

Report No.: SZEM120400192901

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 74

FCC REPORT

Application No: SZEM1204001929RF

Applicant:Shenzhen Reflying Electronic Co., LtdManufacturer:Shenzhen Reflying Electronic Co., LtdFactory:Shenzhen Reflying Electronic Co., Ltd

Product Name: Bluetooth Audio

Model No.(EUT): RBT-02

Add Model No.: DGNOVWSA FCC ID: A7MRBT-02

Standards: 47 CFR Part 15, Subpart C (2011)

Date of Receipt: 2012-04-20

Date of Test: 2012-04-24 to 2012-05-07

Date of Issue: 2012-09-03

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM120400192901

Page: 2 of 74

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Band Edge (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Model No.: RBT-02, DGNOVWSA

Only the model RBT-02 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color and model name.

Report No.: SZEM120400192901

Page: 3 of 74

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	EST SUMMARY	2
3	cc	ONTENTS	3
4		ENERAL INFORMATION	
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	CLIENT INFORMATION GENERAL DESCRIPTION OF EUT TEST ENVIRONMENT DESCRIPTION OF SUPPORT UNITS TEST LOCATION TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION REQUESTED BY THE CUSTOMER TEST INSTRUMENTS LIST	
5	TE	EST RESULTS AND MEASUREMENT DATA	10
		Antenna Requirement Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time Band-edge for RF Conducted Emissions Spurious RF Conducted Emissions Pseudorandom Frequency Hopping Sequence Radiated Spurious Emission 11.1 Radiated Emission below 1 GHz 11.2 Transmitter Emission above 1 GHz	11 15 22 28 35 38 34 44 51 57 58 61
		BAND EDGE (RADIATED EMISSION)	

Report No.: SZEM120400192901

Page: 4 of 74

4 General Information

4.1 Client Information

Applicant:	Shenzhen Reflying Electronic Co., Ltd
Address of Applicant:	6 Bldg, GaoXinJian Industrial zone, HePing village, Fuyong Town, Bao'an district, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Reflying Electronic Co., Ltd
Address of Manufacturer:	6 Bldg, GaoXinJian Industrial zone, HePing village, Fuyong Town, Bao'an district, Shenzhen, Guangdong, China
Factory:	Shenzhen Reflying Electronic Co., Ltd
Address of Factory:	6 Bldg, GaoXinJian Industrial zone, HePing village, Fuyong Town, Bao'an district, Shenzhen, Guangdong, China

4.2 General Description of EUT

_	· · · · · · · · · · · · · · · · · · ·
Name:	Bluetooth Audio
Model No.:	RBT-02, DGNOVWSA
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	2.1+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Test Power Grade:	03
Test Software of EUT:	RF Control Kit v1.0
Antenna Type	Integral
Antenna Gain	2.0dBi
AC adapter:	USB charge
EUT power supply:	- PL032025
	+ 120mAh 3.7V
USB Line:	<3M
AUX IN:	<3M
Test Voltage:	5V DC from PC (120V/60Hz) & 3.7V DC from battery

Report No.: SZEM120400192901

Page: 5 of 74

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM120400192901

Page: 6 of 74

4.3 Test Environment

Operating Environment:		
Temperature:	26.0 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	1002 mbar	

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
PC	DELL	DCSM
LCD-displaying	DELL	SP2208WFPt
KEYBOARD	DELL	SK-8115
MOUSE	Lenovo	MO28UOL
PC	IBM	8172
LCD-displaying	Lenovo	L1711pC
KEYBOARD	IBM	SK-8115
MOUSE	Lenovo	MO28UOA
Coder	HengTong ELECTRON	HT4000
Printer	Canon	BJC-1000SP
Speaker	N/A	N/A
Mobile phone	Nokia	6300

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM120400192901

Page: 7 of 74

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM120400192901

Page: 8 of 74

4.10 Test Instruments List

RE i	n Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2013-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2013-05-17
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2012-10-29
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2012-10-29
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2012-10-29
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2013-05-17
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2012-11-26
9	Coaxial cable	SGS	N/A	SEL0027	2013-05-59
10	Coaxial cable	SGS	N/A	SEL0189	2013-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2013-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2013-05-29
13	Band filter	Amindeon	82346	SEL0094	2013-05-17
14	Barometer	Chang Chun	DYM3	SEL0088	2013-05-24
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2012-10-23
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2012-10-27
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2013-05-17
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2012-10-23
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2013-06-04

Report No.: SZEM120400192901

Page: 9 of 74

	Conducted Emission				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2013-06-10
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2012-10-23
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2013-5-17
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8-02	SEL0162	2012-11-11
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4-02	SEL0163	2012-11-11
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	SEL0164	2012-11-11
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2013-5-17
8	Coaxial Cable	SGS	N/A	SEL0025	2013-05-29
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2012-10-23
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2012-10-27
11	Barometer	Chang Chun	DYM3	SEL0088	2013-05-24

RF c	onnected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd))
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2012-10-23
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2012-10-27
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2012-10-23
4	Coaxial cable	SGS	N/A	SEL0178	2013-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2013-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2013-05-24
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2013-05-17
8	Band filter	amideon	82346	SEL0094	2013-05-17
9	POWER METER	R&S	NRVS	SEL0144	2012-10-23
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2013-05-17
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2012-11-29

Report No.: SZEM120400192901

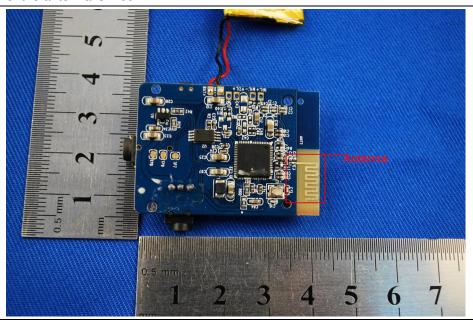
Page: 10 of 74

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

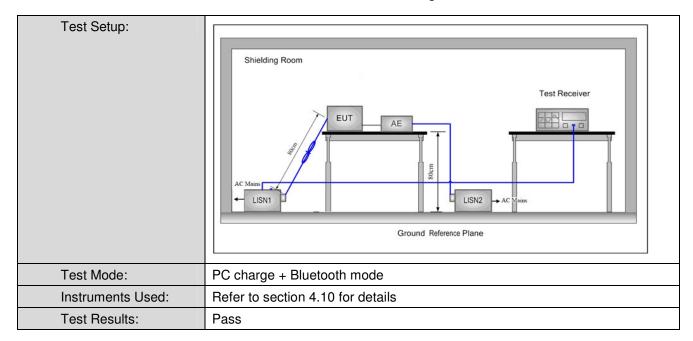
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.0dBi.

Report No.: SZEM120400192901

Page: 11 of 74


5.2 Conducted Emissions

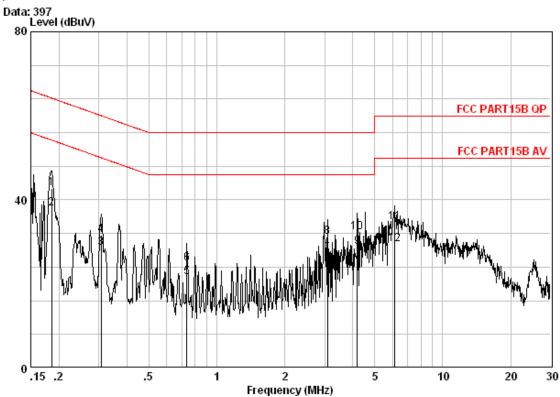
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150kHz to 30MHz			
Limit:	Fraguenov rango (MIII-)	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		-
Test Procedure:	 The mains terminal disturt room. 	bance voltage test was	s conducted in a shie	elded
	2) The EUT was connected to	AC power source thro	ough a LISN 1 (Line	
	Impedance Stabilization N	'	•	near
	impedance. The power cal			
	connected to a second LIS		•	
	reference plane in the sam			
	measured. A multiple sock	·	•	
	power cables to a single L exceeded.	ion provided the rating	of the Lisin was not	
	The tabletop EUT was place.	ced upon a non-metallio	c table 0.8m above tl	he
	ground reference plane. A			
	placed on the horizontal gr	ound reference plane,		
	4) The test was performed wi	th a vertical ground ref	erence plane. The re	ar
	of the EUT shall be 0.4 m	•	•	те
	vertical ground reference p		~	
	reference plane. The LISN	•	•	he
	unit under test and bonded	•	•	
	mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of			of
	the EUT and associated ed			
	5) In order to find the maximu			۷.
	equipment and all of the in		•	to
	ANSI C63.10: 2009 on cor			

Report No.: SZEM120400192901

Page: 12 of 74

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM120400192901

Page: 13 of 74

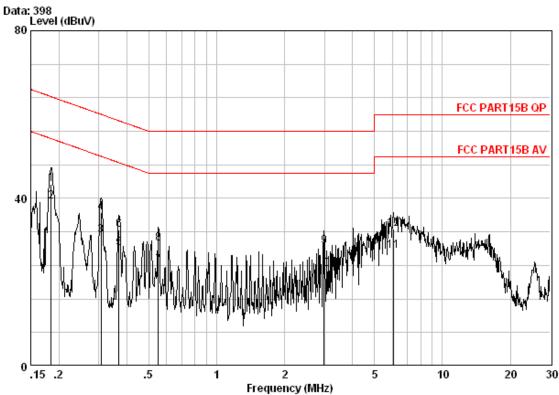
Live line:

