## Radio Testing of the

Clarion Corporation of America Vehicle Radar Sensor Model: P11-DL0000

In accordance with FCC Part 15 Subpart C §15.255 and ISED RSS-210 Annex J

Clarion Corporation of America 31440 Northwestern Highway Suite 185 Farmington Hills, MI 48334-5422



## COMMERCIAL-IN-CONFIDENCE

Date: July 2020

Document Number: 72170261 Issue 01 | Version Number: 01

| RESPONSIBLE FOR      | NAME           | DATE            | SIGNATURE      |
|----------------------|----------------|-----------------|----------------|
| Authorized Signatory | Xiaoying Zhang | August 20, 2021 | Llarging Zhang |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

## **EXECUTIVE SUMMARY**

A sample of this product was tested and found to be in compliance with FCC Part 15 Subpart C §15.255 and ISED RSS-210 Annex J.



#### DISCLAIMER AND COPYRIGHT

This report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America.

#### **ACCREDITATION**

A2LA Cert. No. 2955.13

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America, Inc. 10040 Mesa Rim Road San Diego, CA 92121-2912

TÜV SÜD America, Inc. Rancho Bernardo Facility 16936 Via Del Campo San Diego, CA 92127

Phone: 858 678 1400 www.tuv-sud-america.com



**REPORT ON** Radio Testing of the

Clarion Corporation of America

Model P11-DL0000 Vehicle Radar Sensor

TEST REPORT NUMBER 72170261

TEST REPORT DATE July 2020

PREPARED FOR Clarion Corporation of America

31440 Northwestern Highway Suite 185

Farmington Hills, MI 48334-5422

CONTACT PERSON Sattar Niyaz

Application Engineer sattar.niyaz@faurecia.com

+248 912-8905

PREPARED BY Ferdinand S. Custodio

Name

Authorized Signatory

Title: Senior EMC Test Engineer / Wireless Team Lead

APPROVED BY Xiaoying Zhang

Name

Authorized Signatory

Title: Senior RF Wireless Test Engineer

**DATED** August 20, 2021



## **Revision History**

| 72170261<br>Clarion Corporation of America<br>Model P11-DL0000 Vehicle Radar Sensor |                          |                  |                     |                                    |
|-------------------------------------------------------------------------------------|--------------------------|------------------|---------------------|------------------------------------|
| OLD<br>REVISION                                                                     | NEW REVISION             | REASON           | PAGES<br>AFFECTED   | APPROVED BY                        |
| _                                                                                   | Initial Release          |                  |                     | Xiaoying Zhang                     |
|                                                                                     |                          |                  |                     |                                    |
|                                                                                     |                          |                  |                     |                                    |
|                                                                                     |                          |                  |                     |                                    |
|                                                                                     |                          |                  |                     |                                    |
|                                                                                     | 0000 Vehicle Rada<br>OLD | OLD NEW REVISION | OLD REVISION REASON | OLD REVISION REASON PAGES AFFECTED |



# **CONTENTS**

| 1   | REPORT SUMMARY                           | 5  |
|-----|------------------------------------------|----|
| 1.1 | Introduction                             | 6  |
| 1.2 | Brief Summary Of Results                 | 7  |
| 1.3 | Product Information                      | 9  |
| 1.4 | EUT Test Configuration                   | 10 |
| 1.5 | Deviations From The Standard             | 11 |
| 1.6 | Modification Record                      | 11 |
| 1.7 | Test Methodology                         | 11 |
| 1.8 | Test Facility Location                   | 11 |
| 1.9 | Test Facility Registration               | 11 |
| 2   | TEST DETAILS                             | 13 |
| 2.1 | Transmitter Power                        | 14 |
| 2.2 | Conducted Emissions                      | 17 |
| 2.3 | Frequency Stability                      | 18 |
| 2.4 | Occupied Bandwidth                       | 21 |
| 2.5 | Field Strength Of Spurious Radiation     | 21 |
| 3   | TEST EQUIPMENT USED                      | 40 |
| 3.1 | Test Equipment Used                      | 41 |
| 3.2 | Measurement Uncertainty                  | 41 |
| 4   | DIAGRAM OF TEST SETUP                    | 45 |
| 4.1 | Test Setup Diagram                       | 46 |
| 5   | ACCREDITATION, DISCLAIMERS AND COPYRIGHT | 49 |
| 5.1 | Accreditation, Disclaimers And Copyright | 50 |



## **SECTION 1**

## **REPORT SUMMARY**

Radio Testing of the Clarion Corporation of America P11-DL0000 Vehicle Radar Sensor



### 1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Clarion Corporation of America P11-DL0000 Vehicle Radar Sensor to the requirements of FCC Part 15 Subpart C §15.255 per Waiver DA 21-811.

Objective To perform Radio testing to determine the Equipment

Under Test's (EUT's) compliance with the test

specification, for the series of tests carried out.

Manufacturer Clarion Corporation of America

EUT Vehicle Radar Sensor

Trade Name P11-DL0000

Model Name P11-DL0000

FCC ID A8DAIRGEN-1

IC Number 27376-AIRGEN

Serial Number(s) 0x00036C52 and 0x00036C47

Number of Samples Tested 2

Test Specification/Issue/Date • FCC Part 15 Subpart C §15.255 (October 1, 2020)

• ISED RSS-210 Annex J (Issue 10 April 2020)

Start of Test June 29, 2021

Finish of Test August 18, 2021

Name of Engineer(s) Ferdinand Custodio

Related Document(s) 

• DA 21-811 Waiver

 ANSI C63.10-2013. American National Standard of Procedures for Compliance testing of Unlicensed

Wireless Devices.

• Supporting documents for EUT certification are

separate exhibits.



#### 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC Part 15 Subpart C §15.255 are shown below:

| Section | §15.247 Spec Clause                         | Test Description                     | Result    | Comments/Base<br>Standard |
|---------|---------------------------------------------|--------------------------------------|-----------|---------------------------|
| 2.1     | §15.255(c)(3) and (e) /<br>DA 21-811 Waiver | Transmitter Power                    | Compliant |                           |
| 2.2     | §15.207(a)                                  | Conducted Emissions                  | N/A       | Vehicle Use Only          |
| 2.3     | §15.255(f)                                  | Frequency Stability                  | Compliant |                           |
| 2.4     | §15.255(e)                                  | Occupied Bandwidth                   | Compliant |                           |
| 2.5     | §15.255(d)(1)(2) and (3)                    | Field Strength of Spurious Radiation | Compliant |                           |
| 2.6     | DA 21-811 Waiver                            | Duty Cycle                           | Compliant |                           |
| 2.7     | DA 21-811 Waiver                            | Power Spectral Density               | Compliant |                           |

#### 1.3 DA 21-811 WAIVER CONDITIONS

- The radar shall be certified for compliance with all the technical specifications applicable to operation under 47 CFR Part 15, with the exception of the following provisions in 47 CFR §§ 15.255(a)(2) and (c)(3), which are waived to allow the device to operate as a radar on new passenger motor vehicles in the 57-64 GHz band at a maximum +13 dBm EIRP, +10 dBm transmitter conducted output power, and +13 dBm/MHz power spectral density.
- Each individual radar device shall not exceed a maximum transmit duty cycle of 10% in any 33 milliseconds (ms) interval (i.e., the device will not transmit longer than a total of 3.3 ms in any 33 ms time period).
- Any radar off-time period between two successive radar pulses that is less than 2 ms shall be considered "on time" for purposes of computing the duty cycle.
- The radar shall be restricted to factory installation in the interior of new passenger motor vehicles for the primary purpose of in-cabin monitoring functions and shall not be marketed in aftermarket add-on products. The grantee shall include clear and complete installation instructions that explain this restriction and a copy of these instructions shall be submitted along with the application for equipment authorization. If the radar is installed such that it is not visible (e.g., behind the headliner), then the required equipment labeling in accordance with the provisions of 47 CFR §§ 2.925 and 15.19 shall be provided in the vehicle's Owner's Manual. The certification grant shall specify these restrictions.



