

Temperature Range: -20°C to 50°C Test Report authorised:

V2

V0012

1920 - 1930

 $\pi/2$ -DBPSK, $\pi/4$ -DQPSK

Two integrated antennas

Li-Ion battery, 3.6 V DC

5 RF Channels, 5x12 = 60 TDMA Duplex Channels

HW hardware status:

SW software status:

Type of Modulation:

Number of channels:

Frequency [MHz]:

Antenna:

Power Supply:

Test performed:

2020-09-17 Lenjoint, Marco Lab Manager RCE 2020-09-17

Wolf, Joachim Head of Department EPNS

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	3
3	Test s	tandard/s:	3
4	Test E	Invironment	4
5	Summ	nary of Measurement Results	5
-		Set-up	
6		•	
	6.1 6.2	Frequency Measurements	
	6.2 6.3	Conducted Emission Test	
	6.4	Radiated Emission Test	
	6.5	Power Line Conducted Emissions Test	
	6.6 6.7	Monitoring Tests Radiated Output Power Test	
		•	
7	Detail	ed Test Results	11
	7.1	Power Line Conducted Emissions	
	7.2	Digital Modulation Techniques	14
	7.3	Labeling Requirements	14
	7.4	Antenna Requirements	15
	7.5	Channel Frequencies	
	7.6	Automatic Discontinuation of Transmission	16
	7.7	Peak Power Output	
	7.8	Emission Bandwidth B	22
	7.9	Power Spectral Density	27
	7.10	In-Band Unwanted Emissions, Conducted	34
	7.11	Out-of-Band Emissions, Conducted	39
	7.12	Carrier Frequency Stability	43
	7.13	Frame Repetition Stability	47
	7.14	Frame Period and Jitter	
	7.15	Monitoring Threshold, Least Interfered Channel	
	7.16	Threshold Monitoring Bandwidth	
	7.17	Reaction Time and Monitoring Interval	52
	7.18	Time and Spectrum Window Access Procedure	
	7.19	Acknowledgments and Transmission duration	55
	7.20	Dual Access Criteria Check	57
	7.21	Alternative monitoring interval	58
	7.22	Spurious Emissions (Radiated)	58
	7.23	Receiver Spurious Emissions	61
8	Test e	quipment and ancillaries used for tests	64
9		vations	
-			
		Photographs of the Test Set-up	
Anr	nex B:	External Photographs of the EUT	65
Anr	nex C:	Internal Photographs of the EUT	65
Anr	nex D:	Document History	66
Anr	nex E:	Further Information	67
		Accreditation Certificate	
AIII		היטו כעונמנוטון טכו נוווטמוכ	00

2 **General information**

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

RM-WOM was used for testing. As declared by the customer, the three variants (RM-WDR, RM-WGS and RM-WGL) use the same PCB, but with minor population differences. The reduced user interface on the RM-WDR, RM-WGS and RM-WGL variants means, that some parts are not mounted, e.g. colour LED's and capacitive touch points.

The gooseneck variants are identical except for the difference in gooseneck length.

These hardware differences have no impact on the radio performance of the different microphones.

2.2 Application details

Date of receipt of order: 2020-07-07 Date of receipt of test item: 2020-08-31 Start of test: 2020-09-03 End of test: 2020-09-17 Person(s) present during the test:

Test standard/s: 3

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz

	Test	report no.: 1-9102/19-01-07	
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)	
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices	
ANSI C63.4	2014-06	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	

4 Test Environment

Temperature:	 + 22 °C during room temperature tests + 50 °C during high temperature test - 20 °C during low temperature test
Relative humidity content: Air pressure:	38 % not relevant for this kind of testing

Summary of Measurement Results 5

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	5.4	Complies
	15.207(a)	RSS_GEN 7.2 RSS_GEN 8.8	
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and maximum reaction time	15.323(c)(1)	4.3.4	Complies
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5); (7)	4.3.4	Complies
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	Complies
Dual access criteria	15.323(c)(10)	4.3.4	Complies
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
	15.109(a), 15,209(a)	RSS-GEN 7.2.3	
Receiver Spurious Emissions	N/A	6.8	Complies

¹Only applicable for EUT that can initiate a communication link ²The client declares that the tested equipment does not implement this provision ³The tested equipment has integrated antennas only ⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

6 Test Set-up

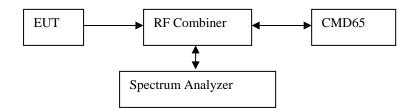
6.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

6.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

6.3 Conducted Emission Test

Test Set-up 3:

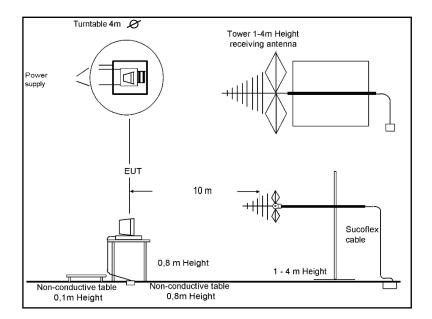
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

6.4 Radiated Emission Test

30 MHz – 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

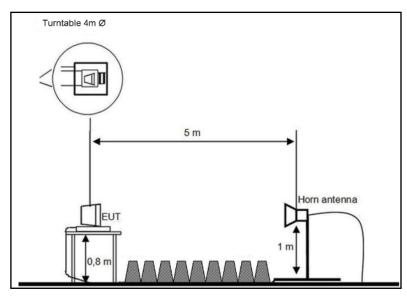
- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

1GHz – 10 GHz:

Test Set-up 5:

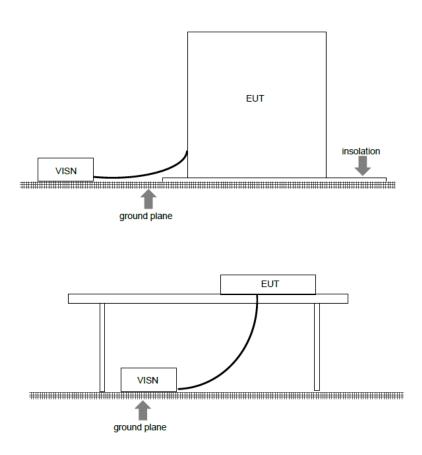

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4) < 18 GHz = 3 m
 - 18-26 GHz = 1,5 m
 - 26-40 GHz = 0,75 m
- The EUT was set into operation.

Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

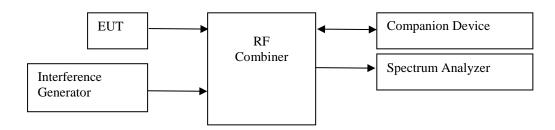
Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



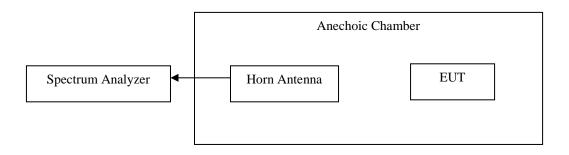
6.5 Power Line Conducted Emissions Test

Test Set-up 6:


According to EMC basic standard ANSI C 63.4

6.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

6.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

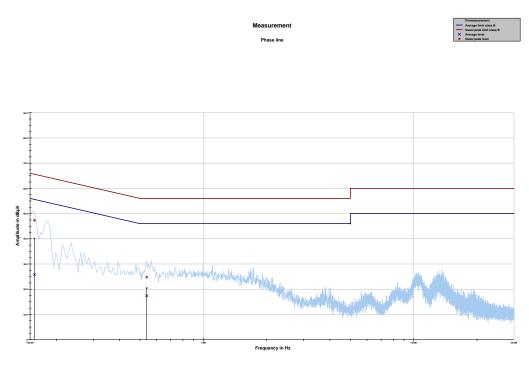
7 Detailed Test Results

7.1 Power Line Conducted Emissions

Measurement Procedure:

ANSI C63.4-2014 using 50µH/50 ohms LISN.

