FCC 47 CFR PART 15 SUBPART C

Date of Issue: March 11, 2009

TEST REPORT

For

Network Music Commander

Model: MCX-RC100

Trade Name: YAMAHA

Issued to

Yamaha Corporation 10-1 Nakazawa-cho Naka-ku Hamamatsu 430-8650 Japan

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Pa-De 2nd Rd., Luchu Hsiang, Taoyuan Shien, (338) Taiwan, R.O.C.

> TEL: 886-3-324-0332 FAX: 886-3-324-5235 http://www.ccsemc.com.tw service@tw.ccsemc.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Date of Issue: March 11, 2009

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 11, 2009	Initial Issue	ALL	Celine Chou

Page 2 Rev. 00

TABLE OF CONTENTS

1. IE	ST RESULT CERTIFICATION	4
2. El	JT DESCRIPTION	5
3. TE	EST METHODOLOGY	6
3.2 3.3 3.4	EUT CONFIGURATION	6 6
4. IN	STRUMENT CALIBRATION	9
	MEASURING INSTRUMENT CALIBRATIONMEASUREMENT EQUIPMENT USED	
5. F <i>A</i>	ACILITIES AND ACCREDITATIONS	10
5.2	FACILTIES EQUIPMENT TABLE OF ACCREDITATIONS AND LISTINGS	10
6. SE	ETUP OF EQUIPMENT UNDER TEST	12
6.2	SETUP CONFIGURATION OF EUTSUPPORT EQUIPMENTSUPPORT EQUIPMENT	12
7. FC	CC PART 15.247 REQUIREMENTS	14
7.3 7.4 7.5 7.6 7.7	PEAK POWER AVERAGE POWER BAND EDGES MEASUREMENT PEAK POWER SPECTRAL DENSITY SPURIOUS EMISSIONS POWERLINE CONDUCTED EMISSIONS	18 22 26 35 39 53
APPE	NDIX I RADIO FREQUENCY EXPOSURE	56
ADDE	NDIY II DHOTOGDADHS OF TEST SETIID	57

1. TEST RESULT CERTIFICATION

Applicant: Yamaha Corporation

10-1 Nakazawa-cho Naka-ku Hamamatsu 430-8650 Japan

Date of Issue: March 11, 2009

Equipment Under Test: Network Music Commander

Trade Name: YAMAHA

Model: MCX-RC100

Date of Test: December 31, 2008 ~ January 6, 2009

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Ethan Huang Section Manager

Compliance Certification Services Inc.

Reviewed by:

Julia Wei

Senior Specialist

Compliance Certification Services Inc.

Page 4 Rev. 00

2. EUT DESCRIPTION

Product	Network Music Commander				
Trade Name	YAMAHA				
Model Number	MCX-RC100				
EUT Power Rating	5VDC, 1A				
Power Adapter Manufacturer	YAMAHA	Model	PSAA05A-050		
Power Adapter Power Rating	I/P: 100-240VAC, 50-60Hz, 0.2A O/P: 5VDC, 1A				
Operating Frequency Range	2412 ~ 2462 MHz				
Transmit Power	IEEE 802.11b: 20.87 dBm IEEE 802.11g: 23.75 dBm				
Modulation Technique	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM				
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 1 IEEE 802.11g: 54, 48, 3		2, 9, 6 Mbps		
Number of Channels	11 Channels				
Channels Spacing	5MHz				
Antenna Specification	PCB Antenna / Gain: 4.0 dBi				
Temperature Range	0°C ~ +55°C				

Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>A6RMCXRC100A</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 5 Rev. 00

Date of Issue: March 11, 2009

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4(2003) and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: March 11, 2009

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4(2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4(2003).

Page 6 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

Date of Issue: March 11, 2009

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	167.72 - 173.2 240 - 285 322 - 335.4	3345.8 - 3358 3600 - 4400	36.43 - 36.5 (²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 7 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: MCX-RC100) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

Date of Issue: March 11, 2009

IEEE802.11b: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE802.11g: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Page 8 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: March 11, 2009

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibration D							
EMI Test Receiver	R&S	ESCS30	845552/030	04/08/2009			
LISN	R&S	ENV216	100074	12/09/2009			
LISN	FCC FCC-LISN-50/2 06013 10/12/20						
Test S/W	LabVIEW 6.1 (CCS Conduction Test SW Version_01)						

3M Semi Anechoic Chamber							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	ADVANTEST	R3271A	85060321	10/22/2009			
Bilog Antenna	SCHWAZBECK	VULB9160	3084	N.C.R.			
EMI Test Receiver	R&S	ESVS10	834468/006	04/17/2009			
Pre-Amplifier	HP	8447D	2944A06530	12/09/2009			
Antenna Tower	HD	MA240	240/443	N.C.R			
Controller	HD	HD100	100/529	N.C.R			
Turn Table	HD	HD320	N/A	N.C.R			
Site NSA	SIDT EUROPE	9x6x6	N/A	05/16/2009			
Turn Table	HD	DT-K312	N/A	N.C.R			
Test S/W	LabVIEW 6.1 (Wugu Chamber EMI Teat V1_4.5.3)						

Remark: The measurement uncertainty is less than +/-4.0235dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Powerline Conducted Emissions Test Site								
Name of Equipment	Name of Equipment Manufacturer Model Serial Number Calibration D							
EMI Test Receiver	R&S	04/08/2009						
LISN	R&S	ENV216	100074	12/09/2009				
LISN	FCC FCC-LISN-50/2 06013 10/12/2009							
Test S/W	LabVIEW 6.1 (CCS Conduction Test SW Version_01)							

Remark: The measurement uncertainty is less than +/- 1.7806dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 9 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILTIES

All measurement facilities used to collect the measurement data are located at
No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
No. 81-1, Lane 210, Pa-De 2nd Rd., Luchu Hsiang, Taoyuan Shien, (338) Taiwar R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4(2003) and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 10 Rev. 00

Date of Issue: March 11, 2009

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	CFR 47, FCC Part15/18, CISPR 22, EN 55022, ICES-003, AS/NZS CISPR 22, VCCI V-3, EN 55011, CISPR 11, IEC/EN 61000-4-2/3/4/5/6/8/11, EN 61000-6-1/2/3/4, EN 55024, CISPR 24, AS/NZS CISPR 24, AS/NZS 61000.6.2, EN 55014-1/-2, ETSI EN 300 386 v1.3.2/v1.3.3, IEC/EN 61000-3-2, AS/NZS 61000.3.2, IEC/EN 61000-3-3, AS/NZS 61000.3.3	ACCREDITED No. 0824-01
USA	FCC MRA	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC _{TW1026}
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-2882/2541/2798/725/1868 C-402/747/912 T-321/325
Taiwan	TAF	EN 55014-1, CISPR 14, CNS 13781-1, EN 55013, CISPR 13, CNS 13439, EN 55011, CISPR 11, CNS 13803, PLMN09, IS2045-0, LP0002 FCC Part 27/90, Part 15B/C/D/E, RSS-192/193/210/310 ETSI EN 300 328/ 300 220-1/ 300 220-2/ 301 893/ 301 489-01/ 301 489-03/ 301 489-07 / 301 489-17/ 300 440-1/ 300 440-2 AS/NZS 4268, AS/NZS 4771 CISPR 22, EN 55022, CNS 13438, AS/NZS CISPR 22, VCCI, IEC/EN 61000-4-2/3/4/5/6/8/11, CNS 14676-2/3/4/5/6/8, CNS 14934-2/3, CNS 13783-1, CNS 13439, CNS 13803	Taff Testing Laboratory 0363
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 / IN-E-0014 /A1-E-0014 /R1-E-0014 /R2-E-0014 /L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 2324C-3 IC 2324C-5

Note: No part of this report may be used to claim or imply product endorsement by A2LA, TAF or other government agency.