- Operations under this waiver may not be used to transmit data.
- Users of the radars must be made aware through a disclosure in the vehicle Owner's Manual or an equivalent means that the operation is subject to the conditions that no harmful interference is caused and that any interference must be accepted.
- This waiver and its conditions shall apply only to radars intended for installation in passenger
  motor vehicles as described herein and are not to be considered to apply generally to any other
  radars or field disturbance sensors that will operate in different environments where further
  analysis would be necessary to assess the potential for impact to other authorized users.
- The waiver conditions granted herein are not transferable to any third party via §2.933 or any other means of technology transfer.
- The waiver is explicitly conditioned on any changes to our rules that may be adopted in a future rulemaking proceeding in accordance with the terms of this order.



#### 1.4 PRODUCT INFORMATION

## 1.4.1 Technical Description

The Equipment Under Test (EUT) is a Clarion Corporation of America P11-DL0000 Vehicle Radar Sensor. The EUT is a short-range Vehicle Millimeter wave Radar Sensor operating in 60 GHz band (60-64 GHz). The EUT is used to detect intruders, baby left in the car and seatbelt detection. It is mounted on the roof of the cabin and senses in all directions inside the cabin.

## 1.4.2 EUT General Description

| EUT Description                                                        | Vehicle Radar Sensor                                                 |
|------------------------------------------------------------------------|----------------------------------------------------------------------|
| Trade Name                                                             | P11-DL0000                                                           |
| Model Name                                                             | P11-DL0000                                                           |
| Rated Voltage                                                          | 12VDC                                                                |
| Mode Verified                                                          | 60GHz radar                                                          |
| Capability                                                             | 60GHz radar                                                          |
| Frequency Range                                                        | 60-64GHz                                                             |
| Primary Unit (EUT)                                                     | Production                                                           |
|                                                                        |                                                                      |
|                                                                        | ☐ Engineering                                                        |
|                                                                        |                                                                      |
| PRF                                                                    | 50Hz                                                                 |
| PRF Frame Time                                                         | 50Hz<br>20ms                                                         |
|                                                                        |                                                                      |
| Frame Time                                                             | 20ms                                                                 |
| Frame Time  Duty Cycle                                                 | 20ms<br>10%                                                          |
| Frame Time  Duty Cycle  Transmission Mode                              | 20ms<br>10%<br>MIMO (3x4)                                            |
| Frame Time Duty Cycle Transmission Mode Dimensions                     | 20ms<br>10%<br>MIMO (3x4)<br>63mm x 45mm x 13mm                      |
| Frame Time Duty Cycle Transmission Mode Dimensions Weight              | 20ms<br>10%<br>MIMO (3x4)<br>63mm x 45mm x 13mm<br>0.05 kg           |
| Frame Time Duty Cycle Transmission Mode Dimensions Weight Antenna Type | 20ms 10% MIMO (3x4) 63mm x 45mm x 13mm 0.05 kg Patch etched antennas |

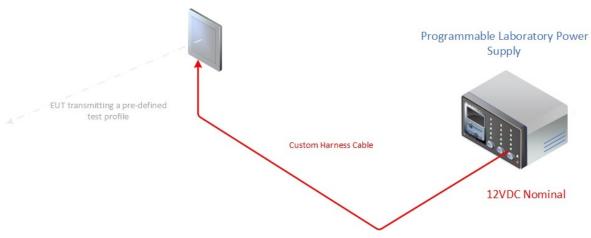


### 1.5 EUT TEST CONFIGURATION

## 1.5.1 Test Configuration Description

| Test Configuration | Description                                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------------------|
| Default            | The EUT was provided as a plug-and-play unit. Once power is applied, the EUT starts transmitting continuously. |

## 1.5.2 EUT Exercise Software


None

## 1.5.3 Support Equipment and I/O cables

| Manufacturer | Equipment/Cable | Description                                         |
|--------------|-----------------|-----------------------------------------------------|
| Custom       | Harness cable   | 5 conductors (BAT, GND, WAKE, CAN High and CAN Low) |

## 1.5.4 Simplified Test Configuration Diagram

EUT- Clarion Vehicle Radar Sensor





#### 1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

#### 1.7 MODIFICATION RECORD

| Description of Modification              | Modification<br>Fitted By | Date<br>Modificatio<br>n<br>Fitted |
|------------------------------------------|---------------------------|------------------------------------|
| Serial Number: 0x00036C52 and 0x00036C47 |                           |                                    |
| None                                     | _                         | _                                  |

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

#### 1.8 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

For conducted and radiated emissions, the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.10-2013. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

#### 1.9 TEST FACILITY LOCATION

#### 1.9.1 TÜV SÜD America Inc. (Mira Mesa)

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: (858) 678 1400 Fax: (858) 546 0364

### 1.9.2 TÜV SÜD America Inc. (Rancho Bernardo)

16936 Via Del Campo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: (858) 678 1400 Fax: (858) 546 0364.

## 1.10 TEST FACILITY REGISTRATION

#### 1.10.1 FCC - Designation No.: US1146

TÜV SÜD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Designation is US1146.



# 1.10.2 Innovation, Science and Economic Development Canada (ISED) Registration No.: 3067A-1 & 22806-1

The 10m Semi-anechoic chamber of TÜV SÜD America Inc. (San Diego Rancho Bernardo) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 3067A-1.

The 3m Semi-anechoic chamber of TÜV SÜD America Inc. (San Diego Mira Mesa) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 22806-1.

#### 1.10.3 BSMI – Laboratory Code: SL2-IN-E-028R (US0102)

TÜV Product Service Inc. (San Diego) is a recognized EMC testing laboratory by the BSMI under the MRA (Mutual Recognition Arrangement) with the United States. Accreditation includes CNS 13438 up to 6GHz.

#### 1.10.4 NCC (National Communications Commission - US0102)

TÜV SÜD America Inc. (San Diego) is listed as a Foreign Recognized Telecommunication Equipment Testing Laboratory and is accredited to ISO/IEC 17025 (A2LA Certificate No.2955.13) which under APEC TEL MRA Phase 1 was designated as a Conformity Assessment Body competent to perform testing of equipment subject to the Technical Regulations covered under its scope of accreditation including RTTE01, PLMN01 and PLMN08 for TTE type of testing and LP002 for Low-Power RF Device type of testing.

## 1.10.5 VCCI – Registration No. A-0280 and A-0281

TÜV SÜD America Inc. (San Diego) is a VCCI registered measurement facility which includes radiated field strength measurement, radiated field strength measurement above 1GHz, mains port interference measurement and telecommunication port interference measurement.

## 1.10.6 RRA - Identification No. US0102

TÜV SÜD America Inc. (San Diego) is National Radio Research Agency (RRA) recognized laboratory under Phase I of the APEC Tel MRA.

#### 1.10.7 OFCA – U.S. Identification No. US0102

TÜV SÜD America Inc. (San Diego) is recognized by Office of the Communications Authority (OFCA) under Appendix B, Phase I of the APEC Tel MRA.



## **SECTION 2**

## **TEST DETAILS**

Radio Testing of the Clarion Corporation of America P11-DL0000 Vehicle Radar Sensor



#### 2.1 TRANSMITTER POWER

## 2.1.1 Specification Reference

FCC 47 CFR Part 15, Clause 15.255(c)(3) and (e)

## 2.1.2 Standard Applicable

- (c) Within the 57-71 GHz band, emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):
- (3) or fixed field disturbance sensors other than those operating under the provisions of paragraph (c)(2) of this section, and short-range devices for interactive motion sensing, the peak transmitter conducted output power shall not exceed −10 dBm and the peak EIRP level shall not exceed 10 dBm.
- (e) Except as specified paragraph (e)(1) of this section, the peak transmitter conducted output power shall not exceed 500 mW. Depending on the gain of the antenna, it may be necessary to operate the intentional radiator using a lower peak transmitter output power in order to comply with the EIRP limits specified in paragraph (c) of this section.

#### 2.1.3 Waiver Condition

The radar shall be certified for compliance with all the technical specifications applicable to operation under 47 CFR Part 15, with the exception of the following provisions in 47 CFR §§ 15.255(a)(2) and (c)(3), which are waived to allow the device to operate as a radar on new passenger motor vehicles in the 57-64 GHz band at a maximum +13 dBm EIRP, +10 dBm transmitter conducted output power, and +13 dBm/MHz power spectral density.