Test Result:


Measurement Data: See attached plots and tables

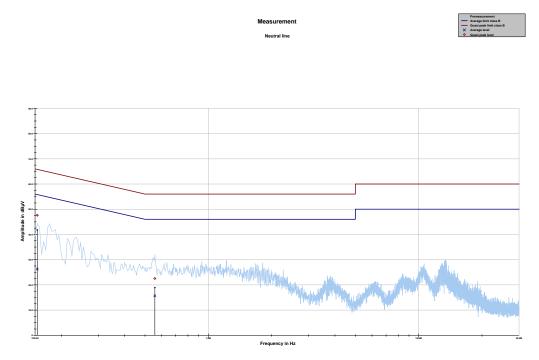
Pass

Requirement: FCC 15.107 (a), FCC 15.207 (a)

Phase Line

Project ID: 1-9102/19-01-08

Phase line tbl


Project ID: 1-9102/19-01-08

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBμV	dB	dBμV	dBμV	dB	dBµV
0.157463	47.35	18.25	65.597	25.82	29.97	55.787
0.538050	24.80	31.20	56.000	17.39	28.61	46.000

Project ID - 1-9102/19-01-08
EUT - RM-WCH-8 + RM-WOM + RM-WDR + RM-WGS + RM-WGL + PA-300C
Serial Number - Z6R000041 + Z6L000132 + Z6M000144 + Z6P000039 + Z6N000069 +
JIID03P1SSY
Operating mode - charging 4 microphones

Neutral Line

Project ID: 1-9102/19-01-08

Neutral line tbl Project ID: 1-9102/19-01-08

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBμV	dBμV	dB	dBµV
0.153731	47.62	18.18	65.796	26.25	29.64	55.893
0.556706	22.53	33.47	56.000	15.63	30.37	46.000

Project ID - 1-9102/19-01-08
EUT - RM-WCH-8 + RM-WOM + RM-WDR + RM-WGS + RM-WGL + PA-300C
Serial Number - Z6R000041 + Z6L000132 + Z6M000144 + Z6P000039 + Z6N000069 +
JIID03P1SSY
Operating mode - charging 4 microphones

7.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

7.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

Test report no.: 1-9102/19-01-07	СТС	advanced member of RWTÜV group
7.4 Antenna Requirements		
Does the EUT have detachable antenna(s)?	Yes	🛛 No
If detachable, is the antenna connector(s) non-standard?	□Yes	🗌 No

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

7.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

7.6 Automatic Discontinuation of Transmission

Does the EUT transmit contro	□Yes	🛛 No	
Type of EUT:	Initiating device	Respond	ding device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	С	Pass
2	EUT switched Off	С	Pass
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	А	Pass
6	Companion device switched Off	N/A	N/A

A – Connection breakdown, Cease of all transmissions

B – Connection breakdown, EUT transmits control and signaling information

C – Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

7.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

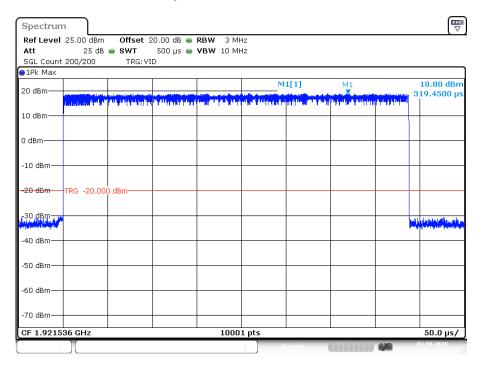
Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) DBPSK	Maximum Radiated Output Power (dBm) DBPSK	Maximum Antenna Gain (dBi) DBPSK
4	1921.536	18.8	19.6	0.8
2	1924.992	18.7	20.1	1.4
0	1928.448	18.6	19.8	1.2

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) DQPSK
4	1921.536	18.8
2	1924.992	18.7
0	1928.448	18.6

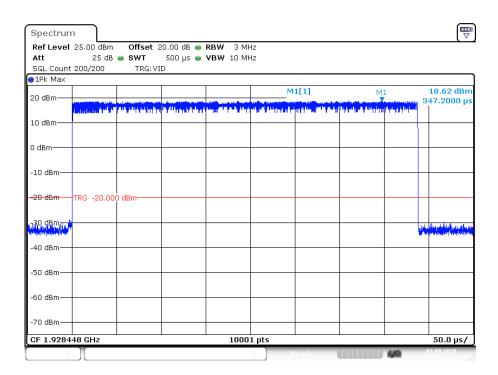
For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

Limit:

Conducted: 100 µW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):21.2 dBm (131 mW)RSS-213, Issue 2:21.2 dBm (131 mW)The antenna gain is below 3 dBi.

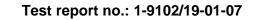

Requirements: FCC 15.319(c)(e). RSS-213, Issue 2

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

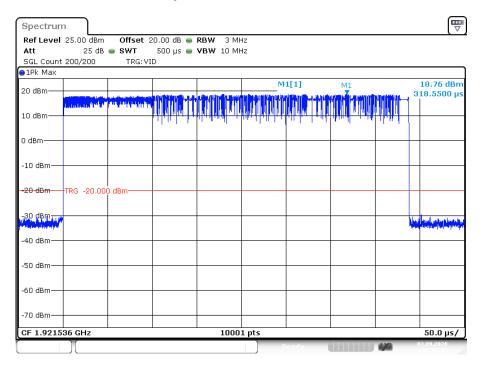

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Conducted Peak Output Power, DBPSK

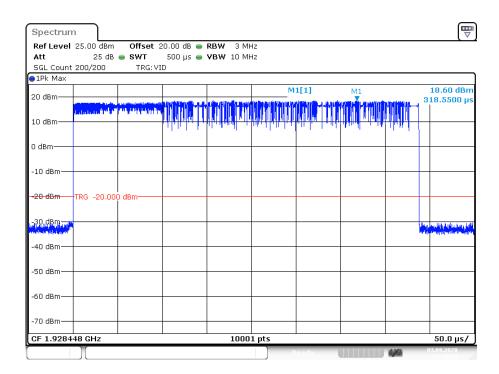
Lower Channel



Upper Channel

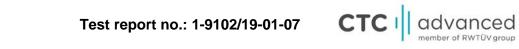

Spectrum							₹
RefLevel 25.00 Att 2	abm Offset: SdB = SWT	20.00 dB 👄 RBW 500 µs 👄 VBV					
GL Count 200/2	-		10 10172				
1Pk Max							
				M1[1]	M1		18.73 dBm
:0 dBm	and a state of the			and a billion of the second		3	19.4500 µs
العليبانية	uinder die Although		I STATE AND A STATE OF	an the state of the	a di seri se di se di se	III Total Strategy	
.0 dBm							
dBm							
10 dBm							
20 dBm TRG -:	20.000 dBm						
30.dBm 						10	and totacil for the stiller of
Intel and the state of the state							
40 dBm							
50 dBm							
60 dBm							
70 dBm							
F 1.924992 GH	7		10001 pts				50.0 µs/