Page 11 Rev. 00

Date of Issue: March 11, 2009

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

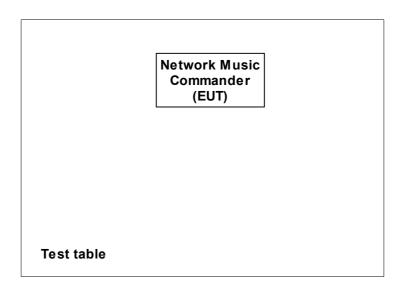
Date of Issue: March 11, 2009

6.2 SUPPORT EQUIPMENT

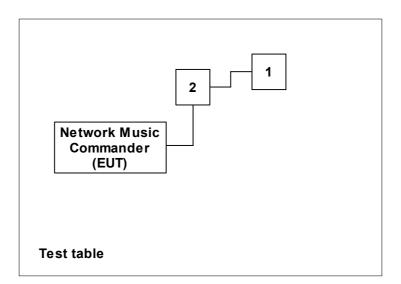
For Radiated Emission and Powerline Conducted Emissions Setup Photos test only

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A	N/A	N/A	N/A	N/A	N/A	N/A

For Conducted Emission test only


No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Notebook PC	HP	COMPAQ NC 4010	CNU441F8LV	F('(' 1)(')('	Unsnielded, 0.3m	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
2.	Test Jig	N/A	N/A	N/A	N/A	USB Cable: Unshielded, 0.3m	N/A

Remark: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.


Page 12 Rev. 00

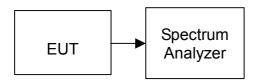
6.3 SUPPORT EQUIPMENT

For Radiated Emission and Powerline Conducted Emissions Setup Photos test only					

For Conducted Emission test only			
1. Notebook PC	2. Test Jig		

Page 13 Rev. 00

7. FCC PART 15.247 REQUIREMENTS


7.1 6dB BANDWIDTH

LIMIT

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Date of Issue: March 11, 2009

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Span = 30MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

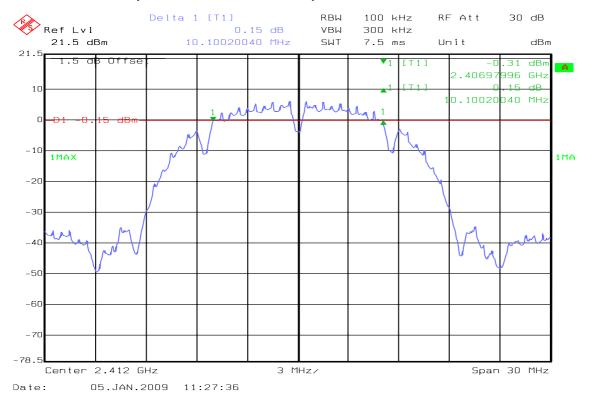
TEST RESULTS

No non-compliance noted

TEST DATA

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	10100		PASS
Mid	2437	10100	>500	PASS
High	2462	10040		PASS

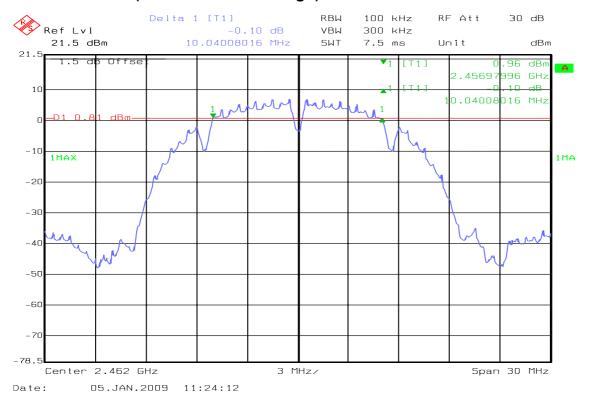

Test mode: IEEE 802.11g

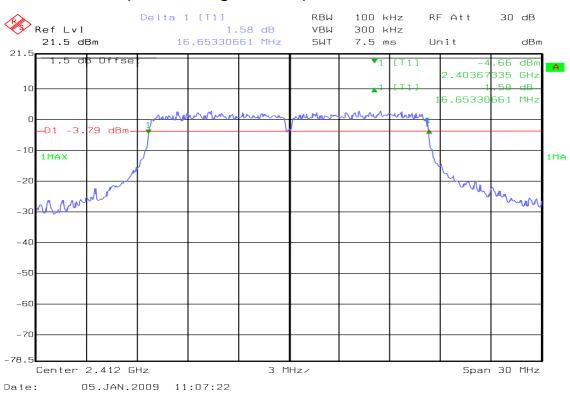
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	16653		PASS
Mid	2437	16653	>500	PASS
High	2462	16593		PASS

Page 14 Rev. 00

Test Plot

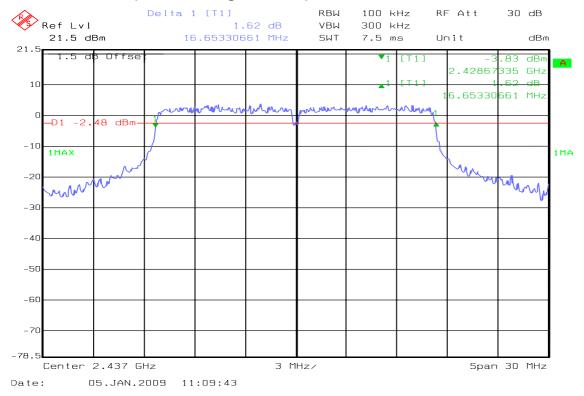
6dB Bandwidth (IEEE 802.11b / CH Low)


6dB Bandwidth (IEEE 802.11b / CH Mid)

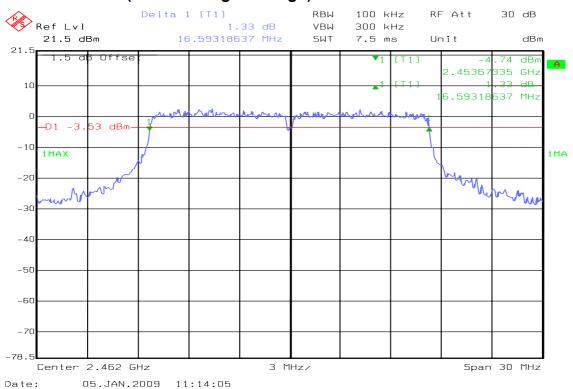

Page 15 Rev. 00

Date of Issue: March 11, 2009

6dB Bandwidth (IEEE 802.11b / CH High)



6dB Bandwidth (IEEE 802.11g / CH Low)



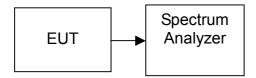
Page 16 Rev. 00

6dB Bandwidth (IEEE 802.11g / CH Mid)

6dB Bandwidth (IEEE 802.11g / CH High)

Page 17 Rev. 00

7.2 PEAK POWER


LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Date of Issue: March 11, 2009

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.

Remark: 1. Result = Reading Value + Cable Loss + Attenuator Loss

2. Cable Loss =0.5 dB; Attenuator Loss=1 dB

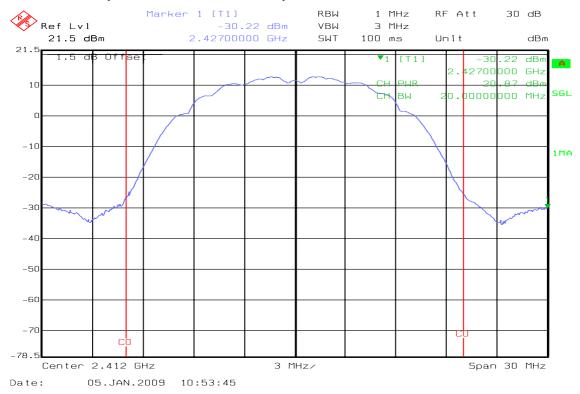
TEST RESULTS

No non-compliance noted

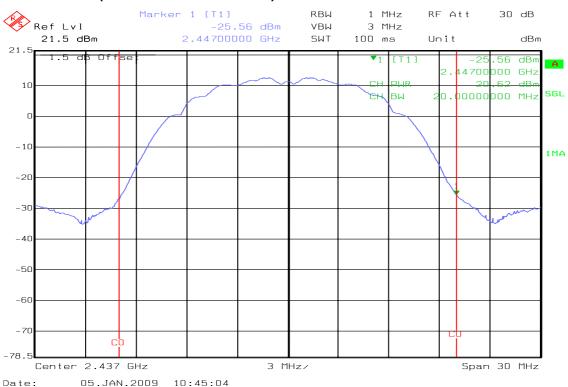
TEST DATA

IEEE 802.11b

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Test Result
Low	2412	20.87	0.12218		PASS
Mid	2437	20.62	0.11535	1	PASS
High	2462	20.17	0.10399		PASS