### 2.1.4 Equipment Under Test and Modification State

Serial No: 0x00036C47 / Default Test Configuration

### 2.1.5 Date of Test/Initial of test personnel who performed the test

July 23, 2021 / FSC

### 2.1.6 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.7 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Mira Mesa facility

Ambient Temperature 23.5 °C Relative Humidity 36.4 % ATM Pressure 99.8 kPa



#### 2.1.8 Additional Observations

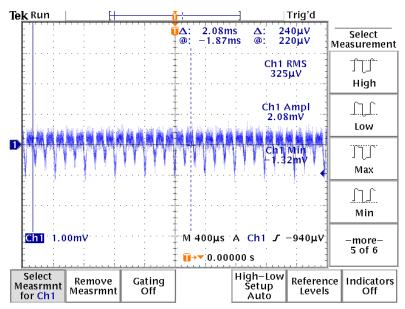
- This is a radiated test.
- Test methodology is per Section 9.11 of ANSI C63.10-2013.
- The manufacturer provided a test profile with the highest possible duty cycle.
- Test performed using a RF detector, low noise amplifier, active multiplier chain, direct reading attenuator and corresponding horn antenna.
- Initial prescan of the 60 to 64GHz band was used to determine the representative frequency for this test. Based from the profile observed, 62GHz was chosen as worst case for this investigation.
- Once the EUT profile was determined using a RF detector, The EUT was replaced with a known source with a variable attenuator. Starting at the max attenuation, the attenuator was adjusted until identical profile of the EUT was achieved. The EIRP at this point was calculated.

### 2.1.9 Test Results

| Frequency | Peak Power<br>(EIRP) | Conducted Peak Power |
|-----------|----------------------|----------------------|
| 62 GHz    | 12.84 dBm            | 8.84 dBm             |

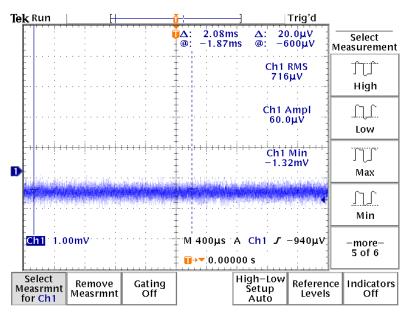
|                       | EUT Profile | DA-21-811 Waiver Requirements |
|-----------------------|-------------|-------------------------------|
| PConducted            | 8.84 dBm    | ≤ 10 dBm                      |
| Gain <sub>Total</sub> | 4.0 dBi     |                               |
| EIRP <sub>MAX</sub>   | 12.84 dBm   | ≤ 13 dBm                      |

### 2.1.10 Sample Calculation


Active Multiplier Chain power output @ 62GHz = 13.50 dBm Gain Horn -WR15/HO15R (SDGE09004) = 23.24 dBi = -23.90 dB

COMMERCIAL-IN-CONFIDENCE

Substitution Peak EIRP


= 12.84 dBm





TDS 3052 - 9:59:33 AM 7/23/2021

EUT (12 Transmitter) profile using a RF detector



TDS 3052 - 10:08:42 AM 7/23/2021

Profile using a known source (active multiplier chain with a direct reading attenuator)



#### 2.2 CONDUCTED EMISSIONS

## 2.2.1 Specification Reference

FCC 47 CFR Part 15, Clause 15.207(a)

## 2.2.2 Standard Applicable

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN).

|                             | Conducted limit (dВµV) |           |  |
|-----------------------------|------------------------|-----------|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |
| 0.15–0.5                    | 66 to 56*              | 56 to 46* |  |
| 0.5–5                       | 56                     | 46        |  |
| 5–30                        | 60                     | 50        |  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

## 2.2.3 Equipment Under Test and Modification State

Not performed. The EUT is restricted for vehicular use only, therefore there is no provision for the unit to connect to public AC Mains.



#### 2.3 FREQUENCY STABILITY

### 2.3.1 Specification Reference

FCC 47 CFR Part 15, Clause 15.255(f)

## 2.3.2 Standard Applicable

(f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range −20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

### 2.3.3 Equipment Under Test and Modification State

Serial No: 0x00036C52 / Default Test Configuration

## 2.3.4 Date of Test/Initial of test personnel who performed the test

July 04 and 05, 2021 / FSC

### 2.3.5 Test Equipment Used

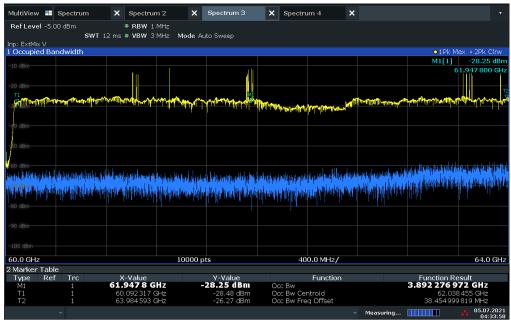
The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.3.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature 24.8 °C Relative Humidity 12.7 % ATM Pressure 99.5 kPa

#### 2.3.7 Additional Observations


- There is no difference in the test results when input voltage is varied from 85% to 115% of the nominal voltage as the EUT is designed to operate from that range (10.2VDC to 13.8VDC).
- The temperature chamber has a window, the receive antenna was placed outside the chamber at a distance greater than  $2D^2/\lambda$ . Where D is the longest single dimension of the receive antenna and  $\lambda$  is the wavelength.
- Due to reflections inside the environmental chamber, artifacts are visible on the test plots but will be ignored for this investigation.
- Test methodology is per Section 9.14 of ANSI C63.10-2013.

## 2.3.8 Test Results

EUT complies. The spectrum mask of the EUT emissions (max hold) stayed within the frequency band 60GHz to 64GHz on all conditions of operation. Operation of the EUT is >1GHz from the edge of the frequency band (57GHz-71GHz).




## 2.3.9 Sample Test Plots



04:33:59 05.07.2021


Spectrum Mask @ 50°C



10:39:12 04.07.2021

Spectrum Mask @ -20°C





Upper Edge Verification @ 20°C



#### 2.4 OCCUPIED BANDWIDTH

#### 2.4.1 Specification Reference

FCC 47 CFR Part 15, Clause 15.255(e)(1)

#### 2.4.2 Standard Applicable

(1) Transmitters with an emission bandwidth of less than 100 MHz must limit their peak transmitter conducted output power to the product of 500 mW times their emission bandwidth divided by 100 MHz. For the purposes of this paragraph, emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

### 2.4.3 Equipment Under Test and Modification State

Serial No: 0x00036C52 / Default Test Configuration

## 2.4.4 Date of Test/Initial of test personnel who performed the test

July 02, 2021 / FSC

### 2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

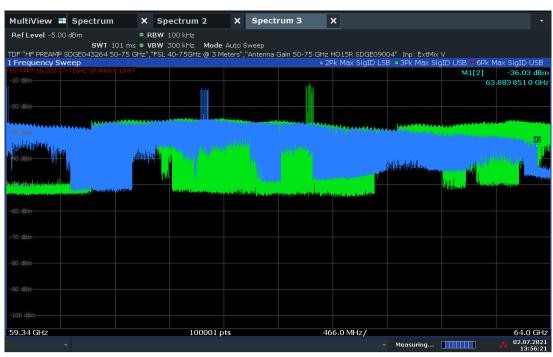
#### 2.4.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

Ambient Temperature 25.8 °C Relative Humidity 23.9 % ATM Pressure 99.6 kPa

## 2.4.7 Additional Observations

- 6dB BW of the EUT is >100MHz when measured using 100kHz RBW. Therefore, the additional bandwidth requirement per §15.255(e)(1) does not apply.
- Due to inherent bandwidth of the signal, the upper edge of the signal has to be close to edge of the plot. Otherwise, artifacts created by the mixing will be evident. A separate plot was provided to verify upper edge of the signal without artifacts.
- Worst case 99% OBW reported as 3.91GHz.
- Plots presented for reference only.