Site : Shielding Room

Condition : FCC PART15B QP CE-20101216 LINE

Job No. : 1929RF

Mode : PC charge + TX


	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18541	0.04	9.60	33.07	42.71	64.24	-21.53	QP
2	0.18541	0.04	9.60	28.28	37.92	54.24	-16.32	Average
3	0.30671	0.05	9.60	18.90	28.55	50.06	-21.50	Average
4	0.30671	0.05	9.60	21.86	31.51	60.06	-28.55	QP
5	0.73519	0.06	9.70	11.91	21.67	46.00	-24.33	Average
6	0.73519	0.06	9.70	15.16	24.92	56.00	-31.08	QP
7	3.090	0.14	9.75	17.43	27.32	46.00	-18.68	Average
8	3.090	0.14	9.75	21.31	31.20	56.00	-24.80	QP
9	4.180	0.16	9.78	18.83	28.77	46.00	-17.23	Average
10	4.180	0.16	9.78	22.36	32.30	56.00	-23.70	QP
11	6.121	0.18	9.86	24.69	34.73	60.00	-25.27	QP
12	6.121	0.18	9.86	19.47	29.51	50.00	-20.49	Average

Report No.: SZEM120400192901

Page: 14 of 74

Neutral line:

Site : Shielding Room

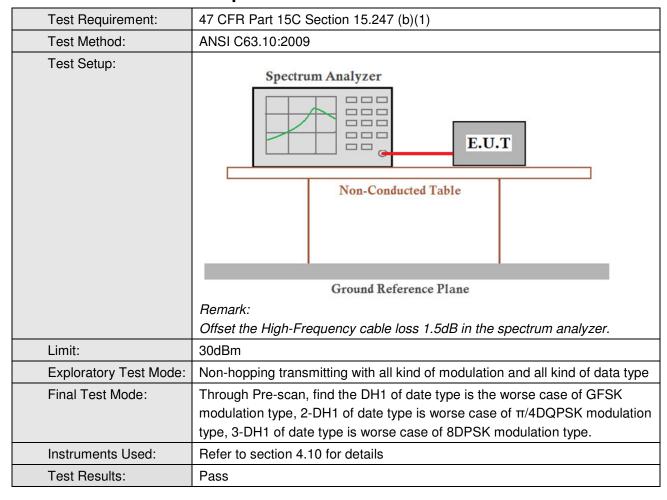
Condition : FCC PART15B QP CE-20101216 NEUTRAL

Job No. : 1929RF

Mode : PC charge + TX

.10 0110160 . 111							
-	Cable	LISN	Read		Limit	Over	
Freq	Loss	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.18443	0.04	9.60	33.78	43.42	64.28	-20.86	QP
0.18443	0.04	9.60	29.63	39.27	54.28	-15.02	Average
0.30671	0.05	9.60	21.52	31.17	50.06	-18.89	Average
0.30671	0.05	9.60	26.95	36.60	60.06	-23.46	QP
0.36920	0.05	9.60	18.41	28.07	48.52	-20.45	Average
0.36920	0.05	9.60	22.78	32.43	58.52	-26.08	QP
0.55226	0.06	9.63	14.38	24.07	46.00	-21.93	Average
0.55226	0.06	9.63	19.52	29.21	56.00	-26.79	QP
2.993	0.14	9.74	18.65	28.53	56.00	-27.47	QP
2.993	0.14	9.74	13.28	23.16	46.00	-22.84	Average
6.089	0.18	9.80	17.55	27.53	50.00	-22.47	Average
6.089	0.18	9.80	22.72	32.70	60.00	-27.30	QP
	Freq MHz 0.18443 0.18443 0.30671 0.36920 0.36920 0.55226 0.55226 2.993 2.993 6.089	Cable Freq Loss MHz dB 0.18443 0.04 0.18443 0.04 0.30671 0.05 0.30671 0.05 0.36920 0.05 0.36920 0.05 0.55226 0.06 0.55226 0.06 2.993 0.14 2.993 0.14 6.089 0.18	MHz dB dB 0.18443 0.04 9.60 0.18443 0.04 9.60 0.30671 0.05 9.60 0.30671 0.05 9.60 0.36920 0.05 9.60 0.36920 0.05 9.60 0.55226 0.06 9.63 0.55226 0.06 9.63 2.993 0.14 9.74 2.993 0.14 9.74 6.089 0.18 9.80	Cable LISN Read Loss Factor Level MHz dB dB dBuV 0.18443 0.04 9.60 33.78 0.18443 0.04 9.60 29.63 0.30671 0.05 9.60 21.52 0.36920 0.05 9.60 26.95 0.36920 0.05 9.60 18.41 0.35226 0.06 9.63 14.38 0.55226 0.06 9.63 19.52 2.993 0.14 9.74 18.65 2.993 0.14 9.74 13.28 6.089 0.18 9.80 17.55	Cable LISN Read Level Loss Factor Level Level MHz dB dB dB dBuV dBuV 0.18443 0.04 9.60 33.78 43.42 0.18443 0.04 9.60 29.63 39.27 0.30671 0.05 9.60 21.52 31.17 0.30671 0.05 9.60 26.95 36.60 0.36920 0.05 9.60 18.41 28.07 0.36920 0.05 9.60 22.78 32.43 0.55226 0.06 9.63 14.38 24.07 0.55226 0.06 9.63 19.52 29.21 2.993 0.14 9.74 18.65 28.53 2.993 0.14 9.74 13.28 23.16 6.089 0.18 9.80 17.55 27.53	Cable LISN Factor Read Level Level Level Line MHz dB dB dBuV dBuV dBuV 0.18443 0.04 9.60 33.78 43.42 64.28 0.18443 0.04 9.60 29.63 39.27 54.28 0.30671 0.05 9.60 21.52 31.17 50.06 0.36920 0.05 9.60 26.95 36.60 60.06 0.36920 0.05 9.60 18.41 28.07 48.52 0.55226 0.06 9.63 14.38 24.07 46.00 0.55226 0.06 9.63 19.52 29.21 56.00 2.993 0.14 9.74 18.65 28.53 56.00 2.993 0.14 9.74 13.28 23.16 46.00 6.089 0.18 9.80 17.55 27.53 50.00	Cable LISN Read Limit Over Loss Factor Level Level Line Limit MHz dB dB dBuV dBuV

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM120400192901

Page: 15 of 74

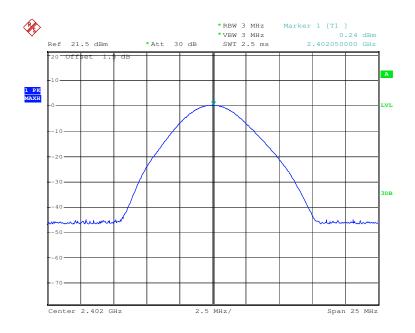
5.3 Conducted Peak Output Power

Report No.: SZEM120400192901

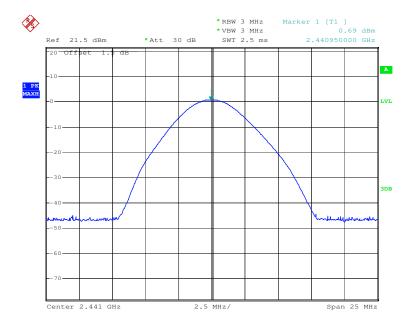
Page: 16 of 74

Measurement Data

weasurement Data						
	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.24	30.00	Pass			
Middle	0.69	30.00	Pass			
Highest	0.91	30.00	Pass			
	π/4DQPSK m	node				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.03	30.00	Pass			
Middle	0.53	30.00	Pass			
Highest	0.82	30.00	Pass			
8DPSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-0.07	30.00	Pass			
Middle	0.62	30.00	Pass			
Highest	0.62	30.00	Pass			



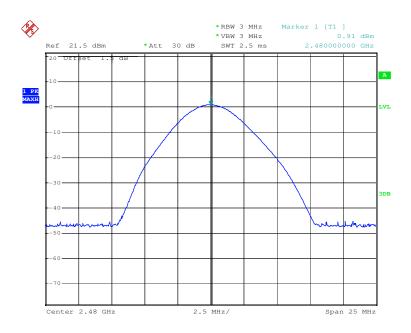
Report No.: SZEM120400192901

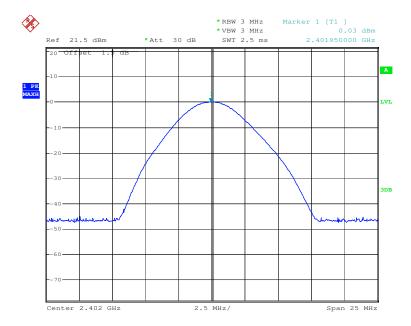

Page: 17 of 74

Test plot as follows:

Test mode: GFSK Test channel: Lowest

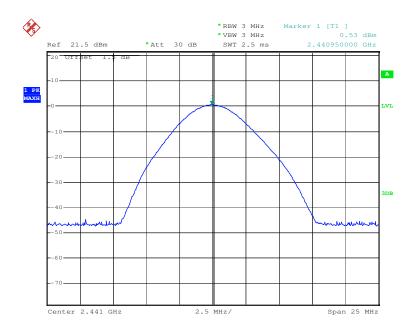
Test mode: GFSK Test channel: Middle

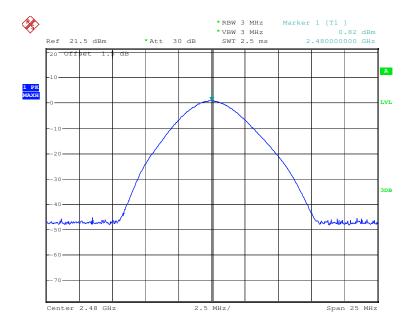



Report No.: SZEM120400192901

Page: 18 of 74

Test mode: GFSK Test channel: Highest

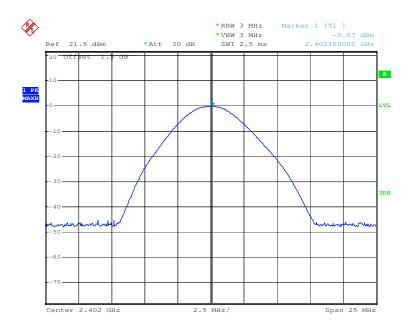


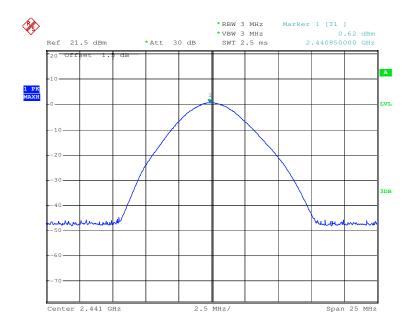

Report No.: SZEM120400192901

Page: 19 of 74

Test mode: π/4DQPSK Test channel: Middle

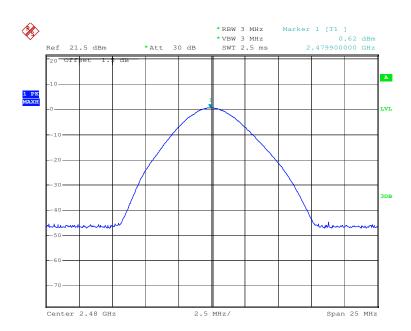
Test mode: π/4DQPSK Test channel: Highest




Report No.: SZEM120400192901

Page: 20 of 74

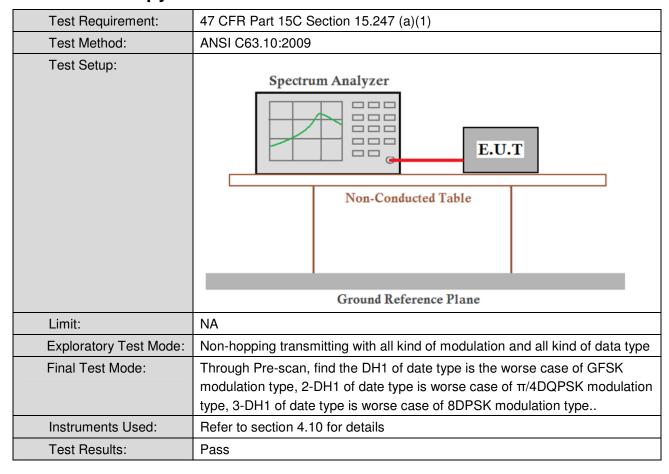
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM120400192901

Page: 21 of 74

Test mode: 8DPSK Test channel: Highest



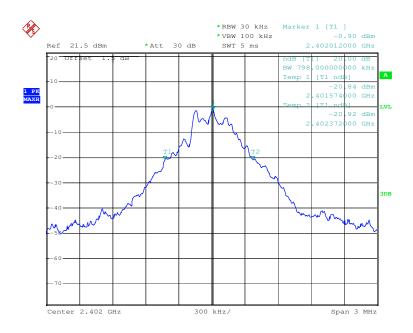
Report No.: SZEM120400192901

Page: 22 of 74

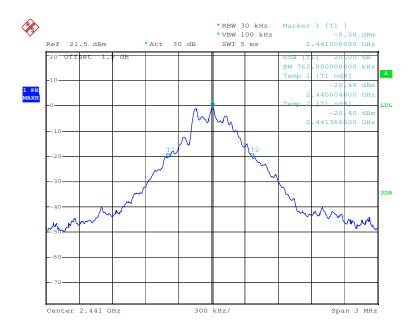
5.4 20dB Occupy Bandwidth

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)				
rest channel	GFSK	π/4DQPSK	8DPSK		
Lowest	798	1188	1194		
Middle	762	1182	1182		
Highest	738	1182	1188		

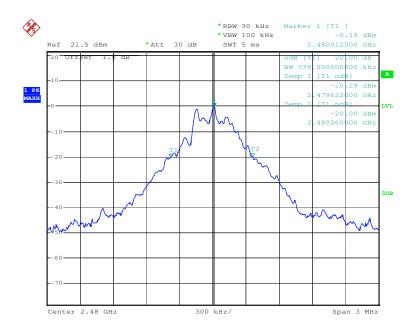


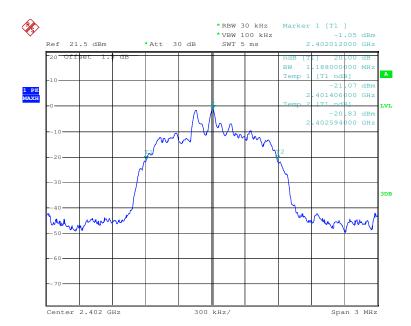
Report No.: SZEM120400192901


Page: 23 of 74

Test plot as follows:

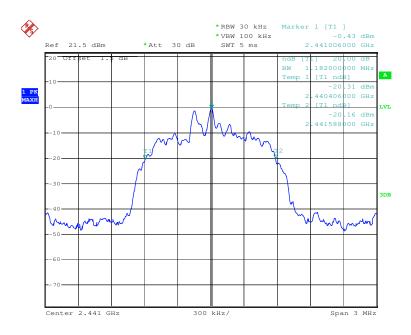
Test mode: GFSK Test channel: Lowest

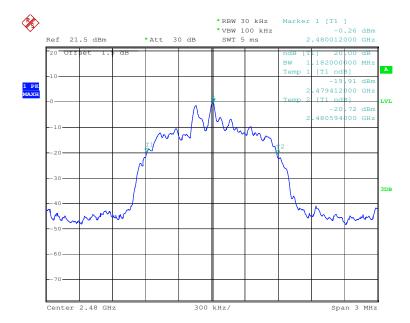



Report No.: SZEM120400192901

Page: 24 of 74

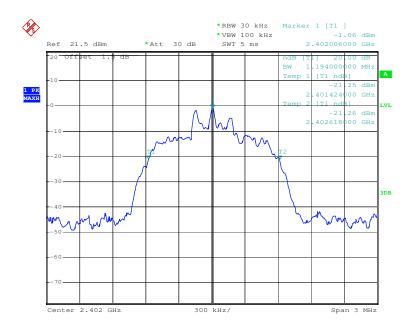
Test mode: GFSK Test channel: Highest

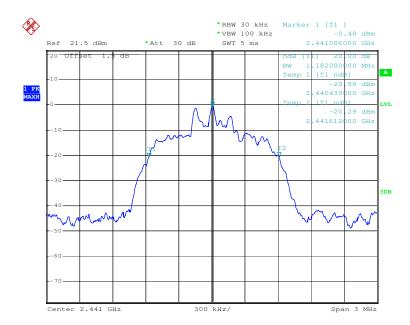



Report No.: SZEM120400192901

Page: 25 of 74

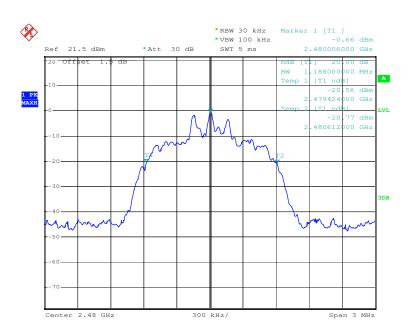
Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM120400192901

Page: 26 of 74

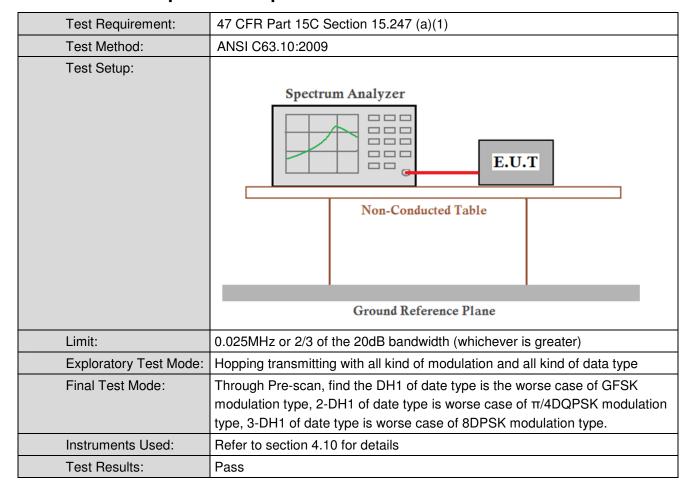
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM120400192901