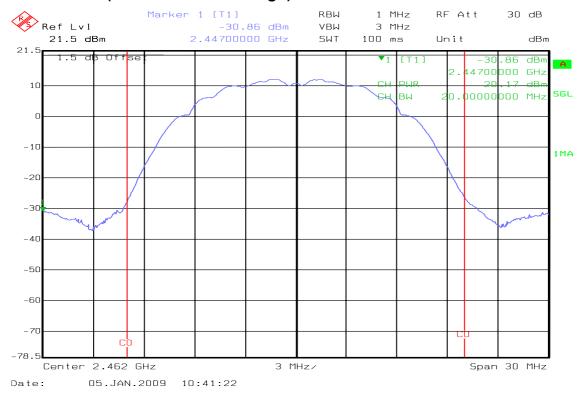

IEEE 802.11g

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Test Result
Low	2412	23.75	0.23714		PASS
Mid	2437	23.13	0.20559	1	PASS
High	2462	21.51	0.14158		PASS

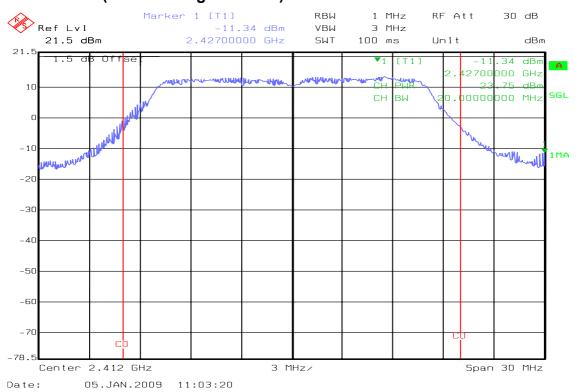

Page 18 Rev. 00

Test Plot

Peak Power (IEEE 802.11b / CH Low)

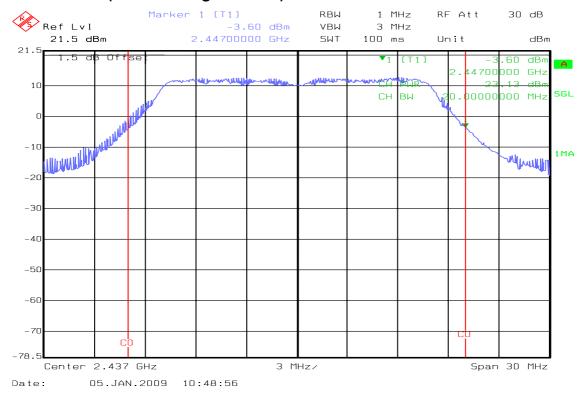


Peak Power (IEEE 802.11b / CH Mid)

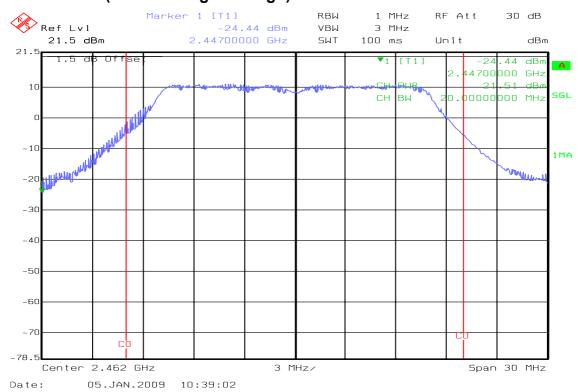


Page 19 Rev. 00

Peak Power (IEEE 802.11b / CH High)



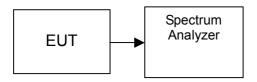
Peak Power (IEEE 802.11g / CH Low)



Page 20 Rev. 00

Peak Power (IEEE 802.11g / CH Mid)

Peak Power (IEEE 802.11g / CH High)


Page 21 Rev. 00

7.3 AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the average power detection.

TEST RESULTS

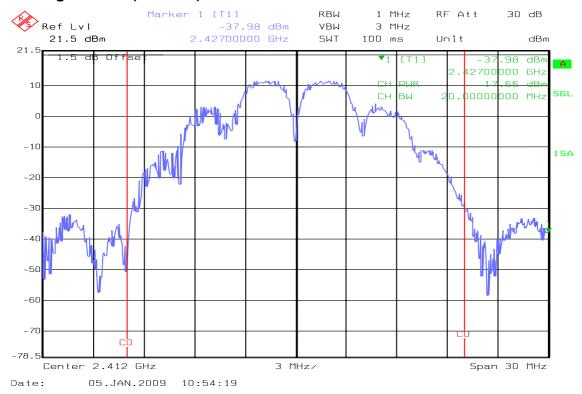
No non-compliance noted

TEST DATA

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	17.66
Mid	2437	17.40
High	2462	17.11

Test mode: IEEE 802.11g mode

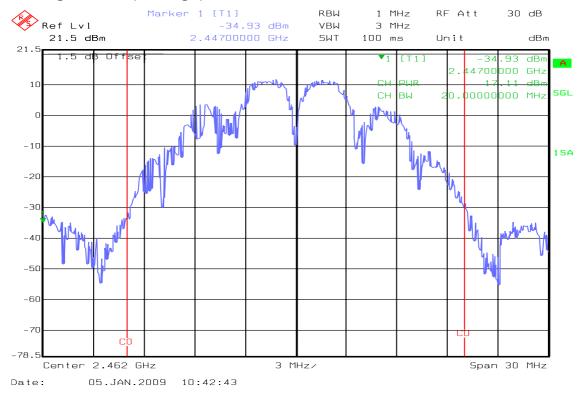

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	16.40
Mid	2437	16.18
High	2462	14.20

Page 22 Rev. 00

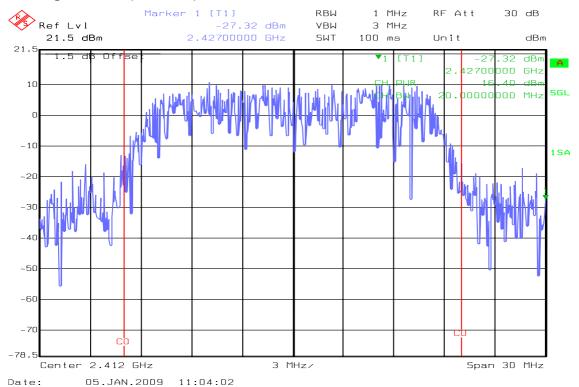
Date of Issue: March 11, 2009

Test Plot IEEE 802.11b

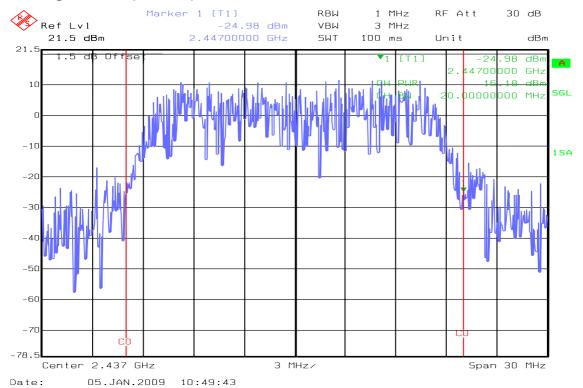
Average Power (CH Low)