## 2.4.8 Test Verifications Plots



13:58:04 02.07.2021

#### 99% **OBW**



13:56:22 02.07.2021

Upper edge verification using Signal ID function



#### 2.5 FIELD STRENGTH OF SPURIOUS RADIATION

### 2.5.1 Specification Reference

FCC 47 CFR Part 15, Clause 15.255(d)(1)(2) and (3)

## 2.5.2 Standard Applicable

- (d) Limits on spurious emissions:
- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm $^2$  (85.3dB $\mu$ V/m / -9.93dBm EIRP) at a distance of 3 meters.

#### 2.5.3 Equipment Under Test and Modification State

Serial No: 0x00036C52/ Default Test Configuration

## 2.5.4 Date of Test/Initial of test personnel who performed the test

June 29 to July 02, 2021 / FSC

## 2.5.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.5.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Mira Mesa facility

Ambient Temperature 24.7 °C Relative Humidity 37.7 % ATM Pressure 100.6 kPa

#### 2.5.7 Additional Observations

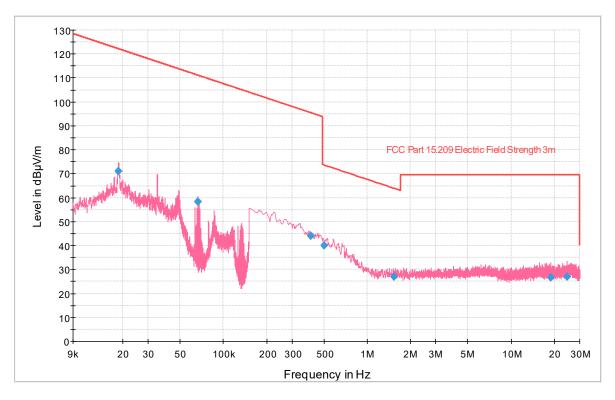
- This is a radiated test. The spectrum was searched from 9kHz to 200GHz.
- Measurements below 40GHz were done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.5.8 for sample computation.
- Measurement above 40GHz were done using harmonic mixers. Corresponding TDF (Transducer Factor) are programmed for each range.



• Tests distances and frequency ranges performed are summarized below:

| Frequency Range    | Test Distance |
|--------------------|---------------|
| 9 kHz to 30 MHz    | 3 meters      |
| 30 MHz to 1GHz     | 3 meters      |
| 1 GHz to 18 GHz    | 3 meters      |
| 18 GHz to 26.5 GHz | 3 meters      |
| 26 GHz to 40 GHz   | 3 meters      |
| 40 GHz to 60 GHz   | 3 meters      |
| 50 GHz to 75 GHz   | 3 meters      |
| 75 GHz to 110 GHz  | 1 meter       |
| 110 GHz to 140 GHz | 1 meter       |
| 140 GHz to 200 GHz | 0.5 meter     |

• Limits presented >75GHz is from 3 meters measurement distance (worst case). EUT complies with 3 meters limit when measured at 1 and 0.5 meter.


## 2.5.8 Sample Computation (Radiated Emission)

| Measuring equipment raw mea | surement (dbµV) @ 30 MHz    |       | 24.4  |
|-----------------------------|-----------------------------|-------|-------|
|                             | Asset# 1066 (cable)         | 0.3   |       |
|                             | Asset# 1172 (cable)         | 0.3   |       |
| Correction Factor (dB)      | Asset# 1016 (preamplifier)  | -30.7 | -12.6 |
|                             | Asset# 1175(cable)          | 0.3   |       |
|                             | Asset# 1002 (antenna)       | 17.2  |       |
| Reported QuasiPeak Final Mo | easurement (dbµV/m) @ 30MHz |       | 11.8  |



## 2.5.9 Below 30MHz Radiated Emission Test

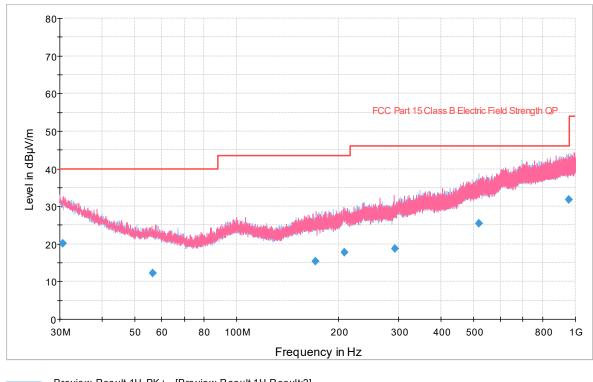
#### Full Spectrum



Preview Result 1V-PK+ [Preview Result 1V.Result:2]

FCC Part 15.209 Electric Field Strength 3m [.\EMI Radiated\]

Final\_Result QPK [Final\_Result:Result:4]


#### **Quasi-Peak Data**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 0.018634           | 71.05                 | 122.19            | 51.14          | 1000.0                | 0.200              | 100.0          | Н   | 278.0         | 22              |
| 0.066557           | 58.20                 | 111.14            | 52.94          | 1000.0                | 0.200              | 100.0          | Н   | 12.0          | 20              |
| 0.406790           | 43.92                 | 95.42             | 51.50          | 1000.0                | 9.000              | 100.0          | Н   | 334.0         | 19              |
| 0.499340           | 40.04                 | 73.64             | 33.60          | 1000.0                | 9.000              | 100.0          | Н   | 262.0         | 20              |
| 1.537156           | 26.88                 | 63.86             | 36.98          | 1000.0                | 9.000              | 100.0          | Н   | 262.0         | 20              |
| 18.907957          | 26.69                 | 69.50             | 42.81          | 1000.0                | 9.000              | 100.0          | Н   | 162.0         | 23              |
| 24.475633          | 26.93                 | 69.50             | 42.57          | 1000.0                | 9.000              | 100.0          | Н   | 33.0          | 24              |

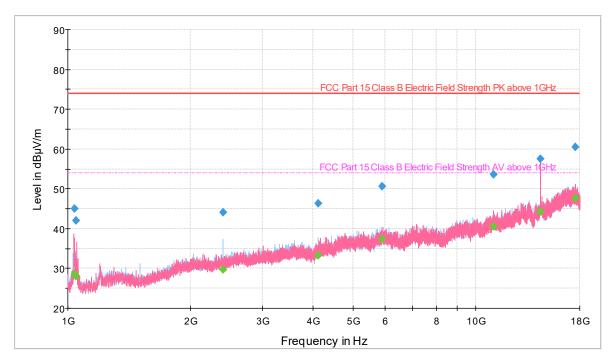


## 2.5.10 Below 1GHz Radiated Emission Test

#### Full Spectrum



Preview Result 1H-PK+ [Preview Result 1H.Result:2]
Preview Result 1V-PK+ [Preview Result 1V.Result:2]
FCC Part 15 Class B Electric Field Strength QP [..\EMI Radiated\]
Final\_Result QPK [Final\_Result.Result:4]


#### **Quasi-Peak Data**

| Frequency<br>(MHz) | QuasiPeak<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 30.640000          | 20.23                 | 40.00             | 19.77          | 1000.0                | 120.000            | 391.0          | V   | 81.0          | 22              |
| 56.435667          | 12.19                 | 40.00             | 27.81          | 1000.0                | 120.000            | 325.0          | V   | 327.0         | 14              |
| 170.582667         | 15.38                 | 43.50             | 28.12          | 1000.0                | 120.000            | 218.0          | V   | 153.0         | 17              |
| 208.137333         | 17.81                 | 43.50             | 25.69          | 1000.0                | 120.000            | 120.0          | Н   | 99.0          | 19              |
| 292.861667         | 18.74                 | 46.00             | 27.26          | 1000.0                | 120.000            | 195.0          | V   | 240.0         | 20              |
| 519.208333         | 25.54                 | 46.00             | 20.46          | 1000.0                | 120.000            | 305.0          | Н   | 267.0         | 26              |
| 954.992667         | 31.71                 | 46.00             | 14.29          | 1000.0                | 120.000            | 325.0          | Н   | 266.0         | 31              |



#### 2.5.11 Above 1GHz (up to 18GHz) Radiated Emission Test

### Full Spectrum



Preview Result 1H-PK+ [Preview Result 1H.Result:2]
Preview Result 1V-PK+ [Preview Result 1V.Result:2]
FCC Part 15 Class B Electric Field Strength PK above 1GHz [..\EMI Radiated\]