Page: 27 of 74

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM120400192901

Page: 28 of 74

5.5 Carrier Frequencies Separation

Report No.: SZEM120400192901

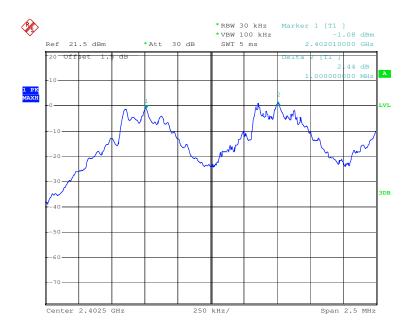
Page: 29 of 74

Measurement Data

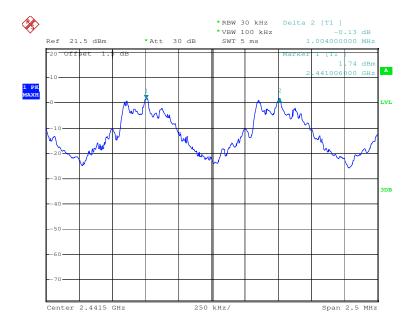
GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	≥796	Pass	
Middle	1004	≥796	Pass	
Highest	1002	≥796	Pass	
	π/4DQPSK m	node		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1004	≥796	Pass	
Middle	1000	≥796	Pass	
Highest	1002	≥796	Pass	
8DPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1005	≥796	Pass	
Middle	1000	≥796	Pass	
Highest	1000	≥796	Pass	

Note: According to section 5.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	798	532
π/4DQPSK	1188	792
8DPSK	1194	796



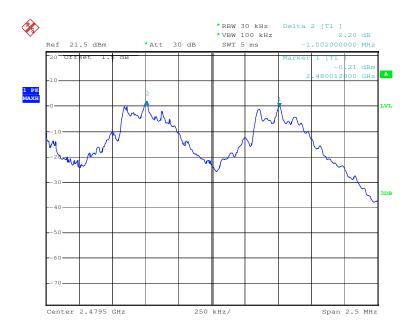
Report No.: SZEM120400192901

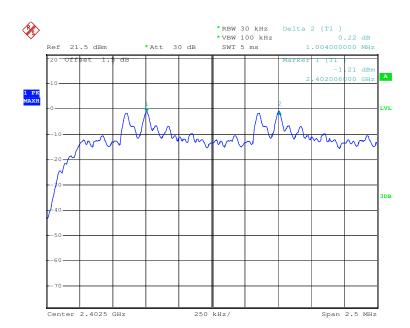

Page: 30 of 74

Test plot as follows:

Test mode: GFSK Test channel: Lowest

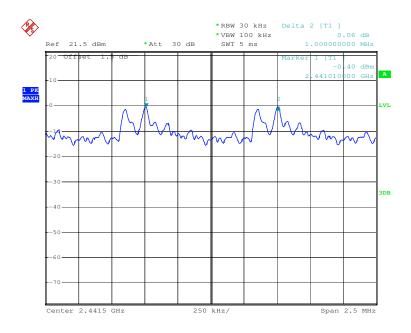
Test mode: GFSK Test channel: Middle

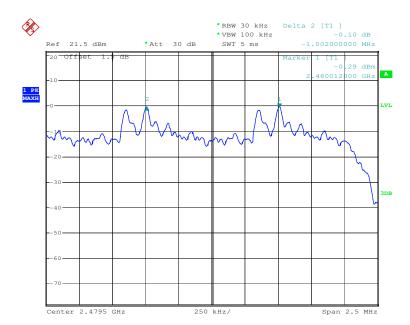



Report No.: SZEM120400192901

Page: 31 of 74

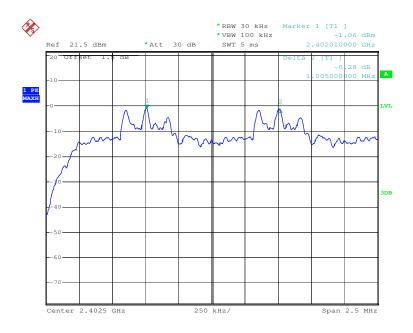
Test mode: GFSK Test channel: Highest

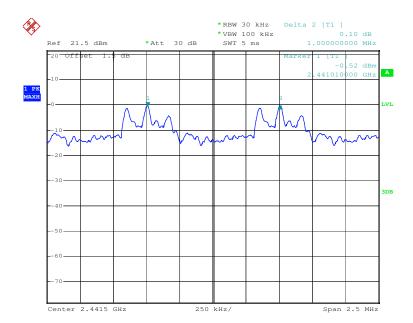



Report No.: SZEM120400192901

Page: 32 of 74

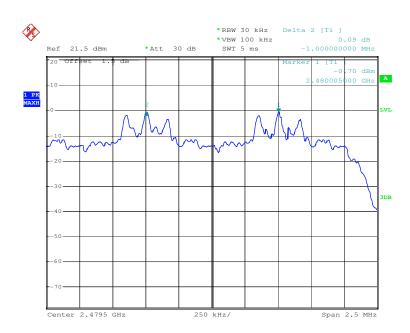
Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM120400192901

Page: 33 of 74

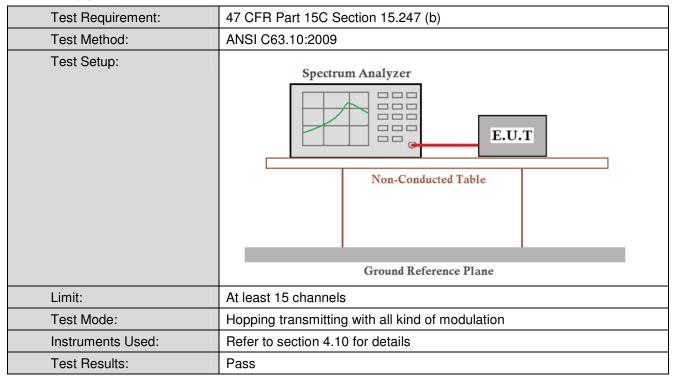
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM120400192901

Page: 34 of 74

Test mode: 8DPSK Test channel: Highest



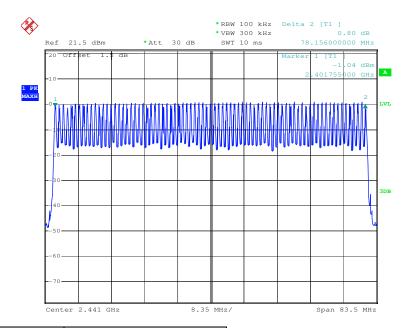
Report No.: SZEM120400192901

Page: 35 of 74

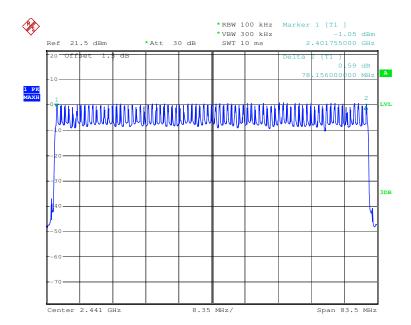
5.6 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit	
GFSK	79	≥15	
π/4DQPSK	79	≥15	
8DPSK	79	≥15	



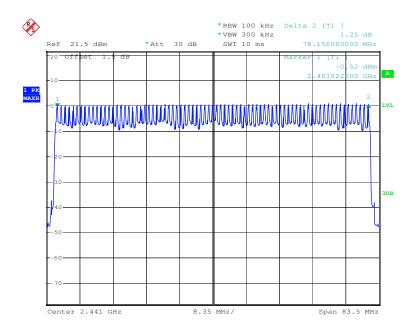
Report No.: SZEM120400192901


Page: 36 of 74

Test plot as follows:

Test mode: GFSK

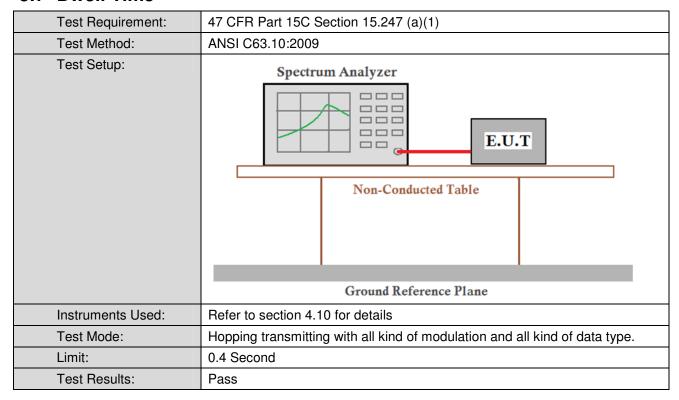
Test mode: π/4DQPSK



Report No.: SZEM120400192901

Page: 37 of 74

Test mode: 8DPSK



Report No.: SZEM120400192901

Page: 38 of 74

5.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.1328	0.4
GFSK	DH3	0.2712	0.4
	DH5	0.3152	0.4
	2-DH1	0.1344	0.4
π/4DQPSK	2-DH3	0.2688	0.4
	2-DH5	0.3136	0.4
	3-DH1	0.1360	0.4
8DPSK	3-DH3	0.2696	0.4
	3-DH5	0.3141	0.4