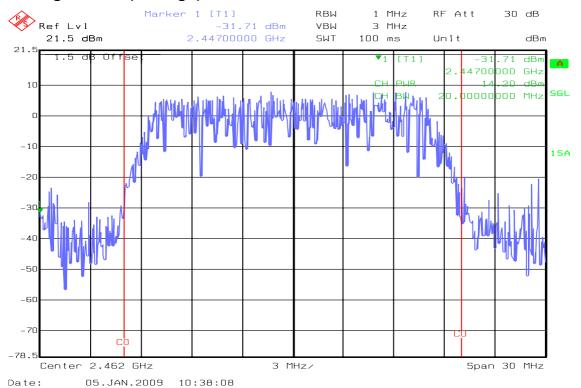
Average Power (CH Mid)


Page 23 Rev. 00

Average Power (CH High)


IEEE 802.11g

Average Power (CH Low)



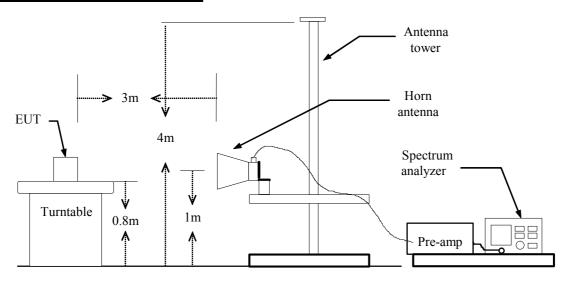
Page 24 Rev. 00

Average Power (CH Mid)

Average Power (CH High)

Page 25 Rev. 00

Date of Issue: March 11, 2009


7.4 BAND EDGES MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: March 11, 2009

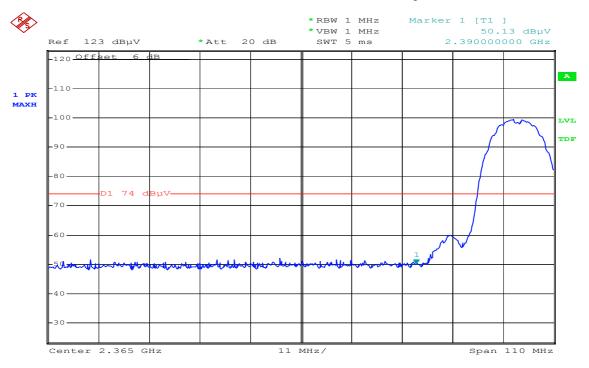
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

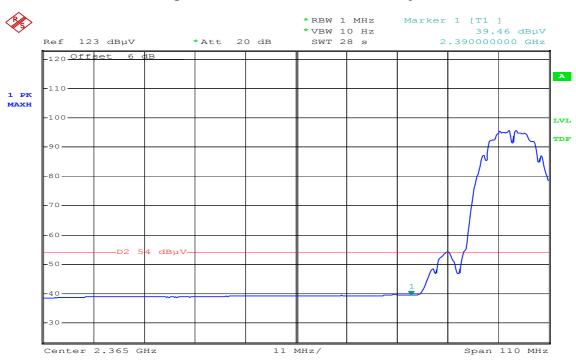
Refer to attach spectrum analyzer data chart.


Page 26 Rev. 00

Test Plot

Band Edges (IEEE 802.11b / CH Low)

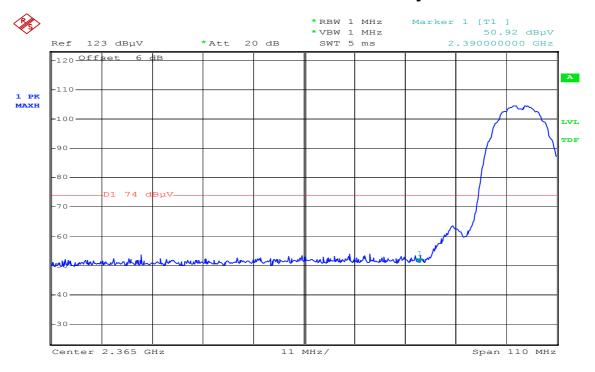
Detector mode: Peak


Polarity: Vertical

Date: 1.JAN.2009 08:06:33

Detector mode: Average

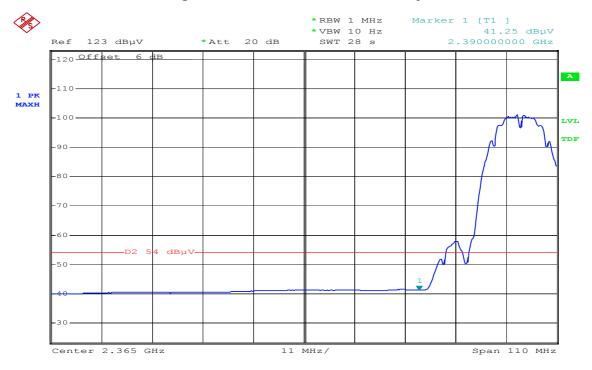
Polarity: Vertical


Date: 1.JAN.2009 08:07:18

Page 27 Rev. 00

FCC ID: A6RMCXRC100A Date of Issue: March 11, 2009

Detector mode: Peak

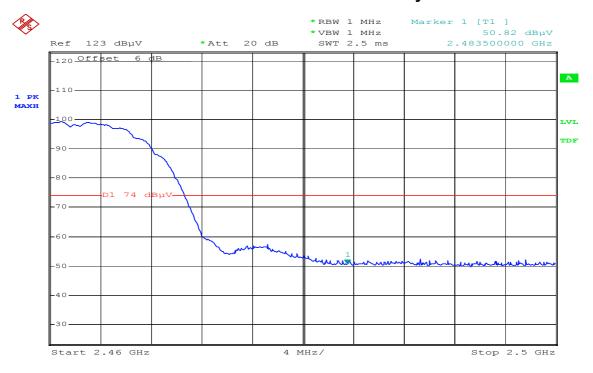

Polarity: Horizontal

1.JAN.2009 08:09:09

Detector mode: Average

Polarity: Horizontal

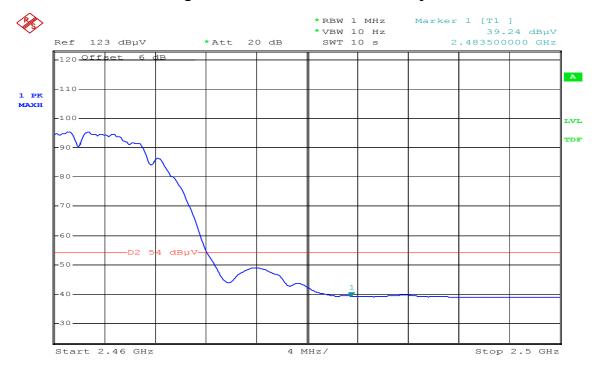
Date: 1.JAN.2009 08:09:56


> Page 28 Rev. 00

Band Edges (IEEE 802.11b / CH High)