FCC Part 15 Class B Electric Field Strength AV above 1GHz [..\EMI Radiated\]

Final\_Result PK+ [Final\_Result.Result:4]
Final\_Result AVG [Final\_Result.Result:5]

## **Peak Data**

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 1037.900000        | 45.03               | 73.90             | 28.87          | 1000.0                | 1000.000           | 138.0          | V   | 21.0          | -6              |
| 1048.166667        | 41.99               | 73.90             | 31.91          | 1000.0                | 1000.000           | 175.0          | V   | 50.0          | -7              |
| 2400.266667        | 44.12               | 73.90             | 29.78          | 1000.0                | 1000.000           | 304.0          | Н   | 68.0          | 1               |
| 4111.700000        | 46.23               | 73.90             | 27.67          | 1000.0                | 1000.000           | 285.0          | Н   | 7.0           | 5               |
| 5907.033333        | 50.58               | 73.90             | 23.32          | 1000.0                | 1000.000           | 365.0          | V   | 322.0         | 6               |
| 11065.533333       | 53.64               | 73.90             | 20.26          | 1000.0                | 1000.000           | 255.0          | V   | 42.0          | 14              |
| 14403.133333       | 57.49               | 73.90             | 16.41          | 1000.0                | 1000.000           | 365.0          | V   | 344.0         | 13              |
| 17540.333333       | 60.42               | 73.90             | 13.48          | 1000.0                | 1000.000           | 335.0          | V   | 38.0          | 19              |



## Average Data

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 1037.900000        | 28.54               | 53.90             | 25.36          | 1000.0                | 1000.000           | 138.0          | V   | 21.0          | -6              |
| 1048.166667        | 27.97               | 53.90             | 25.93          | 1000.0                | 1000.000           | 175.0          | V   | 50.0          | -7              |
| 2400.266667        | 29.78               | 53.90             | 24.12          | 1000.0                | 1000.000           | 304.0          | Н   | 68.0          | 1               |
| 4111.700000        | 33.26               | 53.90             | 20.64          | 1000.0                | 1000.000           | 285.0          | Н   | 7.0           | 5               |
| 5907.033333        | 37.36               | 53.90             | 16.54          | 1000.0                | 1000.000           | 365.0          | V   | 322.0         | 6               |
| 11065.533333       | 40.59               | 53.90             | 13.31          | 1000.0                | 1000.000           | 255.0          | V   | 42.0          | 14              |
| 14403.133333       | 44.21               | 53.90             | 9.69           | 1000.0                | 1000.000           | 365.0          | V   | 344.0         | 13              |
| 17540.333333       | 47.59               | 53.90             | 6.31           | 1000.0                | 1000.000           | 335.0          | V   | 38.0          | 19              |



#### 2.5.12 18GHz to 26GHz Radiated Emission Test

### Full Spectrum



Preview Result 1H-PK+ [Preview Result 1H.Result:2]
Preview Result 1V-PK+ [Preview Result 1V.Result:2]
FCC Part 15 Class B Electric Field Strength PK above 1GHz [..\EMI Radiated\]

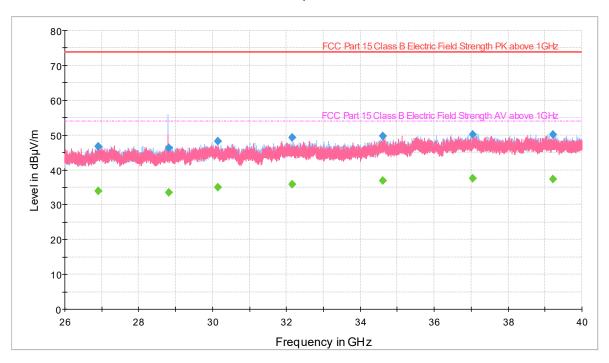
FCC Part 15 Class B Electric Field Strength AV above 1GHz [..\EMI Radiated\]

Final\_Result PK+ [Final\_Result.Result:4]
Final\_Result AVG [Final\_Result.Result:5]

## **Peak Data**

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 18660.130000       | 44.87               | 73.90             | 29.03          | 1000.0                | 1000.000           | 213.0          | Н   | 41.0          | -3              |
| 20306.827500       | 44.66               | 73.90             | 29.24          | 1000.0                | 1000.000           | 163.0          | V   | 181.0         | -3              |
| 20615.584500       | 44.91               | 73.90             | 28.99          | 1000.0                | 1000.000           | 140.0          | Н   | 85.0          | -3              |
| 22109.787500       | 44.44               | 73.90             | 29.46          | 1000.0                | 1000.000           | 163.0          | V   | 226.0         | -2              |
| 23171.416000       | 45.30               | 73.90             | 28.60          | 1000.0                | 1000.000           | 163.0          | Н   | 22.0          | 0               |
| 24289.060500       | 45.68               | 73.90             | 28.22          | 1000.0                | 1000.000           | 213.0          | V   | 311.0         | 0               |
| 24968.762000       | 45.42               | 73.90             | 28.48          | 1000.0                | 1000.000           | 202.0          | V   | 26.0          | 0               |
| 25358.859500       | 45.76               | 73.90             | 28.14          | 1000.0                | 1000.000           | 137.0          | V   | 25.0          | 1               |




# Average Data

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 18660.130000       | 31.99               | 53.90             | 21.91          | 1000.0                | 1000.000           | 213.0          | Н   | 41.0          | -3              |
| 20306.827500       | 31.83               | 53.90             | 22.07          | 1000.0                | 1000.000           | 163.0          | V   | 181.0         | -3              |
| 20615.584500       | 31.99               | 53.90             | 21.91          | 1000.0                | 1000.000           | 140.0          | Н   | 85.0          | -3              |
| 22109.787500       | 31.16               | 53.90             | 22.74          | 1000.0                | 1000.000           | 163.0          | V   | 226.0         | -2              |
| 23171.416000       | 32.46               | 53.90             | 21.44          | 1000.0                | 1000.000           | 163.0          | Н   | 22.0          | 0               |
| 24289.060500       | 32.62               | 53.90             | 21.28          | 1000.0                | 1000.000           | 213.0          | V   | 311.0         | 0               |
| 24968.762000       | 33.02               | 53.90             | 20.88          | 1000.0                | 1000.000           | 202.0          | V   | 26.0          | 0               |
| 25358.859500       | 32.99               | 53.90             | 20.91          | 1000.0                | 1000.000           | 137.0          | V   | 25.0          | 1               |



#### 2.5.13 26GHz to 40GHz Radiated Emission Test

#### Full Spectrum



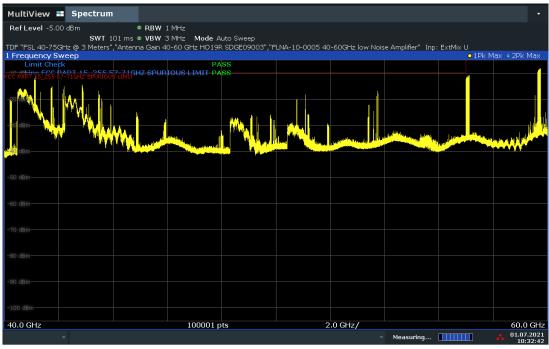
Preview Result 1H-PK+ [Preview Result 1H.Result:2]
Preview Result 1V-PK+ [Preview Result 1V.Result:2]

FCC Part 15 Class B Electric Field Strength PK above 1GHz [..\EMI Radiated\]

FCC Part 15 Class B Electric Field Strength AV above 1GHz [..\EMI Radiated\]
Final\_Result PK+ [Final\_Result.Result.4]
Final\_Result AVG [Final\_Result.Result.5]

#### **Peak Data**

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 26896.135385       | 46.69               | 73.90             | 27.21          | 1000.0                | 1000.000           | 218.0          | V   | 54.0          | 2               |
| 28809.085384       | 46.40               | 73.90             | 27.50          | 1000.0                | 1000.000           | 175.0          | Н   | 348.0         | 2               |
| 30136.700385       | 48.12               | 73.90             | 25.78          | 1000.0                | 1000.000           | 177.0          | Н   | 37.0          | 3               |
| 32150.416923       | 49.32               | 73.90             | 24.58          | 1000.0                | 1000.000           | 175.0          | Н   | 14.0          | 5               |
| 34603.142308       | 49.75               | 73.90             | 24.15          | 1000.0                | 1000.000           | 216.0          | V   | 56.0          | 6               |
| 37050.744230       | 50.11               | 73.90             | 23.79          | 1000.0                | 1000.000           | 175.0          | Н   | 115.0         | 7               |
| 39221.684231       | 50.24               | 73.90             | 23.66          | 1000.0                | 1000.000           | 138.0          | Н   | 9.0           | 7               |




## Average Data

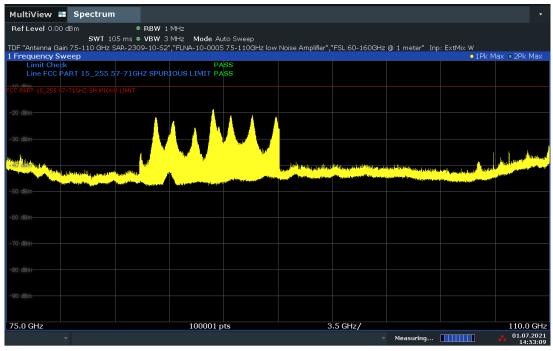
| Frequency<br>(MHz) | Average<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 26896.135385       | 33.83               | 53.90             | 20.07          | 1000.0                | 1000.000           | 218.0          | V   | 54.0          | 2               |
| 28809.085384       | 33.58               | 53.90             | 20.32          | 1000.0                | 1000.000           | 175.0          | Н   | 348.0         | 2               |
| 30136.700385       | 35.06               | 53.90             | 18.84          | 1000.0                | 1000.000           | 177.0          | Н   | 37.0          | 3               |
| 32150.416923       | 35.75               | 53.90             | 18.15          | 1000.0                | 1000.000           | 175.0          | Н   | 14.0          | 5               |
| 34603.142308       | 36.93               | 53.90             | 16.97          | 1000.0                | 1000.000           | 216.0          | V   | 56.0          | 6               |
| 37050.744230       | 37.55               | 53.90             | 16.35          | 1000.0                | 1000.000           | 175.0          | Н   | 115.0         | 7               |
| 39221.684231       | 37.38               | 53.90             | 16.52          | 1000.0                | 1000.000           | 138.0          | Н   | 9.0           | 7               |



## 2.5.14 40GHz to 200GHz Maximized Plots



10:32:43 01.07.2021


40GHz to 60GHz Plot



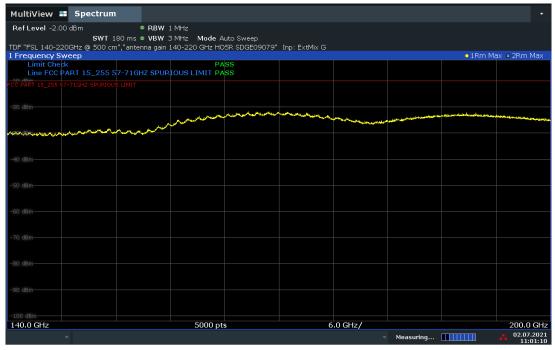
14:25:58 01.07.2021

**50GHz to 75GHz Plot** 





14:53:09 01.07.2021


75GHz to 110GHz Plot



11:17:07 02.07.2021

110GHz to 140GHz Plot





11:01:11 02.07.2021

140GHz to 200GHz Plot



#### 2.6 DUTY CYCLE

### 2.6.1 Specification Reference

Waiver DA 21-811 (granted July 09, 2021)

#### 2.6.2 Waiver Condition

- Each individual radar device shall not exceed a maximum transmit duty cycle of 10% in any 33 milliseconds (ms) interval (i.e., the device will not transmit longer than a total of 3.3 ms in any 33 ms time period).
- Any radar off-time period between two successive radar pulses that is less than 2 ms shall be considered "on time" for purposes of computing the duty cycle.

#### 2.6.3 Equipment Under Test and Modification State

Serial No: 0x00036C47 / Default Test Configuration

### 2.6.4 Date of Test/Initial of test personnel who performed the test

August 18, 2021 / FSC

### 2.6.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Mira Mesa facility

Ambient Temperature 27.4 °C Relative Humidity 44.6 % ATM Pressure 100.1 kPa

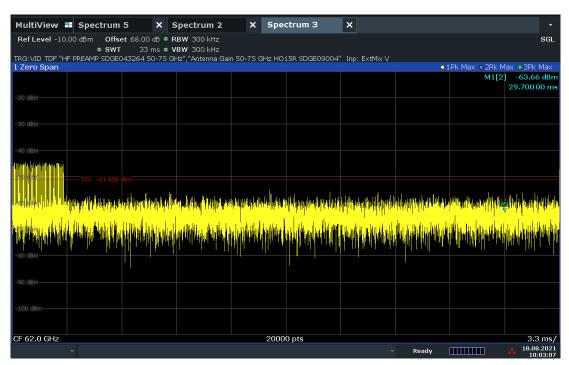
#### 2.6.7 Additional Observations

- This is radiated test in time domain mode. 62GHz was chosen as representative frequency based from the observed emission profile of the entire radar sweep (worst case).
- Duty Cycle verification is based on the entire chirp compared to calculating the total on time per measured chirp.

#### 2.6.8 Verification Test Results

Measured chirp: = 3.023 ms Number of chirp/s per 33ms period = 1 (one)

Observed Duty Cycle = 9.16 % Complies with 10% Waiver condition




## 2.6.9 Sample Test Plots



10:05:04 18.08.2021

Single Chirp (3.02ms)



10:03:07 18.08.2021

33ms Observation Period (Duty Cycle < 10%)



#### 2.7 POWER SPECTRAL DENSITY

### 2.7.1 Specification Reference

Waiver DA 21-811 (granted July 09, 2021)

#### 2.7.2 Waiver Condition

The radar shall be certified for compliance with all the technical specifications applicable to operation under 47 CFR Part 15, with the exception of the following provisions in 47 CFR §§ 15.255(a)(2) and (c)(3), which are waived to allow the device to operate as a radar on new passenger motor vehicles in the 57-64 GHz band at a maximum +13 dBm EIRP, +10 dBm transmitter conducted output power, and +13 dBm/MHz power spectral density.

### 2.7.3 Equipment Under Test and Modification State

Serial No: 0x00036C52 / Default Test Configuration

### 2.7.4 Date of Test/Initial of test personnel who performed the test

July 03, 2021 / FSC

### 2.7.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

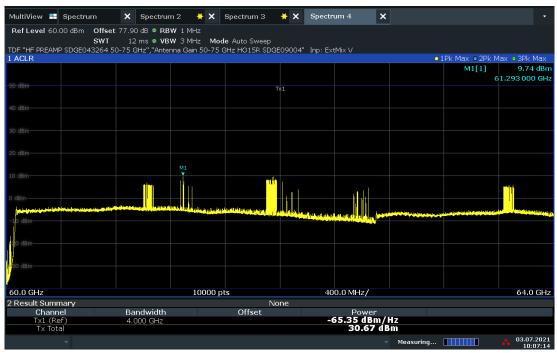
### 2.7.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Mira Mesa facility

Ambient Temperature 25.8 °C Relative Humidity 49.3 % ATM Pressure 99.8 kPa

## 2.7.7 Additional Observations

- This is a radiated test. Test setup is identical to Section 2.5 of this test report covering the frequency range of 60GHz to 64GHz.
- The Power Measurement function of the Spectrum Analyzer is used for this test.