Middle Channel



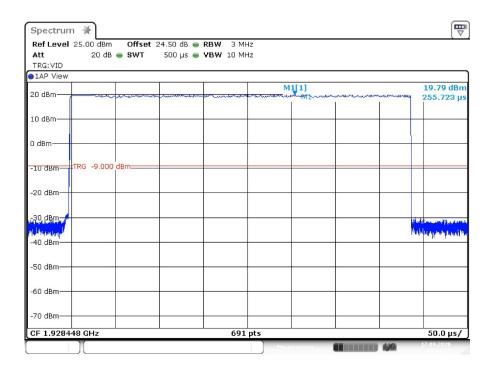
Conducted Peak Output Power, DQPSK

Lower Channel



Upper Channel

Spectrun	n								ſ
	25.00 dBm		20.00 dB 😑						
Att		SWT		VBW 10 MH	łz				
SGL Count	200/200	TRG: VI	D						
JIPK Max						1[1]			18.71 de
20 dBm					IM I	1[1]	M1		318.5500
10 dBm	Latata and the fit								
10 UDIII-			uhit d.	ب السقيم ب	արդիրի հե	ու երերով	هر السنها	11	
0 dBm									
-10 dBm									
-20 dBm	-TRG -20.00) 0 dBm							
-30 dBm									a the second second
ana ang ang ang ang ang ang ang ang ang									in the second surface of the second
-40 dBm									
-50 dBm									
-60 dBm—									
-70 dBm									_
CF 1.9249	92 GHz	1	1	1000	1 pts	1	1	1	50.0 µs
	Т							4.565	03.09.2020


Middle Channel

Radiated Peak Output Power DBPSK

1AP View				M1[1]	M1		19.55 dB
20 dBm —	menun	and a second	 -		un the man	and and the second second	310.071 µ
.0 dBm			 				
dBm			 _	_			
	G -9.000 dBm=						
20 dBm			 				
30 dBm_			 	_			Jick surface as found of
40 dBm			 			~	anning) Arning
50 dBm			 _	_			
60 dBm							

Lower Channel

Upper Channel

Spectrum Ref Level 25.00 dBm	Offset 24.50 dB	RBW 3 MHz			
Att 20 dB =		VBW 10 MHz			
TRG: VID					
1AP View					
20 dBm			M1[1]	-among popular	20.07 dBr
20 uBili				-a-manonight-round	347.028 µ
10 dBm					
10 UBIN					
0 dBm					
-10 dBm TRG -9.000 dB	m				
-20 dBm					
-20 UBIN					
-30 dBm -					and here been been and
dimongate.				1	the second s
-40 dBm					·
-50 dBm					
50 JD					
-60 dBm					
-70 dBm					
CF 1.924992 GHz		691 pts			50.0 µs/

Middle Channel

7.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

Channel No. DBPSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1686
0	1928.448	1689

Channel No. DQPSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1722
0	1928.448	1724

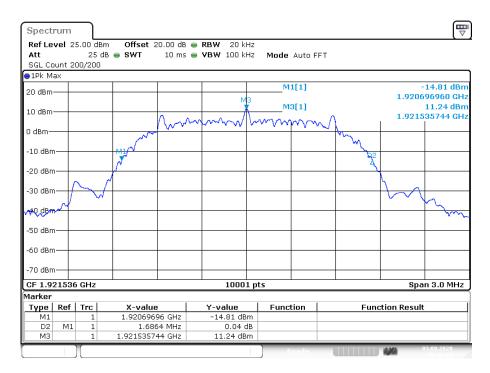
Channel No.	Frequency	99% Bandwidth B
DBPSK	(MHz)	(kHz)
2	1924.992	1686

Channel No.	Frequency	99% Bandwidth B
DQPSK	(MHz)	(kHz)
2	1924.992	1722

Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

Requirement: FCC 15.323(a)

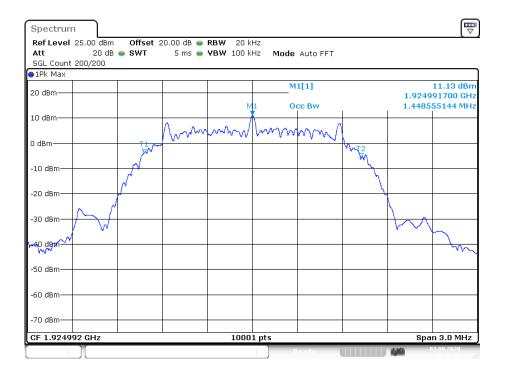
The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


Requirement: RSS-213 Issue 2, clause 6.4

The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

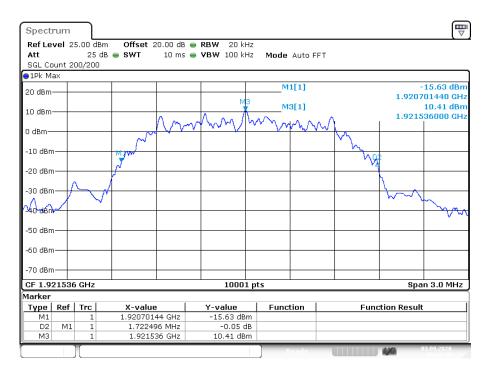
No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

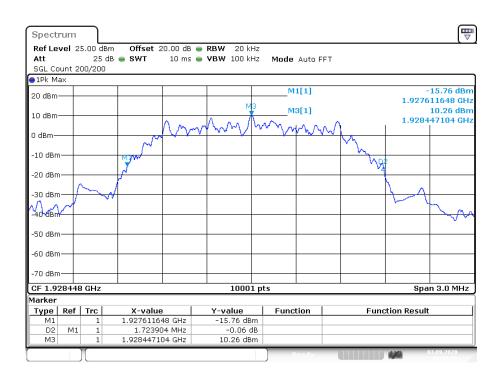
Modulation: DBPSK



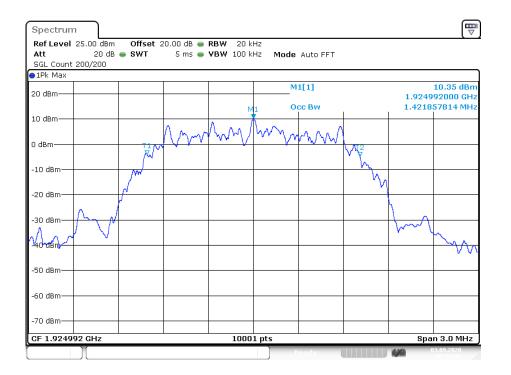
26 dB Emission Bandwidth B, Lower Channel

26 dB Emission Bandwidth B, Upper Channel




99% Emission Bandwidth B, Middle Channel

Modulation: DQPSK



26 dB Emission Bandwidth B, Lower Channel

26 dB Emission Bandwidth B, Upper Channel

99% Emission Bandwidth B, Middle Channel

7.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No. DBPSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.535744	-3.40
0	1928.447104	-3.26

Channel No. DQPSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)		
4	1921.536000	-1.99		
0	1928.447104	-2.32		

Averaged over 100 sweeps.

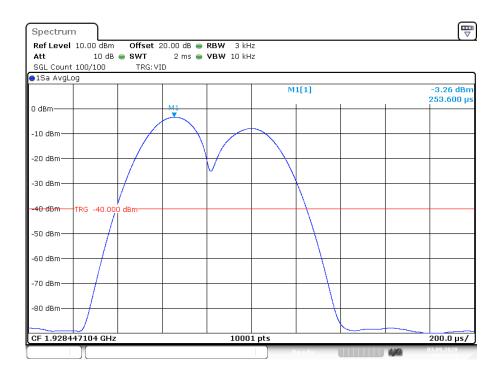
Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density, DBPSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.


Spectrun	ı)								
Ref Level	10.00 dBm	Offset 2	:0.00 dB 😑	RBW 3 kH	z				
Att	10 dB	🔵 SWT	2 ms 👄	VBW 10 kH	z				
SGL Count		TRG: VI	D						
●1Sa AvgLo	og								
					М	1[1]			-3.40 dBm 253.400 µs
0 dBm			M1						
-10 dBm—									
-20 dBm—		_/			\rightarrow				
-30 dBm		/			\				
-40 dBm	TRG -40.000) dBm				\backslash			
-50 dBm									
-60 dBm									
-70 dBm—									
-80 dBm									
CF 1.9215				1000	1 pts		·	·	200.0 µs/
	Υ				,	eady		4,74	03.09.2020

Pulse power [dBm]	-3.40
Pulse power [mW]	0.46

Upper Channel:

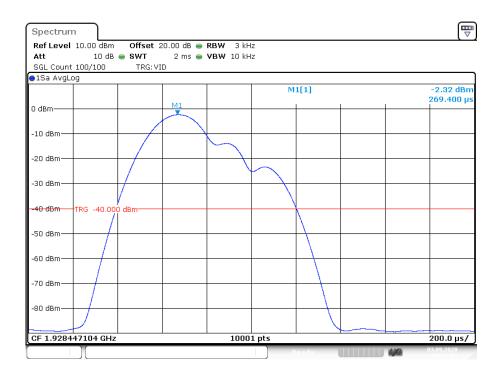
Frequency of the maximum level was recorded under chapter 5.9.

Pulse power [dBm]	-3.26
Pulse power [mW]	0.47

Power Spectral Density, DQPSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.


Spectrun	n								
Ref Level	10.00 dBm	Offset 2	20.00 dB 👄	RBW 3 kH	Z				`
Att	10 dB	e swt	2 ms 👄	VBW 10 kH	z				
SGL Count		TRG: VI	D						
😑 1Sa AvgLi	og								
			M1		М	1[1]	1		-1.99 dBm 277.400 μs
0 dBm		/	-						
-10 dBm—									
-20 dBm—									
-30 dBm		/			\rightarrow				
-40 dBm	TRG -40.00	/ 0 dBm			\				
-50 dBm—						\rightarrow			
-60 dBm									
-70 dBm—									
-80 dBm						-			
CF 1.9215	26 CH2			1000	1 ntc			<u> </u>	200.0
UCF 1.9215	30 GHZ			1000	r prs	_			200.0 µs/
[Л				R	eady		4/4	05.09.2020

Pulse power [dBm]	-1.99
Pulse power [mW]	0.63

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

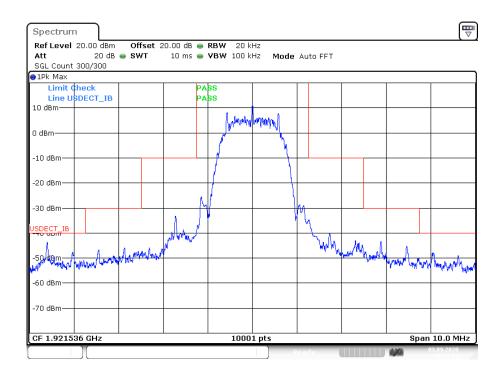
Pulse power [dBm]	-2.32
Pulse power [mW]	0.59

7.10 In-Band Unwanted Emissions, Conducted

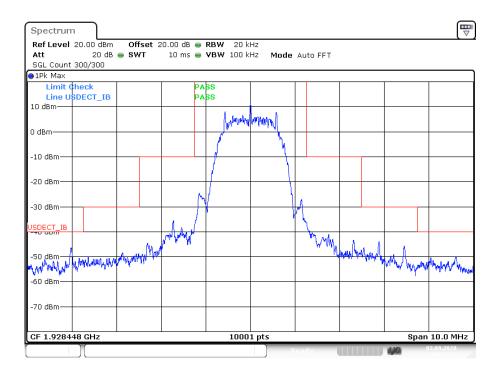
Measurement Procedure:

ANSI C63.17, clause 6.1.6.1.

Test Results: Pass

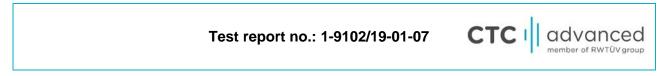

Measurement Data: See plots.

Requirement: FCC 15.323(d)

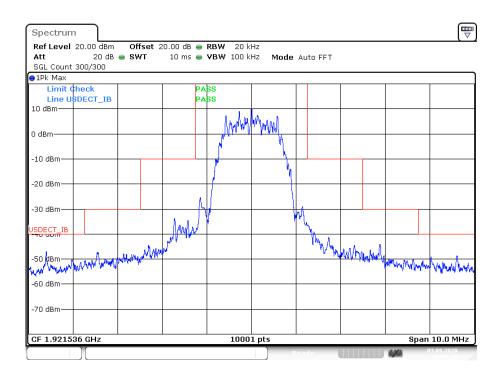

B < f2 ≤2B:	less than or equal to 30 dB below max. permitted peak power level
2B < f2 ≤3B:	less than or equal to 50 dB below max. permitted peak power level
3B < f2 ≤UPCS Band Edge:	less than or equal to 60 dB below max. permitted peak power level

In-Band Unwanted Emissions, Conducted, DBPSK

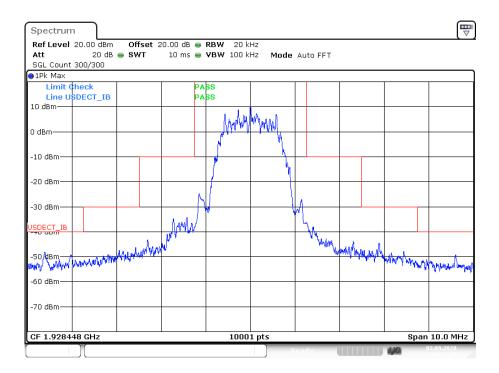
Lower Channel



Upper Channel



Spectrum				
		20 kHz		
Att 20 dB SWT SGL Count 300/300	10 ms 👄 VBW 1	00 kHz Mode Auto	FFI	
1Pk Max				
Limit Check	PABS			
Line USDECT_IB	PASS			
LO dBm				
	- A	avalant manage		
) dBm	/*			
10 dBm				
20 dBm				
-30 dBm	NI NI			
-S0 UBIII		M.		
SDECT_IB		1 11		
SO HER - A HALL VY AN A AND AND AND	40 Aurola	yi.	Why Manual mo	
a share the			Mr. Marchel	
50 dBm				the work with the
We wanted a contract				AND AND WHE
60 dBm				
-70 dBm				
CF 1.924992 GHz	1	0001 pts		Span 10.0 MHz
51 1.52 7552 012		0001 pt3		opun 20.0 MHZ


Middle Channel

In-Band Unwanted Emissions, Conducted, DQPSK

Lower Channel

Upper Channel

Spectrum				
Ref Level 20.00 dBm Offset 3 Att 20 dB SWT SGL SGL Count 300/300	20.00 dB e RBW 20 kHz 10 ms e VBW 100 kHz	Mode Auto FFT		
1Pk Max				`
Limit Check Line USDECT_IB	PASS PASS			
	(maker my	MM		
-10 dBm		<u>\</u>		
-20 dBm		<u> </u>		
-30 dBm				
	Janla/]°N		
-50 dBm			halmanilementur	al a A i
-60 dBm			1 1071	
-70 dBm				
CF 1.924992 GHz	10001 p	ts	Sp	an 10.0 MHz
		Ready	444	03.09.2020

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

7.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

ANSI C63.17, clause 6.1.6.2.

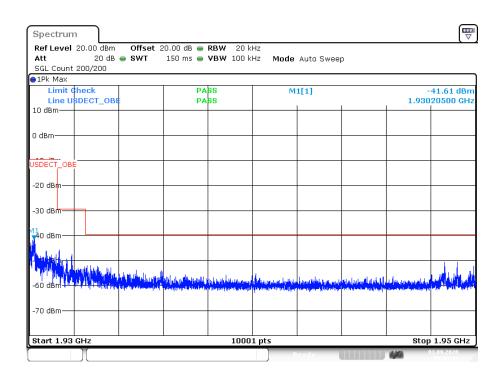
Test Results: Pass

Measurement Data: See plots.

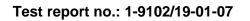
Requirement: FCC 15.323(d)

f ≤ 1.25 MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
f ≥ 2.5 MHz outside UPCS band:	≤ -39.5 dBm

Out-of-Band Unwanted Emissions, Conducted, DBPSK


Upper and Lower Channel:

Spectrum					
Ref Level 20.00 dBm Att 20 dB SGL Count 20/20	Offset 20.00 dB ● I SWT 2 s ● '		e Auto Sweep		
●1Pk Max					
Limit Check Line USDECT_OBE	PA PA		41[1]	-	54.46 dBm 190 kHz
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
USDECT_OBE					
-50 dBm					
6.0. dBm north to a collected of		ni ana kao bana amin'ny fanisa dia mandra amin'ny fanisa. Ny INSEE dia mampina dia kaodim-paositra dia mampina dia mampina dia mampina dia mampina dia mampina dia mampin			
-70 dBm	and the second second of the second secon	A Rest of the second	and the second strength of the second strengt	 collection films, contrastice, p. 1 	
Start 100.0 kHz		10001 pts		Sto	p 1.9 GHz
			Peady	420	3.09.2020


Spectrun	n									
Ref Level Att	20.00 dBm	Offset 2 SWT	20.00 dB 👄							
SGL Count		- 5WI	150 ms 🖷	VBW 100 k	H2 MODE	Auto Swee	0			
😑 1Pk Max										
Limit (PA		M	1[1]				1 dBm
10 dBm-	SDECT_OBE	:	РА	55		1		1.91	97990	U GHZ
0 dBm									_	
-10 dBm—									r	
-20 dBm—										
-30 dBm								_		M1
-30 UBIII										Ţ
USDECT_OB	Ē									
-50 dBm—								i la l		, Milling
11. July 1	de la du	a Ba rrana	والمتعالية والمسار والمراقة	առես և	and the call	n	المالية المالية		nger er i sjolle	had the
(Film) Grand Area	a na ana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana Ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisa		and the second sec	n na han sa na sa sa faran. Kaling ng sa	and the first of the second of	الي قد خلق ال المرياني الي	Hardbard - Alberth	inter a second	no di ci	
-70 dBm—										
Start 1.9 (GHz			1000	1 pts			Sto	op 1.92	2 GHz
					R	eady		4.74	03.09.20	50 .50

Out-of-Band Unwanted Emissions, Conducted, DBPSK

Spectrum Ref Level 20.00 dBm Offse	et 20.00 dB 👄 RBW 20			T T
Att 20 dB • SWT SGL Count 10/10			ер	
1Pk Max				
Limit Check Line USDECT_OBE	PABS PABS	M1[1]	5	-51.70 dB 6.397620 GF
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
JSDECT_OBE				
-50 dBm			M1	
have proved and a complimation of the	ward and share the test of the state of the state		الماليل أي معادية من المانية (وروبا عندان من والممالة) معن محمد الماليس والمالية والمحمد والمعارية والمحمد المحمد	
and a start of the providence of the start o	and the second second based of the design of the second based by the second based by the second based by the se			
-70 dBm				
Start 1.95 GHz	100	01 pts	5	top 6.0 GH:

Out-of-Band Unwanted Emissions, Conducted, DBPSK

Att 20 dB 👄	Offset 20.00 dB ● SWT 20 s ●	RBW 20 kHz VBW 100 kHz		Sweep		
SGL Count 10/10 1Pk Max						
- Limit Check Line USDECT_OBE		88 88	M1[1]			49.86 dBi .21770 GH
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
M1						
-50 dBm	A State of the sta		فليلو بالمحت المحت وال	وبالملور والجوندوا في إودادا الاليان	he the second the	
-60 dBm						
70 dBm						
-70 dBm		10001				20.0 G

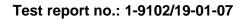
The BS spurious out-of-band transmission level is below the indicated limit.

Out-of-Band Unwanted Emissions, Conducted, DQPSK

Upper and Lower Channel:

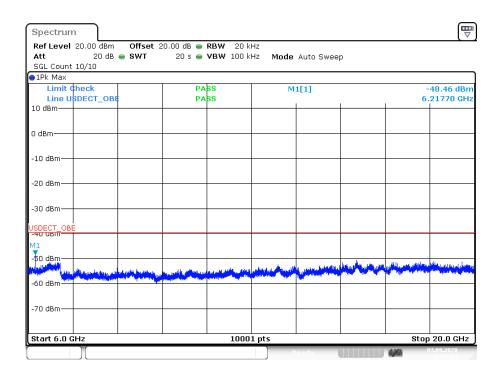
Spectrum					
Ref Level 20.00 dBm Att 20 dB ● SGL Count 20/20	Offset 20.00 dB ● I SWT 2 s ● Y		e Auto Sweep		
😑 1Pk Max					
Limit Check Line USDECT_OBE	PA PA		M1[1]		-55.96 dBm 1.792380 GHz
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
USDECT_OBE					
-50 dBm					
60,dBmmaddatteligebiteet	والمحافظ والمحافظ المرابع والمحاف	ومناع المليعان والمحمل ومرجا المراجع		والمراجع والمراجع والمحاجر والمحاجي	M1 M1
And principal sectors in the sector sector sector sector sectors and sec	ومشيح والمتعرف فكحوا للترع التربط ووسالك وتربيه ومرابع	and a second state of the state of the second s	ana paga kanalapatika asarata kabat	nig fatilitet over den bester den f	AN TOTAL COLORING STREET
-70 dBm					
Start 100.0 kHz		10001 pts			Stop 1.9 GHz
		10001 pts	Doady	430	03.09.2020

Spectrun	n									
Ref Level Att	20.00 dBm 20 dB	Offset 2 SWT	20.00 dB 👄 150 ms 👄	RBW 20 k VBW 100 k		Auto Swee	n			
SGL Count	200/200	_					F			
⊖1Pk Max										
Limit (PA		M	1[1]			-33.32	
10 dBm-	SDECT_OBE		PA	88		1	1	1.9	198190	U GHZ
TO OBIII										
0 dBm										
U 08m										
10 -10										
-10 dBm—										
-20 dBm—										
-30 dBm—										
USDECT_OB	E									
-40 UBIT										1
								1		a di
-50 dBm										
والكرية العرام	المرابعة المراجعة	أنفاف بالتراجعة والاحتجا	م ا ا بسایت	Lunders bring to	and a stand and a standard	a harana kita	المعادلان الارتباعي	6. E. 1. 17"	. alt date	1 I Y Y
ومواليحت فالبريطان	pasteria bella se parte		Projekti se ga programa di	Print and a second s	and the party of the second	hard a state of the second of the second	والملوا الإراد ويتعاورون	population for	dinks. (k	
-70 dBm—										
Start 1.9 (GHz	1	1	1000	1 pts	1	1	St	op 1.92	GHz
						teady		4.86	03.09.20	20



Out-of-Band Unwanted Emissions, Conducted, DQPSK

	00 dB 👄 RBW 20 🖡			
Att 20 dB SWT 1. SGL Count 200/200	50 ms 👄 VBW 100	Hz Mode Auto Swee	ер	
91Pk Max				
Limit Check	PASS	M1[1]		-42.45 dBr
Line USDECT_OBE	PASS		1.9	3010700 GF
10 dBm				
0 dBm				
ISDECT_OBE				
-20 dBm				
-30 dBm				
-so dam				
140 dBm				
=40 uBill				
(held hell)				
C. D.P. Weiter and A. and P. Marshard and an end of a second sec second second sec	dented bould bound on the sector		ومراجع والمراجع والمراجع والمراجع والمراجع والمراجع	المقاتلة المعادرين
-60 dBm	all, beindere fürpforretelingen von		er eksenseligender bereitigen erhende finner bereit	State of the second state
-70 dBm				
Start 1.93 GHz		1 pts		top 1.95 GH


Spectrum				
Ref Level 20.00 dBm Offse				
Att 20 dB SWT	10 s 👄 VBW 100	kHz Mode Auto Swee	p	
SGL Count 10/10 1Pk Max				
Limit Check	PASS	sasta1		-51.72 dB
Line USDECT_OBE	PABS	M1[1]		400860 GH
10 dBm	1450		+	100000 01
0 dBm				
5 dbin				
-10 dBm				
-10 UBIII				
-20 dBm				
-30 dBm				
JSDECT OBE				
-40 UBIT				
			M1	
-50 dBm				-
-30 GBM	الارتباعية ومرافظ ومستعلق والرفار ومرابا التنسره	الطائد السدادة أسطا الدادير والمحد الاسال	all find any participant provide a provide a first the second second second second second second second second s	And Distance in a second s
	والدارال مادانات فالمغد بالترافير حماداران وتعمر فتسوع محمد ويومرون	an ann an An Ann an		
-70 dBm				
Start 1.95 GHz)1 pts	St	op 6.0 GHz
T		Peady	4.3/2	03.09.2020

2020-09-17

Out-of-Band Unwanted Emissions, Conducted, DQPSK

The BS spurious out-of-band transmission level is below the indicated limit.

7.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.987882	-1.59	-4.59	1.312	±10

Deviation ppm = $((Max.Diff. - Mean.Diff.) / Mean Carrier Freq.) \times 10^{6}$ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
3.6 V DC	1924.990	Ref.	Ref.	
4.2 V DC	1924.990	0.0	0.0	±10
3.3 V DC	1924.990	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.990	Ref.	Ref.	
T = -20°C	1924.990	0.0	0.0	±10
T = +50°C	1924.990	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) $\times 10^{6}$

7.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(ppm)	Stability (ppm)
1924.992	100.0000000000	0.055	0.165

Limit:

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

7.14 Frame Period and Jitter

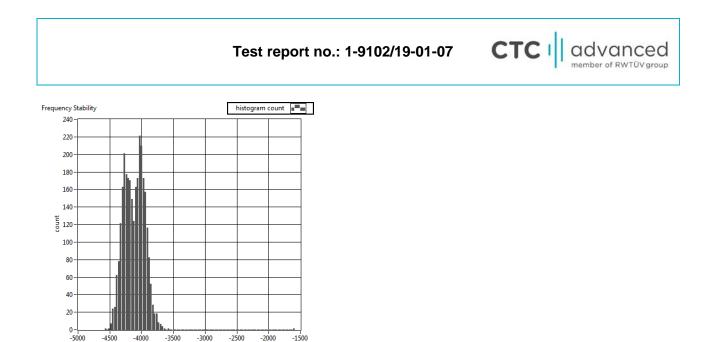
Measurement Procedure:

ANSI C63.17, clause 6.2.3.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65


Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(µs)	Jitter (μs)
1924.992	10.000	0.003	0.002

Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter $3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) \times 10^6$

Limit:

Frame Period	20 or 10 ms
Max Jitter	25 µs
3 times St.Dev. of Jitter	12.5 µs

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.

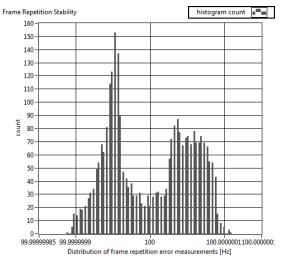
Distribution of mean ca **Histogram of Carrier Frequency Stability**

-3500

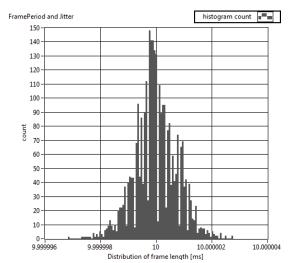
-3000

rrier freq

-2500


cy [Hz]

-2000


-1500

-4500

-4000

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

7.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

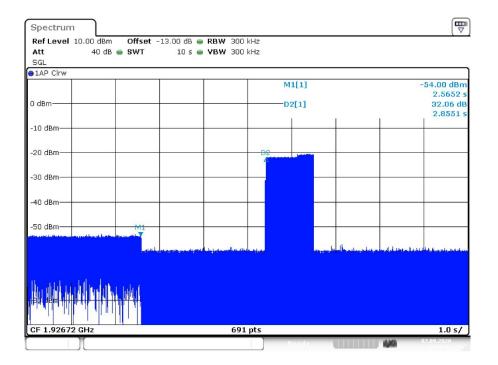
B is measured Emission Bandwidth in Hz $\ensuremath{\mathsf{P}_{\mathsf{EUT}}}$ is measured Transmitter Power in dBm

Calculated value:

Lower Threshold	-79.7 dBm
	-79.7 UDII

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}, f_2 T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f ₁	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f ₂	Pass
e) f_1 T _L , f_2 at T _L + 7 dB	Transmission always on f_1	Pass


Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on f ₁	EUT transmits on f_2	Pass
d) Shall not transmit on f ₂	EUT transmits on f_1	Pass

Comment: This test is only applicable for EUTs that can be an initiating device.

7.3.3 Selected Channel Confirmation, connection 2.9 s after interferer removed

7.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

7.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

Test Results:

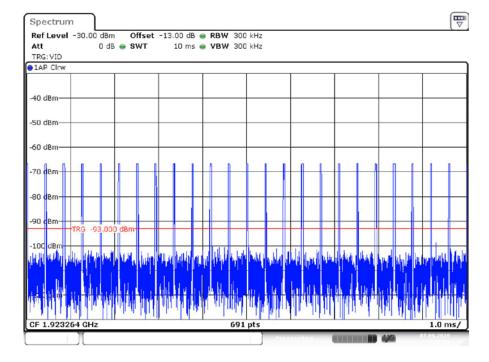
By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 µs pulses. Additionally a CW signal was applied on f_2 with a level of TL.

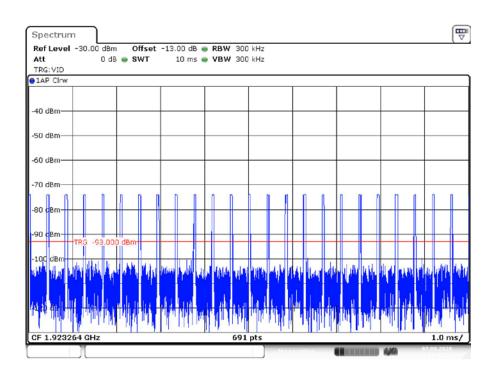
The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/B)	Transmission on f ₂	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass

Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.


Limits: FCC 15.323(c)(1), (5) and (7)

The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.


If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

Comment: This test is only applicable for EUTs that can be an initiating device.

35 µs Pulses

50 µs Pulses

7.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	N/A	N/A
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not support the Random Waiting Interval option.

Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

7.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

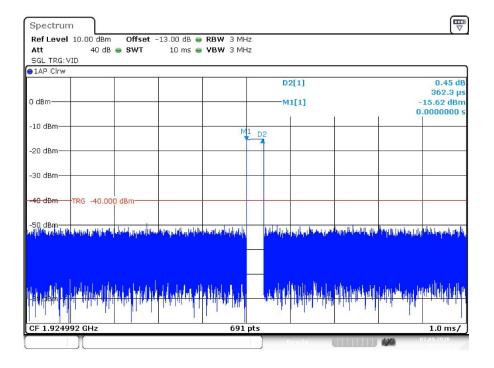
The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

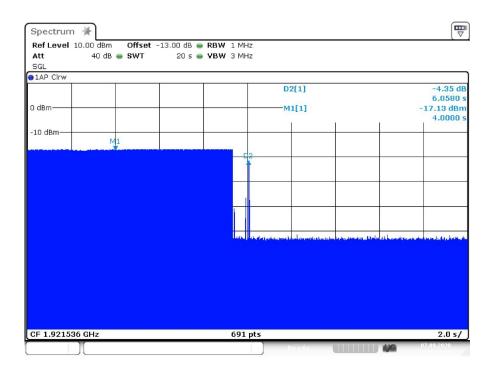
Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	0.4 ms	Pass
c) Transmission time after loss of acknowledgments	6.1 s	Pass

Transmission Duration


Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
 b) Transmission duration on same time and frequency window 	5 s	Pass

Comment: /


Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which the time access criteria must be repeated.

8.2.1a) Initial Transmission Time without Acknowledgments

8.2.1c) Transmission Time after Loss of Acknowledgments

7.20 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
 c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked 	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

EUTs that implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
b) EUT is restricted to a single carrier f_1 for TDMA systems. The test is pass if the EUT can set up a communication link.	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	N/A	N/A
e) f) Transmission on interference-free transmit time/spectrum window.	N/A	N/A

Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

7.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

7.22 Spurious Emissions (Radiated)

Measurement Procedure:

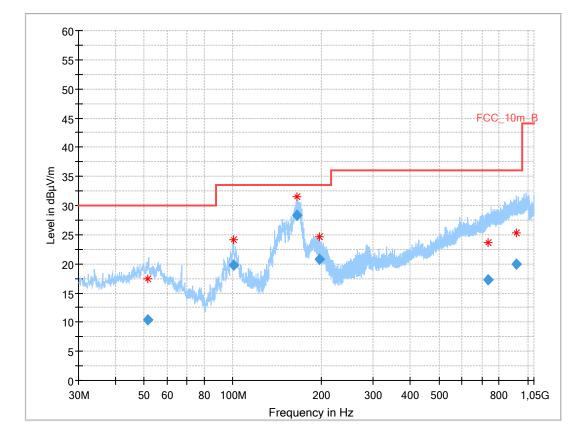
FCC 15.209, FCC 15.109

Test Result: Pass

Measurement Data: See plots.

Requirement: FCC 15.109(b)

30 –	88 MHz:	90 µV/m
88 –	216 MHz:	150 µV/m
216 –	960 MHz:	210 µV/m
960 – 7	1000 MHz:	300 μV/m



Common Information

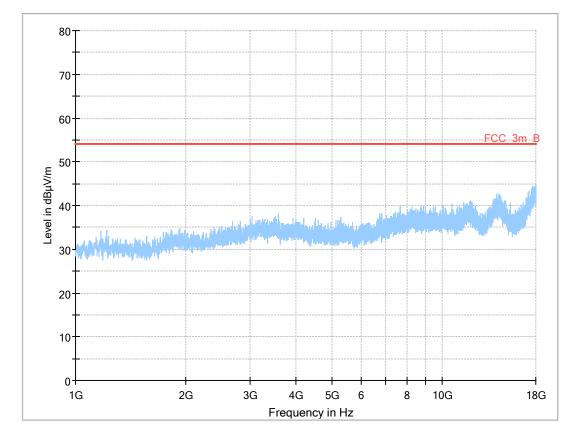
EUT:

Serial number:

Test description: Operating condition: Operator name: Comment: RM-WCH-8 + RM-WOM + RM-WDR + RM-WGS + RM-WGL + PA-300C Z6R000041 + Z6L000132 + Z6M000144 + Z6P000039 + Z6N000069 + JIID03P1SSY FCC part 15 class B @ 10 m charging four microphones Hennemann AC: 115 V / 60 Hz

Final_Result

Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
51.647	10.40	30.0	19.6	1000	120.0	127.0	V	180	14
100.577	19.86	33.5	13.6	1000	120.0	100.0	V	90	13
165.588	28.33	33.5	5.2	1000	120.0	100.0	V	354	10
196.667	20.77	33.5	12.7	1000	120.0	392.0	Н	9	12
734.175	17.34	36.0	18.7	1000	120.0	209.0	V	15	22
912.805	19.94	36.0	16.1	1000	120.0	200.0	Н	126	24



Common Information

EUT:

Serial number:

Test description: Operating condition: Operator name: Comment: RM-WCH-8 + RM-WOM + RM-WDR + RM-WGS + RM-WGL + PA-300C Z6R000041 + Z6L000132 + Z6M000144 + Z6P000039 + Z6N000069 + JIID03P1SSY FCC part 15 class B charging four microphones Hennemann AC: 115 V / 60 Hz

The radiated spurious emission of the unintentional radiator is below the indicated limit.