Detector mode: Peak

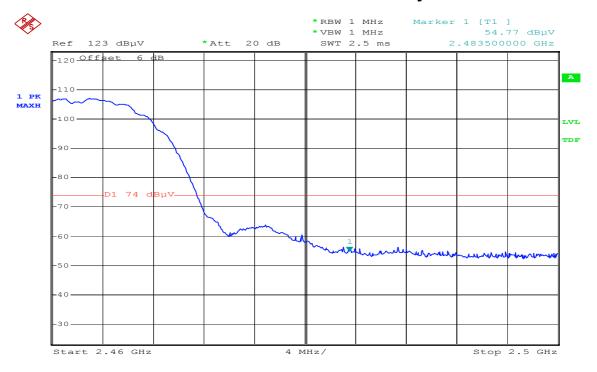
Polarity: Vertical


Date of Issue: March 11, 2009

Date: 1.JAN.2009 08:20:00

Detector mode: Average

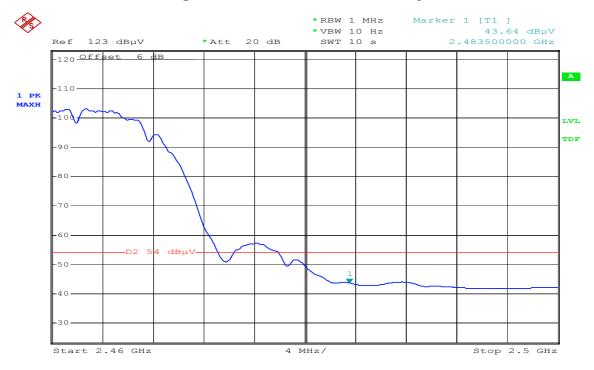
Polarity: Vertical


Date: 1.JAN.2009 08:20:30

Page 29 Rev. 00

Report No.: 90105105-RP1 FCC ID: A6RMCXRC100A Date of Issue: March 11, 2009

Detector mode: Peak

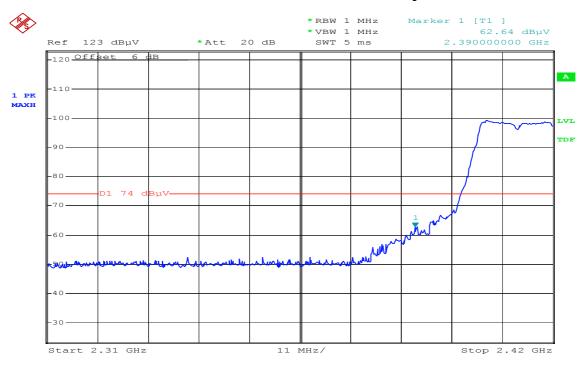

Polarity: Horizontal

Date: 1.JAN.2009 08:16:04

Detector mode: Average

Polarity: Horizontal

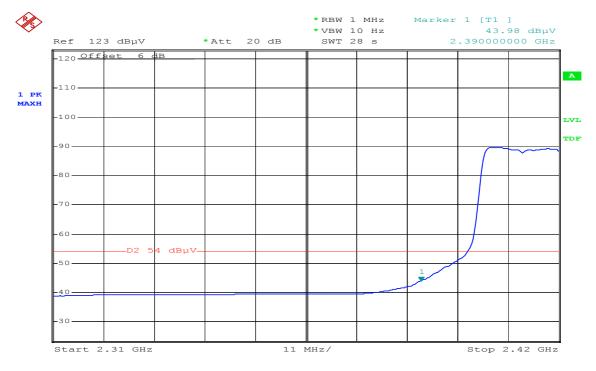
Date: 1.JAN.2009 08:16:37


Page 30 Rev. 00

Band Edges (IEEE 802.11g / CH Low)

Detector mode: Peak

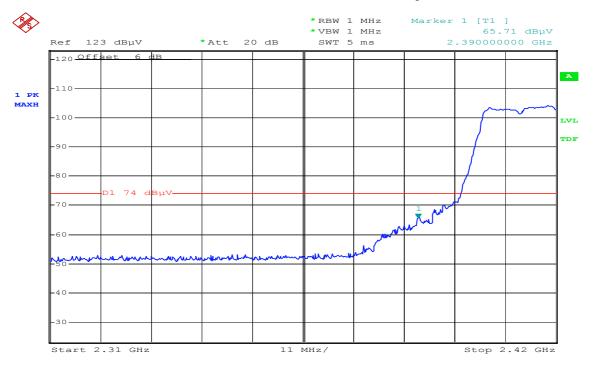
Polarity: Vertical


Date of Issue: March 11, 2009

Date: 1.JAN.2009 07:46:01

Detector mode: Average

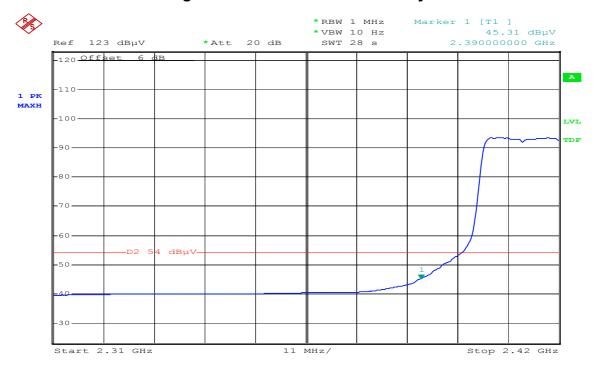
Polarity: Vertical


Date: 1.JAN.2009 07:47:52

Page 31 Rev. 00

FCC ID: A6RMCXRC100A Date of Issue: March 11, 2009

Detector mode: Peak

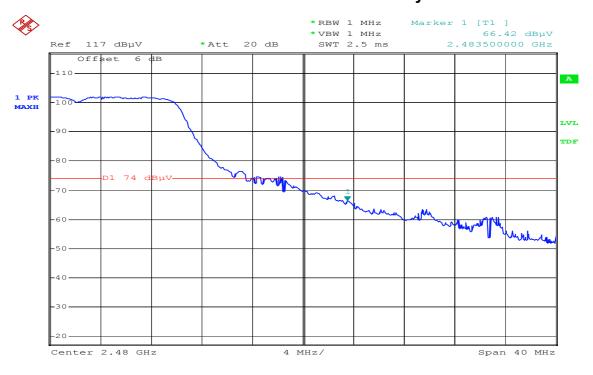

Polarity: Horizontal

1.JAN.2009 07:50:26

Detector mode: Average

Polarity: Horizontal

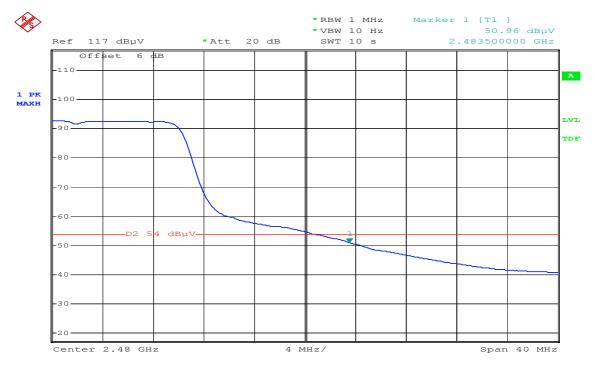
Date: 1.JAN.2009 07:51:16


Page 32 Rev. 00

Band Edges (IEEE 802.11g / CH High)

Detector mode: Peak

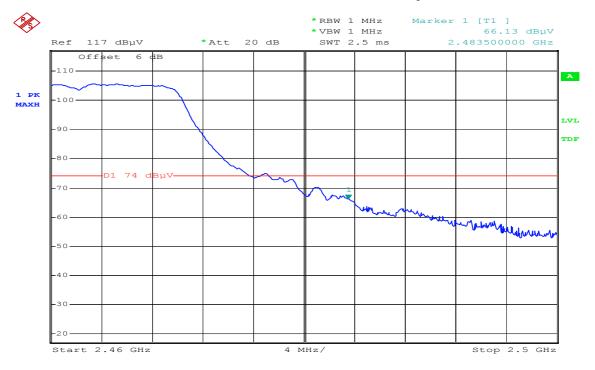
Polarity: Vertical


Date of Issue: March 11, 2009

Date: 1.JAN.2009 08:48:28

Detector mode: Average

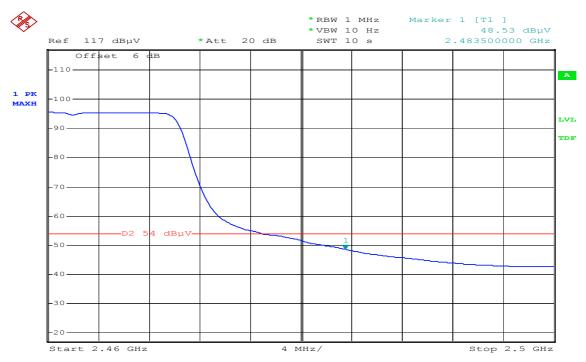
Polarity: Vertical


Date: 1.JAN.2009 08:49:07

Page 33 Rev. 00

FCC ID: A6RMCXRC100A Date of Issue: March 11, 2009

Detector mode: Peak


Polarity: Horizontal

Date: 1.JAN.2009 09:14:57

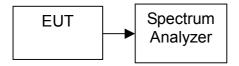
Detector mode: Average

Polarity: Horizontal

Date: 1.JAN.2009 09:16:17

Page 34 Rev. 00

7.5 PEAK POWER SPECTRAL DENSITY


LIMIT

1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: March 11, 2009

2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

TEST CONFIGURATION

TEST PROCEDURE

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

Remark: 1. Result = Reading Value + Cable Loss + Attenuator Loss

2. Cable Loss = 0.5 dB; Attenuator Loss=1 dB

TEST RESULTS

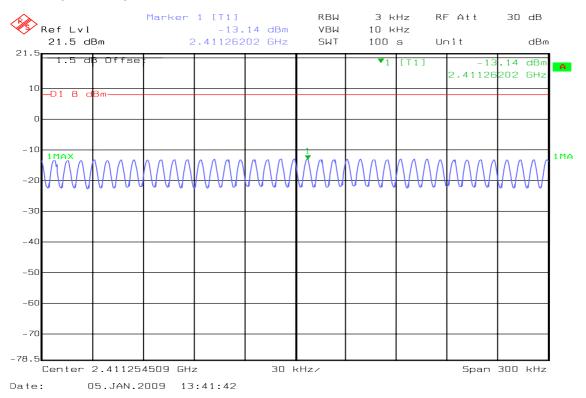
No non-compliance noted

TEST DATA

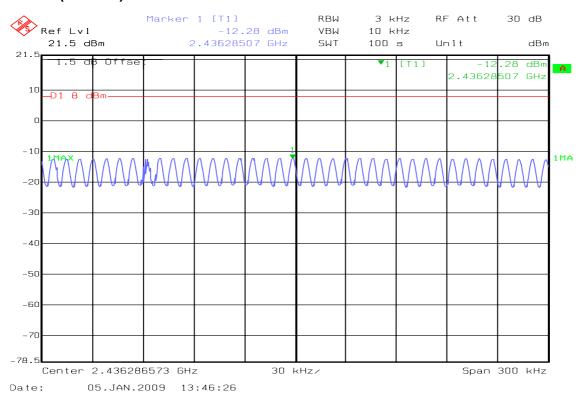
IEEE 802.11b

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-13.14		PASS
Mid	2437	-12.28	8.00	PASS
High	2462	-11.77		PASS

IEEE 802.11g

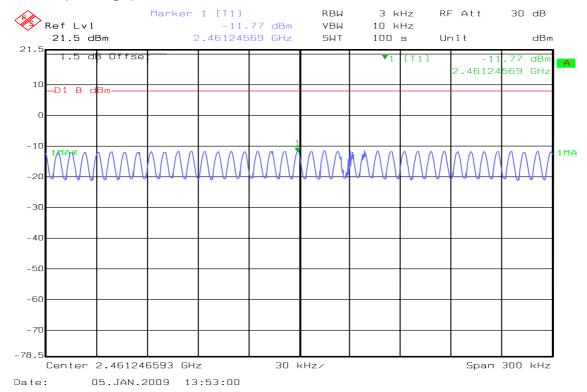

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-15.85		PASS
Mid	2437	-14.42	8.00	PASS
High	2462	-14.58		PASS

Page 35 Rev. 00

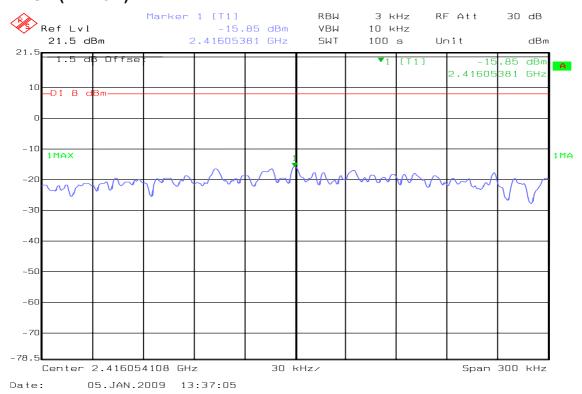

Test Plot

IEEE 802.11b

PPSD (CH Low)

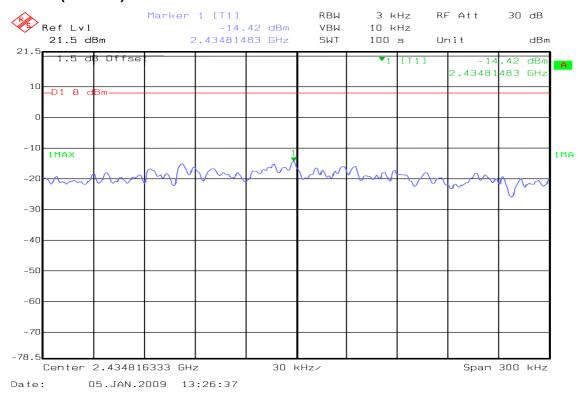

PPSD (CH Mid)

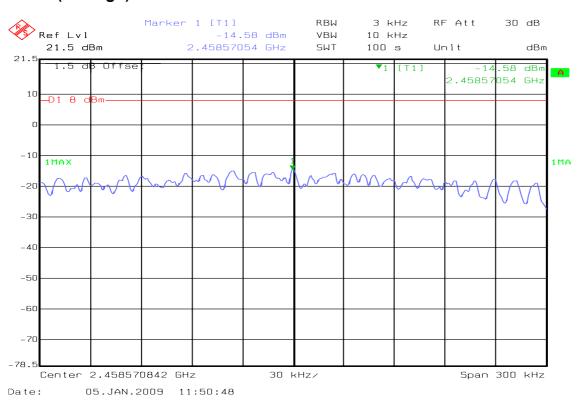
Page 36 Rev. 00


Date of Issue: March 11, 2009

PPSD (CH High)

IEEE 802.11g


PPSD (CH Low)


Page 37 Rev. 00

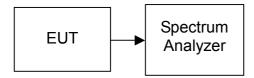
Date of Issue: March 11, 2009

PPSD (CH Mid)

PPSD (CH High)

Page 38 Rev. 00

7.6 SPURIOUS EMISSIONS


7.6.1 CONDUCTED MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: March 11, 2009

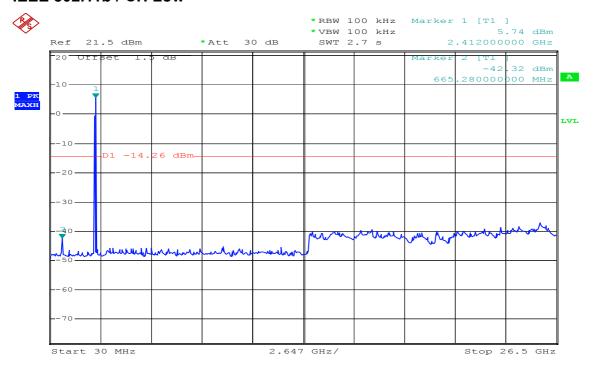
TEST CONFIGURATION

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

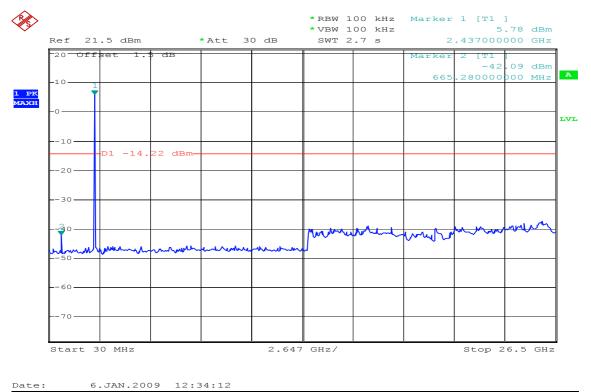
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

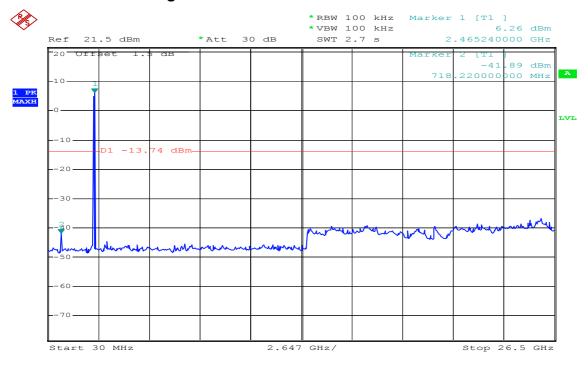

TEST RESULTS

No non-compliance noted.

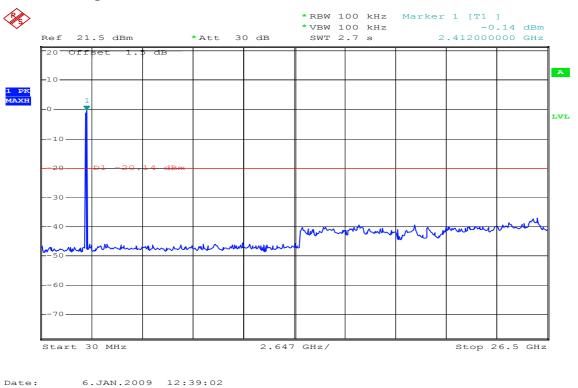
Page 39 Rev. 00


Test Plot

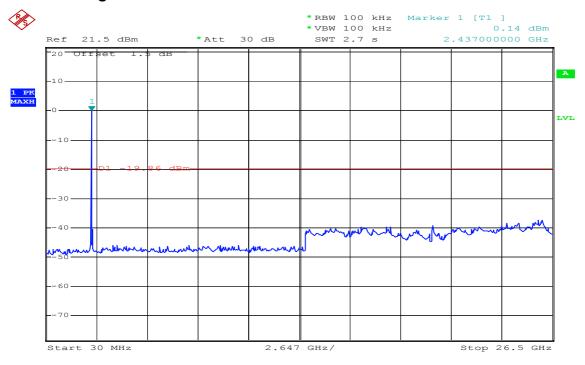
IEEE 802.11b / CH Low


Date: 6.JAN.2009 12:36:19

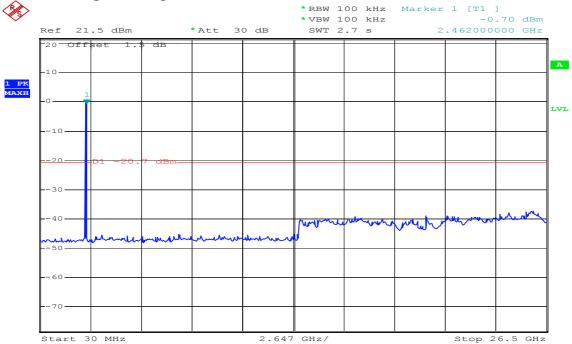
IEEE 802.11b / CH Mid


Page 40 Rev. 00

IEEE 802.11b / CH High


Date: 6.JAN.2009 12:30:00

IEEE 802.11g / CH Low


Page 41 Rev. 00

IEEE 802.11g / CH Mid

Date: 6.JAN.2009 12:40:42

IEEE 802.11g / CH High

Date: 6.JAN.2009 12:44:38

Page 42 Rev. 00

7.6.2 RADIATED EMISSIONS

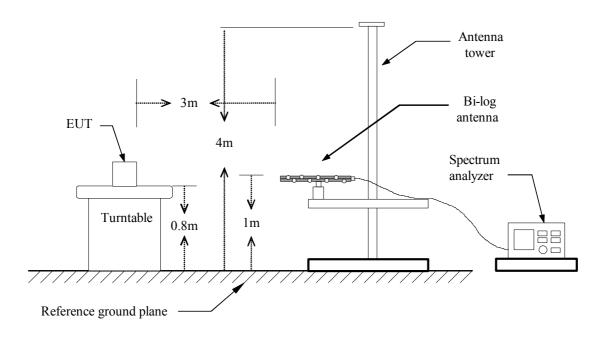
LIMIT

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

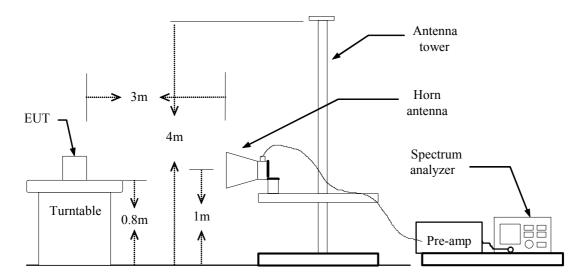
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Date of Issue: March 11, 2009

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


Page 43 Rev. 00

TEST CONFIGURATION

Below 1 GHz

Above 1 GHz

Page 44 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Date of Issue: March 11, 2009

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

No non-compliance noted.

Page 45 Rev. 00

TEST DATA

Below 1 GHz

Operation Mode: Normal Link Test Date: January 7, 2009

Date of Issue: March 11, 2009

Temperature: 26°C **Tested by:** Alonso Lu **Humidity:** 60% RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
31.3857	V	51.00	-15.13	35.87	40.00	-4.13	QP
81.2714	V	55.98	-18.06	37.92	40.00	-2.08	QP
150.5571	V	44.50	-12.56	31.94	43.50	-11.56	QP
332.0857	V	38.73	-10.96	27.77	46.00	-18.23	QP
398.6000	V	39.73	-9.68	30.05	46.00	-15.95	QP
663.2714	V	37.24	-4.82	32.42	46.00	-13.58	QP
796.3000	V	35.70	-1.88	33.82	46.00	-12.18	QP
39.7000	Н	35.74	-14.85	20.89	40.00	-19.11	QP
70.1857	Н	40.54	-16.37	24.17	40.00	-15.83	QP
132.5429	Н	38.48	-13.55	24.93	43.50	-18.57	QP
151.9429	Н	39.22	-12.50	26.72	43.50	-16.78	QP
398.6000	Н	46.73	-9.68	37.05	46.00	-8.95	QP
531.6286	Н	35.70	-7.68	28.02	46.00	-17.98	QP
663.2714	Н	34.74	-4.82	29.92	46.00	-16.08	QP
927.9429	Н	37.99	-0.38	37.61	46.00	-8.39	QP

Remark:

- No emission found between lowest internal used / generated frequency to 30 MHz. (9kHz ~ 30MHz)
- 2. Measuring frequencies from 30 MHz to the 1GHz.
- 3. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.
- 6. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 7. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 46 Rev. 00

Above 1 GHz

Operation Mode: IEEE 802.11b / TX / CH Low Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1016.00	V	56.55		-10.63	45.92		74.00	54.00	-8.08	Peak
4820.00	V	44.05		1.87	45.92		74.00	54.00	-8.08	Peak
7240.00	V	44.11		6.43	50.55		74.00	54.00	-3.45	Peak
N/A										
2056.00	Н	53.99		-5.40	48.58		74.00	54.00	-5.42	Peak
2936.00	Н	54.37		-2.39	51.98		74.00	54.00	-2.02	Peak
4820.00	Н	46.95		1.87	48.82		74.00	54.00	-5.18	Peak
7240.00	Н	42.02		6.43	48.45		74.00	54.00	-5.55	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 47 Rev. 00

Operation Mode: IEEE 802.11b / TX / CH Mid Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1716.00	V	53.15		-7.15	46.00		74.00	54.00	-8.00	Peak
4870.00	V	48.69		2.02	50.71		74.00	54.00	-3.29	Peak
7320.00	V	44.87		6.65	51.51		74.00	54.00	-2.49	Peak
N/A										
1716.00	Н	54.18		-7.15	47.02		74.00	54.00	-6.98	Peak
2344.00	Н	55.61		-4.75	50.86		74.00	54.00	-3.14	Peak
4870.00	Н	52.73	50.76	2.02	54.74	52.78	74.00	54.00	-1.22	AVG
7320.00	Н	45.04		6.65	51.69		74.00	54.00	-2.31	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 48 Rev. 00

Operation Mode: IEEE 802.11b / TX / CH High Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1024.00	V	56.07		-10.59	45.48		74.00	54.00	-8.52	Peak
5600.00	V	41.83		3.54	45.38		74.00	54.00	-8.62	Peak
7390.00	V	46.22	41.69	6.84	53.05	48.53	74.00	54.00	-5.47	AVG
N/A										
1808.00	Н	53.13		-6.63	46.50		74.00	54.00	-7.50	Peak
4920.00	Н	42.53		2.16	44.70		74.00	54.00	-9.30	Peak
7230.00	Н	40.86		6.41	47.27		74.00	54.00	-6.73	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 49 Rev. 00

Operation Mode: IEEE 802.11g / TX / CH Low Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)		Remark
2016.00	V	53.34		-5.49	47.84		74.00	54.00	-6.16	Peak
4810.00	V	43.55		1.84	45.39		74.00	54.00	-8.61	Peak
7240.00	V	50.61	33.76	6.43	57.04	40.19	74.00	54.00	-13.81	AVG
N/A										
2220.00	Н	54.61		-5.03	49.58		74.00	54.00	-4.42	Peak
4820.00	Н	48.94		1.87	50.81		74.00	54.00	-3.19	Peak
7240.00	Н	47.91	32.96	6.43	54.35	39.39	74.00	54.00	-14.61	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m)
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 50 Rev. 00

.

Operation Mode: IEEE 802.11g / TX / CH Mid Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1556.00	V	53.46		-8.07	45.39		74.00	54.00	-8.61	Peak
4870.00	V	43.94		2.02	45.96		74.00	54.00	-8.04	Peak
7310.00	V	52.52	37.16	6.62	59.14	43.78	74.00	54.00	-10.22	AVG
N/A										
1688.00	Н	53.67		-7.31	46.36		74.00	54.00	-7.64	Peak
2640.00	Н	54.15		-3.76	50.39		74.00	54.00	-3.61	Peak
4880.00	Н	46.83		2.05	48.88		74.00	54.00	-5.12	Peak
7320.00	Н	50.21	35.47	6.65	56.86	42.12	74.00	54.00	-11.88	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 51 Rev. 00

Operation Mode: IEEE 802.11g / TX / CH High Test Date: December 31, 2008

Date of Issue: March 11, 2009

Temperature:16°CTested by:Alonso LuHumidity:57% RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1576.00	V	54.24		-7.96	46.28		74.00	54.00	-7.72	Peak
2344.00	V	55.34		-4.75	50.59		74.00	54.00	-3.41	Peak
4930.00	V	44.41		2.19	46.60		74.00	54.00	-7.40	Peak
7390.00	V	53.60	38.51	6.84	60.44	45.35	74.00	54.00	-8.65	AVG
N/A										
2364.00	Н	55.99		-4.71	51.28		74.00	54.00	-2.72	Peak
4930.00	Н	47.37		2.19	49.56		74.00	54.00	-4.44	Peak
7400.00	Н	49.94	36.20	6.86	56.80	43.06	74.00	54.00	-10.94	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).
- 7. Factor (dB) = Antenna factor + Cable loss Amplifier gain
- 8. Set the spectrum analyzer as Hi-pass filter = 1 dB

Page 52 Rev. 00

7.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Date of Issue: March 11, 2009

Frequency Range (MHz)	Limits (dΒμV)					
(111112)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Page 53 Rev. 00

TEST DATA

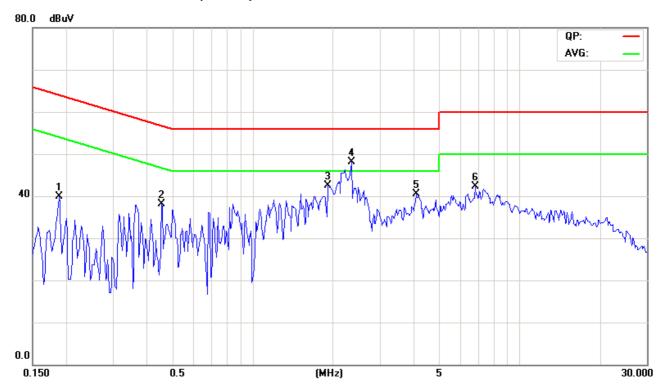
Operation Mode: Normal Link Test Date: January 6, 2009

Date of Issue: March 11, 2009

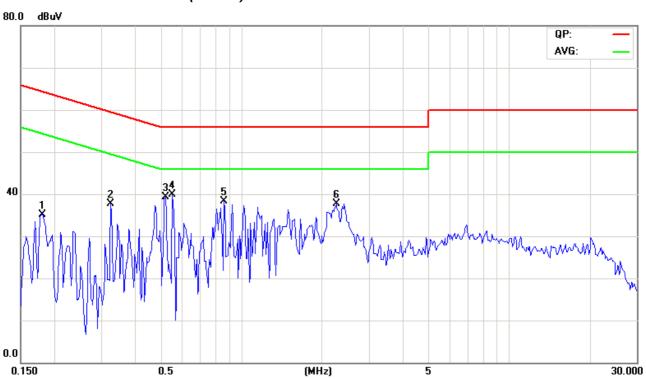
Temperature: 25°C **Tested by:** Alonso Lu

Humidity: 57% RH

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.1891	27.02	19.42	9.68	36.70	29.10	64.08	54.08	-27.38	-24.98	L1
0.4586	15.78	5.18	9.62	25.40	14.80	56.72	46.72	-31.32	-31.92	L1
1.9117	26.01	16.11	9.69	35.70	25.80	56.00	46.00	-20.30	-20.20	L1
2.3570	30.60	20.40	9.70	40.30	30.10	56.00	46.00	-15.70	-15.90	L1
4.1109	22.58	13.28	9.72	32.30	23.00	56.00	46.00	-23.70	-23.00	L1
6.8102	24.67	15.47	9.83	34.50	25.30	60.00	50.00	-25.50	-24.70	L1
0.1812	23.02	9.62	9.68	32.70	19.30	64.43	54.43	-31.73	-35.13	L2
0.3258	27.82	17.52	9.68	37.50	27.20	59.56	49.56	-22.06	-22.36	L2
0.5211	22.42	7.52	9.58	32.00	17.10	56.00	46.00	-24.00	-28.90	L2
0.5523	28.72	15.42	9.58	38.30	25.00	56.00	46.00	-17.70	-21.00	L2
0.8648	28.21	12.91	9.59	37.80	22.50	56.00	46.00	-18.20	-23.50	L2
2.2633	26.70	15.30	9.70	36.40	25.00	56.00	46.00	-19.60	-21.00	L2


Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)
- 5. Corr. Factor (dB) = LISN Factor + Cable loss
- 6. The Hi-pass filter is set forth on the Spectrum analyzer as 1 dB.


Page 54 Rev. 00

Test Plot

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 55 Rev. 00

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Date of Issue: March 11, 2009

EUT Specification

EUT	Network Music Commander							
Frequency band	☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz							
(Operating)	☐ WLAN: 5.745GHz ~ 5.825GHz							
	☐ Others							
	Portable (<20cm separation)							
Device category	Mobile (>20cm separation)							
	Others							
	Occupational/Controlled exposure (S = 5mW/cm2)							
Exposure classification	☐ General Population/Uncontrolled exposure							
	(S=1mW/cm2)							
	Single antenna							
Antenna diversity	Tx diversity							
	Rx diversity							
	Tx/Rx diversity							
Max. output power	IEEE 802.11b: 20.87 dBm (122.18mW)							
	IEEE 802.11g: 23.75 dBm (237.14mW)							
Antenna gain (Max)	4.0 dBi (Numeric gain: 2.51)							
Evaluation applied	SAR Evaluation SAR							
	□ N/A							
Remark:								
	er is <u>23.75dBm (237.14mW)</u> at <u>2412MHz</u> (with <u>2.51</u>							
numeric antenna gain.)								
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the								
compliance.								
	For mobile or fixed location transmitters, no SAR consideration applied. The							
maximum power density is	s 1.0 mW/cm ² even if the calculation indicates that the							

TEST RESULTS

No non-compliance noted.

power density would be larger.

Remark: Please refer to the separated SAR report.

Page 56 Rev. 00