### 2.7.8 Test Result

| Frequency    | Measured PSD  | Calculated PSD |  |  |  |
|--------------|---------------|----------------|--|--|--|
| 60 to 64 GHz | -65.35 dBm/Hz | -5.35 dBm/MHz  |  |  |  |

<sup>\*</sup>dBm/Hz + 60 = dBm/MHz



### 2.7.9 Test Result Plot



10:07:15 03.07.2021

**Power Spectral Density** 



# **SECTION 3**

# **TEST EQUIPMENT USED**



## 3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

| ID Number<br>(SDGE/SDRB) | Test Equipment                       | Туре                   | Serial<br>Number   | Manufacturer          | Cal Date                              | Cal Due<br>Date |  |  |
|--------------------------|--------------------------------------|------------------------|--------------------|-----------------------|---------------------------------------|-----------------|--|--|
| Radiated Emission        |                                      |                        |                    |                       |                                       |                 |  |  |
| 1049                     | EMI Test Receiver                    | ESU40                  | 100133             | Rohde & Schwarz       | 09/25/20                              | 09/25/21        |  |  |
| 7611                     | Signal/Spectrum<br>Analyzer          | FSW26                  | 102017             | Rohde & Schwarz       | 02/02/21                              | 02/02/22        |  |  |
| 1002                     | Bilog Antenna                        | 3142C                  | 0058717            | EMCO                  | 10/09/19                              | 10/09/21        |  |  |
| 7631                     | Double-ridged<br>waveguide horn      | 3117                   | 00205418           | ETS-Lindgren          | 09/16/20                              | 09/16/22        |  |  |
| 46797                    | Preamplifier                         | PA-122                 | 181925             | Com Power             | 10/28/20                              | 10/28/21        |  |  |
| 6628                     | Loop Antenna                         | HFH2-<br>Z2335.4711.52 | FNr.800.458/2<br>5 | Schwarbeck            | 05/22/20                              | 05/20/22        |  |  |
| 9001                     | Horn antenna (18-<br>26.5GHz)        | HO42S                  | 101                | Custom Microwave      | 09/09/19                              | 09/09/21        |  |  |
| 9003                     | Horn antenna (26-40<br>GHz)          | HO28S                  | 102                | Custom Microwaves     | 09/09/19                              | 09/09/21        |  |  |
| 40815                    | Pre-amplifier (18-40<br>GHz)         | 19D18                  | 15G27              | Spacek Labs           | 10/05/20                              | 10/05/21        |  |  |
| 7637                     | Harmonics mixer (40-<br>60 GHz)      | FS-Z60                 | 100009             | Rhode & Schwarz       | 07/29/20                              | 07/29/23        |  |  |
| 7636                     | Harmonics mixer (60-<br>90 GHz)      | FS-Z90                 | 100092             | Rhode & Schwarz       | 07/29/20                              | 07/29/23        |  |  |
| -                        | Harmonics mixer (50-<br>75 GHz)      | FS-Z75                 | 100988             | Rhode & Schwarz       | 02/25/21                              | 02/25/22        |  |  |
| 7633                     | Harmonics mixer (75-<br>110 GHz)     | HM-110-7               | 101000             | Radiometer Physics    | 02/22/21                              | 07/29/23        |  |  |
| 7634                     | Harmonics mixer<br>(110-170 GHz)     | HM-170                 | 0062               | Radiometer Physics    | 02/22/21                              | 07/29/23        |  |  |
| 7635                     | Harmonics mixer<br>(170-220 GHz)     | HM-220                 | 020022             | Radiometer Physics    | 02/22/21                              | 07/29/23        |  |  |
| 7632                     | Harmonics mixer<br>(220-325 GHz)     | HM-325                 | 020075             | Radiometer Physics    | 02/22/21                              | 07/29/23        |  |  |
| 9003                     | Horn antenna (40-60<br>GHz)          | HO19R                  | 103                | Custom Microwaves     | 10/14/19                              | 07/29/23        |  |  |
| 9004                     | Horn antenna (50-75<br>GHz)          | HO15R                  | 104                | Custom Microwaves     | 10/10/19                              | 07/29/23        |  |  |
| 9079                     | Horn antenna (140-<br>220 GHz)       | HO5R                   | HO5R               | Custom Microwaves     | 06/10/19                              | 07/29/23        |  |  |
| 9078                     | Horn antenna (110-<br>170 GHz)       | HO6R                   | HO6R               | Custom Microwaves     | 06/10/19                              | 07/29/23        |  |  |
| 7628                     | Horn antenna (75-110<br>GHz)         | SAR-2309-10-S2         | 13481-01           | Sage Millimeter, Inc. | Verified by 7611 and corresponding    |                 |  |  |
| 9082                     | Horn antenna (140-<br>220 GHz)       | HO5R                   | N/A                | Custom Microwaves     | antenna/Active multiplied combination |                 |  |  |
| 8872                     | Direct Reading<br>Attenuator (40-60  | STA-60-19-D1           | 11875-01           | Sage Millimeter, Inc. | Verified by                           | 7611 and        |  |  |
| 8860                     | Direct Reading<br>Attenuator (50-75  | STA-60-15-D1           | 11466-01           | Sage Millimeter, Inc. | corresponding antenna/mixer           |                 |  |  |
| 8861                     | Direct Reading<br>Attenuator (75-110 | STA-60-10-D1           | 11466-01           | Sage Millimeter, Inc. | combination                           |                 |  |  |



| 8919          | Direct Reading<br>Attenuator (90-140  | STA-60-08-D1  | 12605-01  | Sage Millimeter, Inc. |                                                        |          |  |  |
|---------------|---------------------------------------|---------------|-----------|-----------------------|--------------------------------------------------------|----------|--|--|
| 8909          | Direct Reading<br>Attenuator (140-220 | STA-60-05-D1  | 12020-01  | Sage Millimeter, Inc. | Verified by 7611 and<br>corresponding<br>antenna/mixer |          |  |  |
| 8873          | Active Multiplier (40-<br>60 GHz)     | AMC-19-RFH00  | 124       | Millitech, Inc.       |                                                        |          |  |  |
| 8914          | Active Multiplier (50-<br>75 GHz)     | AMC-15-RFH00  | 283       | Millitech, Inc.       |                                                        |          |  |  |
| 8915          | Active Multiplier (75-<br>110 GHz)    | AMC-10-RFH00  | 606       | Millitech, Inc.       | combination                                            |          |  |  |
| 8920          | Active Multiplier (90-<br>140 GHz)    | AMC-08-RFH00  | 58        | Millitech, Inc.       |                                                        |          |  |  |
| 8909          | Active Multiplier (140-<br>220 GHz)   | MCA-05-150096 | 13        | Millitech, Inc.       |                                                        |          |  |  |
| Miscellaneous | Miscellaneous                         |               |           |                       |                                                        |          |  |  |
| 6805          | Environmental<br>Chamber              | ESL-4CA       | 18021     | Espec                 | 01/13/21                                               | 01/13/22 |  |  |
| 7619          | Temp/Humidity<br>Sensor               | iBTHX-W       | 15050268  | Omega                 | 03/09/21                                               | 03/09/22 |  |  |
| 43003         | True RMS Multimeter                   | 85 III        | 69880143  | Fluke                 | 10/23/20                                               | 10/23/21 |  |  |
| -             | Test Software                         | EMC32         | V11.20.00 | Rohde & Schwarz       | N/A                                                    |          |  |  |



## 3.2 Measurement Uncertainty

Calculation of Measurement Uncertainty per CISPR 16-4-2:2011 with Corr. 1

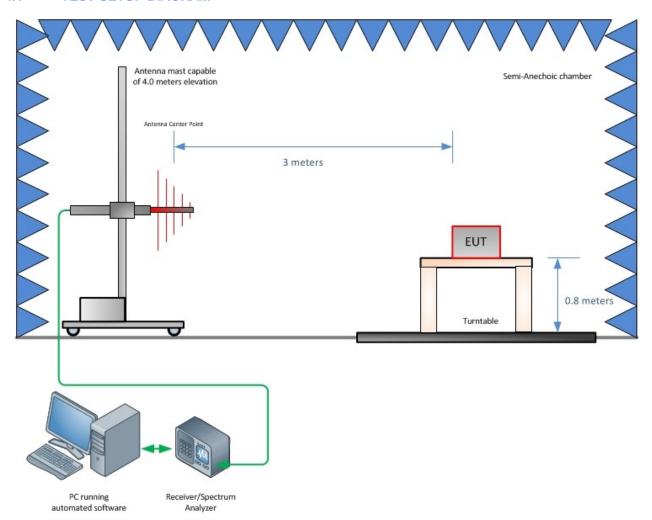
## 3.2.1 Radiated Measurements (Below 1GHz)

|    | Input Quantity (Contribution) X <sub>i</sub> | Value       |    | Prob. Dist. | Divisor | u <sub>i</sub> (x) | $u_i(x)^2$ |  |
|----|----------------------------------------------|-------------|----|-------------|---------|--------------------|------------|--|
| 1  | Receiver reading                             | 0.10        | dB | Normal, k=1 | 1.000   | 0.10               | 0.01       |  |
| 2  | Attenuation: antenna-receiver                | 0.20        | dB | Normal, k=2 | 2.000   | 0.10               | 0.01       |  |
| 3  | Antenna factor AF                            | 0.75        | dB | Normal, k=2 | 2.000   | 0.38               | 0.14       |  |
| 4  | Receiver sinewave accuracy                   | 0.15        | dB | Normal, k=2 | 2.000   | 0.08               | 0.01       |  |
| 5  | Receiver pulse amplitude                     | 1.50        | dB | Rectangular | 1.732   | 0.87               | 0.75       |  |
| 6  | Receiver pulse repetition rate               | 1.50        | dB | Rectangular | 1.732   | 0.87               | 0.75       |  |
| 7  | Noise floor proximity                        | 0.50        | dB | Rectangular | 1.732   | 0.29               | 0.08       |  |
| 8  | Mismatch: antenna-receiver                   | 0.95        | dB | U-shaped    | 1.414   | 0.67               | 0.45       |  |
| 9  | AF frequency interpolation                   | 0.30        | dB | Rectangular | 1.732   | 0.17               | 0.03       |  |
| 10 | AF height deviations                         | 0.10        | dB | Rectangular | 1.732   | 0.06               | 0.00       |  |
| 11 | Directivity difference at 3 m                | 3.12        | dB | Rectangular | 1.732   | 1.80               | 3.24       |  |
| 12 | Phase center location at 3 m                 | 1.00        | dB | Rectangular | 1.732   | 0.58               | 0.33       |  |
| 13 | Cross-polarization                           | 0.90        | dB | Rectangular | 1.732   | 0.52               | 0.27       |  |
| 14 | Balance                                      | 0.00        | dB | Rectangular | 1.732   | 0.00               | 0.00       |  |
| 15 | Site imperfections                           | 3.76        | dB | Triangular  | 2.449   | 1.54               | 2.36       |  |
| 16 | Separation distance at 3 m                   | 0.30        | dB | Rectangular | 1.732   | 0.17               | 0.03       |  |
| 17 | Effect of setup table material               | 0.77        | dB | Rectangular | 1.732   | 0.44               | 0.20       |  |
| 18 | Table height at 3 m                          | 0.10        | dB | Normal, k=2 | 2.000   | 0.05               | 0.00       |  |
| 19 | Near-field effects                           | 0.00        | dB | Triangular  | 2.449   | 0.00               | 0.00       |  |
| 20 | Effect of ambient noise on OATS              | 0.00        | dB |             |         |                    | 0.00       |  |
|    |                                              |             |    |             |         |                    |            |  |
|    | Combined standard uncertainty                | Normal      |    |             | 2.98    | dB                 |            |  |
|    | Expanded uncertainty                         | Normal, k=2 |    |             |         | dB                 |            |  |



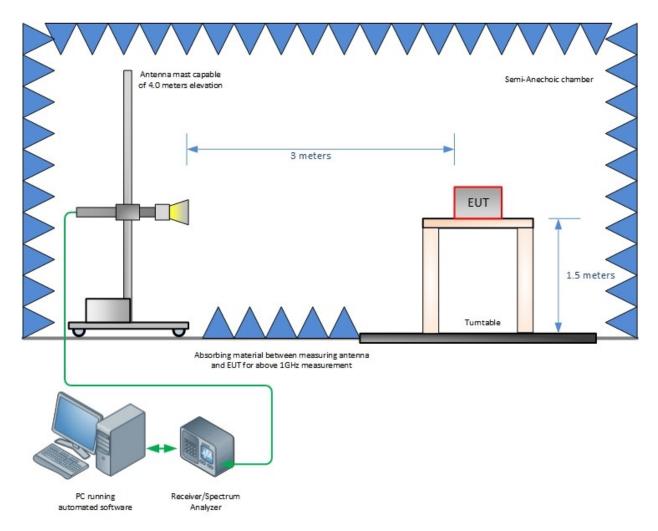
## 3.2.2 Radiated Emission Measurements (Above 1GHz)

|    | Input Quantity (Contribution) X <sub>i</sub> | Value   |    | Prob. Dist. | Divisor | u <sub>i</sub> (x) | $u_i(x)^2$ |  |
|----|----------------------------------------------|---------|----|-------------|---------|--------------------|------------|--|
| 1  | Receiver reading                             | 0.10    | dB | Normal, k=1 | 1.000   | 0.10               | 0.01       |  |
| 2  | Attenuation: antenna-receiver                | 0.30    | dB | Normal, k=2 | 2.000   | 0.15               | 0.02       |  |
| 3  | Preamplifier Gain                            | 0.20    | dB | Normal, k=2 | 2.000   | 0.10               | 0.01       |  |
| 4  | Antenna factor AF                            | 0.47    | dB | Normal, k=2 | 2.000   | 0.24               | 0.06       |  |
| 5  | Sinewave accuracy                            | 0.15    | dB | Normal, k=2 | 2.000   | 0.08               | 0.01       |  |
| 6  | Instability of preamp gain                   | 1.21    | dB | Rectangular | 1.732   | 0.70               | 0.49       |  |
| 7  | Noise floor proximity                        | 0.70    | dB | Rectangular | 1.732   | 0.40               | 0.16       |  |
| 8  | Mismatch: antenna-preamplifier               | 1.41    | dB | U-shaped    | 1.414   | 1.00               | 0.99       |  |
| 9  | Mismatch: preamplifier-receiver              | 1.30    | dB | U-shaped    | 1.414   | 0.92               | 0.85       |  |
| 10 | AF frequency interpolation                   | 0.30    | dB | Rectangular | 1.732   | 0.17               | 0.03       |  |
| 11 | Directivity difference at 3 m                | 1.50    | dB | Rectangular | 1.732   | 0.87               | 0.75       |  |
| 12 | Phase center location at 3 m                 | 0.30    | dB | Rectangular | 1.732   | 0.17               | 0.03       |  |
| 13 | Cross-polarisation                           | 0.90    | dB | Rectangular | 1.732   | 0.52               | 0.27       |  |
| 14 | Site imperfections VSWR (Method 2)           | 5.53    | dB | Triangular  | 2.000   | 4.89               | 1.13       |  |
| 15 | Effect of setup table material               | 1.57    | dB | Rectangular | 1.732   | 0.91               | 0.82       |  |
| 16 | Separation distance at 3 m                   | 0.30    | dB | Rectangular | 1.732   | 0.17               | 0.03       |  |
| 17 | Table height at 3 m                          | 0.00    | dB | Normal, k=2 | 2.000   | 0.00               | 0.00       |  |
| 18 | Table height at 3 m                          | 0.00 dB |    | Normal, k=2 | 2.000   | 0.05               | 0.00       |  |
|    |                                              |         |    |             |         |                    |            |  |
|    |                                              |         |    |             |         |                    |            |  |
|    |                                              |         |    |             |         |                    |            |  |
|    | Combined standard uncertainty Normal         |         |    |             |         | dB                 |            |  |
|    | Expanded uncertainty                         |         |    | Normal, k=2 | 4.76    | dB                 |            |  |




## **SECTION 4**

**Diagram of Test Setup** 




## 4.1 TEST SETUP DIAGRAM



Radiated Emission Test Setup (Below 1GHz)





Radiated Emission Test Setup (Above 1GHz)



#### **EUT Power Profile** EUT RF Detector $50\Omega$ input with sampling rate set to maximum $> d=2D^2/\lambda$ **Substitution Method** Horn antenna with a known gain Active Multiplier Direct Reading LNA DSO Signal Generator RF Detector Chain Attenuator Same distance when EUT was profiled $50\Omega$ input with sampling rate set to maximum

**Power Measurement Block Diagram** 



# **SECTION 5**

**ACCREDITATION, DISCLAIMERS AND COPYRIGHT** 



### 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.







