mathrm{dBuV} / \mathrm{m}]$	Limit [dBuV/m]
31.67	22.1	16.8	7.5	9	31.1	25.8	16.5	40
33.18	21.3	17.2	9.5	9.5	30.8	26.7	19	40
38.71	18.4	10.9	3	10	28.4	20.9	13	40
55.3	17.1	9.6	3.5	13.2	30.3	22.8	16.7	40
66.36	17.9	10.1	3.9	15.3	33.2	25.4	19.2	40
68.71	24.9	21.4	17.5	15.3	40.2	36.7	32.8	40
171.78	22.6	14.6	8.9	15.9	38.5	30.5	24.8	43.5
206.13	19.3	16.1	13.6	16.3	35.6	32.4	29.9	43.5

Testresult

The requirements are
Min. limit margin

Min. limit margin

■ - MET
3.3 dB
dB
\qquad

O - NOT MET

68.71 MHz

MHz

Remarks: \qquad
\qquad

SPURIOUS EMISSION $1 \mathrm{GHz}-18 \mathrm{GHz}$

- Test not applicable

Testlocation :

- Open-site 1
- Open-site 2
- Anechoic chamber
- Full compact chamber
- 1 meters
- 3 meters
- 10 meters

For TEST EQUIPMENT USED please refer to ATTACHMENT B:

Description of Measurement

The final level, expressed in $d B \mu V / m$, is arrived by taking the reading from the Spectrumanalyzer in $d B \mu V$ and adding the correction factors of the test setup incl. cables.

Example of the correction value at 1.8 GHz

Level reading at 1.8 GHz	Correction EMCO 3115	Correction Amplifier AWT 4534 + cable	Correction factor (summarized)	corrected level
$56 \mathrm{~dB} \mathrm{\mu V}$	+27.3 dB	-41.2 dB	-15.8 dB	$42.1 \mathrm{~dB} \mathrm{\mu V} / \mathrm{m}$

Testresult in detail:

Frequency [MHz]	L: PK [dBpV]	$\begin{aligned} & \mathrm{L}: \mathrm{AV} \\ & {[\mathrm{~dB} \mu \mathrm{~V}]} \end{aligned}$	L: QP [$\mathrm{dB} \mu \mathrm{V}$]	Correct. [dB]	$\begin{gathered} \mathrm{L}: \mathrm{PK} \\ {[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{AV} \\ {[\mathrm{~dB} \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{QP} \\ {[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$

The measurement was performed up to the $10^{\text {th }}$ harmonic.

FCC ID: A92S251B

Testresult

The requirements are	O - MET	O - NOT MET
Min. limit margin	dB	MHz
Min. limit margin	dB	MHz
Remarks: NOT APPLTCABLE		

FIELD STRENGTH OF THE FUNDAMENTAL WAVE

```
O - Test not applicable
```

- Open-site 1
- - Open-site 2
- - 3 meters
- - 10 meters
- - 30 meters

For TEST EQUIPMENT USED please refer to ATTACHMENT B:
CPR1

Description of Measurement

The final level, expressed in $d B \mu V / m$, is arrived by taking the reading from the EMI receiver (Level dB $\mu \mathrm{V}$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page 24 - 25. The CISPR 22 limit is equivalent to the Australian AS 3548 limit.

Example:

Frequency	Level	$+$	Factor	$=$	Level	-	Limit	$=$	Delta
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$		(dB)		($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	(dB)	
315	45	+	22.5	=	67.5	-	74.3	$=$	-6.8

Testresult in detail:

1) with the stick antenna: RI-ANT-SO1C

Frequency $[\mathrm{MHz}]$	$\mathrm{L}:$ PK $[\mathrm{dB} \mu \mathrm{V}]$	$\mathrm{L}: \mathrm{AV}$ $[\mathrm{dB} \mathrm{\mu} \mathrm{~V}]$	$\mathrm{L}: \mathrm{QP}$ $[\mathrm{dB} \mu \mathrm{V}]$	Correct. $[\mathrm{dB}]$	$\mathrm{L}:$ PK $[\mathrm{dB} \mathrm{\mu} \mu / \mathrm{m}]$	$\mathrm{L}: \mathrm{AV}$ $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	$\mathrm{L}: \mathrm{QP}$ $[\mathrm{dB} \mathrm{\mu} \mathrm{~V} / \mathrm{m}]$	Limit $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$
0.134	45.7	39.7	42.4	-20	25.7	19.7	22.4	25

Testresult

The requirements are	MET		O - NOT MET	
Min. limit margin	2.6	dB	0.134	MHz
Min. limit margin		dB		MHz

Remarks: The limits are met.