Test Result:

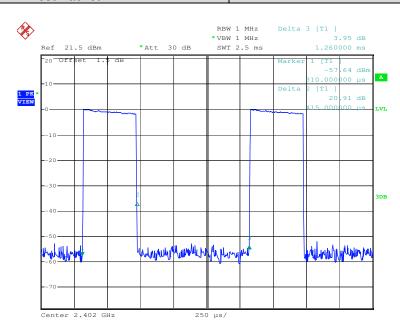
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

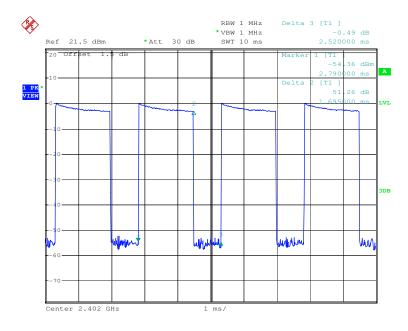
DH1 time slot=0.415(ms)*(1600/ (2*79))*31.6=132.8ms

DH3 time slot=1.695(ms)*(1600/ (4*79))*31.6=271.2ms

DH5 time slot=2.955(ms)*(1600/ (6*79))*31.6=315.2ms

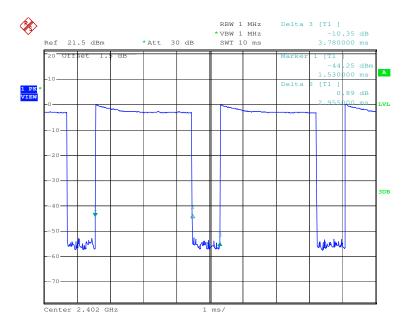


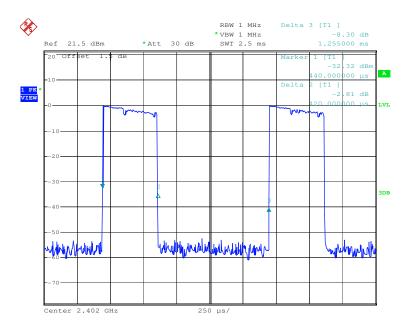
Report No.: SZEM120400192901


Page: 39 of 74

Test plot as follows:

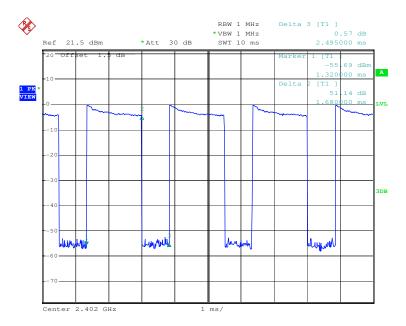
Test Packet: DH3

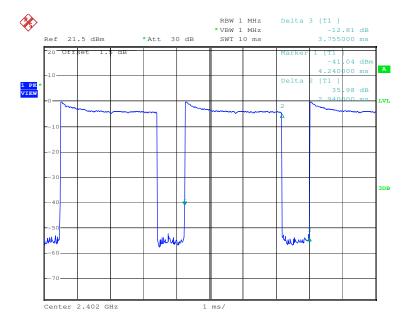



Report No.: SZEM120400192901

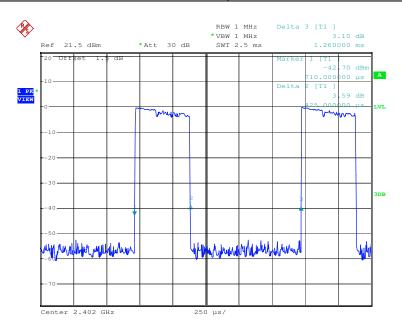
Page: 40 of 74

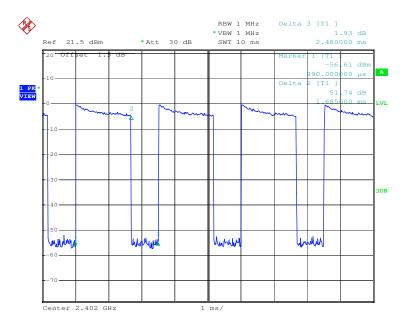
Test Packet: 2-DH1



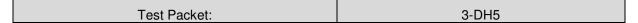

Report No.: SZEM120400192901

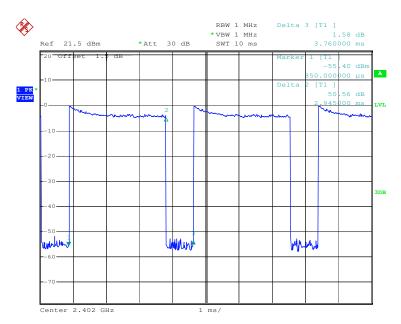
Page: 41 of 74




Report No.: SZEM120400192901

Page: 42 of 74


Test Packet: 3-DH3



Report No.: SZEM120400192901

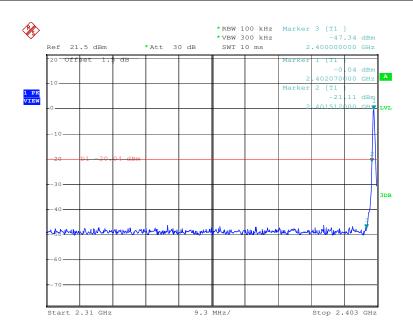
Page: 43 of 74

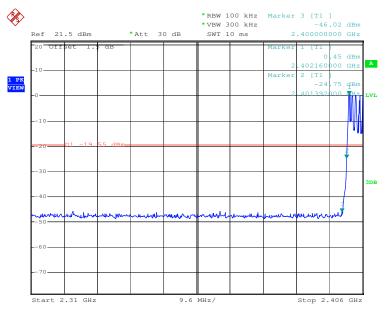
Report No.: SZEM120400192901

Page: 44 of 74

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type, 2-DH1 of date type is worse case of $\pi/4DQPSK$ modulation type, 3-DH1 of date type is worse case of 8DPSK modulation type.				
Instruments Used:	Refer to section 4.10 for details				
Test Results:	Pass				

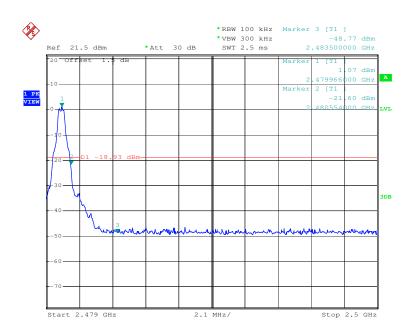


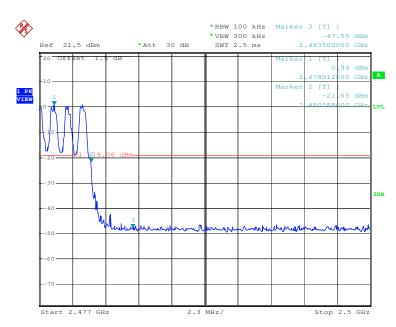

Report No.: SZEM120400192901

Page: 45 of 74

Test plot as follows:

Test mode: GFSK Test channel: Lowest

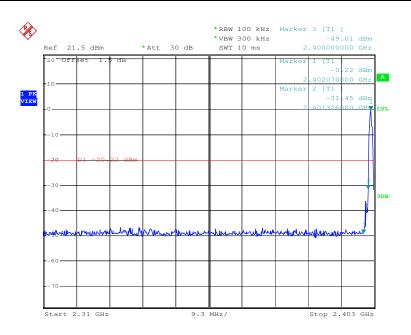


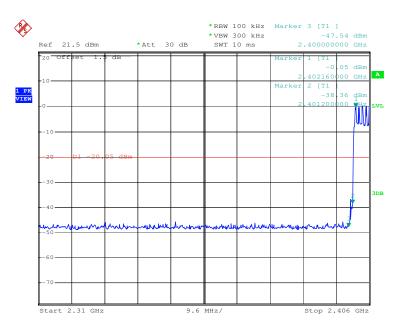


Report No.: SZEM120400192901

Page: 46 of 74

Test mode: GFSK Test channel: Highest

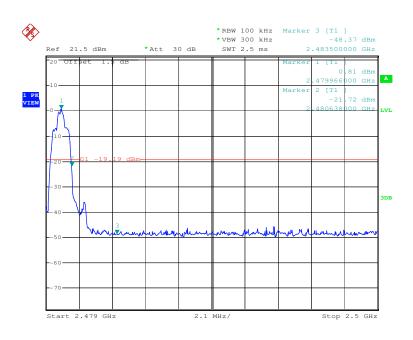


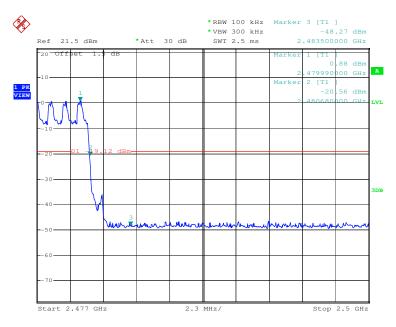


Report No.: SZEM120400192901

Page: 47 of 74

Test mode: π/4DQPSK Test channel: Lowest

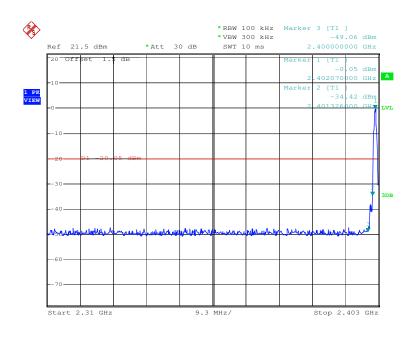


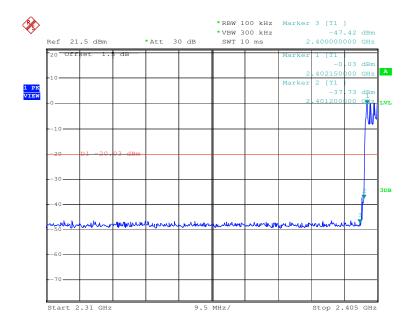


Report No.: SZEM120400192901

Page: 48 of 74

Test mode: π/4DQPSK Test channel: Highest

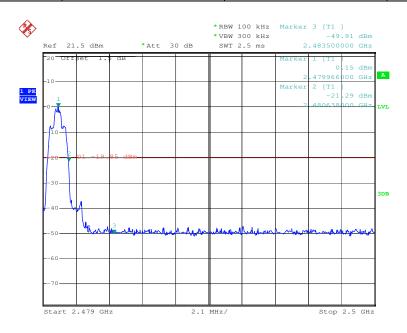


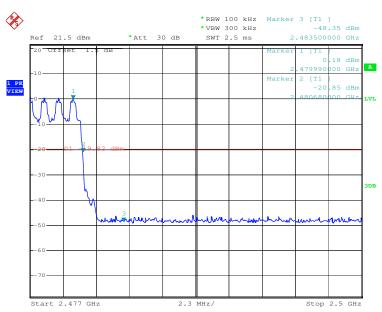


Report No.: SZEM120400192901

Page: 49 of 74

Test mode: 8DPSK Test channel: Lowest





Report No.: SZEM120400192901

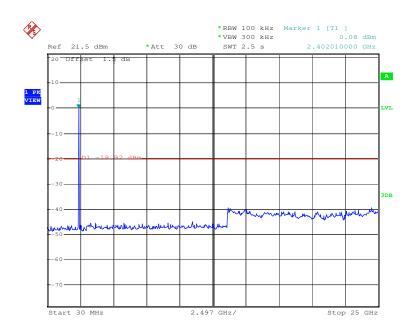
Page: 50 of 74

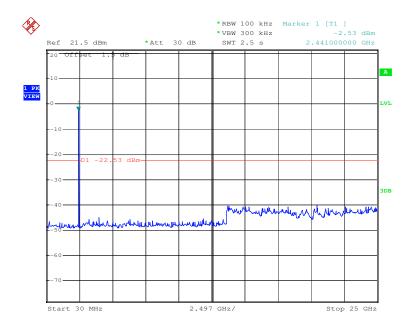
Test mode: 8DPSK Test channel: Highest

Report No.: SZEM120400192901

Page: 51 of 74

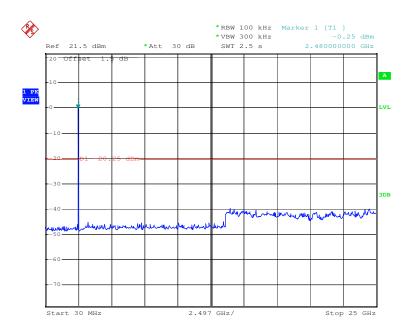
5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type, 2-DH1 of date type is worse case of $\pi/4DQPSK$ modulation type, 3-DH1 of date type is worse case of 8DPSK modulation type.				
Instruments Used:	Refer to section 4.10 for details				
Test Results:	Pass				


Report No.: SZEM120400192901

Page: 52 of 74

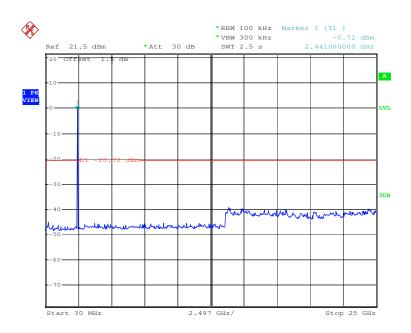
Test mode: GFSK Test channel: Lowest

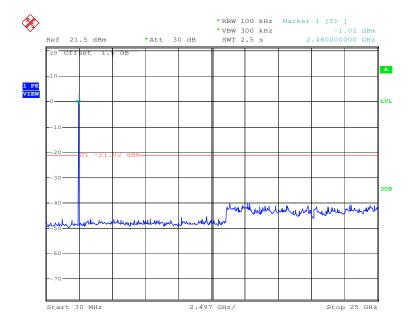


Report No.: SZEM120400192901

Page: 53 of 74

Test mode: GFSK Test channel: Highest

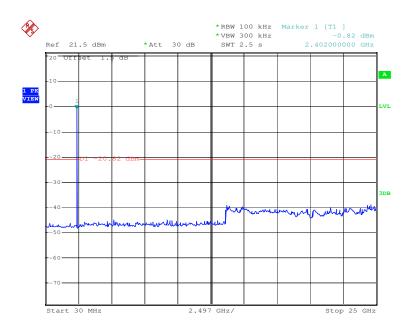



Report No.: SZEM120400192901

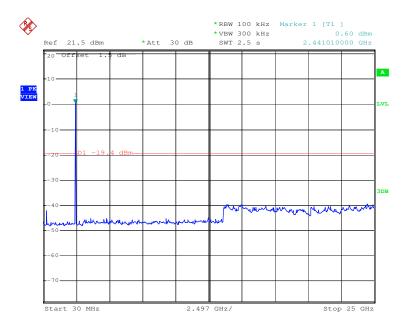
Page: 54 of 74

Test mode: π/4DQPSK Test channel: Middle

Test mode: π/4DQPSK Test channel: Highest



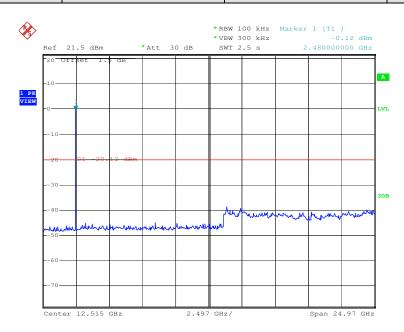
Report No.: SZEM120400192901


Page: 55 of 74

Test mode: 8DPSK Test channel: Lowest

Date: 3.MAY.2012 07:17:34

Test mode: 8DPSK Test channel: Middle



Report No.: SZEM120400192901

Page: 56 of 74

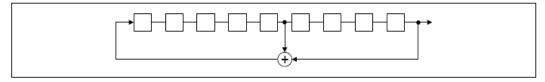
Test mode: 8DPSK Test channel: Highest

Report No.: SZEM120400192901

Page: 57 of 74

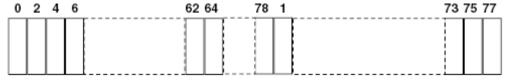
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

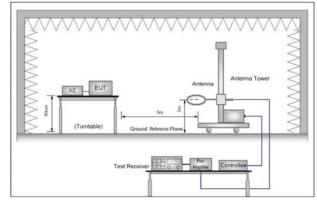
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM120400192901

Page: 58 of 74

5.11 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2009						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak	
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average	
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak	
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	Iz 300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
	Above 1GH2		Peak	1MHz	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz		200	46.0	Quasi-peak	3	
	960MHz-1GHz		500	54.0	Quasi-peak	3	
	Above 1GHz 500			54.0	Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

Report No.: SZEM120400192901

Page: 59 of 74

Test Setup:



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

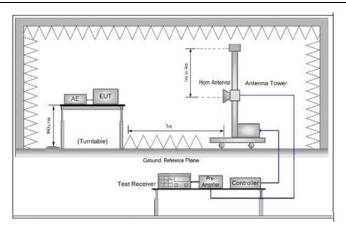


Figure 3. Above 1 GHz

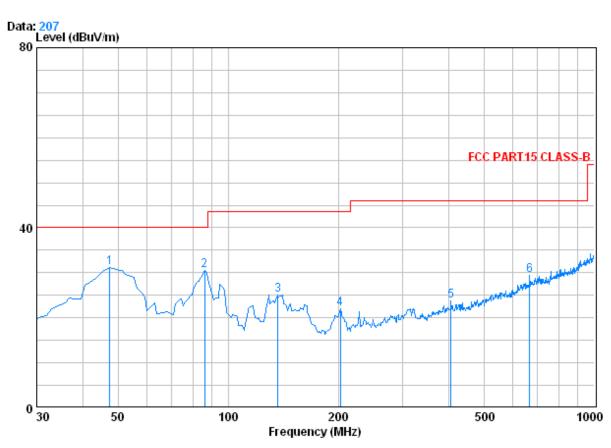
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM120400192901

Page: 60 of 74

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM120400192901

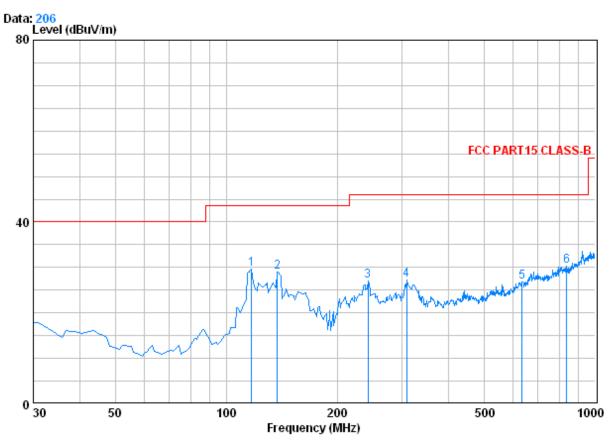
Page: 61 of 74

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

Condition : FCC PART15 CLASS-B 3m 0042673 VERTICAL

Job No. : 1929RF Test mode : TX


		CableA	ntenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	47.460	0.76	8.72	27.30	48.98	31.16	40.00	-8.84
2 0	86.260	1.10	8.36	27.22	48.29	30.52	40.00	-9.48
3	136.700	1.29	7.98	26.97	42.82	25.13	43.50	-18.37
4	202.660	1.42	10.32	26.69	36.93	21.98	43.50	-21.52
5	405.390	2.22	16.32	27.17	32.41	23.78	46.00	-22.22
6	665.350	2.83	21.16	27.45	32.83	29.37	46.00	-16.63

Report No.: SZEM120400192901

Page: 62 of 74

Test mode: Transmitting Horizontal

Condition : FCC PART15 CLASS-B 3m 0042673 HORIZONTAL

Job No. : 1929RF Test mode : TX

	Freq		Antenna Factor	Preamp Factor	Read Level		Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	117.300	1.25	8.08	27.09	47.42	29.66	43.50	-13.84
2	137.670	1.30	8.00	26.97	46.71	29.04	43.50	-14.46
3	242.430	1.64	12.07	26.56	39.80	26.95	46.00	-19.05
4	308.390	1.93	14.20	26.46	37.51	27.18	46.00	-18.82
5	634.310	2.77	20.54	27.49	31.03	26.85	46.00	-19.15
6	836.070	3.35	22.40	27.09	31.53	30.19	46.00	-15.81

Report No.: SZEM120400192901

Page: 63 of 74

5.11.2 Transmitter Emission above 1GHz

Worse case	mode: (GFSK(DH1)	Test	channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1464.963	2.49	28.04	39.33	55.52	46.72	74	-27.28	Vertical
3672.110	3.88	33.41	40.80	48.23	44.72	74	-29.28	Vertical
5448.410	4.94	34.85	41.40	48.37	46.76	74	-27.24	Vertical
7961.425	6.21	36.00	39.23	47.81	50.79	74	-23.21	Vertical
10269.320	6.04	38.02	37.56	45.70	52.20	74	-21.80	Vertical
12210.020	6.52	39.11	38.36	46.59	53.86	74	-20.14	Vertical
1589.289	2.57	28.84	39.39	53.85	45.87	74	-28.13	Horizontal
2987.923	3.31	33.38	40.30	48.50	44.89	74	-29.11	Horizontal
4490.048	4.48	35.15	41.40	47.97	46.20	74	-27.80	Horizontal
6267.190	5.20	36.02	40.69	47.95	48.48	74	-25.52	Horizontal
7547.013	6.17	36.00	39.57	48.18	50.78	74	-23.22	Horizontal
10587.850	6.12	38.33	37.69	45.71	52.47	74	-21.53	Horizontal

Worse case	mode:	GFSK(DH1)) Tes	t channel:	Middle	Rem	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1464.963	2.49	28.04	39.33	54.59	45.79	74	-28.21	Vertical
3112.129	3.41	33.36	40.38	47.86	44.25	74	-29.75	Vertical
3893.520	4.07	33.68	40.95	47.65	44.45	74	-29.55	Vertical
6219.512	5.19	35.96	40.73	48.88	49.30	74	-24.70	Vertical
8703.294	6.17	36.36	38.59	46.69	50.63	74	-23.37	Vertical
11112.520	6.25	38.48	37.91	46.28	53.10	74	-20.90	Vertical
1589.289	2.57	28.84	39.39	54.34	46.36	74	-27.64	Horizontal
3625.669	3.84	33.34	40.76	48.52	44.94	74	-29.06	Horizontal
6172.197	5.17	35.90	40.78	49.02	49.31	74	-24.69	Horizontal
7941.185	6.21	36.00	39.24	48.10	51.07	74	-22.93	Horizontal
9370.083	6.05	37.03	37.99	46.94	52.03	74	-21.97	Horizontal
11963.890	6.46	38.87	38.26	46.75	53.82	74	-20.18	Horizontal

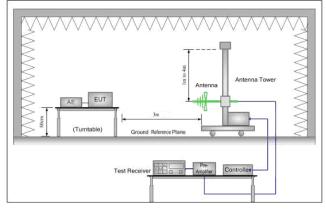
Report No.: SZEM120400192901

Page: 64 of 74

Worse case	mode:	GFSK(DH1)) Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2957.654	3.29	33.33	40.27	46.29	42.64	74	-31.36	Vertical
4724.558	4.63	34.84	41.57	47.81	45.71	74	-28.29	Vertical
5986.509	5.12	35.67	40.94	48.91	48.76	74	-25.24	Vertical
7880.772	6.21	36.00	39.29	47.34	50.26	74	-23.74	Vertical
10805.680	6.17	38.42	37.78	44.62	51.43	74	-22.57	Vertical
11872.880	6.44	38.78	38.22	46.03	53.03	74	-20.97	Vertical
1464.963	2.49	28.04	39.33	57.28	48.48	74	-25.52	Horizontal
3376.244	3.64	33.25	40.58	48.15	44.46	74	-29.54	Horizontal
4278.055	4.35	34.59	41.25	48.92	46.61	74	-27.39	Horizontal
4971.316	4.76	34.43	41.75	50.52	47.96	74	-26.04	Horizontal
6428.771	5.24	36.20	40.55	49.64	50.53	74	-23.47	Horizontal
7489.599	6.10	36.00	39.62	48.80	51.28	74	-22.72	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM120400192901

Page: 65 of 74

5.12Band edge (Radiated Emission)

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2009						
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)				
Limit:	Frequency	Limit (dBuV/m @3m)	Remark				
	30MHz-88MHz	40.0	Quasi-peak Value				
	88MHz-216MHz	43.5	Quasi-peak Value				
	216MHz-960MHz	46.0	Quasi-peak Value				
	960MHz-1GHz	54.0	Quasi-peak Value				
	Above 1GHz	54.0	Average Value				
	Above IGHZ	74.0	Peak Value				
			· · · · · · · · · · · · · · · · · · ·				
Test Setup:							

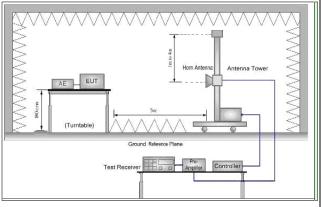


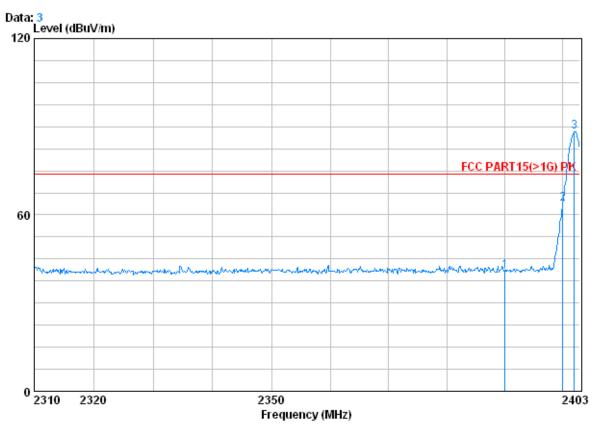
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM120400192901

Page: 66 of 74

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of date type is the worse case of GFSK modulation type
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM120400192901

