

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866)311-3268 fax: (480)926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: SolidRF Technology Inc.

Model: Pro MANT

Description: 5 Band In Building Consumer Booster

FCC ID: A7V-SR55703001

To

FCC Part 1.1310

Date of Issue: July 24, 2018

On the behalf of the applicant: SolidRF Technology Inc.

Unit 102, 5501 1A Street SW Calgary, Alberta T2H 1R7

Canada

Attention of: Johnny Zhang

403-503-6699

Johnny@SolidRF.ca

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com

Project No: p1860016

Greg Corbin

Greg Corbin

Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing
All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	July 20, 2018	Greg Corbin	Original Document

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless below

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

EUT Description Model: Pro MANT

Description: 5 Band In Building Consumer Booster

Firmware: SR55703001 Software: DC199V1.01 Serial Number: N/A Additional Information:

The EUT is an In-Building bi-directional amplifier for the boosting of cellular phone signals and data

communication devices.

The following frequency bands are utilized

Frequency Band (MHz)					
Uplink	698 - 716	776 – 787 (IC, 777 – 787)	824 - 849	1850 - 1910	1710 – 1755
Downlink	728 - 746	746 – 757 (IC, 746 – 756)	869 - 894	1930 - 1990	2110 - 2155

Antenna gains including the cable loss came from the Antenna Kitting document supplied with this filing. Maximum output power value is obtained from the associated report.

Source Based Time Averaged Power Calculation

Average Power calculations

Average Power = Peak Power * duty-cycle%

Tuned Frequency (MHz)	Conducted Peak Output Power (mW)	Duty Cycle (%)
710.69	132	100
779.13	224	100
827.81	219	100
1730	251	100
1875	158	100

MPE Evaluation

This is a mobile device used in Uncontrolled Exposure environment.

Limits Uncontrolled Exposure 47 CFR 1.1310 Table 1, (B)

0.3-1.234 MHz:	Limit $[mW/cm^2] = 100$
1.34-30 MHz:	Limit $[mW/cm^2] = (180/f^2)$
30-300 MHz:	Limit $[mW/cm^2] = 0.2$
300-1500 MHz:	Limit [mW/cm ²] = f/1500
1500-100,000 MHz	Limit $[mW/cm^2] = 1.0$

Test Data

Test Frequency, MHz	710.69
Power, Conducted, mW (P)	132
Antenna Gain Isotropic	-0.1 dBi
Antenna Gain Numeric (G)	0.98
Antenna Type	Omni
Distance (R)	20 cm

$$S = \frac{P*G}{4\pi r^2}$$
 Power Density (S) mw/cm²

The EUT meets the power density requirements at 20 cm

Test Frequency, MHz	779.13
Power, Conducted, mW (P)	224
Antenna Gain Isotropic	-0.1 dBi
Antenna Gain Numeric (G)	0.98
Antenna Type	Omni
Distance (R)	20 cm

$$S = \frac{P * G}{4\pi r^2}$$
Power Density (S) mw/cm²

Power Density (S) = 0.0438 mw/cm ²
Limit = (from above table) = 0.519 mw/cm ²

The EUT meets the power density requirements at 20 cm

Test Frequency, MHz	827.81
Power, Conducted, mW (P)	219
Antenna Gain Isotropic	-0.2 dBi
Antenna Gain Numeric (G)	0.95
Antenna Type	Omni
Distance (R)	20 cm

$S = \frac{P * G}{4\pi r^2}$
Power Density (S) mw/cm ²

Power Density (S) = 0.0414 mw/cm ²
Limit = (from above table) = 0.552 mw/cm ²

The EUT meets the power density requirements at 20 cm

Test Frequency, MHz	1730
Power, Conducted, mW (P)	251
Antenna Gain Isotropic	-0.3 dBi
Antenna Gain Numeric (G)	0.93
Antenna Type	Omni
Distance (R)	20 cm

$$S = \frac{P*G}{4\pi r^2}$$
 Power Density (S) mw/cm²

Power Density (S) = 0.0464 mw/cm ²
Limit = (from above table) = 1.0 mw/cm ²

The EUT meets the power density requirements at 20 cm

Test Frequency, MHz	1875.5
Power, Conducted, mW (P)	158
Antenna Gain Isotropic	-0.3 dBi
Antenna Gain Numeric (G)	0.93
Antenna Type	Omni
Distance (R)	20 cm

$S = \frac{P * G}{4\pi r^2}$	
Power Density (S) mw/cm ²	

Power Density (S) = 0.0292 mw/cm ²	
Limit = (from above table) = 1.0 mw/cm ²	

The EUT meets the power density requirements at 20 cm

END OF TEST REPORT