2) with the frame antenna: RI-ANT-G01E

$\begin{gathered} \text { Frequency } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{aligned} & \mathrm{L}: \mathrm{PK} \\ & {[\mathrm{~dB} \mu \mathrm{~V}]} \end{aligned}$	$\begin{aligned} & \mathrm{L}: \mathrm{AV} \\ & {[\mathrm{~dB} \mu \mathrm{~V}]} \end{aligned}$	$\begin{aligned} & \mathrm{L}: \mathrm{QP} \\ & {[\mathrm{dBuV}]} \end{aligned}$	$\begin{gathered} \text { Correct. } \\ {[\mathrm{dB}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{PK} \\ {[\mathrm{~dB} \mathrm{\mu V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{AV} \\ {[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L}: \mathrm{QP} \\ {[\mathrm{dBu} / \mathrm{m} / \mathrm{m}} \end{gathered}$	$\begin{gathered} \text { Limit } \\ {[\mathrm{dB} \mathrm{~V} / \mathrm{m}]} \end{gathered}$
0.134	43.9	37.8	40.9	-20	23.9	17.8	20.9	25

Testresult

The requirements are	MET		O - NOT MET	
Min. limit margin	4.1	dB	0.134	MHz
Min. limit margin		dB		MHz

Remarks:
The limits are met.

CONDUCTED POWER OF THE FUNDAMENTAT WAVE MEASURED

ON THE ANTENNA TERMINALS

- Test not applicable

```
Testlocation :
    - Shielded room no. 1
    - Shielded room no. 2
    - Shielded room no. 3
    - Shielded room no. 4
    - Shielded room no. 5
    - Shielded room no. }
    - Shielded room no. }
    - Anechoic chamber
    - Full compact chamber
    - Climatic test chamber VLK
```

For TEST EQUIPMENT USED please refer to ATTACHMENT B:

Description of Measurement

The conducted power of the fundamental wave measured on the antenna terminals in a climatic test chamber. The antenna jack was connected to the input of a communication test receiver. The internal batteries have been removed also and a variable DC power supply was used instead. The measurements have been made with the EUT unmodulated. During the test the supply voltage and the temperature were varied and applied simultaneously. The lower supply voltage was given by the manufacturer. In case the equipment was switching off before, the switch off voltage was used instead.

Testresult

The requirements are O - MET OT MET

Frequency range of equipment							
Tempera- ture/ ${ }^{\circ} \mathrm{C}$	DC supply voltage/V	Power/dBm	Power/dBm	Power/dBm	Power/dBm	Power/dBm	Power/dBm
-30					Power/dBm		
-20							
-10							
0							
+10							
+20							
+30							
+40							
+50							

\qquad

EQUIPMENT UNDERTEST

```
Operation - mode of the EUT.:
The equipment under test was operated during the measurement under following
conditions:
O - Standby
O - Testprogram (H - Pattern)
O - Testprogram (color bar)
O - Testprogram (customer specific)
\square_ Transmit at the frequency 134.2 kHz.
\circ
O =
```

Configuration of the equipment under test:
Following periphery devices and interface cables were connected during
the measurement:

\bigcirc	-	Type
\bigcirc	-	Type

■ - unshielded power cable

- - unshielded cables
o - shielded cables
MPS.No.:
o- customer specific cables
\circ
○
\qquad

FCC ID: A92S251B

SUMMARY

GENERAL REMARKS:

The Reader RI-STU-251B has been tested with the frame antenna: RI-ANT-G01E and with the stick antenna: RI-ANT-S01C, on the following frequency:
TX-Mode: 134.2 kHz

FINAL JUDGEMENT:

The requirements according to the technical regulations and tested operation modes are

- met.
- - not met.

The equipment under test

- Fulfills the general approval requirements cited on page 3.
o - Does not fulfill the general approval requirements cited on page 3

Date of receipt of test sample : accdg. to storage record

Testing Start Date : September 18, 2000

Testing End Date : September 22, 2000

- MIKES BABT PRODUCT SERVICE GmbH -

Dípl.-Ing.(FH)

Test-engineer

$$
\text { NTEPTETENCE VOLTACE TE TVT } 450 \mathrm{kmz} 30 \mathrm{MHz}
$$

 FCO Part 15 Subpart B

100
 dBuV

$a \stackrel{a}{c}$
$\triangle Q!$

$$
\begin{array}{cc}
4 & 9 \\
6 & 6 \\
6 & \frac{6}{6} \\
\hline 6
\end{array}
$$

$$
\begin{aligned}
& \text { Type/Model: } \\
& \text { Ser. Na.: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ser. Na.: } \\
& \text { Client: } \\
& \text { Test mode } \\
& \text { Test point }
\end{aligned}
$$

FCC ID: A92S251B
Attachment A7
File NO:T 19352-1-00 MN
Band width plot

File No. T 19352-1-00 Mis,:

FCC ID: A92S251B

Attachment A8
File No: T 19352-1-00 MN
Band width plot

File No. T 19352-1-00 Mn,:

FCC ID: A92S251B

Attachment A9

File No: T 19352-1-00 MN
Band width plot

File No. T 19352-1-00 MN,:

Attachment : B

List of Test Equipment

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

Test Report No:	T 19352-1-00 MN
Beginning of Testing:	18-September-2000

Test ID	Model Type	Kind of Equipment	Manufacturer	Equipment No.
CPR1	FMZB 1516 ESHS 30	Antenna Test Receiver	Schwarzbeck G. Rohde \& Schwarz	$\begin{aligned} & 04-07 / 62-90-018 \\ & 04-07 / 63-92-045 \end{aligned}$
SER1	FMZB 1516 ESHS 30	Antenna Test Receiver	Schwarzbeck G. Rohde \& Schwarz	$\begin{aligned} & 04-07 / 62-90-018 \\ & 04-07 / 63-92-045 \end{aligned}$
SER2	$\begin{aligned} & \text { VULB - } 9165 \\ & \text { ESVP } \end{aligned}$	Super-Broadband-Anten Test Receiver	Schwarzbeck G. Rohde \& Schwarz	$\begin{aligned} & 04-07 / 62-00-001 \\ & 04-07 / 63-89-008 \end{aligned}$

CONSTRUCTIONAL DATAFORM FOR TESTING OF RADIO EQUPMENT

Licence holder：	Texas Instruments Deutschland GmbH
Address：	Haggertystr． 1
Manufacturer：	Texas Instruments Deutschland GmbH
Address：	Haggertystr． 1
Type：	Tiris Reader System
Model：	RI－STU－251B
Serial－No．：	

Application for getting

O national approval in the following countries：
\boxtimes EC－type examination
Additional informations to the above named model：

Antenna： transmitter：	Type： RI－ANT－S02E RI－ANT－G01E RI－ANT－G02E RI－ANT－G04E	Size I＝ $140 \mathrm{~d}=20 \quad$ Staban $714 \times 269 \mathrm{~mm}$ Rahm $200 \times 200 \mathrm{~mm}$ Rahm $1020 \times 520 \mathrm{~mm}$ Rahm	cable cable cable cablo
Power supply of the transmitter： Type：DC ，external	same as transmitter	nominal voltage：	24 V
	lowest voltage：		15.
Power supply of the receiver：Type：same as transmitter	highest voltage：		27.6 V
	nominal voltage：		24

Ancillary equipment：

Description：	none	Type：	Serial－no．：
Description：		Type：	Serial－no．：
Description：		Type：	Serial－no．：

Extreme temperature range in which the approval test should be performed：

O Category I：General $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$ O Category II：Portable $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
O Category III：Equipment for normal indoor use $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
Connectable cables：

Name of the cable	Digital	Length／m	shieided
Interface Cable RS232／RS422／RS485	区 yes O no	$>3 \mathrm{~m}$	0 yes 园no
Power supply	O yes 区 no	$>3 \mathrm{~m}$	O yes 区 no
Antenna cable	\bigcirc yes 区no	$>3 \mathrm{~m}$	O yes 区 no
／／O Interface	区 yes O no	$<3 \mathrm{~m}$	O yes 区 no
	O yes O no		O yes $⿴ 囗 十$ no

Type designation：RI－STU－251B			
Name and type designation of individual units comprising the radio equipment： Radio Identification unit for goods and persons			
Type of equipment：			
\square Radiotelephone equipment	Remote－control equipment	\square Radiomaritime equipment	\square LPD
\square One－way radiotelephone equipment	区 Inductive loop system	\square Inland waterways equipment	$\square \mathrm{RLAN}$
\square Personal paging system	\square Radio－relay system	Radionavigation equipm．	\square
\square Satellite earth station	－CB radiotelephone equipment	\square Antenna	\square
Data transmission equipment	\square Movement detector	\square Aeronautical equipment	\square
Technical characteristics：			
	Transmitter－receiver	Transmitter	Receiver
Frequency range	134.2 kHz		
Maximum no．of channels ${ }^{-}$	1		
Channel spacing	n．a		
Class of emission （type of modulation）	NON		
Maximum RF output power	n．a．		
Maximum effective radiated power（ERP）	n．a．		
Output power variable	yes		
Channel switching frequency range	no switsching		
Method of frequency generation	\square Synthesizer	区 Crystal	\square Other
Frequency generation TX			
Frequency generation RX	Direct receiver		
IF	$1^{\text {st }}$ IF nolf	2nd IF	3rd IF
	no		
Audio－frequency interface level at external data socket	no IF		
Power source	区 Mains	\square Vehicle－regulated	\square Integral
Antenna socket	\square BNC \square M \square None	\square TNC \square UHF 区 Screws	$\begin{aligned} & \square \mathrm{N} \\ & \square \text { Adapter } \end{aligned}$
Type approval specificati	ns：EN 300330		

Declarations:

- We declare that the above information are correct and the named model was supplied with the maximum configuration to the accredited test laboratory.