7.23 Receiver Spurious Emissions

Measurement Procedure:

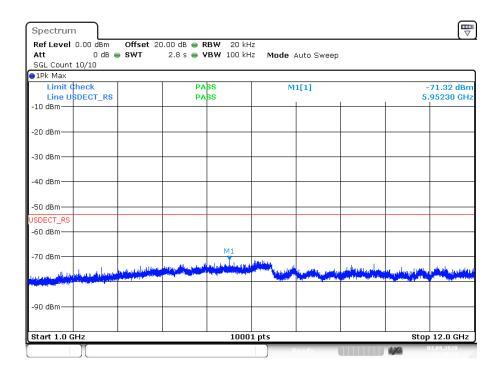
Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB	
30 - 1000	all	-73.9	-57	16.9	
> 1000	all	-70.7	-53	17.7	

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.


When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.

When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

	20.00 dB RBW 20 250 ms VBW 100		ер	
SGL Count 25/25			'	
)1Pk Max				
Limit Check	PASS	M1[1]		-73.94 dBm
Line USDECT_RS	PASS		1	150.0 kHz
10 dBill				
20 dBm				
30 dBm				
40 dBm				
50 dBm				
SDECT_RS				
60 dBm				
70 40				
70 dBm				
a .		and the second		
	er gilleg for juliger of says interior in the form	and the second second state in the second	ماد الاساسي مراقع البلانين بين مربعة مركبة البلانة المادة. محمد أن الماد بالماد والمربعة محمد المراجع المادة المادة.	na pina pina pina pina pina pina bana pina bana pina Mana pina pina pina pina pina pina pina p
A DESCRIPTION OF A DESC	and the second state of the second states of the second states of the second states of the second states of the	a substant of a state of the st	and the second second second	
90 dBm				
Start 100.0 kHz		001 pts		Stop 1.0 GHz

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

Ref Level 0.00 dBm Offset 20 Att 0 dB SWT	.00 dB ● RBW 20 kH 2 s ● VBW 100 kH			
SGL Count 10/10		- mede mate encop		
1Pk Max				
Limit Check	PASS	M1[1]		·70.70 dBn
Line USDECT_RS	PASS		17.7	77420 GH
-10 dBm				
-20 dBm				
-30 dBm				
40 dBm				
SDECT_RS				
-60 dBm				
-00 ubiii				
			M1	
-70 dBm	المراب بالمعرب بالمراب	فالمطور بالمطافرين والمطاورين والمطافرين والالا	Juli mana di dadare	والمرافر المالي المالي
المتهومين والمأملين بتراجع المناطق المعروب والمتعاون والمناطق	Condition of the state of the	provide the second s	and the first of the state of t	Designation of the sectors
80 dBm	100			
90 dBm				
Start 12.0 GHz		1 pts		20.0 GHz

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.		Last Calib.	Next Calib.
	Conducted							
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950	k	12/2019	12/2020
L-2	Signal Generator	R&S	SMBV100A	257858	300004529	vlkl!	12/2017	12/2020
L-3	Signaling Unit	R&S	CMD 65	825486	300003611	vlkl!	03/2019	03/2021
L-4	Power Meter	R&S	NRP	100212	300003780	vlkl!	12/2018	12/2020
L-5	Power Sensor	R&S	NRP-Z22	100031	400000188	vlkl!	12/2019	12/2021

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.		Last Calib.	Next Calib.
	Power Line Conducted Emission							
G-1	EMI Receiver	R&S	ESCI 3	100083	3000003312	k	12/2019	12/2020
G-2	VISN	R&S	ESH 3-Z5	893045/004	300000584	vlkl!	12/2018	12/2020

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.	Kind of Calib.		Next Calib.
	Radiated Emission							
F-1	EMI Receiver	R&S	ESR3	102587	300005771	k	12/2019	12/2020
F-2	Spectrum Analyzer	R&S	FSU26	200809	300003874	k	12/2019	12/2020
F-3	Trilog Antenna	Schwarzbeck	VULB9163	371	300003854	vlkl!	11/2017	11/2020
F-4	Horn antenna	Schwarzbeck	BBHA9120B	188	300003896	vlkl!	04/2020	04/2022

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkI! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

9 Observations

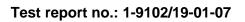
No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.


Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

Annex D: Document History

Version	Applied Changes	Date of Release	

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Accreditation Certificate

first page	last page
Every extracting to Section 8 subsection 1 AkkStelleG in connection with Section 1 1 akkStelleG in connection akkstelleG in connect	Deutsche Akkreditierungsstelle GmbH Office Beeln Spittelmark 10 10117 Berlin Office Frankfurt am Main Sunge-Allee 52 60327 Frankfurt am Main Stilfe Braunschweig Stilfe Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 0.9.06.2020 with the accreditation number D-PL-12076-0.1 it comprises the cover sheet, the reverse side of the cover sheet and the following annex with total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate bagefore with its mean reflects the status at the time of the dite of issue. The current status of the score of accreditation core before in the distable of accredited bodies addits. The current status of the score of accreditation core before in the distable of accredited bodies addits.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body methoded overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation netseld by OAkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleci) of 31 July 2009 (Fideral Law Gazets ip. 2625) and the Regulation (E(1A) of 52008 of the European Parliament and of the Council of 5 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Inton 128 of 51 July 2008, p. 30). DAkkS is a signatory to the Multilateral Agreements for Multual Recognition of the European co-operation for Accreditation (B(A), International Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (ILA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EAC: www.iacorge LAC: www.iacorge LAC: www.iacorge LAC: www.iacorge Accelerations (ILA).

first page	last page
Extractive instants in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berlin Spitelmark 10 10117 Berlin Office Frankfurt am Main Spitelmark 20 60327 Frankfurt am Main Bundesallee 100 38116 Braunschweig
Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number DPL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-01. Frankfurt am Main, 09.06.2020 The certificate cover sheet and the following annex with a some scale of 07 pages. The certificate together with its more reflects the status at the time of the date of saves. The current status of the scape of accreditation of the certificate: bottle status at the time of the date of saves. The current status of the scape of accreditation can be found in the status at the time of the date of saves. The current status of the scape of accreditate bottles-adds: https://www.adds.de/ng/content/doccedited-bottles-adds: https://www.adds.de/ng/content/doccedited-bottles-adds:	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Adverditerungsstelle GmbH (DAXS). Exempted is the unchanged form of segurate disseminations of the cover shee by the conformity assessment body methodized deverted. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkdStelleG) of 31 July 2009 (Federal Law Gastett p. 2523) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of July 2008 service and the Act on the Accreditation Body (AkdStelleG) of 31 July 2009 (Federal Law Gastett p. 2523) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of July 2008 service and the Act on the Accreditation and market surveillance relating to the marketing of products (Official Journal of the European Onto L 218 of July 2008, p. 30). DAXAKi is a signatory to the Multilateral Accreditation Forum (K4) and International Laboratory Accreditation Cooperation (ILG). The signatories to these agreements for goarceditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.lac.org IAC: www.lac.org IAF: www.laf.nu

Note:

The current certificate including annex can be received on request.