Page: 67 of 74

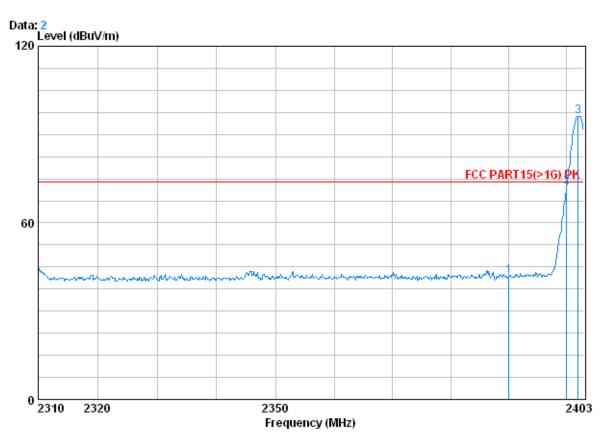
Test plot as follows:

Worse case mode: GFS	FSK (DH5) Test channel:	Lowest Remark:	Peak	Vertical
----------------------	-------------------------	----------------	------	----------

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 1929RF

Mode : 2402 Bandedge


			Cablei	Antenna	Preamp	Read		Limit	Over
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		2390.000	2.98	32.51	39.85	45.27	40.91	74.00	-33.09
2		2400.000	2.98	32.51	39.86	68.16	63.79	74.00	-10.21
3	X	2402.070	2.98	32.51	39.86	92.68	88.32	74.00	14.32

Report No.: SZEM120400192901

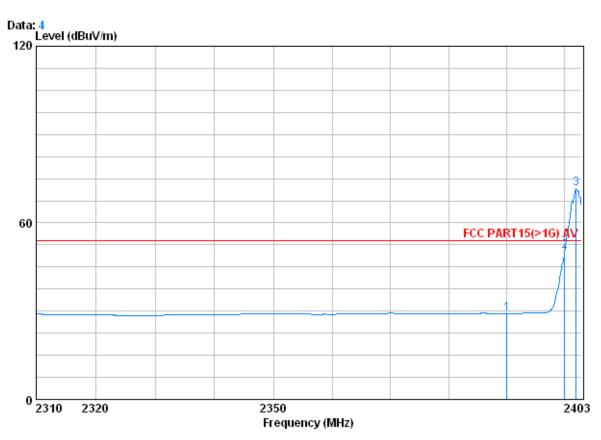
Page: 68 of 74

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 1929RF

Mode : 2402 Bandedge


			Cablei	Antenna	Preamp	Read		Limit	Over
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		2390.000	2.98	32.51	39.85	46.16	41.81	74.00	-32.19
2		2400.000	2.98	32.51	39.86	76.56	72.19	74.00	-1.81
3	X	2402.070	2.98	32.51	39.86	100.55	96.18	74.00	22.18

Report No.: SZEM120400192901

Page: 69 of 74

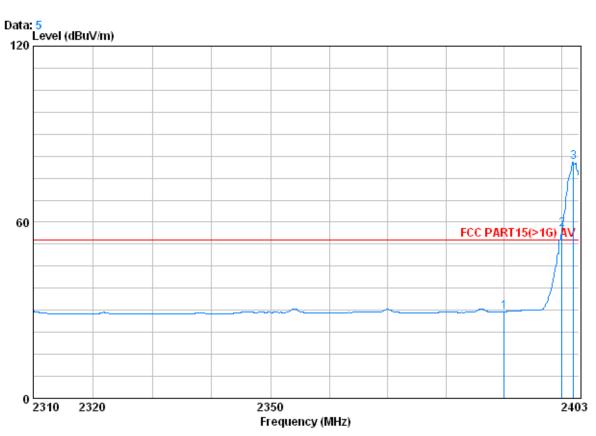
Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Vertical

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 1929RF

Mode : 2402 Bandedge

			Cablei	Antenna	Preamp	Read		Limit	Over
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		2390.000	2.98	32.51	39.85	33.51	29.15	54.00	-24.85
2		2400.000	2.98	32.51	39.86	54.73	50.36	54.00	-3.64
3	X	2402.070	2.98	32.51	39.86	76.06	71.69	54.00	17.69



Report No.: SZEM120400192901

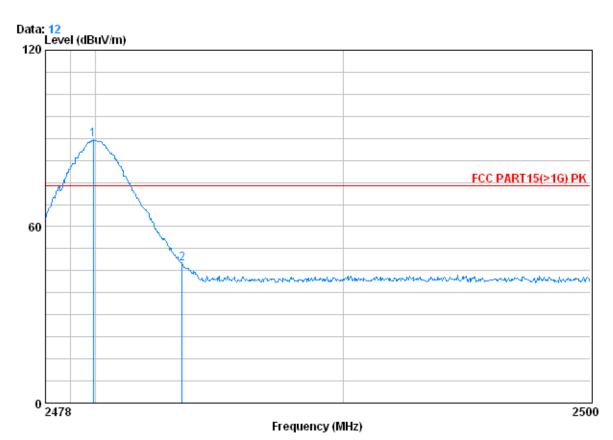
Page: 70 of 74

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Horizontal

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 1929RF

Mode : 2402 Bandedge


	Freq			Preamp Factor			Limit Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2400.000			39.85 39.86				
3 0	2402.070			39.86				

Report No.: SZEM120400192901

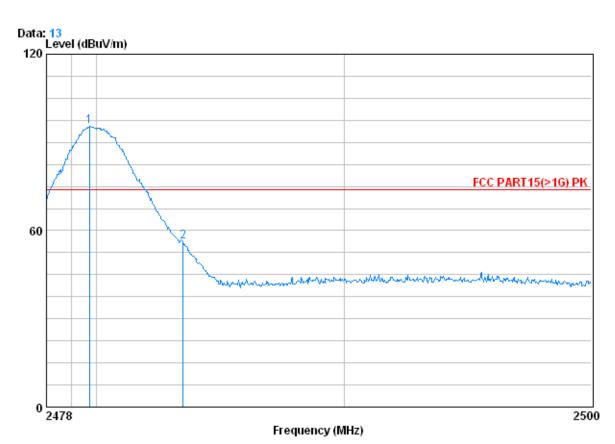
Page: 71 of 74

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 1929RF

Mode : 2480 bandedge


		CableAntenna		Preamp	ceamp Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0	2479.914	3.03	32.67	39.92	93.66	89.44	74.00	15.44
2	2483.500	3.03	32.67	39.92	51.68	47.46	74.00	-26.54

Report No.: SZEM120400192901

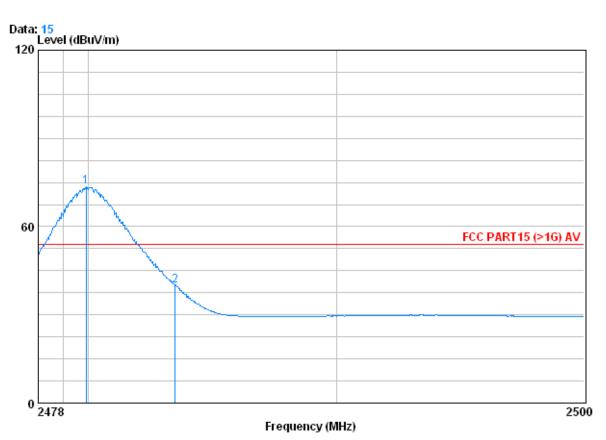
Page: 72 of 74

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 1929RF

Mode : 2480 bandedge


		CableAntenna		Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1 @ 2	2479.738 2483.500			39.92 39.92					

Report No.: SZEM120400192901

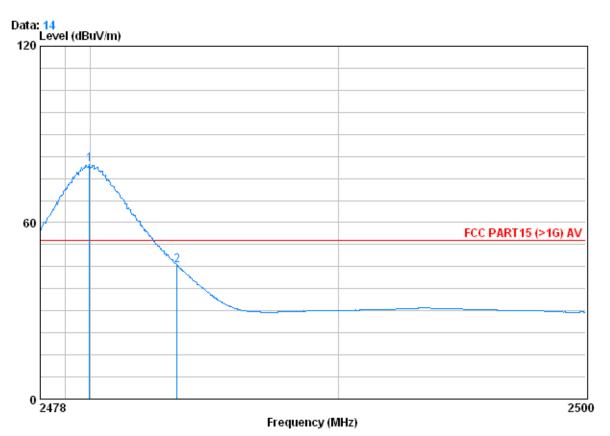
Page: 73 of 74

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Vertical

Condition : FCC PART15 (>1G) AV 3m VERTICAL

Job No. : 1929RF

Mode : 2480 bandedge


		CableAntenna		Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0	2479.914	3.03	32.67	39.92	77.71	73.49	54.00	19.49	
2	2483.500	3.03	32.67	39.92	44.13	39.91	54.00	-14.09	

Report No.: SZEM120400192901

Page: 74 of 74

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Average	Horizontal
------------------	------------	---------------	---------	---------	---------	------------

Condition : FCC PART15 (>1G) AV 3m HORIZONTAL

Job No. : 1929RF

Mode : 2480 bandedge

		CableAntenna		Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0	2479.980	3.03	32.67	39.92	84.06	79.84	54.00	25.84	
2	2483.500	3.03	32.67	39.92	49.60	45.38	54.00	-8.62	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor