

Report No. : FG870921

FCC RADIO TEST REPORT

FCC ID	: A6GC4MAX-4MUSACV4
Equipment	: Telematic embedded system
Brand Name	: Mobile Devices Ingenierie
Model Name	: C4MAX-4MUSAC_V4
Marketing Name	: C4MAX-4MUSAC_V4
Applicant	: Mobile Devices Ingénierie
	100 Avenue de Stalingrad 94800 Villejuif FRANCE
Manufacturer	: Mobile Devices Ingénierie
	100 Avenue de Stalingrad 94800 Villejuif FRANCE
Standard	: 47 CFR Part 2, 24(E), 27

The product was received on Jul. 09, 2018 and testing was started from Oct. 09, 2018 and completed on Oct. 10, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

	-	f this test report	
Su	mmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	8
	2.3	Support Unit used in test configuration and system	8
	2.4	Measurement Results Explanation Example	8
	2.5	Frequency List of Low/Middle/High Channels	9
3	Cond	ucted Test Items	11
	3.1	Measuring Instruments	11
	3.2	Conducted Output Power and ERP/EIRP	12
	3.3	Peak-to-Average Ratio	13
	3.4	Occupied Bandwidth	14
	3.5	Conducted Band Edge	15
	3.6	Conducted Spurious Emission	16
	3.7	Frequency Stability	17
4	Radia	ited Test Items	18
	4.1	Measuring Instruments	18
	4.2	Radiated Spurious Emission	19
5	List c	f Measuring Equipment	20
6	Unce	rtainty of Evaluation	21
Ар	pendix	A. Test Results of Conducted Test	
Ap	pendix	B. Test Results of ERP/EIRP and Radiated Test	

Appendix C. Test Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FG870921	01	Initial issue of report	Oct. 15, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items		Remark	
	§2.1046	Conducted Output Power	Reporting only		
	§27.50 (b)(10) §27.50 (c)(10)	Effective Radiated Power (Band 12)			
3.1	§24.232 (c)	Equivalent Isotropic Radiated Power (Band 2)	Pass	-	
	§27.50 (d)(4)	Equivalent Isotropic Radiated Power (Band 4)			
3.3	§24.232 (d) §27.50 (d)(5)	Peak-to-Average Ratio	Pass	-	
3.4	§2.1049	Occupied Bandwidth	Reporting only	-	
3.5	§2.1051 §24.238 (a) §27.53 (g) §27.53 (h)	Conducted Band Edge Measurement (Band 2) (Band 4) (Band 12)	Pass	-	
3.6	§2.1051 §24.238 (a) §27.53 (g) §27.53 (h)	Conducted Spurious Emission (Band 2) (Band 4) (Band 12)	Pass	-	
3.7	§2.1055 §24.235 §27.54	Frequency Stability Temperature & Voltage	Pass	-	
4.2	§2.1053§22.917 (a) §24.238 (a) §27.53 (g) §27.53 (h)	Radiated Spurious Emission (Band 2) (Band 4) (Band 12)	Pass	Under limit 31.47 dB at 3448.000 MHz	

Reviewed by: Wii Chang Report Producer: Maggie Chiang

1 General Description

1.1 Product Feature of Equipment Under Test

LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, and GNSS.

Product Specification subjective to this standard				
	WWAN: LDS Antenna			
Antonno Tuno	WLAN: Chip Antenna			
Antenna Type	Bluetooth: Chip Antenna			
	GPS/Glonass: External Antenn			

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. TH05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No. 03CH13-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

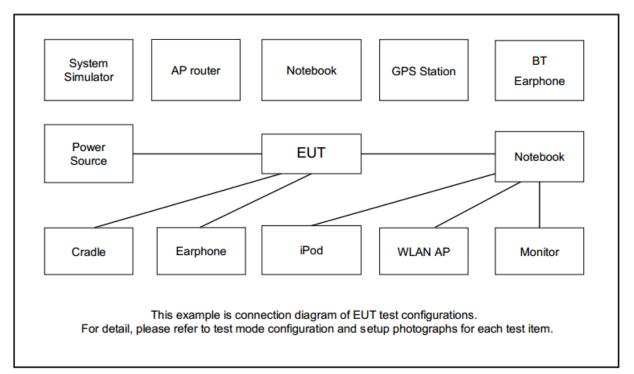
- ANSI C63.26-2015
- ANSI / TIA-603-E
- 47 CFR Part 2, 24(E), 27
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X Plane for Band 4 and Band 12; Y Plane for Band 2) were recorded in this report.

Test Home	Band	Bandwidth (MHz)					Modulation			RB #		Test Channel			
Test Items	Banu	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full	L	м	н
Max.	2	v	v	v	v	v	v	v	v	v	v	v	v	v	v
Output	4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
Power	12	v	v	v	v	-	-	v	v	v	v	v	v	v	v
	2						v	v	v	v		v	v	v	v
Peak-to-Ave rage Ratio	4						v	v	v	v		v	v	v	v
	12				v	-	-	v	v	v		v	v	v	v
26dB and	2	v	v	v	v	v	v	v	v			v	v	v	v
99%	4	v	v	v	v	v	v	v	v			v	v	v	v
Bandwidth	12	v	v	v	v	-	-	v	v			v	v	v	v
	2	v	v	v	v	v	v	v	v	v		v	v		v
Conducted Band Edge	4	v	v	v	v	v	v	v	v	v		v	v		v
	12	v	v	v	v	-	-	v	v	v		v	v		v
Conducted	2	v	v	v	v	v	v	v	v	v			v	v	v
Spurious	4	v	v	×	v	v	v	v	v	v			v	v	v
Emission	12	v	v	v	v	-	-	v	v	v			v	v	v
	2				v			v				v		v	
Frequency Stability	4				v			v				v		v	
	12				v	-	-	v				v		v	
/	2	v	v	v	v	v	v	v	v	v		v	v	v	v
E.R.P / E.I.R.P	4	v	v	v	v	v	v	v	v	v		v	v	v	v
	12	v	v	v	v	-	-	v	v	v			v	v	v
Radiated	2						Wors	t Case					v	v	v
Spurious	4						Wors	t Case					v	v	v
Emission	12						Wors	t Case					v	v	v
Remark	2. The 3. The	mark "-' device i	' means s invest	that this	s bandw rom 30N	idth is n 1Hz to 1	iot supp 0 times	of fundam	ng ental signa ubsequentl						

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8821C	N/A	Unshielded, 1.8m	N/A
2.	AC Power Source	APC	AFC-11003G	F314070044	Unshielded, 1.8m	N/A

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

2.5 Frequency List of Low/Middle/High Channels

LTE Band 2 Channel and Frequency List								
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest				
20	Channel	18700	18900	19100				
20	Frequency	1860	1880	1900				
15	Channel	18675	18900	19125				
15	Frequency	1857.5	1880	1902.5				
40	Channel	18650	18900	19150				
10	Frequency	1855	1880	1905				
5	Channel	18625	18900	19175				
5	Frequency	1852.5	1880	1907.5				
2	Channel	18615	18900	19185				
3	Frequency	1851.5	1880	1908.5				
1.4	Channel	18607	18900	19193				
1.4	Frequency	1850.7	1880	1909.3				

LTE Band 4 Channel and Frequency List									
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest					
20	Channel	20050	20175	20300					
20	Frequency	1720	1732.5	1745					
15	Channel	20025	20175	20325					
15	Frequency	1717.5	1732.5	1747.5					
10	Channel	20000	20175	20350					
10	Frequency	1715	1732.5	1750					
5	Channel	19975	20175	20375					
5	Frequency	1712.5	1732.5	1752.5					
3	Channel	19965	20175	20385					
3	Frequency	1711.5	1732.5	1753.5					
1.4	Channel	19957	20175	20393					
1.4	Frequency	1710.7	1732.5	1754.3					

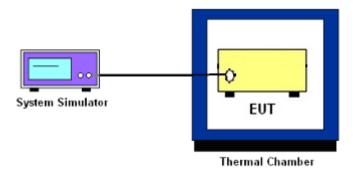
LTE Band 12 Channel and Frequency List									
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest					
10	Channel	23060	23095	23130					
10	Frequency	704	707.5	711					
F	Channel	23035	23095	23155					
5	Frequency	701.5	707.5	713.5					
2	Channel	23025	23095	23165					
3	Frequency	700.5	707.5	714.5					
4.4	Channel	23017	23095	23173					
1.4	Frequency	699.7	707.5	715.3					

3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth ,Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power and ERP/EIRP

3.2.1 Description of the Conducted Output Power Measurement and ERP/EIRP Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 12.

The EIRP of mobile transmitters must not exceed 2 Watts for LTE Band 2.

The EIRP of mobile transmitters must not exceed 1 Watts for LTE Band 4.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.7.1

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

3.4 Occupied Bandwidth

3.4.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 4.2

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

24.238 (a)

For operations in the 1850-1910 and 1930-1990 MHz band, the FCC limit is $43 + 10\log_{10}(P[Watts])$ dB below the transmitter power P(Watts) in a 1MHz bandwidth. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

27.53 (g)

For operations in the 600MHz band and 698 -746 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100 kHz bandwidth. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53 (h)

For operations in the 1710 - 1755 MHz band, the FCC limit is $43 + 10log_{10}(P[Watts])$ dB below the transmitter power P(Watts) in a 1 MHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.0.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- Checked that all the results comply with the emission limit line.
 The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.0.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

24.235 & 27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Test Procedures for Temperature Variation

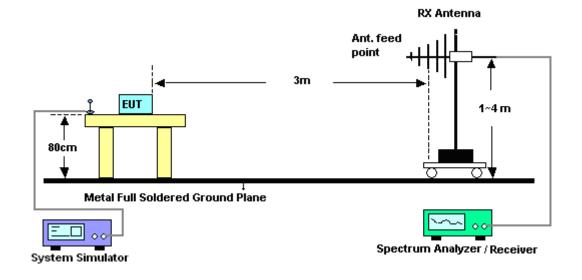
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

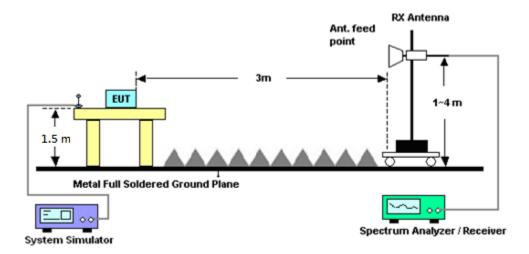
3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

TEL : 886-3-327-3456	Page Number	: 18 of 21
FAX : 886-3-328-4978	Issued Date	: Oct. 15, 2018
Report Template No.: BU5-FGLTE Version 2.1	Report Version	: 01

4.2 Radiated Spurious Emission

4.2.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Base Station (Measure)	Anritsu	MT8821C	6201664755	GSM / GPRS /WCDMA / LTE FDD/TDD with 44) /LTE-3CC DLCA,2CC ULCA	Feb. 26, 2018	Oct. 09, 2018	Feb. 25, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 07, 2017	Oct. 09, 2018	Nov. 06, 2018	Conducted (TH05-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40° C ~90 °C	Aug. 29, 2018	Oct. 09, 2018	Aug. 28, 2019	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890089	1V~20V 0.5A~5A	Jan. 12, 2018	Oct. 09, 2018	Jan. 11, 2019	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 02, 2018	Oct. 09, 2018	Oct. 01, 2019	Conducted (TH05-HY)
Coupler	Warison	1-18GHz 20dB 25WSMA Directional Coupler	#B	1G~18GHz	Dec. 04, 2017	Oct. 09, 2018	Dec. 03, 2018	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	Oct. 09, 2018~ Oct. 10, 2018	Nov. 22, 2018	Radiation (03CH13-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz,V SWR : 2.5:1 max	Jul. 16, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jul. 15, 2019	Radiation (03CH13-HY)
Amplifier	Sonoma-Instr ument	310 N	187282	9KHz~1GHz	Dec. 21, 2016	Oct. 09, 2018~ Oct. 10, 2018	Dec. 20, 2018	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	40103&07	30MHz to 1GHz	Jan. 10, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jan. 09, 2019	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Jun. 29, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jun. 28, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN1	1G Low pass Filter	Sep. 17, 2018	Oct. 09, 2018~ Oct. 10, 2018	Sep. 16, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3G High Pass	Sep. 17, 2018	Oct. 09, 2018~ Oct. 10, 2018	Sep. 16, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-1080 -1200-15000-6 0ST	SN3	1.2 GHz High pass	Jul. 05, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jul. 04, 2019	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz- 40GHz	Nov. 10, 2017	Oct. 09, 2018~ Oct. 10, 2018	Nov. 09, 2018	Radiation (03CH13-HY)
Preamplifier	Jet-Power	JPA0118-55- 303	171000180005 4001	1GHz~18GHz	Apr. 16, 2018	Oct. 09, 2018~ Oct. 10, 2018	Apr. 15, 2019	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Feb. 02, 2018	Oct. 09, 2018~ Oct. 10, 2018	Feb. 01, 2019	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 15, 2018	Oct. 09, 2018~ Oct. 10, 2018	Mar. 14, 2019	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 09, 2018~ Oct. 10, 2018	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 09, 2018~ Oct. 10, 2018	N/A	Radiation (03CH13-HY)
Signal Generator	Anritsu	MG3694C	163401	0.1Hz~40GHz	Jan. 15, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jan. 14, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M~18GHz	Jan. 22, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jan. 21, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	335041/4	30M~18GHz	Jan. 22, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jan. 21, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30M~18GHz	Jan. 22, 2018	Oct. 09, 2018~ Oct. 10, 2018	Jan. 21, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Oct. 17, 2017	Oct. 09, 2018~ Oct. 10, 2018	Oct. 16, 2018	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Oct. 17, 2017	Oct. 09, 2018~ Oct. 10, 2018	Oct. 16, 2018	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Oct. 09, 2018~ Oct. 10, 2018	N/A	Radiation (03CH13-HY)
AC Power Source	APC	AFC-11003G	F314070044	N/A	N/A	Oct. 09, 2018~ Oct. 10, 2018	N/A	Radiation (03CH13-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.07
Confidence of 95% (U = 2Uc(y))	3.07

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	2.49
Confidence of 95% (U = 2Uc(y))	3.48

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	2.02
Confidence of 95% (U = 2Uc(y))	3.92

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power)

			LTE Band	2 Ma	axim	um /	Average Power [dB	m]	
BW [MHz]	Mod	RB Size	RB Offset		Index	(Lowest	Middle	Highest
	MOG	KD SIZE	KD Oliset	L	М	Н	Lowest	Middle	nighest
20		1	0	0	0	15	23.00	23.18	23.34
20	QPSK	1	5	0	0	15	22.99	23.25	23.36
20		6	0	0	0	15	23.00	23.15	23.46
20		1	0	0	0	15	22.80	23.02	23.24
20	16-QAM	1	5	0	0	15	22.82	22.99	23.23
20		6	0	0	0	15	22.97	23.25	23.41
15		1	0	0	0	11	22.83	23.04	23.31
15	QPSK	1	5	0	0	11	22.93	23.10	23.20
15		6	0	0	0	11	23.02	23.16	23.37
15		1	0	0	0	11	22.71	23.06	23.13
15	16-QAM	1	5	0	0	11	22.76	22.96	23.16
15		6	0	0	0	11	23.02	23.22	23.37
10		1	0	0	0	7	22.95	23.13	23.33
10	QPSK	1	5	0	0	7	22.94	23.16	23.33
10		6	0	0	0	7	22.97	23.10	23.44
10		1	0	0	0	7	22.79	23.01	23.18
10	16-QAM	1	5	0	0	7	22.81	22.96	23.21
10		6	0	0	0	7	22.96	23.17	23.37
5		1	0	0	0	3	22.96	23.17	23.25
5	QPSK	1	5	0	0	3	22.91	23.22	23.33
5		6	0	0	0	3	22.90	23.07	23.45
5		1	0	0	0	3	22.76	22.98	23.17
5	16-QAM	1	5	0	0	3	22.74	22.89	23.21
5		6	0	0	0	3	22.88	23.19	23.39
3		1	0	0	0	1	22.94	23.13	23.28
3	QPSK	1	5	0	0	1	22.93	23.21	23.31
3		6	0	0	0	1	22.97	23.08	23.44
3		1	0	0	0	1	22.79	22.99	23.22
3	16-QAM	1	5	0	0	1	22.82	22.97	23.16
3		6	0	0	0	1	22.89	23.17	23.37
1.4		1	0	0	0	0	23.00	23.12	23.32
1.4	QPSK	1	5	0	0	0	22.97	23.17	23.30
1.4		6	0	0	0	0	22.98	23.09	23.45
1.4		1	0	0	0	0	22.74	23.00	23.21
1.4	16-QAM	1	5	0	0	0	22.76	22.94	23.18
1.4		6	0	0	0	0	22.92	23.16	23.39

FCC RADIO TEST REPORT

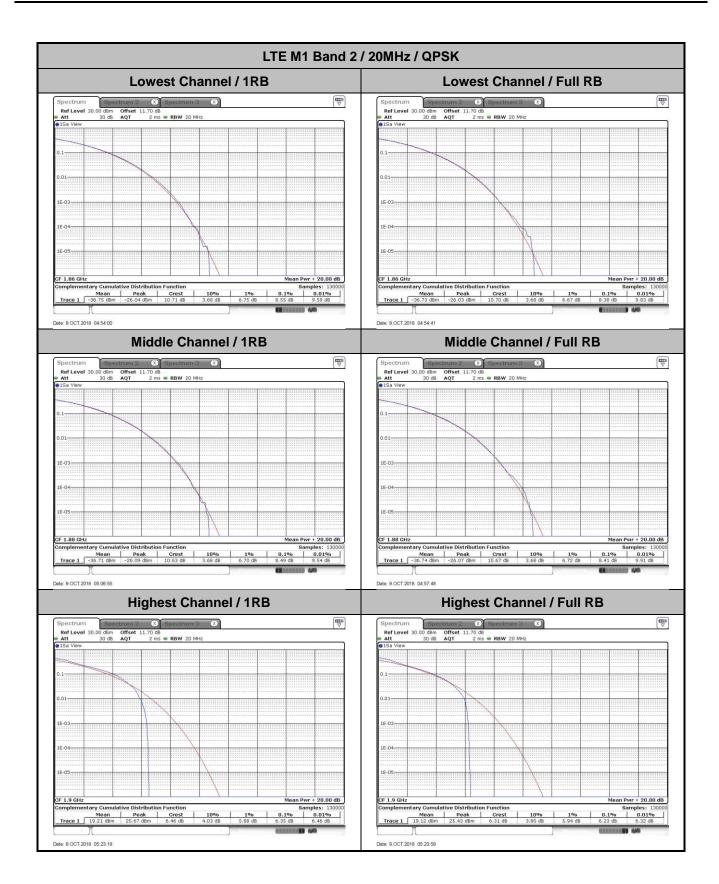
Report No. : FG870921

			LTE Band	4 Ma	axim	um /	Average Power [dB	m]	
BW [MHz]	Mod	RB Size	RB Offset		Index	۲.	Lowest	Middle	Highoot
	Mou	KD SIZE	KD Oliset	L	м	н	Lowest	Middle	Highest
20		1	0	0	0	15	23.49	23.31	23.19
20	QPSK	1	5	0	0	15	22.14	23.35	23.17
20		6	0	0	0	15	23.24	23.35	23.23
20		1	0	0	0	15	23.05	23.58	22.88
20	16-QAM	1	5	0	0	15	22.99	23.50	22.94
20		6	0	0	0	15	23.28	23.58	23.12
15		1	0	0	0	11	23.09	23.11	23.30
15	QPSK	1	5	0	0	11	23.06	23.04	23.32
15		6	0	0	0	11	23.26	23.18	23.29
15		1	0	0	0	11	23.07	23.04	23.19
15	16-QAM	1	5	0	0	11	23.04	23.01	23.18
15		6	0	0	0	11	23.41	23.33	23.17
10		1	0	0	0	7	22.99	23.08	23.26
10	QPSK	1	5	0	0	7	22.99	22.99	23.29
10		6	0	0	0	7	23.20	23.17	23.22
10		1	0	0	0	7	23.01	22.97	23.09
10	16-QAM	1	5	0	0	7	23.01	22.91	23.16
10		6	0	0	0	7	23.39	23.29	23.12
5		1	0	0	0	3	22.99	23.02	23.24
5	QPSK	1	5	0	0	3	22.96	23.04	23.28
5		6	0	0	0	3	23.22	23.10	23.23
5		1	0	0	0	3	23.02	22.95	23.19
5	16-QAM	1	5	0	0	3	22.96	22.93	23.10
5		6	0	0	0	3	23.32	23.29	23.09
3		1	0	0	0	1	23.03	23.01	23.28
3	QPSK	1	5	0	0	1	23.06	23.00	23.25
3		6	0	0	0	1	23.24	23.11	23.27
3		1	0	0	0	1	23.00	23.03	23.09
3	16-QAM	1	5	0	0	1	23.04	22.92	23.08
3		6	0	0	0	1	23.40	23.32	23.10
1.4		1	0	0	0	0	23.06	23.02	23.29
1.4	QPSK	1	5	0	0	0	23.05	22.98	23.25
1.4		6	0	0	0	0	23.21	23.11	23.25
1.4		1	0	0	0	0	22.97	23.03	23.18
1.4	16-QAM	1	5	0	0	0	22.95	22.95	23.13
1.4		6	0	0	0	0	23.33	23.25	23.12

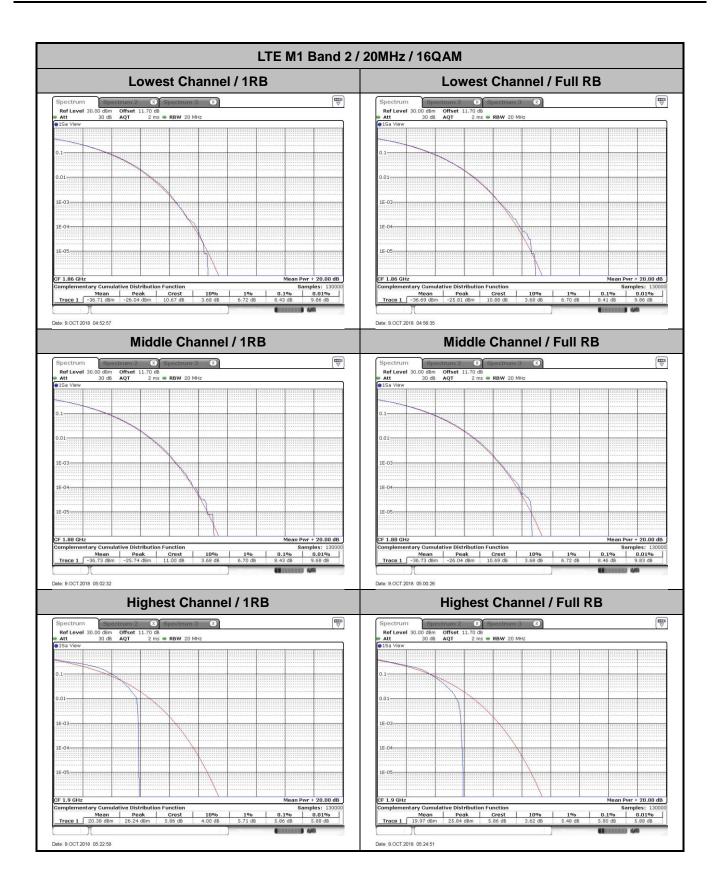
FCC RADIO TEST REPORT

Report No. : FG870921

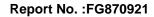
			LTE Band 1	2 M	axim	um	Average Power [dB	ßm]	
BW [MHz]	Mod	RB Size	RB Offset		Index		Lowest	Middle	Highest
ви [ипz]	MOQ	RD SIZE	RB Unset	L	М	Н	Lowest	Middle	Hignest
10		1	0	0	0	7	23.21	23.11	23.16
10	QPSK	1	5	0	0	7	23.12	23.13	23.22
10		6	0	0	0	7	22.36	22.47	22.30
10		1	0	0	0	7	23.18	23.16	23.09
10	16-QAM	1	5	0	0	7	23.17	23.12	23.06
10		6	0	0	0	7	21.46	21.41	21.42
5		1	0	0	0	3	22.89	23.01	22.92
5	QPSK	1	5	0	0	3	22.93	23.06	22.86
5		6	0	0	0	3	22.14	22.14	22.15
5		1	0	0	0	3	22.92	23.00	22.90
5	16-QAM	1	5	0	0	3	22.89	23.01	22.77
5		6	0	0	0	3	21.16	21.36	21.21
3		1	0	0	0	1	22.87	22.92	22.89
3	QPSK	1	5	0	0	1	22.83	23.06	22.80
3		6	0	0	0	1	22.07	22.04	22.14
3		1	0	0	0	1	22.89	22.96	22.85
3	16-QAM	1	5	0	0	1	22.87	23.00	22.67
3		6	0	0	0	1	21.13	21.31	21.19
1.4		1	0	0	0	0	22.81	22.93	22.87
1.4	QPSK	1	5	0	0	0	22.88	23.00	22.85
1.4	-	6	0	0	0	0	22.11	22.06	22.08
1.4		1	0	0	0	0	22.88	22.97	22.89
1.4	16-QAM	1	5	0	0	0	22.80	22.94	22.74
1.4		6	0	0	0	0	21.13	21.31	21.21

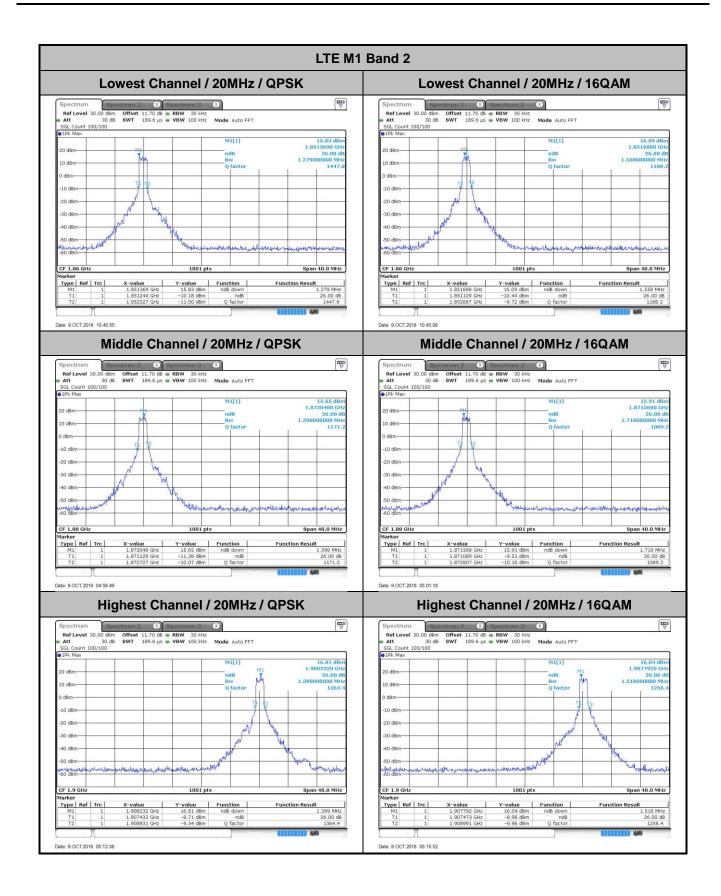


LTE M1 Band 2


Peak-to-Average Ratio

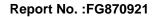
Mode		LTE M1 Band 2 / 20MHz									
Mod.	QP	SK	160	Limit: 13dB							
RB Size	1RB	Full RB	1RB	Full RB	Result						
Lowest CH	8.55	8.38	8.43	8.41							
Middle CH	8.49	8.41	8.43	8.46	PASS						
Highest CH	6.35	6.23	5.86	5.8							

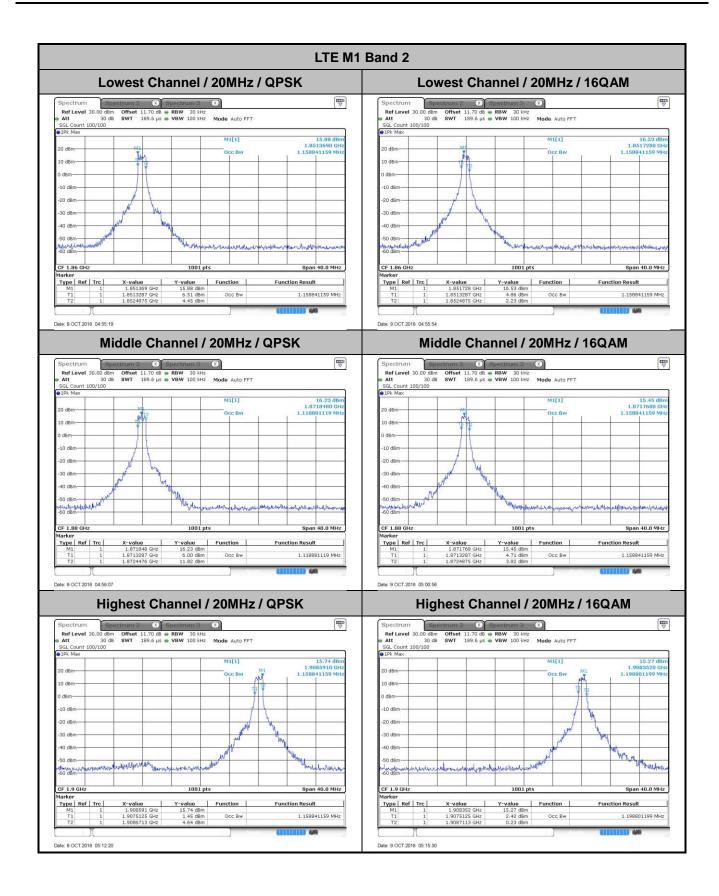




26dB Bandwidth

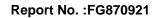
Mode		LTE M1 Band 2 : 26dB BW(MHz)												
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz			
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Lowest CH	-	-	-	-	-	-	-	-	-	-	1.28	1.56		
Middle CH	-	-	-	-	-	-	-	-	-	-	1.60	1.72		
Highest CH	-	-	-	-	-	-	-	-	-	-	1.40	1.52		

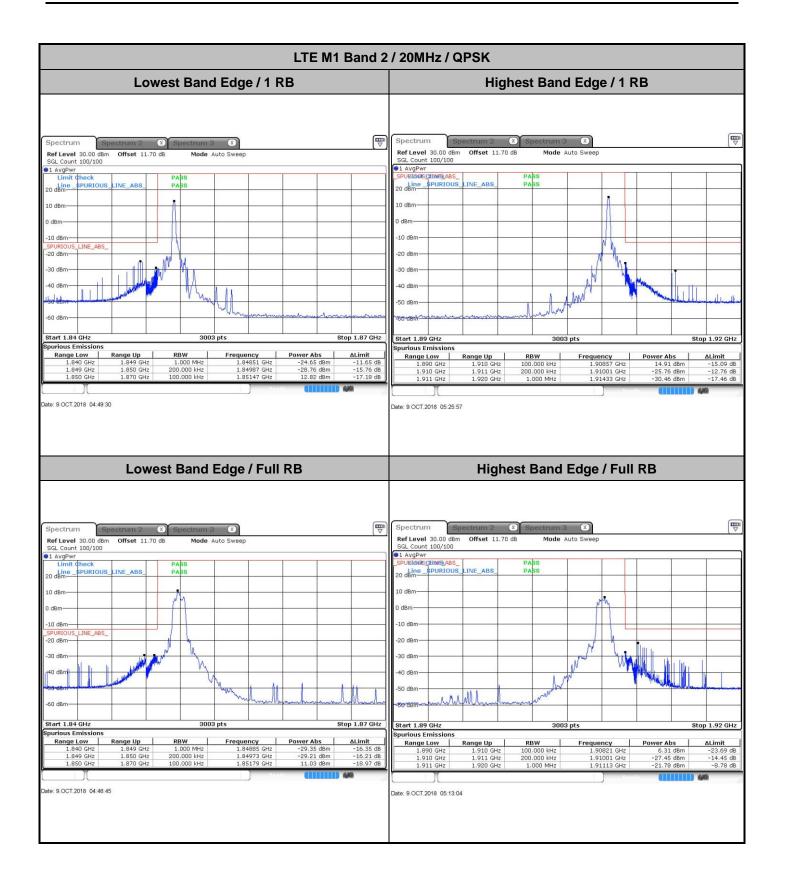


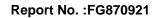


Occupied Bandwidth

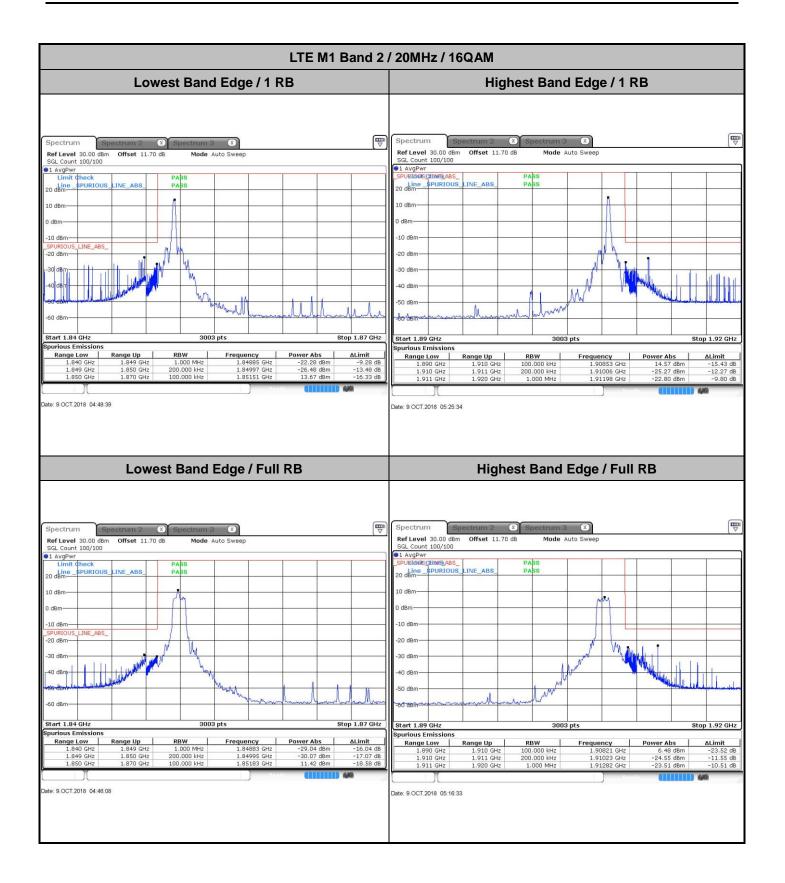
Mode		LTE M1 Band 2 : 99%OBW(MHz)												
BW	1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz			
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Lowest CH	-	-	-	-	-	-	-	-	-	-	1.16	1.16		
Middle CH	-	-	-	-	-	-	-	-	-	-	1.12	1.16		
Highest CH	-	-	-	-	-	-	-	-	-	-	1.16	1.2		

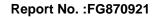






Conducted Band Edge





Conducted Spurious Emission

				LTE	E M1 Bar	nd 2 / 20MH	Ηz				
	Lo	west Cha	innel / QPS	K			Lov	vest Cha	nnel / 16QA	M	
Spectrum Rof Lovel 0.00 dBn SGL Count 100/100 100/100 1 AvgPwr Limit Gheck -10 dBR - BPURIOUS 1NE_ABS -20 dBm	S LINE_ABS	X Spectrum 3 3B Mode A PASS PASS	3 X			Spectrum Ref Level 0.00 dB GL Count 100/10 I AvgPwr Limit Check 10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -80 dBm	m Offset 11.70 c	EX Spectrum B Mode / PASS PASS	3 (3) Auto Sweep		
-90 dBm						-90 dBm					
Start 30.0 MHz	1 1	4000	J6 pts	4 4	Stop 19.5 GHz	Start 30.0 MHz		400	06 pts	· · · ·	Stop 19.5 GHz
Spurious Emissions						Spurious Emission]
Range Low 30.000 MHz	Range Up 1.000 GHz	1.000 MHz	977.45877 MHz	-47.44 dBm	-34,44 dB	Range Low 30,000 MHz	Range Up 1.000 GHz	1.000 MHz	980.36732 MHz	-47.75 dBm	∆Limit -34.75 dB
1.000 GHz	1.000 GHz	1.000 MHz	977.45877 MHz 1.82300 GHz	-47.44 dBm -48.14 dBm	-34.44 dB -35.14 dB	1.000 GHz	1.840 GHz	1.000 MHz	980.36732 MHZ 1.80075 GHz	-47.75 dBm	-34.75 dB -35.34 dB
1.920 GHz	3.000 GHz	1.000 MHz	2.98039 GHz	-47.06 dBm	-34.06 dB	1.920 GHz	3.000 GHz	1.000 MHz	2.91669 GHz	-46.97 dBm	-33.97 dB
3.000 GHz	9.000 GHz	1.000 MHz	7.56187 GHz	-42.07 dBm	-29.07 dB	3.000 GHz	9.000 GHz	1.000 MHz	7.54187 GHz	-42.15 dBm	-29.15 dB
9.000 GHz	13.000 GHz	1.000 MHz	12.44932 GHz	-40.51 dBm	-27.51 dB	9.000 GHz	13.000 GHz	1.000 MHz	12.43732 GHz	-40.41 dBm	-27.41 dB
13.000 GHz	19.500 GHz	1.000 MHz	17.85638 GHz	-38.21 dBm	-25.21 dB	13.000 GHz	19.500 GHz	1.000 MHz	17.84588 GHz	-38.16 dBm	-25.16 dB
r yr			The second se	CTREASE.	449	r Yr			- Dece		444
Date: 9.OCT.2018 04:51	:01					Date: 9.0CT.2018 04:5:	2:10				

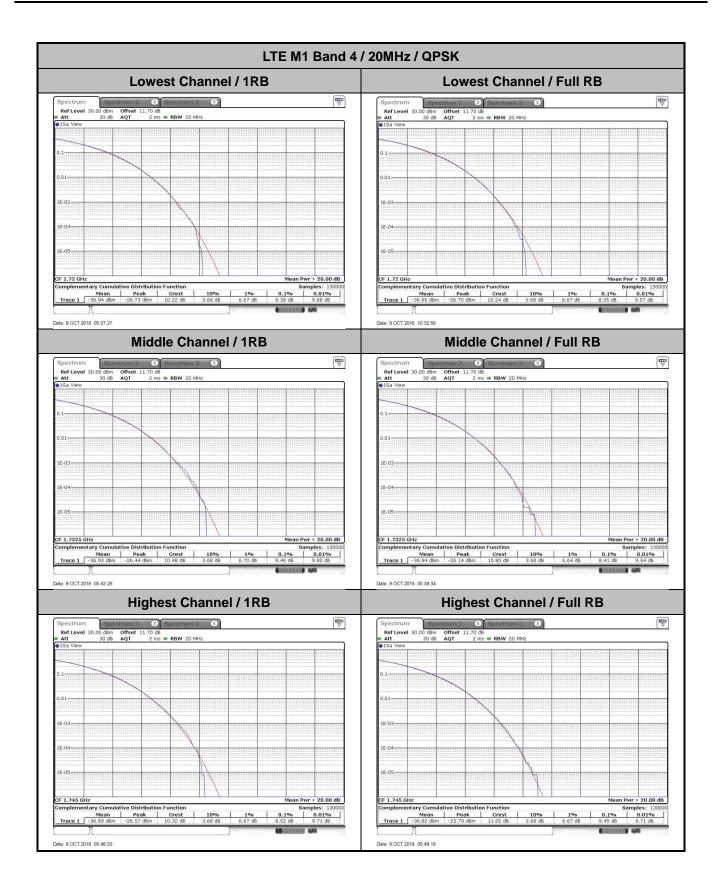
				LTE	M1 Bar	nd 2 / 20MH	z						
	Mido	lle Chan	nel / QPSK	Ι		Middle Channel / 16QAM							
Spectrum SF Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr	offset 11.70 dB	Spectrum 3 Mode Aut	X so Sweep			Spectrum Ref Level 0.00 dBm SGL Count 100/100 I AvgPwr	offset 11.70 dB		😰 lto Sweep				
Limit Check _10 ddm_ BPURIOUS_ _SPURIOUS_LINE_ABS_ -20 dBm		PASS PASS	~~~~		-	Limit check -10 ddre. sPURIOUS -20 dBm -30 dBm -40 dBm -60 dBm -60 dBm		PASS PASS			~~~~		
-70 dBm -80 dBm -90 dBm Start 30.0 MHz Spurious Emissions Range Low 30.000 MHz 1.000 GHz 1.920 GHz	Range Up 1.000 GHz 1.640 GHz 3.640 GHz	40006 RBW 1.000 MHz 1.000 MHz 1.000 MHz	pts Frequency 995.87956 MHz 1.77808 GHz 2.99622 GHz	Power Abs -47.45 dBm -48.42 dBm -46.92 dBm	Stop 19.5 GHz -34.45 dB -35.42 dB -33.92 dB	-70 dBm -80 dBm -90 dBm -90 dBm 	Range Up 1.000 GHz 1.840 GHz 3.000 GHz	+0000 RBW 1.000 MHz 1.000 MHz	6 pts Frequency 986.18441 MHz 1.78186 GHz 2.99622 GHz	-47.50 dBm -48.36 dBm -48.06 dBm	top 19.5 GHz <u>ALimit</u> -34.50 dB -35.36 dB -33.90 dB		
9.000 GHz 13.000 GHz Date: 9.0CT.2018 05:06:19		1.000 MHz 1.000 MHz	12.44482 GHz 17.95188 GHz	-40.42 dBm -38.10 dBm	-27.42 dB -25.10 dB	9.000 GHz 13.000 GHz Date: 9.0CT.2018 05:04:3		1.000 MHz 1.000 MHz	12.42982 GHz 17.84438 GHz	-40.42 dBm -38.23 dBm	-27.42 dB -25.23 dB		
Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr	Offset 11.70 dB	Spectrum 3 Mode Aut	x) to Sweep			Ref Level 0.00 dBm SGL Count 100/100 1 AvgPwr	offset 11.70 dB	Mode Au	21121				
Limit Check -10 ddm- 5PURIOUS SPURIOUS LINE_A8S20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm		PASS PASS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Limit check -10 ddm- pPURIOUS SPURIOUS LINE_ABS -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm		PABS PABS			~~~~~		
-80 dBm -90 dBm -90 dBm -90 dBm -90 dBm Spurious Emissions Range Low 30.000 MHz 1.000 GHz 1.920 GHz 3.000 GHz 9.000 GHz 13.000 GHz	Range Up 1.000 GHz 1.840 GHz 3.000 GHz 19.000 GHz 19.000 GHz 19.500 GHz	40006 RBW 1.000 MHz 1.000	Pts Frequency 969.57771 MHz 1.77430 GHz 2.84363 GHz 7.53687 GHz 12.44732 GHz 12.44732 GHz 13.44732 GHz 17.84688 GHz	Power Abs -47.54 dBm -48.34 dBm -46.94 dBm -42.18 dBm -40.50 dBm -38.04 dBm	ALimit -34.54 dB -33.34 dB -33.94 dB -29.18 dB -27.50 dB -27.50 dB	-90 dBm -90 dBm Start 30.0 MHz Spurious Emissions Range Low 30.000 MHz 1.000 GHz 3.000 GHz 9.000 GHz 13.000 GHz	Range Up 1.000 GHz 1.840 GHz 3.000 GHz 13.000 GHz 19.500 GHz	+0000 RBW 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	6 pts Frequency 996.84908 MHz 1.78270 GHz 2.96059 GHz 7.54487 GHz 12.43482 GHz 12.43482 GHz	Power Abs S -47.77 dBm -46.94 dBm -46.94 dBm -42.14 dBm -40.47 dBm -38.15 dBm	top 19.5 GHz -34.77 dB -35.38 dB -33.94 dB -29.14 dB -27.47 dB -25.15 dB		
Date: 9.0CT.2018 05:21:34	3					Date: 9.0CT.2018 05:22:3	32			umm			

Frequency Stability

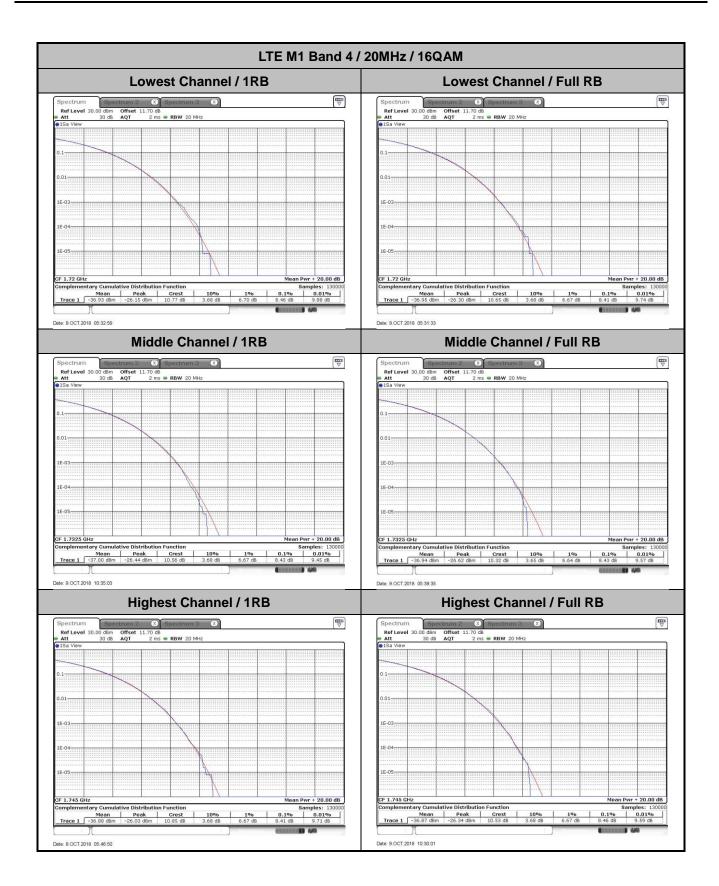
Test (Conditions	LTE M1 Band 2 (QPSK) / Middle Channel					
	N K	BW 10MHz	Note 2.				
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result				
50	Normal Voltage	0.0029					
40	Normal Voltage	0.0003					
30	Normal Voltage	0.0028					
20(Ref.)	Normal Voltage	0.0000					
10	Normal Voltage	0.0013					
0	Normal Voltage	0.0029					
-10	Normal Voltage	0.0028	PASS				
-20	Normal Voltage	0.0033					
-30	Normal Voltage	0.0003					
20	Maximum Voltage	0.0018					
20	Normal Voltage	0.0000					
20	Battery End Point	0.0019					

Note:

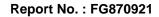
- 1. Normal Voltage =12 V. ; Battery End Point (BEP) =8 V. ; Maximum Voltage =32 V.
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block.

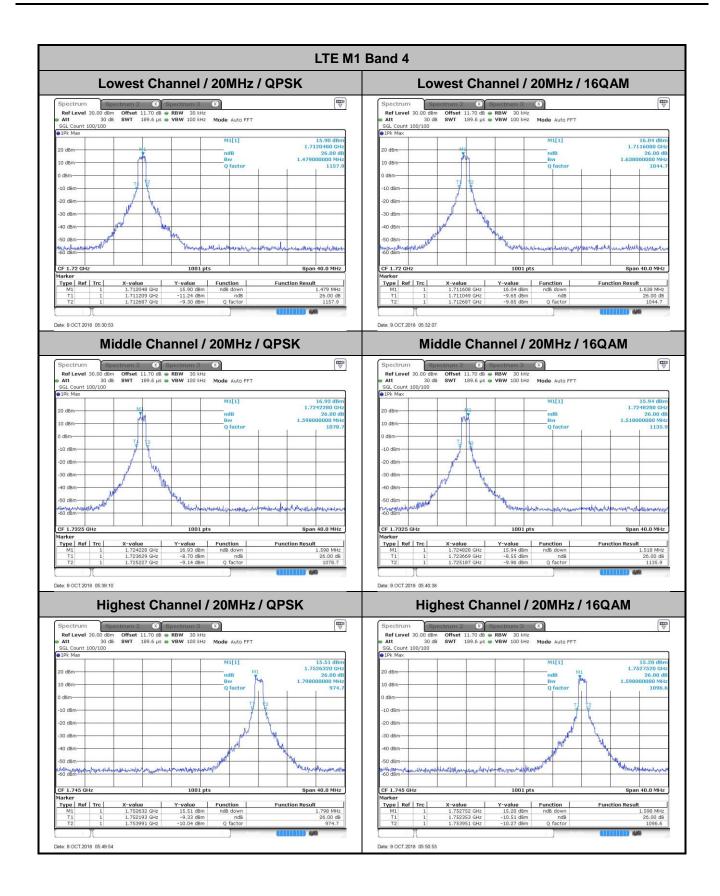


LTE M1 Band 4


Peak-to-Average Ratio

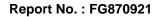
Mode						
Mod.	QP	SK	160	Limit: 13dB		
RB Size	1RB	Full RB	1RB	Full RB	Result	
Lowest CH	8.38	8.35	8.46	8.41		
Middle CH	8.46	8.41	8.43	8.43	PASS	
Highest CH	8.52	8.49	8.41	8.46		

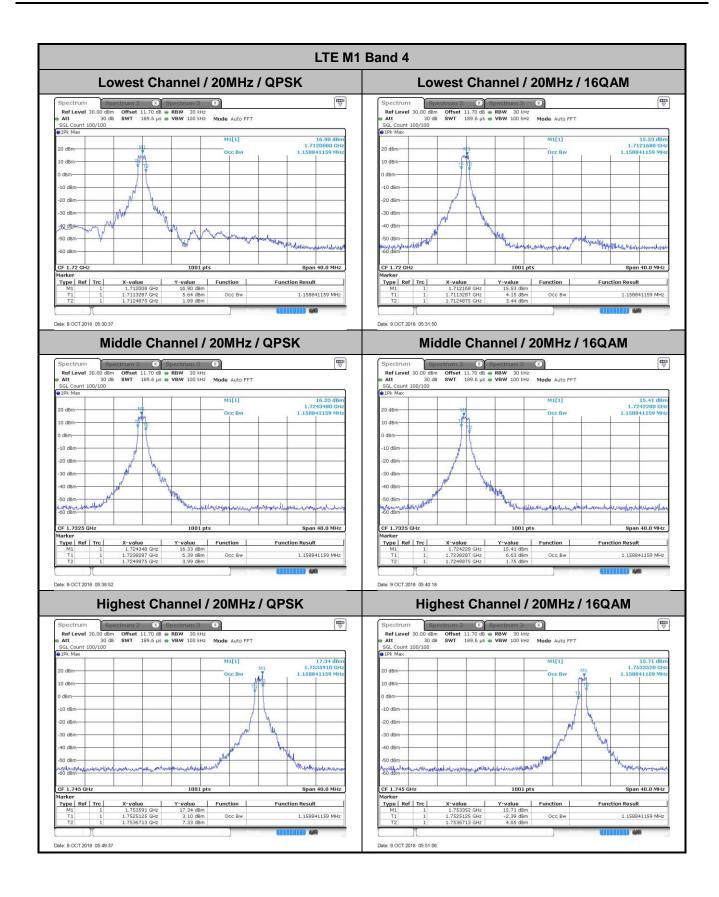




26dB Bandwidth

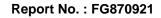
Mode	LTE M1 Band 4 : 26dB BW(MHz)											
BW	BW 1.4		MHz 3M		1Hz 5N		10	ЛНz	15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	-	-	-	-	-	-	-	-	-	-	1.48	1.64
Middle CH	-	-	-	-	-	-	-	-	-	-	1.60	1.52
Highest CH	-	-	-	-	-	-	-	-	-	-	1.80	1.60

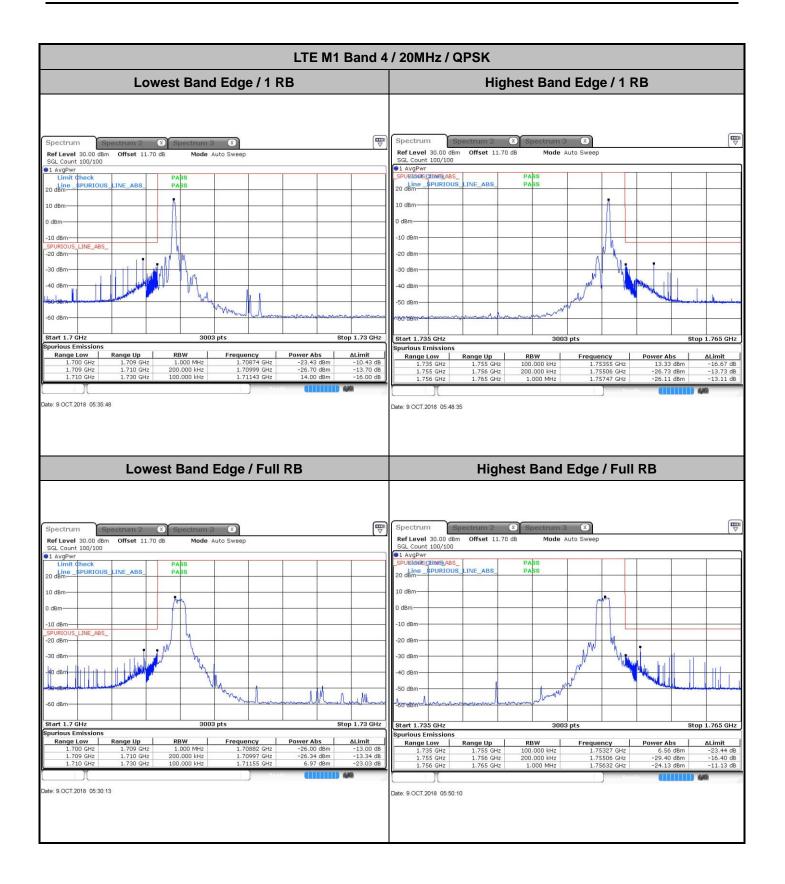




Occupied Bandwidth

Mode	LTE M1 Band 4 : 99%OBW(MHz)											
BW	BW 1.4MHz		3MHz		5MHz		10MHz		15MHz		20MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Lowest CH	-	-	-	-	-	-	-	-	-	-	1.16	1.16
Middle CH	-	-	-	-	-	-	-	-	-	-	1.16	1.16
Highest CH	-	-	-	-	-	-	-	-	-	-	1.16	1.16





Conducted Band Edge

