

SAR TEST REPORT

Applicant MOBILE DEVICES INGENIERIE

FCC ID A6GC4D-4G4USV7

Product OBDV7+ 4G CAT4 US

Brand T-Mobile, Metro, Munic

Model C4D-4G4USAB_V7+

Marketing C4D-4G4USAB V7+

Report No. R1906A0298-S1

Issue Date August 6, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992/IEEE C95.1**: **1991**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Te	st Laboratory	4
	1.1	Notes of the Test Report	4
	1.2	Test facility	4
	1.3	Testing Location	5
	1.4	Laboratory Environment	5
2	St	atement of Compliance	6
3	De	escription of Equipment under Test	7
4	Te	est Specification, Methods and Procedures	9
5	O	perational Conditions during Test	10
	5.1	Test Positions	10
		5.1.1 Body SAR Configuration	10
	5.2	Measurement Variability	11
	5.3	Test Configuration	12
		5.3.1 UMTS Test Configuration	12
		5.3.2 LTE Test Configuration	15
		5.3.3 Wi-Fi Test Configuration	17
6	SA	AR Measurements System Configuration	18
	6.1	SAR Measurement Set-up	18
	6.2	DASY5 E-field Probe System	19
	6.3	SAR Measurement Procedure	20
7	Ma	ain Test Equipment	22
8	Tis	ssue Dielectric Parameter Measurements & System Verification	23
	8.1	Tissue Verification	23
	8.2	System Performance Check	24
9	No	ormal and Maximum Output Power	26
	9.1	WCDMA Mode	26
	9.2	LTE Mode	27
	9.3	WLAN Mode	39
	9.4	Bluetooth Mode	41
10	Me	easured and Reported (Scaled) SAR Results	42
	10.1	EUT Antenna Locations	42
	10.2		
	10.3	Measured SAR Results	44
	10.4	Simultaneous Transmission Analysis	57
		easurement Uncertainty	
ΙA	NE)	X A: Test Layout	60
ΙA	NE)	X B: System Check Results	62
		X C: Highest Graph Results	
ΙA	NE	X D: Probe Calibration Certificate	81
		X E: D750V3 Dipole Calibration Certificate	
ΙA	NNE)	X F: D835V2 Dipole Calibration Certificate	100

FCC SAR Test Report	Report No.: R1906A0298-S1
ANNEX G: D1750V2 Dipole Calibration Certificate	
ANNEX H: D1900V2 Dipole Calibration Certificate	116
ANNEX I: D2450V2 Dipole Calibration Certificate	124
ANNEX J: D5GHzV2 Dipole Calibration Certificate	132
ANNEX K:DAE4 Calibration Certificate	146
ANNEX L:The EUT Appearances and Test Configuration	151

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

Mada	Highest Reported SAR (W/kg)
Mode	1g Body SAR(Separation 15mm)
WCDMA Band II	0.693
WCDMA Band IV	0.852
WCDMA Band V	0.122
LTE FDD 2	0.607
LTE FDD 4	0.683
LTE FDD 5	0.144
LTE FDD 12	0.272
LTE FDD 66	0.418
LTE FDD 71	0.354
Wi-Fi (2.4G)	0.320
Wi-Fi (5G)	0.657
ВТ	1
Date of Testing:	June 23, 2019~ June 25, 2019

Note: 1) The highest Reported SAR for body SAR and simultaneous transmission exposure conditions are 0.852W/kg and 1.509W/kg.

- 2) Sand-alone SAR evaluation is not required for BT, more details information see section 10.2
- 3) For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits according to the FCC rule § 2.1093, the ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013.

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration	1g Body SAR (Separation 15mm)					
Highest Simultaneous Transmission SAR (W/kg)	1.509					
Note: 1. The detail for simultaneous transmission consideration is described in chapter 10.4.						

3 Description of Equipment under Test

Client Information

Applicant	MOBILE DEVICES INGENIERIE		
Applicant address	100 AVENUE DE STALINGRAD, VILLEJUIF, France		
Manufacturer	MOBILE DEVICES INGENIERIE		
Manufacturer address	100 AVENUE DE STALINGRAD, VILLEJUIF, France		

General Technologies

Application Purpose:	Original Grant			
EUT Stage:	Identical Prototype			
Model:	C4D-4G4USAB_V7+			
IMEI:	354328090017994			
Hardware Version:	SAP00422+SAP00421			
Software Version:	V2107			
Antenna Type:	Fixed Internal Antenna			
Power Class:	UMTS Band II/IV/V:3			
1 OWC1 Olass.	LTE FDD 2/4/5/12/66/71:3			
Power Level:	UMTS Band II/IV/V:all up bits			
Power Level.	LTE FDD 2/4/5/12/66/71:max power			
	EUT Accessory			
Dettem	Manufacturer: HOWELL Energy Co., Ltd			
Battery	Model: Li-polymer 352535H			

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)					
	Band II		HSDPA UE Category:14	1850 ~ 1910					
UMTS	Band IV	QPSK	HSUPA UE Category:14	1710 ~ 1755					
	Band V		DC-HSDPA UE Category:14	824 ~ 849					
	FDD 2			1850 ~ 1910					
	FDD 4			1710 ~ 1755					
	FDD 5	ODSK 160AM	Rel.10 /Category 4	824 ~ 849					
LTE	FDD 12	QPSK, 16QAM		699 ~ 716					
""	FDD 66			1710~ 1780					
	FDD 71			663~ 698					
	Does this device support Carrier Aggregation (CA) ☐ Yes ⊠No								
	Does this dev								
ВТ	2.4G	Ver	sion 5.0 LE	2402 ~2480					
	2.4G	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462					
 Wi-Fi	5G	OFDM	802.11a/n HT20/ HT40/	5150 ~ 5250					
**' ' '		OI DIVI	ac VHT20/ VHT40/ VHT80	5725 ~ 5850					
	Does this dev	vice support MIMO □Yes	⊠No						

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

248227 D01 802.11Wi-Fi SAR v02r02

447498 D01 General RF Exposure Guidance v06

648474 D04 Handset SAR v01r03

690783 D01 SAR Listings on Grants v01r03

865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

865664 D02 RF Exposure Reporting v01r02

941225 D01 3G SAR Procedures v03r01

941225 D05 SAR for LTE Devices v02r05

941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

941225 D06 Hotspot Mode v02r01

5 Operational Conditions during Test

5.1 Test Positions

5.1.1 Body SAR Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.3.1 UMTS Test Configuration

5.3.1.1 3G SAR Test Reduction Procedure

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations modes according to output power, exposure conditions and device operating capabilities. Maximum output power is verified by applying the applicable versions of 3GPP TS 34.121.

5.3.1.2 Body SAR accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the EUT with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the EUT, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC

5.3.1.3 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest SAR body-worn accessory exposure configuration in 12.2 kbps RMC. EUT with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 3: Subtests for UMTS Release 5 HSDPA

Sub-set	eta_{c}	β_{d}	β _d (SF)	β _c /β _d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15	15/15	64	12/15	24/15	1.0	0.0	
	(note 4)	(note 4)	04	(note 4)	24/13	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	

4	15/15	4/15	64	15/4	30/15	1.5	0.5
---	-------	------	----	------	-------	-----	-----

Note1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = $8 \leftrightarrow \Delta_{hs}$ = β_{hs}/β_c =30/15 $\leftrightarrow \beta_{hs}$ =30/15 $*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

5.3.1.4 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA EUT and 'Release 5 HSDPA Data Devices' sections of this document

Table 4: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	βς	β_d	β _d (SF)	$\beta_{\text{o}}/\beta_{\text{d}}$	$\beta_{hs}^{(1)}$	β _{ec}	$eta_{ ext{ed}}$	β _{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} :47/15 β_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: \triangle_{ACK} , $\triangle NACK$ and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.
- Note 4: For subtest 5 the β c/ β d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 14/15 and β d = 15/15.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.
- Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 5: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
	2	8	2	4	2798		
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
_	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	2		11484	5.76	
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00	
7	4	8	2	2 SF2 & 2 SF4	22996	?	
(No DPDCH)	4	4	10		20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

5.3.1.5 HSPA and DC-HSDPA Test Configuration

SAR test exclusion may apply to 3GPP Rel. 6 HSPA and Rel. 8 DC-HSDPA. When SAR measurement is required for HSPA or DC-HSDPA, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements. Without prior KDB confirmation to determine the SAR results are acceptable, a PAG is required for equipment approval.

SAR test exclusion for HSPA and DC-HSDPA is determined according to the following:

- 1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.
- 2) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.
- 3) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA or DC-HSDPA: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.
- i) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.
- b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified

Report No.: R1906A0298-S1

according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.

- c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.
- 5) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

Table 6: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation	
Category 1	5	3	7298	19200				
Category 2	5	3	7298	28800				
Category 3	5	2	7298	28800				
Category 4	5	2	7298	38400	·			
Category 5	5	1	7298	57600	0000 10011			
Category 6	5	1	7298	67200	QPSK, 16QAM	1400		
Category 7	10	1	14411	115200		Not		
Category 8	10	-1	14411	134400		applicable		
Category 9	15	1	20251	172800		(MIMO not	supported)	
Category 10	15	-1	27952	172800		supported)		
Category 11	5	2	3630	14400	0.000000			
Category 12	5	1	3630	28800	QPSK		61-4	
Category 13	15	1	35280	259200	QPSK.		Not applicable	
Category 14	15	1	42192	259200	16QAM, 64QAM		(dual cell operation	
Category 15	15	11	23370	345600	ODCK 4	20444	not	
Category 16	15	1	27952	345600	QPSK, 16	QAM	supported)	
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	1	supportedy	
NOTE 2	10.00		23370	345600	- 1-1	QPSK, 16QAM		
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM	-		
MOIES			27952	345600	-	QPSK, 16QAM		
Category 19	15	1	35280	518400	ODCK 4004	11.01011		
Category 20	15	1	42192	518400	QPSK, 16QAI	M, 64QAM		
Category 21	15	1	23370	345600			QPSK,	
Category 22	15	1	27952	345600			16QAM	
Category 23	15	1	35280	518400	1.00.00	all Can	QPSK,	
Category 24	15	1	42192	518400		100	16QAM, 64QAM	

5.3.2 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power

control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

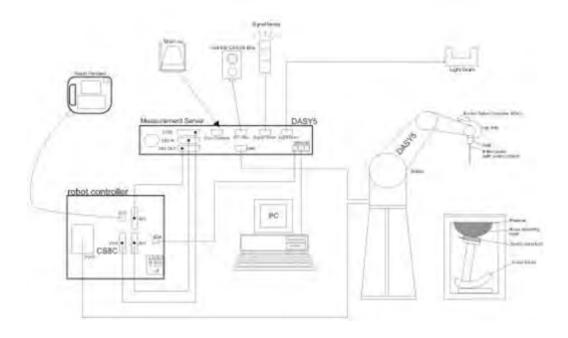
5.3.3 Wi-Fi Test Configuration

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - ♦ The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.


A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- > An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- ➤ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- > Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- > The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better 30%.

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

≤3~GHz > 3~GHzMaximum distance from closest measurement point (geometric center of $5\pm1~\text{mm}$ $\frac{1}{2}\cdot\delta\cdot\ln(2)\pm0.5~\text{mm}$

2 – 3 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm

Maximum area scan spatial resolution: ΔxArea, ΔyArea When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz	
Massinassna		4:-1 1:-4: A A	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*	
Maximum zoon	ı scan spa	tial resolution:△x _{zoom} △y _{zoom}	2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*	
Massinassina				3 – 4GHz: ≤4mm	
Maximum	U	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm	
zoom scan				5 – 6GHz: ≤2mm	
spatial		$\triangle z_{zoom}(1)$: between 1st two		3 – 4GHz: ≤3mm	
resolution,	C = = d = = d	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm	
normal to	Graded grid		surface		5 – 6GHz: ≤2mm
phantom surface		△z _{zoom} (n>1): between	∠1 F. ∧ -	- (n 1)	
Surface		subsequent points	≥1.5•△△	z _{zoom} (n-1)	
Minimum				3 – 4GHz: ≥28mm	
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm	
volume				5 – 6GHz: ≥22mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2019-05-19	2020-05-18
Dielectric Probe Kit	HP	85070E	US44020115	2019-05-19	2020-05-18
Power meter	Agilent	E4417A	GB41291714	2019-05-19	2020-05-18
Power sensor	Agilent	N8481H	MY50350004	2019-05-19	2020-05-18
Power sensor	Agilent	E9327A	US40441622	2019-05-19	2020-05-18
Dual directional coupler	Agilent	778D-012	50519	2019-05-19	2020-05-18
Dual directional coupler	Agilent	777D	50146	2019-05-19	2020-05-18
Amplifier	INDEXSAR	IXA-020	0401	2019-05-19	2020-05-18
Wideband radio communication tester	R&S	CMW 500	113645	2019-05-19	2020-05-18
E-field Probe	SPEAG	EX3DV4	3677	2019-06-19	2020-06-18
DAE	SPEAG	DAE4	1291	2018-12-04	2019-12-03
Validation Kit 750MHz	SPEAG	D750V3	1045	2017-08-27	2020-08-26
Validation Kit 835MHz	SPEAG	D835V2	4d020	2017-08-28	2020-08-27
Validation Kit 1750MHz	SPEAG	D1750V2	1033	2017-01-10	2020-01-09
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2017-08-26	2020-08-25
Validation Kit 2450MHz	SPEAG	D2450V2	786	2017-08-29	2020-08-28
Validation Kit 5GHz	SPEAG	D5GHzV2	1151	2017-01-05	2020-01-04
Temperature Probe	Tianjin jinming	JM222	AA1009129	2019-05-19	2020-05-18
Hygrothermograph	Anymetr	NT-311	20150731	2019-05-19	2020-05-18
Software for Test	Speag	DASY5	52.8.8.1222	1	1
Softwarefor Tissue	Agilent	85070	E06.01.36	1	1

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

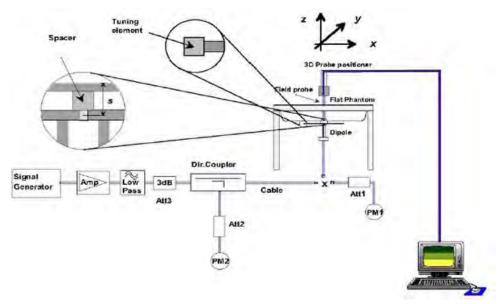
The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

Frequ (MF	-	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
	750	52.49	1.41	45	0	0.1	1.0	55.5	0.96
	835	52.5	1.4	45	0	0.1	1.0	55.2	0.97
Body	1750	69.91	0.12	0	29.97	0	0	53.4	1.49
	1900	69.91	0.13	0	29.96	0	0	53.3	1.52
	2450	73.2	0.1	0	26.7	0	0	52.7	1.95
Frequ (MF	_	Water (%)	Diethylenglycol monohexylether		Triton	X-100	٤r	σ(s/m)	
Pody	5250	72.52	13.74		13.74		48.9	5.36	
Body	5750	72.52		13.74		13	.74	48.3	5.94

Measurements results

Frequency		To ad Dada	Temp		Dielectric neters		ielectric neters	Limit (Within ±5%)	
(M	Hz)	Test Date	C	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
750	Body	6/25/2019	21.5	56.9	0.95	55.5	0.96	2.52	-1.04
835	Body	6/25/2019	21.5	54.2	0.96	55.2	0.97	-1.81	-1.03
1750	Body	6/23/2019	21.5	51.9	1.46	53.4	1.49	-2.81	-2.01
1900	Body	6/23/2019	21.5	52.6	1.51	53.3	1.52	-1.31	-0.66
2450	Body	6/24/2019	21.5	52.5	1.98	52.7	1.95	-0.38	1.54
5250	Body	6/24/2019	21.5	48.1	5.32	48.9	5.36	-1.64	-0.75
5750	Body	6/24/2019	21.5	47.6	6.14	48.3	5.94	-1.45	3.37


Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole	Body	8/27/2017	-24.2	/	47.5	1
D750V3 SN: 1045	Liquid	8/26/2018	-24.0	0.83	45.6	1.9
Dipole	Body	8/28/2017	-24.8	1	46.8	1
D835V2 SN: 4d020	Liquid	8/27/2018	-27.4	-10.48	48.1	1.3
Dipole	Dady	1/10/2017	-35.0	/	44.7	1
D1750V2	Body Liquid	1/9/2018	-34.7	0.86	44.9	-0.2
SN: 1033	Liquid	1/8/2019	-35.2	-1.44	44.6	0.3
Dipole	Body	8/26/2017	-21.4	/	52.7	1
D1900V2 SN: 5d060	Liquid	8/25/2018	-24.6	-14.95	55.6	2.9
Dipole	Body	8/29/2017	-23.6	/	51.0	1
D2450V2 SN: 786	Liquid	8/28/2018	-23.7	-0.42	55.2	4.2
Dipole		1/5/2017	-24.7	1	50.4	1
D5GHzV2	Body	1/4/2018	-23.8	3.64	50.0	0.4
SN: 1151 (5250MHz)	Liquid	1/3/2019	-23.4	1.68	50.4	-0.4
Dipole		1/5/2017	-24.9	1	56.0	1
D5GHzV2 SN: 1151	Body	1/4/2018	-25.2	-1.20	56.4	-0.4
(5750MHz)	Liquid	1/3/2019	-25.7	-1.98	56.7	-0.3

System Check results

•	uency Hz)	Test Date	Temp ℃	250mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
750	Body	6/25/2019	21.5	2.22	8.88	8.78	1.14	1
835	Body	6/25/2019	21.5	2.41	9.64	9.75	-1.13	2
1750	Body	6/23/2019	21.5	9.24	36.96	37.60	-1.70	3
1900	Body	6/23/2019	21.5	9.93	39.72	39.50	0.56	4
2450	Body	6/24/2019	21.5	12.50	50.00	50.80	-1.57	5
•	Frequency (MHz) Test Date		Temp ℃	100mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
5250	Body	6/24/2019	21.5	7.46	74.6	75.60	-1.32	6
5750	5750 Body 6/24/2019 2			7.15	71.5	74.60	-4.16	7
Note:	Target \	/alues used de	rive from	the calibration	certificate Data	a Storage and I	Evaluation.	

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 WCDMA Mode

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

WC	DMA		Band	l II(dBm))		Band I	V(dBm)			Band	V(dBm	1)
Tx C	hannel	9262	9400	9538	Tune-up	1312	1413	1513	Tune-up	4132	4183	4233	Tune-up
Freque	ncy(MHz)	1852.4	1880	1907.6	Limit	1712.4	1732.6	1752.6	Limit	826.4	836.6	846.6	Limit
RMC	12.2kbps	24.80	24.60	24.71	25.00	24.81	24.56	24.64	25.00	24.37	24.21	24.23	25.00
AMR	12.2k	24.64	24.43	24.56	25.00	24.15	23.89	23.99	25.00	24.21	24.04	24.08	25.00
	Subtest 1	24.22	24.02	24.13	25.00	23.73	23.48	23.56	24.50	23.79	23.63	23.65	24.50
	Subtest 2	24.21	24.01	24.12	25.00	23.72	23.47	23.55	24.50	23.78	23.62	23.64	24.50
HSDPA	Subtest 3	23.70	23.50	23.61	24.50	23.21	22.96	23.04	24.00	23.27	23.11	23.13	24.00
	Subtest 4	23.69	23.49	23.60	24.50	23.20	22.95	23.03	24.00	23.26	23.10	23.12	24.00
	Subtest 1	24.18	23.98	24.09	25.00	23.69	23.44	23.52	24.50	23.75	23.59	23.61	24.50
	Subtest 2	23.17	22.97	23.08	24.00	22.68	22.43	22.51	23.50	22.74	22.58	22.60	23.50
HSUPA	Subtest 3	23.65	23.46	23.57	24.50	23.16	22.92	23.00	24.00	23.22	23.07	23.09	24.00
INSUFA	Subtest 4	23.14	22.95	23.06	24.00	22.65	22.41	22.49	23.50	22.71	22.56	22.58	23.50
	Subtest 5	24.13	23.94	24.05	25.00	23.64	23.40	23.48	24.50	23.70	23.55	23.57	24.50
	Subtest 1	24.14	23.96	24.05	25.00	23.65	23.42	23.48	24.50	23.71	23.57	23.57	24.50
DC-HS	Subtest 2	24.13	23.95	24.04	25.00	23.64	23.41	23.47	24.50	23.70	23.56	23.56	24.50
DPA	Subtest 3	23.71	23.44	23.55	24.50	23.22	22.90	22.98	24.00	23.28	23.05	23.07	24.00
	Subtest 4	23.70	23.43	23.54	24.50	23.21	22.89	22.97	24.00	23.27	23.04	23.06	24.00

Note: 1.Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No.: R1906A0298-S1

9.2 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

	LTE FDD B	and 2		Cond	ucted Power(dBm)	Tungun
Donalusi déb	Madulation	DD size	DD offeet	Chanr	nel/Frequency	(MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	18607/1850.7	18900/1880	19193/1909.3	Limit
		1	0	24.13	24.29	24.08	25.00
		1	2	24.41	24.58	24.55	25.00
		1	5	23.95	24.12	24.16	25.00
	QPSK	3	0	24.18	24.25	24.31	25.00
		3	2	24.07	24.14	24.22	25.00
		3	3	23.87	23.84	23.95	25.00
1 4 M H =	1.4MHz		0	23.04	23.05	23.17	24.00
1.4141112		1	0	23.05	22.92	22.96	24.00
		1	2	23.03	22.92	22.77	24.00
		1	5	22.66	22.75	22.70	24.00
	16QAM	3	0	22.95	22.81	22.99	24.00
		3	2	22.82	22.86	23.00	24.00
		3	3	22.65	22.70	22.79	24.00
		6	0	21.57	21.81	21.85	23.00
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danawiatii	Modulation	TO SIZE	TO Oliset	18615/1851.5	18900/1880	19185/1908.5	Limit
		1	0	24.15	24.33	24.11	25.00
		1	7	24.39	24.61	24.59	25.00
		1	14	23.98	24.17	24.20	25.00
	QPSK	8	0	23.28	23.37	23.44	24.00
		8	4	23.19	23.24	23.34	24.00
3MHz		8	7	22.97	22.95	23.05	24.00
		15	0	23.04	23.09	23.20	24.00
		1	0	23.08	22.94	22.99	24.00
	16QAM	1	7	23.06	22.92	22.81	24.00
	100,111	1	14	22.68	22.79	22.73	24.00
		8	0	22.06	21.94	22.11	23.00
TA Technolo	gy (Shanghai)	Co. Ltd	-	TA-MB-05-003S		Page 27	of 154

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-003S

Page 27 of 154

FCC	SAR Test Repor	t				Report No.: R1906	40298-S1
		8	4	21.93	21.99	22.12	23.00
		8	7	21.75	21.82	21.92	23.00
		15	0	21.60	21.85	21.88	23.00
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Ballawiatii	Modulation	IND SIZE	ND Ollset	18625/1852.5	18900/1880	19175/1907.5	Limit
		1	0	24.12	24.31	24.07	25.00
		1	13	24.37	24.57	24.56	25.00
		1	24	23.95	24.12	24.16	25.00
	QPSK	12	0	23.25	23.32	23.40	24.00
		12	6	23.17	23.20	23.29	24.00
		12	13	22.95	22.93	23.01	24.00
5MHz		25	0	23.04	23.08	23.18	24.00
SWITE		1	0	23.05	22.90	22.96	24.00
		1	13	23.03	22.90	22.78	24.00
		1	24	22.65	22.77	22.69	24.00
	16QAM	12	0	22.04	21.90	22.08	23.00
		12	6	21.90	21.94	22.08	23.00
		12	13	21.72	21.77	21.88	23.00
		25	0	21.58	21.81	21.83	23.00
Bandwidth	Modulation	RB size	RB offset	Chanr	Tune-up		
Ballawiatii	Modulation	IND SIZE	IVD Ollser	18650/1855	18900/1880	19150/1905	Limit
		1	0	24.14	24.32	24.10	25.00
		1	25	24.40	24.62	24.60	25.00
		1	49	23.97	24.16	24.19	25.00
	QPSK	25	0	23.28	23.37	23.44	24.00
		25	13	23.20	23.25	23.33	24.00
		25	25	22.97	22.97	23.06	24.00
10MHz		50	0	23.08	23.10	23.22	24.00
TOWITZ		1	0	23.07	22.93	22.98	24.00
		1	25	23.06	22.94	22.81	24.00
		1	49	22.68	22.79	22.72	24.00
	16QAM	25	0	22.07	21.95	22.12	23.00
		25	13	21.92	21.98	22.11	23.00
		25	25	21.75	21.82	21.92	23.00
		50	0	21.61	21.86	21.87	23.00
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danawiatii	Modulation	ND SIZE	TO OHSEL	18675/1857.5	18900/1880	19125/1902.5	Limit
		1	0	24.13	24.28	24.08	25.00
		1	38	24.38	24.61	24.57	25.00
15MHz	QPSK	1	74	23.94	24.11	24.15	25.00
1011112	QI OIN	36	0	23.26	23.33	23.41	24.00
			4.0	00.47	00.00	22.20	24.00
		36	18	23.17	23.20	23.29	24.00

FCC SAR Test Report Report No.: R1906A0298-S1 75 0 23.06 23.06 23.17 24.00 1 0 23.02 22.91 22.96 24.00 1 38 23.04 22.91 22.79 24.00 1 74 24.00 22.65 22.75 22.69 36 0 22.04 21.93 22.09 23.00 16QAM 21.93 22.07 36 18 21.89 23.00 36 39 21.73 21.78 21.89 23.00 0 75 21.58 21.81 21.83 23.00 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18700/1860 18900/1880 19100/1900 Limit 0 24.10 25.00 1 24.24 24.05 24.55 1 50 24.37 24.57 25.00 1 99 23.92 24.10 24.12 25.00 **QPSK** 23.23 23.28 24.00 50 0 23.37 25 23.15 23.16 23.26 24.00 50 50 50 22.91 22.89 22.98 24.00 0 100 23.03 23.01 23.13 24.00 20MHz 1 0 22.79 22.87 22.91 24.00 1 50 23.00 22.89 22.75 24.00 1 22.67 99 22.63 22.72 24.00 50 0 22.01 21.89 22.06 23.00 16QAM 25 22.04 23.00 50 21.86 21.91 50 50 21.70 21.73 21.85 23.00 100 0 21.56 21.77 21.80 23.00

	LTE FDD B	and 4		Con	ducted Power(c	IBm)	Tung un
Bandwidth	Modulation	RB size	RB offset	Char	nnel/Frequency (MHz)	Tune-up Limit
Balluwiutii	Modulation	ND SIZE	ND Ollset	19957/1710.7	20175/1732.5	20393/1754.3	LIIIII
		1	0	24.18	24.20	24.30	25.00
		1	2	24.42	24.27	24.53	25.00
		1	5	24.07	24.14	24.35	25.00
	QPSK	3	0	24.10	24.16	24.47	25.00
		3	2	24.04	24.15	24.26	25.00
		3	3	23.83	24.02	24.14	25.00
 1.4MHz		6	0	23.06	23.14	23.34	24.00
1.411172		1	0	22.93	22.82	23.30	24.00
		1	2	22.91	23.13	23.35	24.00
		1	5	22.45	22.94	23.28	24.00
	16QAM	3	0	22.95	23.76	23.42	24.00
		3	2	22.75	23.21	23.40	24.00
		3	3	22.65	23.08	23.21	24.00
		6	0	21.66	22.13	22.49	23.00
Bandwidth	Modulation	RB size	RB offset	Char	nnel/Frequency (MHz)	Tune-up

	C SAR Test Repo	J1 C		Report No.: R1906A02				
				19965/1711.5	20175/1732.5	20385/1753.5	Limit	
		1	0	24.20	24.24	24.33	25.00	
		1	7	24.40	24.30	24.57	25.00	
		1	14	24.10	24.19	24.39	25.00	
	QPSK	8	0	23.20	23.28	23.60	24.00	
		8	4	23.16	23.25	23.38	24.00	
		8	7	22.93	23.13	23.24	24.00	
3MHz		15	0	23.06	23.18	23.37	24.00	
SIVITIZ		1	0	22.96	22.84	23.33	24.00	
		1	7	22.94	23.13	23.39	24.00	
		1	14	22.47	22.98	23.31	24.00	
	16QAM	8	0	22.06	22.89	22.54	23.00	
		8	4	21.86	22.34	22.52	23.00	
		8	7	21.75	22.20	22.34	23.00	
		15	0	21.69	22.17	22.52	23.00	
Bandwidth	Madulation	RB size	RB offset	Char	nnel/Frequency (MHz)	Tune-up	
Bandwidth	Modulation	RD SIZE	RB ollset	19975/1712.5	20175/1732.5	20375/1752.5	Limit	
	QPSK	1	0	24.17	24.22	24.29	25.00	
		1	13	24.38	24.26	24.54	25.00	
		1	24	24.07	24.14	24.35	25.00	
		12	0	23.17	23.23	23.56	24.00	
		12	6	23.14	23.21	23.33	24.00	
		12	13	22.91	23.11	23.20	24.00	
CN411-		25	0	23.06	23.17	23.35	24.00	
5MHz	16QAM	1	0	22.93	22.80	23.30	24.00	
		1	13	22.91	23.11	23.36	24.00	
		1	24	22.44	22.96	23.27	24.00	
		12	0	22.04	22.85	22.51	23.00	
		12	6	21.83	22.29	22.48	23.00	
		12	13	21.72	22.15	22.30	23.00	
		25	0	21.67	22.13	22.47	23.00	
B	M 1 1 C	DD :	DD (f)	Channel/Frequency (MHz)			Tune-up	
Bandwidth	Modulation	RB size	RB offset	20000/1715	20175/1732.5	20350/1750	Limit	
		1	0	24.19	24.23	24.32	25.00	
		1	25	24.41	24.31	24.58	25.00	
		1	49	24.09	24.18	24.38	25.00	
	QPSK	25	0	23.20	23.28	23.60	24.00	
465411		25	13	23.17	23.26	23.37	24.00	
10MHz		25	25	22.93	23.15	23.25	24.00	
		50	0	23.10	23.19	23.39	24.00	
		1	0	22.95	22.83	23.32	24.00	
	16QAM	1	25	22.94	23.15	23.39	24.00	
		1	49	22.47	22.98	23.30	24.00	

TA FC	C SAR Test Repo	ort				Report No.: R1906A	0298-S1
	O GAR TOST ROPE	25	0	22.07	22.90	22.55	23.00
		25	13	21.85	22.33	22.51	23.00
		25	25	21.75	22.20	22.34	23.00
		50	0	21.70	22.18	22.51	23.00
B 1 1 1 1 1 1			DD " '	Char	nnel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	20025/1717.5	20175/1732.5	20325/1747.5	Limit
		1	0	24.18	24.19	24.30	25.00
		1	38	24.39	24.30	24.55	25.00
		1	74	24.06	24.13	24.34	25.00
	QPSK	36	0	23.18	23.24	23.57	24.00
		36	18	23.14	23.21	23.33	24.00
		36	39	22.90	23.12	23.21	24.00
15MHz		75	0	23.08	23.15	23.34	24.00
TOMITZ	16QAM	1	0	22.90	22.81	23.30	24.00
		1	38	22.92	23.12	23.37	24.00
		1	74	22.44	22.94	23.27	24.00
		36	0	22.04	22.88	22.52	23.00
		36	18	21.82	22.28	22.47	23.00
		36	39	21.73	22.16	22.31	23.00
		75	0	21.67	22.13	22.47	23.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Danuwium	IVIOGUIALIOIT	IVD SIZE	IVD OUSEL	20050/1720	20175/1732.5	20300/1745	Limit
		1	0	24.15	24.15	24.27	25.00
		1	50	24.38	24.26	24.53	25.00
		1	99	24.04	24.12	24.31	25.00
	QPSK	50	0	23.15	23.19	23.53	24.00
		50	25	23.12	23.17	23.30	24.00
		50	50	22.87	23.07	23.17	24.00
20MHz		100	0	23.05	23.10	23.30	24.00
ZUIVITIZ		1	0	22.73	22.77	23.25	24.00
		1	50	22.88	23.10	23.33	24.00

LTE FDD Band 5				Cond	Tuno un		
Bandwidth	Modulation	RB size	RB offset	Chan	(MHz)	Tune-up Limit	
				20407/824.7	20525/836.5	20643/848.3	LIIIIII
1.4MHz	QPSK	1	0	24.36	24.23	24.47	25.00
		1	2	24.42	24.26	24.59	25.00
		1	5	24.24	24.44	24.42	25.00

22.42

22.01

21.79

21.70

21.65

22.91

22.84

22.26

22.11

22.09

16QAM

1

50

50

50

100

99

0

25

50

0

23.25

22.49

22.44

22.27

22.44

24.00

23.00

23.00

23.00

23.00

FCC	SAR Test Repor	τ			<u>_</u>	Report No.: R1906A	0290-51
		3	0	24.42	24.15	24.04	25.00
		3	2	24.34	24.19	24.26	25.00
		3	3	24.24	24.35	24.13	25.00
		6	0	23.37	23.27	23.16	24.00
		1	0	23.14	23.04	22.98	24.00
		1	2	23.12	23.10	23.04	24.00
		1	5	23.07	23.16	23.19	24.00
	16QAM	3	0	23.28	23.03	23.15	24.00
		3	2	23.26	23.18	23.24	24.00
		3	3	23.17	23.23	23.18	24.00
		6	0	22.33	22.19	22.17	23.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency ((MHz)	Tune-up
Danuwiutii	iviodulation	ND SIZE	KD Ollset	20415/825.5	20525/836.5	20635/847.5	Limit
		1	0	24.38	24.27	24.50	25.00
		1	7	24.40	24.29	24.63	25.00
		1	14	24.27	24.49	24.46	25.00
	QPSK	8	0	23.52	23.27	23.17	24.00
		8	4	23.46	23.29	23.38	24.00
		8	7	23.34	23.46	23.23	24.00
3MHz		15	0	23.37	23.31	23.19	24.00
SIVITZ	16QAM	1	0	23.17	23.06	23.01	24.00
		1	7	23.15	23.10	23.08	24.00
		1	14	23.09	23.20	23.22	24.00
		8	0	22.39	22.16	22.27	23.00
		8	4	22.37	22.31	22.36	23.00
		8	7	22.27	22.35	22.31	23.00
		15	0	22.36	22.23	22.20	23.00
Dandwidth	Modulation	DP size	DP offeet	Chan	nel/Frequency ((MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	20425/826.5	20525/836.5	20625/846.5	Limit
		1	0	24.35	24.25	24.46	25.00
		1	13	24.38	24.25	24.60	25.00
		1	24	24.24	24.44	24.42	25.00
	QPSK	12	0	23.49	23.22	23.13	24.00
		12	6	23.44	23.25	23.33	24.00
		12	13	23.32	23.44	23.19	24.00
EMILL-		25	0	23.37	23.30	23.17	24.00
5MHz		1	0	23.14	23.02	22.98	24.00
		1	13	23.12	23.08	23.05	24.00
		1	24	23.06	23.18	23.18	24.00
	16QAM	12	0	22.37	22.12	22.24	23.00
		12	6	22.34	22.26	22.32	23.00
		12	13	22.24	22.30	22.27	23.00
		25	0	22.34	22.19	22.15	23.00

Report No.: R1906A0298-S1 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size RB offset 20450/829 20525/836.5 20600/844 Limit 24.33 24.44 25.00 1 0 24.18 1 25 24.38 24.25 24.59 25.00 49 1 24.21 24.42 24.38 25.00 QPSK 25 0 23.10 24.00 23.47 23.18 25 13 23.42 23.21 23.30 24.00 25 25 23.28 23.40 23.16 24.00 50 0 23.36 23.23 23.12 24.00 10MHz 1 0 22.98 22.99 22.93 24.00 1 25 23.09 23.02 24.00 23.07 49 1 23.04 23.13 23.16 24.00 16QAM 25 0 22.34 22.11 22.22 23.00 25 13 22.30 22.23 22.28 23.00 25 25 22.22 22.26 22.24 23.00 0 50 22.32 22.15 22.12 23.00

	LTE FDD B	and 12		Cond	Tune-up		
Bandwidth	Modulation	RB size	RB offset	Chan			
Dandwidth	IVIOGUIALION	RD SIZE	RD Ollset	23017/699.7	23095/707.5	23173/715.3	LIIIIII
		1	0	24.55	24.41	24.27	25.00
		1	2	24.73	24.10	24.17	25.00
		1	5	24.16	24.16	24.08	25.00
	QPSK	3	0	24.62	24.34	23.90	25.00
		3	2	24.45	24.13	23.89	25.00
		3	3	24.28	24.07	24.08	25.00
1.4MHz		6	0	23.38	23.26	22.87	24.00
1.4WITZ	16QAM	1	0	23.42	23.17	22.90	24.00
		1	2	23.40	23.04	23.04	24.00
		1	5	22.91	23.01	22.94	24.00
		3	0	23.73	23.56	22.60	24.00
		3	2	23.26	23.05	22.74	24.00
		3	3	23.08	23.09	22.89	24.00
		6	0	22.35	22.22	21.95	23.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Balluwiutii	Balluwidtii Woddiation	IND SIZE	IVD Ollset	23025/700.5	23095/707.5	23165/714.5	Limit
		1	0	24.57	24.45	24.30	25.00
		1	7	24.71	24.13	24.21	25.00
3MHz	QPSK	1	14	24.19	24.21	24.12	25.00
SIVITIZ	QF SIN	8	0	23.72	23.46	23.03	24.00
		8	4	23.57	23.23	23.01	24.00
		8	7	23.38	23.18	23.18	24.00

- FCC	SAR Test Repor	t			<u> </u>	Report No.: R1906A	0298-51
		15	0	23.38	23.30	22.90	24.00
		1	0	23.45	23.19	22.93	24.00
		1	7	23.43	23.04	23.08	24.00
	16QAM	1	14	22.93	23.05	22.97	24.00
		8	0	22.84	22.69	21.72	23.00
		8	4	22.37	22.18	21.86	23.00
		8	7	22.18	22.21	22.02	23.00
		15	0	22.38	22.26	21.98	23.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency ((MHz)	Tune-up
Bandwidth	Wodulation	ND SIZE	KD Ollset	23035/701.5	23095/707.5	23155/713.5	Limit
		1	0	24.54	24.43	24.26	25.00
		1	13	24.69	24.09	24.18	25.00
		1	24	24.16	24.16	24.08	25.00
	QPSK	12	0	23.69	23.41	22.99	24.00
		12	6	23.55	23.19	22.96	24.00
		12	13	23.36	23.16	23.14	24.00
5MHz		25	0	23.38	23.29	22.88	24.00
SIVITIZ		1	0	23.42	23.15	22.90	24.00
		1	13	23.40	23.02	23.05	24.00
		1	24	22.90	23.03	22.93	24.00
	16QAM	12	0	22.82	22.65	21.69	23.00
		12	6	22.34	22.13	21.82	23.00
		12	13	22.15	22.16	21.98	23.00
		25	0	22.36	22.22	21.93	23.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Bandwidth	iviodulation	IVD SIZE	IVD Ollser	23060/704	23095/707.5	23130/711	Limit
	QPSK	1	0	24.52	24.36	24.24	25.00
		1	25	24.69	24.09	24.17	25.00
		1	49	24.13	24.14	24.04	25.00
		25	0	23.67	23.37	22.96	24.00
		25	13	23.53	23.15	22.93	24.00
10MHz		25	25	23.32	23.12	23.11	24.00
		50	0	23.37	23.22	22.83	24.00
		1	0	23.10	23.12	22.85	24.00
		1	25	23.37	23.01	23.02	24.00
		1	49	22.88	22.98	22.91	24.00
	16QAM	25	0	22.79	22.64	21.67	23.00
		25	13	22.30	22.10	21.78	23.00
		25	25	22.13	22.12	21.95	23.00
		50	0	22.34	22.18	21.90	23.00

	LTE FDD B	and 66		Con			
				Char	Tune-up		
Bandwidth	Modulation	RB size	RB offset	131979/1710.7	132322/1745	132665/1779.3	Limit
		1	0	23.99	24.19	24.00	25.00
		1	2	24.50	24.31	24.40	25.00
		1	5	24.04	23.88	23.96	25.00
	QPSK	3	0	24.38	23.88	24.25	25.00
		3	2	24.23	23.85	23.97	25.00
		3	3	24.10	23.87	24.25	25.00
l 1.4MHz		6	0	23.11	22.89	23.07	24.00
1.4171112		1	0	23.63	22.57	23.52	24.00
		1	2	23.61	23.39	23.69	24.00
		1	5	22.81	23.17	23.33	24.00
	16QAM	3	0	22.84	22.45	22.93	24.00
		3	2	22.87	22.57	22.69	24.00
		3	3	22.74	22.74	22.77	24.00
		6	0	21.78	21.66	21.87	23.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Banawiath	Woddiation	IND SIZE	IND Ollset	131987/1711.5	132322/1745	132657/1778.5	Limit
	QPSK	1	0	24.01	24.23	24.03	25.00
		1	7	24.48	24.34	24.44	25.00
		1	14	24.07	23.93	24.00	25.00
		8	0	23.48	23.00	23.38	24.00
		8	4	23.35	22.95	23.09	24.00
		8	7	23.20	22.98	23.35	24.00
3MHz		15	0	23.11	22.93	23.10	24.00
Jivii iz		1	0	23.66	22.59	23.55	24.00
		1	7	23.64	23.39	23.73	24.00
		1	14	22.83	23.21	23.36	24.00
	16QAM	8	0	21.95	21.58	22.05	23.00
		8	4	21.98	21.70	21.81	23.00
		8	7	21.84	21.86	21.90	23.00
		15	0	21.81	21.70	21.90	23.00
Bandwidth	Modulation	RB size	RB offset	Char	nnel/Frequency (I	MHz)	Tune-up
Banawiatii	Modulation	TO SIZE	TED OHSEC	131997/1712.5	132322/1745	132647/1777.5	Limit
		1	0	23.98	24.21	23.99	25.00
		1	13	24.46	24.30	24.41	25.00
		1	24	24.04	23.88	23.96	25.00
5MHz	QPSK	12	0	23.45	22.95	23.34	24.00
		12	6	23.33	22.91	23.04	24.00
		12	13	23.18	22.96	23.31	24.00
		25	0	23.11	22.92	23.08	24.00

M	FCC SAR Test F	Report				Report No.: R1906A029	<u> 18-S1</u>
		1	0	23.63	22.55	23.52	24.00
		1	13	23.61	23.37	23.70	24.00
		1	24	22.80	23.19	23.32	24.00
	16QAM	12	0	21.93	21.54	22.02	23.00
		12	6	21.95	21.65	21.77	23.00
		12	13	21.81	21.81	21.86	23.00
		25	0	21.79	21.66	21.85	23.00
Dandwidth	Modulation	DP size	DP offeet	Char	nnel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	132022/1715	132322/1745	132622/1775	Limit
		1	0	24.00	24.22	24.02	25.00
		1	25	24.49	24.35	24.45	25.00
		1	49	24.06	23.92	23.99	25.00
	QPSK	25	0	23.48	23.00	23.38	24.00
10MHz		25	13	23.36	22.96	23.08	24.00
		25	25	23.20	23.00	23.36	24.00
		50	0	23.15	22.94	23.12	24.00
		1	0	23.65	22.58	23.54	24.00
		1	25	23.64	23.41	23.73	24.00
		1	49	22.83	23.21	23.35	24.00
	16QAM	25	0	21.96	21.59	22.06	23.00
		25	13	21.97	21.69	21.80	23.00
		25	25	21.84	21.86	21.90	23.00
		50	0	21.82	21.71	21.89	23.00
D	NA LLC	DD :	DD (()	Char	Tune-up		
Bandwidth	Modulation	RB size	RB offset	132047/1717.5	132322/1745	132597/1772.5	Limit
		1	0	23.99	24.18	24.00	25.00
		1	38	24.47	24.34	24.42	25.00
		1	74	24.03	23.87	23.95	25.00
	QPSK	36	0	23.46	22.96	23.35	24.00
		36	18	23.33	22.91	23.04	24.00
		36	39	23.17	22.97	23.32	24.00
		75	0	23.13	22.90	23.07	24.00
15MHz		1	0	23.60	22.56	23.52	24.00
		1	38	23.62	23.38	23.71	24.00
		1	74	22.80	23.17	23.32	24.00
							1
	16QAM	36	0	21.93	21.57	22.03	23.00
	16QAM			21.93 21.94	21.57 21.64	22.03 21.76	23.00 23.00
	16QAM	36	0				

Modulation

QPSK

RB size

1

1

RB offset

0

50

Bandwidth

20MHz

132072/1720

23.96

24.46

Channel/Frequency (MHz)

132322/1745

24.14

24.30

132572/1770

23.97

24.40

Tune-up

Limit

25.00

25.00

14	FCC SAR Test R	eport		F	₹e
<u> </u>			1		_

eport No.: R1906A0298-S1 99 24.01 23.86 23.92 25.00 1 50 0 23.43 22.91 24.00 23.31 25 23.31 22.87 23.01 24.00 50 50 23.14 22.92 24.00 50 23.28 100 23.10 22.85 23.03 24.00 0 0 23.12 22.52 23.47 24.00 1 1 50 23.58 23.36 23.67 24.00 22.78 23.14 23.30 24.00 1 99 16QAM 50 0 21.90 21.53 22.00 23.00 50 25 21.91 21.62 21.73 23.00 50 50 21.79 21.77 21.83 23.00 100 0 21.77 21.62 21.82 23.00

	LTE FDD B	and 71		Con	ducted Power(d	Bm)	Tune-up Limit
			<i>"</i>	Char	nnel/Frequency (I	MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	133147/665.5	133297/680.5	133447/695.5	Limit
		1	0	24.12	24.38	23.92	25.00
		1	13	24.18	24.29	23.95	25.00
		1	24	23.91	23.89	23.90	25.00
	QPSK	12	0	24.09	24.09	23.88	25.00
5MHz		12	6	24.07	23.95	23.92	25.00
		12	13	23.95	23.84	24.02	25.00
		25	0	22.98	22.99	22.97	24.00
		1	0	23.10	23.07	23.43	24.00
		1	13	23.08	23.03	23.18	24.00
		1	24	22.67	22.61	23.82	24.00
	16QAM	12	0	23.17	23.07	22.84	24.00
		12	6	22.99	22.97	23.01	24.00
		12	13	22.95	22.89	23.04	24.00
		25	0	22.03	21.89	22.11	23.00
Bandwidth	Modulation	RB size	RB offset	Char	Tune-up		
Danuwiutii	Modulation	IVD SIZE	IVD Ollser	133172/668	133297/680.5	133422/693	Limit
		1	0	23.63	23.91	23.44	25.00
		1	25	23.67	23.83	23.50	25.00
		1	49	23.43	23.43	23.43	25.00
	QPSK	25	0	22.69	22.71	22.51	24.00
10MHz		25	13	22.70	22.56	22.53	24.00
TUIVIEZ		25	25	22.55	22.47	22.63	24.00
		50	0	22.52	22.54	22.52	24.00
		1	0	22.62	22.58	22.95	24.00
	16QAM	1	25	22.61	22.55	22.72	24.00
		1	49	22.19	22.15	23.34	24.00

FCC SAR Test F	Report		Report No.: R1906A0298-S1			
	25	0	21.79	21.71	21.47	23.00
	25	13	21.59	21.59	21.62	23.00
	25	25	21.55	21.51	21.67	23.00
	50	0	21.57	21.44	21.63	23.00
Modulation	DP cizo	DP offect	Char	nnel/Frequency (I	MHz)	Tune-up
IVIOQUIALIOTI	KD SIZE	KD Ollset	133197/670.5	133297/680.5	133397/690.5	Limit
	1	0	23.62	23.87	23.42	25.00
	1	38	23.65	23.82	23.47	25.00
	1	74	23.40	23.38	23.39	25.00
QPSK	36	0	22.67	22.67	22.48	24.00
	36	18	22.67	22.51	22.49	24.00
	36	39	22.52	22.44	22.59	24.00
	75	0	22.50	22.50	22.47	24.00
	1	0	22.57	22.56	22.93	24.00
	1	38	22.59	22.52	22.70	24.00
	1	74	22.16	22.11	23.31	24.00
16QAM	36	0	21.76	21.69	21.44	23.00
	36	18	21.56	21.54	21.58	23.00
	36	39	21.53	21.47	21.64	23.00
	75	0	21.54	21.39	21.59	23.00
Modulation	DP cizo	DP offect	Char	Tune-up		
iviodulation	IVD SIZE	TO Oliset	133222/673	133322/683	133372/688	Limit
	1	0	24.09	24.33	23.89	25.00
	1	50	24.14	24.28	23.95	25.00
	1	99	23.88	23.87	23.86	25.00
QPSK	50	0	23.14	23.12	22.94	24.00
	50	25	23.15	22.97	22.96	24.00
	50	50	22.99	22.89	23.05	24.00
	100	0	22.97	22.95	22.93	24.00
	1	0	23.51	23.02	23.38	24.00
	1	50	23.05	23.00	23.16	24.00
	1	99	22.64	22.58	23.79	24.00
16QAM	50 0		22.23	22.15	21.91	23.00
16QAM	50	0	22.20			
16QAM	50 50	25	22.03	22.02	22.05	23.00
16QAM						
	Modulation QPSK 16QAM Modulation	25 25 50 Modulation RB size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	25	Modulation RB size RB offset Channel/Frequency (I 133197/670.5 133297/680.5	Modulation RB size RB offset Channel/Frequency (MHz)

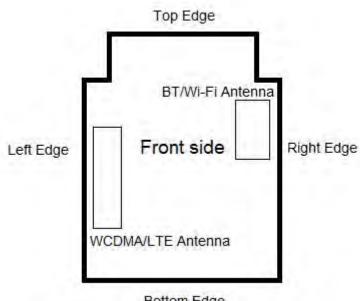
9.3 WLAN Mode

Wi-Fi 2.4G	05		Maximum Output Power (dBm)	
VVI-F1 2.4G	Channel /Frequency(MHz)	Tune-up	Meas.	TP Set Level
Mode	/i requericy(ivii iz)	rune-up	IVIEdS.	TP Set Level
000 446	1/2412	18.00	17.75	18
802.11b (1M)	6/2437	18.00	17.70	18
(1101)	11/2462	18.00	17.82	18
000.44	1/2412	17.00	16.10	17
802.11g (6M)	6/2437	17.00	16.04	17
(OIVI)	11/2462	15.00	14.32	15.5
000 44 11700	1/2412	17.00	15.82	17
802.11n-HT20	6/2437	17.00	15.81	17
(MCS0)	11/2462	15.00	13.12	14.5
Note: Initial test config	guration is 802.11b mod	le.		

Wi-Fi 5G	Channal		Maximum Output Power (dBm)	
(U-NII-1) Mode	Channel - /Frequency(MHz)	Tune-up	Meas.	TP Set Level
	36/5180	14.50	13.75	16
802.11a	40/5200	14.50	13.90	16
(6M)	44/5220	14.50	13.86	16
	48/5240	14.50	13.85	16
	36/5180	14.50	13.68	16
802.11n-HT20	40/5200	14.50	13.54	16
(MCS0)	44/5220	14.50	13.48	16
	48/5240	14.50	13.45	16
802.11n-HT40	38/5190	14.50	13.72	16
(MCS0)	46/5230	14.50	13.65	16
	36/5180	13.50	12.64	15
802.11ac-VHT20	40/5200	13.50	12.63	15
(6M)	44/5220	13.50	12.56	15
	48/5240	13.50	12.58	15
802.11ac-VHT40	38/5190	12.00	10.92	13.5
(MCS0)	46/5230	13.00	11.73	14.5
802.11ac-VHT80 (MCS0)	42/5210	10.00	9.04	12
Note. Initial test config	uration is 802.11a mod	le, since the high	est maximum output power.	

(MCS0)

Wi-Fi 5G Maximum Output Power (dBm) Channel (U-NII-3) /Frequency(MHz) Tune-up Meas. **TP Set Level** Mode 149/5745 14.50 14.37 16 802.11a 157/5785 14.50 14.25 16 (6M) 165/5825 14.50 14.12 16 149/5745 14.50 14.06 16 802.11n-HT20 14.50 16 157/5785 13.94 (MCS0) 165/5825 14.50 13.87 16 16 802.11n-HT40 151/5755 14.50 14.21 (MCS0) 159/5795 14.50 14.08 16 149/5745 13.50 13.18 15 802.11ac-HT20 157/5785 13.50 13.03 15 (6M) 15 165/5825 13.50 12.92 802.11ac-HT40 151/5755 13.00 12.16 14.5 (MCS0) 13.00 14.5 159/5795 12.08 802.11ac-HT80 155/5775 13.50 12.37 15.5


9.4 Bluetooth Mode

	C	onducted Power(dBr	n)	T
ВТ	Ch	Tune-up Limit (dBm)		
	Ch 0/2402 MHz	Lilliit (abili)		
GFSK	3.55	4.10	4.40	5.00
π/4DQPSK	2.14	2.38	2.89	3.00
8DPSK	1.18	1.71	1.93	2.00
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)
GFSK	-3.28	-2.58	-2.34	0.00

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Bottom Edge

Overall (Length x Width x Height): 69mm x 52mm x 27mm									
Distance of the Antenna to the EUT surface/edge									
Antenna Back Side Front side Left Edge Right Edge Top Edge Bottom Edge									
WCDMA/LTE Antenna	<25mm	<25mm	<25mm	>25mm	Not applicable	<25mm			
BT/Wi-Fi Antenna	<25mm	<25mm	>25mm	<25mm	Not applicable	>25mm			
	Н	otspot mode,	Positions for	SAR tests					
Mode	Back Side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge			
WCDMA/LTE Antenna	Yes	Yes	N/A	N/A	Yes				
BT/Wi-Fi Antenna	Yes	Yes	N/A	Yes	N/A	N/A			

Note: 1. Per KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

2. Per FCC KDB 447498 D01,

for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz
- b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
- c) ≤ 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.
- 3.When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

10.2 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR

- f(GHz) is the RF channel transmit frequency in GHz
- ➤ Power and distance are rounded to the nearest mW and mm before calculation
- > The result is rounded to one decimal place for comparison

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth	Distance (mm)	MAXPower (dBm)	Frequency (MHz)	Ratio	Evaluation	
Body SAR	15	5	2480	0.33	No	

10.3 Measured SAR Results

Table 7: UMTS Band II

Test	Cover Channel		Duty	Channel/	Tune-up	Measured	Limit o	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type		Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
1 03111011	Position Type Type Cycle (MHz)	(ubili)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g				
Body SAR(Distance 15mm)											
Back Side	standard	RMC 12.2K	1:1	9400/1880	25.00	24.60	0.632	-0.070	1.10	0.693	8
Front Side	standard	RMC 12.2K	1:1	9400/1880	25.00	24.60	0.559	-0.021	1.10	0.613	/
Left Edge	standard	RMC 12.2K	1:1	9400/1880	25.00	24.60	0.411	-0.034	1.10	0.451	/
Right Edge	standard	RMC 12.2K	1:1	9400/1880	25.00	24.60	0.068	-0.170	1.10	0.074	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	RMC 12.2K	1:1	9400/1880	25.00	24.60	0.261	0.079	1.10	0.286	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

Table 8: UMTS Band IV

Test Cover		ver Channel	Duty	Channel/	Tune-up	Measured	Limit o	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Type	Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	
	.,,,,	.,,,,,	,,,,,,	(MHz)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g		
Body SAR(Distance 15mm)											
Back Side	standard	RMC 12.2K	1:1	1413/1732.6	25.00	24.56	0.496	-0.110	1.11	0.549	/
		RMC 12.2K	1:1	1312/1712.4	25.00	24.81	0.691	-0.042	1.04	0.722	/
Front Side	standard	RMC 12.2K	1:1	1413/1732.6	25.00	24.56	0.652	-0.024	1.11	0.722	/
		RMC 12.2K	1:1	1513/1752.6	25.00	24.64	0.784	-0.026	1.09	0.852	9
Left Edge	standard	RMC 12.2K	1:1	1413/1732.6	25.00	24.56	0.270	-0.031	1.11	0.299	/
Right Edge	standard	RMC 12.2K	1:1	1413/1732.6	25.00	24.56	0.108	-0.040	1.11	0.120	/
Top Edge	N/A	N/A	N/A	N/A	NA	NA	N/A	NA	NA	NA	N/A
Bottom Edge	standard	RMC 12.2K	1:1	1413/1732.6	25.00	24.56	0.405	0.060	1.11	0.448	/
Front Side	Repeated	RMC 12.2K	1:1	1513/1752.6	25.00	24.64	0.762	-0.034	1.09	0.828	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

Measurement Variability										
Test Position Channel/ Frequency(MHz) MAX Measured SAR _{1g} (W/kg) 1 st Repeated SAR _{1g} (W/kg)										
Front Side	1513/1752.6	0.784	0.762	1.03						

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

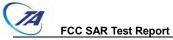


Table 9: UMTS Band V

Test	Cover	Channel	Duty	Channel/	Tune-up	Measured	Limit o	of SAR 1.6	W/kg (mV	V/g)	Plot
Position			Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
Position	Туре	Туре	Cycle	(MHz)		(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
Body SAR(Distance 15mm)											
Back Side	standard	RMC 12.2K	1:1	4183/836.6	25.00	24.21	0.098	-0.023	1.20	0.117	/
Front Side	standard	RMC 12.2K	1:1	4183/836.6	25.00	24.21	0.055	0.136	1.20	0.066	/
Left Edge	standard	RMC 12.2K	1:1	4183/836.6	25.00	24.21	0.102	-0.094	1.20	0.122	10
Right Edge	standard	RMC 12.2K	1:1	4183/836.6	25.00	24.21	0.006	-0.020	1.20	0.008	/
Top Edge	N/A	N/A	N/A	N/A	NA	NA	N/A	NA	NA	NA	N/A
Bottom Edge	standard	RMC 12.2K	1:1	4183/836.6	25.00	24.21	0.022	-0.057	1.20	0.026	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

Table 10: LTE Band 2

Toot	Cover	Duty	RB	RB	Channel/	Tuna un	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Test Position	Cover Type	Duty Cycle	alloc	offset	Frequency	Tune-up (dBm)	power	Measured	Power	Scaling	Report	No.
1 control	1,750	o y o lo	ation	Onoot	(MHz)	(abiii)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
					Body SA	R(Distance	15mm)					
Back Side	standard	1:1	1	50	18900/1880	25.00	24.57	0.471	-0.157	1.10	0.520	/
Front Side	standard	1:1	1	50	18900/1880	25.00	24.57	0.550	-0.104	1.10	0.607	11
Left Edge	standard	1:1	1	50	18900/1880	25.00	24.57	0.369	-0.040	1.10	0.407	/
Right Edge	standard	1:1	1	50	18900/1880	25.00	24.57	0.056	0.161	1.10	0.062	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	50	18900/1880	25.00	24.57	0.239	-0.029	1.10	0.264	/
Back Side	standard	1:1	50%	0	19100/1900	24.00	23.37	0.351	0.160	1.16	0.406	/
Front Side	standard	1:1	50%	0	19100/1900	24.00	23.37	0.389	-0.194	1.16	0.450	/
Left Edge	standard	1:1	50%	0	19100/1900	24.00	23.37	0.289	0.023	1.16	0.334	/
Right Edge	standard	1:1	50%	0	19100/1900	24.00	23.37	0.045	-0.129	1.16	0.052	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	50%	0	19100/1900	24.00	23.37	0.160	0.164	1.16	0.185	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are \geq 50% limit(1g).

Right Edge

Top Edge

Bottom Edge

standard

N/A

standard

1:1

N/A

1:1

Tabl	e 11: LTE	Band	4									
Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position		Cycle	alloc	offset	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
Position	Type	Cycle	ation	Onset	(MHz)	(ubili)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
					Body SA	R(Distance	15mm)					
Back Side	standard	1:1	1	50	20300/1745	25.00	24.53	0.511	-0.105	1.11	0.569	/
Front Side	standard	1:1	1	50	20300/1745	25.00	24.53	0.613	-0.150	1.11	0.683	12
Left Edge	standard	1:1	1	50	20300/1745	25.00	24.53	0.218	-0.020	1.11	0.243	/
Right Edge	standard	1:1	1	50	20300/1745	25.00	24.53	0.064	0.072	1.11	0.071	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	50	20300/1745	25.00	24.53	0.327	-0.148	1.11	0.364	/
Back Side	standard	1:1	50%	0	20300/1745	24.00	23.53	0.375	-0.119	1.11	0.418	/
Front Side	standard	1:1	50%	0	20300/1745	24.00	23.53	0.430	-0.164	1.11	0.479	/
Left Edge	standard	1:1	50%	0	20300/1745	24.00	23.53	0.157	-0.190	1.11	0.175	1

Note: 1.The value with blue color is the maximum SAR Value of each test band.

N/A

0

50%

N/A

50%

20300/1745

N/A

20300/1745

24.00

NA

24.00

23.53

NA

23.53

0.052

N/A

0.202

0.062

N/A

-0.041

1.11

N/A

1.11

0.058

N/A

0.225

N/A

1

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

standard

standard

standard

N/A

standard

1:1

1:1

1:1

N/A

1:1

50%

50%

50%

N/A

50%

Front Side

Left Edge

Right Edge

Top Edge

Bottom Edge

Tabl	e 12: LTE	Band	5									
Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Cycle	alloc	offset	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
Fosition	Туре	Cycle	ation	Oliset	(MHz)	(dBill)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
					Body SA	R(Distance	15mm)					
Back Side	standard	1:1	1	25	20600/844	25.00	24.59	0.071	-0.028	1.10	0.077	/
Front Side	standard	1:1	1	25	20600/844	25.00	24.59	0.047	0.030	1.10	0.052	/
Left Edge	standard	1:1	1	25	20600/844	25.00	24.59	0.131	0.032	1.10	0.144	13
Right Edge	standard	1:1	1	25	20600/844	25.00	24.59	0.012	0.050	1.10	0.013	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	25	20600/844	25.00	24.59	0.032	0.160	1.10	0.035	1
Back Side	standard	1:1	50%	0	20450/829	24.00	23.47	0.065	-0.035	1.13	0.073	/

24.00

24.00

24.00

NA

24.00

23.47

23.47

23.47

NA

23.47

0.048

0.112

0.013

N/A

0.029

0.029

-0.010

-0.050

N/A

0.022

1.13

1.13

1.13

N/A

1.13

0.055

0.127

0.015

N/A

0.033

/

/

N/A

1

20450/829

20450/829

20450/829

N/A

20450/829

Note: 1.The value with blue color is the maximum SAR Value of each test band.

0

0

N/A

0

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Table 13: LTE Band 12

Top Edge

Bottom Edge standard

N/A

N/A

1:1

Tabl	e is. Lie	_ Danie	1 1 2									
Toot	Cover	Duty	RB	RB	Channel/	Tuno un	Measured	Limit	of SAR 1.6	W/kg (mV	V /g)	Plot
Test Position		'	alloc	offset	Frequency	Tune-up	power	Measured	Power	Scaling	Report	No.
Position	Type	Cycle	ation	onset	(MHz)	(dBm)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
					Body SA	R(Distance	15mm)					
Back Side	standard	1:1	1	25	23060/704	25.00	24.69	0.166	-0.088	1.07	0.178	/
Front Side	standard	1:1	1	25	23060/704	25.00	24.69	0.162	0.047	1.07	0.174	/
Left Edge	standard	1:1	1	25	23060/704	25.00	24.69	0.253	0.027	1.07	0.272	14
Right Edge	standard	1:1	1	25	23060/704	25.00	24.69	0.040	-0.190	1.07	0.042	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	25	23060/704	25.00	24.69	0.137	-0.020	1.07	0.147	/
Back Side	standard	1:1	50%	0	23060/704	24.00	23.67	0.172	-0.010	1.08	0.186	/
Front Side	standard	1:1	50%	0	23060/704	24.00	23.67	0.113	-0.045	1.08	0.122	/
Left Edge	standard	1:1	50%	0	23060/704	24.00	23.67	0.137	-0.020	1.08	0.148	/
Right Edge	standard	1:1	50%	0	23060/704	24.00	23.67	0.021	0.000	1.08	0.023	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

N/A

0

N/A

23060/704

N/A

50%

NA

24.00

NA

23.67

N/A

0.076

N/A

-0.023

N/A

1.08

N/A

0.081

N/A

1

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are \geq 50% limit(1g).

Table 14: LTE Band 66

100	E 14. LII	_ Dank	1 00									
Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position			alloc	offset	Frequency	•	power	Measured	Power	Scaling	Report	No.
Position	Type	Cycle	ation	onset	(MHz)	(dBm)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
					Body SAI	R(Distance	15mm)					
Back Side	standard	1:1	1	50	132072/1720	25.00	24.46	0.307	-0.023	1.13	0.348	/
Front Side	standard	1:1	1	50	132072/1720	25.00	24.46	0.369	-0.022	1.13	0.418	15
Left Edge	standard	1:1	1	50	132072/1720	25.00	24.46	0.227	-0.185	1.13	0.257	/
Right Edge	standard	1:1	1	50	132072/1720	25.00	24.46	0.086	-0.139	1.13	0.097	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	50	132072/1720	25.00	24.46	0.309	-0.112	1.13	0.350	/
Back Side	standard	1:1	50%	0	132072/1720	24.00	23.43	0.197	0.150	1.14	0.225	/
Front Side	standard	1:1	50%	0	132072/1720	24.00	23.43	0.221	0.021	1.14	0.252	/
Left Edge	standard	1:1	50%	0	132072/1720	24.00	23.43	0.205	0.140	1.14	0.234	/
Right Edge	standard	1:1	50%	0	132072/1720	24.00	23.43	0.064	0.025	1.14	0.073	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	50%	0	132072/1720	24.00	23.43	0.223	0.180	1.14	0.254	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Table 15: LTF Band 71

Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Cycle	alloc	offset	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
	.,,,,	70.0	ation		(MHz)	(4.2)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	
					Body SA	R(Distance	15mm)					
Back Side	standard	1:1	1	0	133322/683	25.00	24.33	0.138	0.028	1.17	0.161	/
Front Side	standard	1:1	1	0	133322/683	25.00	24.33	0.224	-0.050	1.17	0.261	/
Left Edge	standard	1:1	1	0	133322/683	25.00	24.33	0.303	-0.038	1.17	0.354	16
Right Edge	standard	1:1	1	0	133322/683	25.00	24.33	0.049	0.032	1.17	0.057	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	0	133322/683	25.00	24.33	0.115	0.160	1.17	0.134	/
Back Side	standard	1:1	50%	25	133222/673	24.00	23.15	0.130	0.022	1.22	0.158	/
Front Side	standard	1:1	50%	25	133222/673	24.00	23.15	0.181	-0.022	1.22	0.220	/
Left Edge	standard	1:1	50%	25	133222/673	24.00	23.15	0.290	0.167	1.22	0.353	/
Right Edge	standard	1:1	50%	25	133222/673	24.00	23.15	0.031	0.035	1.22	0.038	/
Top Edge	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	50%	25	133222/673	24.00	23.15	0.071	-0.160	1.22	0.086	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Table 16: Wi-Fi (2.4G)

Note: 1. The value with blue color is the maximum SAR Value of each test band.

		(2	- /									
				Channel/		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	Mode 802.11b	Duty Cycle	Frequency (MHz)	Tune-up dBm)		Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
				Вос	dy SAR(Di	stance 15m	m)					
Back Side	standard	DSSS	100.0%	11/2462	18.00	17.82	0.110	0.172	-0.035	1.04	0.179	/
Front Side	standard	DSSS	100.0%	11/2462	18.00	17.82	0.119	0.134	-0.099	1.04	0.140	/
Left Edge	standard	DSSS	100.0%	11/2462	18.00	17.82	0.019	0.020	0.088	1.04	0.021	/
		DSSS	100.0%	1/2412	18.00	17.75	0.239	0.229	0.055	1.06	0.243	/
Right Edge	standard	DSSS	100.0%	6/2437	18.00	17.70	0.175	0.274	0.143	1.07	0.294	/
		DSSS	100.0%	11/2462	18.00	17.82	0.282	0.307	0.063	1.04	0.320	17
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	DSSS	100.0%	11/2462	18.00	17.82	0.026	0.034	0.056	1.04	0.035	/

			MAX Adjuste	d SAR			
Mode	Test Position	Channel/ Frequency (MHz)	MAX Reported SAR _{1g} (W/kg)	802.11b Tune-up limit (dBm)	Tune-up limit (dBm)	Scaling Factor	Adjusted SAR _{1g} (W/kg)
802.11g	Right Edge	11/2462	0.320	18.00	17.00	0.79	0.254
802.11n HT20	Right Edge	11/2462	0.320	18.00	17.00	0.79	0.254

Note: SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Table 17: Wi-Fi (5G,U-NII-1)

				Channel/		Measured	L	imit of SA	AR 1.6 W/k	g (mW/g)		
Test Position	Cover Type	Mode 802.11a	Duty Cycle	Frequency (MHz)	Tune-up dBm)		Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
				Во	dy SAR(Di	stance 15m	m)					
Back Side	standard	OFDM	100.0%	40/5200	14.50	13.90	0.031	0.024	-0.023	1.15	0.027	/
		OFDM	100.0%	36/5180	14.50	13.75	0.261	0.290	-0.135	1.19	0.345	/
Front Side	standard	OFDM	100.0%	40/5200	14.50	13.90	0.282	0.297	-0.023	1.15	0.341	/
		OFDM	100.0%	48/5240	14.50	13.85	0.304	0.327	-0.041	1.16	0.380	18
Left Edge	standard	OFDM	100.0%	40/5200	14.50	13.90	0.025	0.014	0.134	1.15	0.016	/
Right Edge	standard	OFDM	100.0%	40/5200	14.50	13.90	0.153	0.142	-0.131	1.15	0.163	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	OFDM	100.0%	40/5200	14.50	13.90	0.025	0.016	-0.037	1.15	0.019	/

				Channel/		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	Mode 802.11a	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor		Plot No.
				Во	dy SAR(Di	stance 15m	m)					
Back Side	standard	OFDM	100.0%	149/5745	14.50	14.37	0.149	0.120	0.024	1.03	0.124	/
		OFDM	100.0%	149/5745	14.50	14.37	0.535	0.522	-0.171	1.03	0.538	/
Front Side	standard	OFDM	100.0%	157/5785	14.50	14.25	0.514	0.620	0.028	1.06	0.657	19
		OFDM	100.0%	165/5825	14.50	14.12	0.519	0.444	-0.089	1.09	0.485	/
Left Edge	standard	OFDM	100.0%	149/5745	14.50	14.37	0.045	0.025	0.076	1.03	0.026	/
Right Edge	standard	OFDM	100.0%	149/5745	14.50	14.37	0.352	0.432	0.000	1.03	0.445	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	OFDM	100.0%	149/5745	14.50	14.37	0.083	0.061	-0.068	1.03	0.063	/

Table 19: BT

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth	Body SAR	2480	5	15	0.044

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

10.4 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Body SAR
WCDMA + Bluetooth	Yes
LTE + Bluetooth	Yes
WCDMA + Wi-Fi-2.4GHz	Yes
LTE + Wi-Fi-2.4GHz	Yes
WCDMA + Wi-Fi-5GHz	Yes
LTE + Wi-Fi-5GHz	Yes
Wi-Fi-2.4GHz + Bluetooth	Yes
Wi-Fi-2.4GHz+ Wi-Fi-5GHz	N/A
Wi-Fi-5GHz + Bluetooth	N/A

General Note:

- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,
- i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.

The maximum SAR_{1g} Value for WCDMA/LTE Antenna

	SAR _{1g} (W/kg)	WCDMA	WCDMA	WCDMA	LTE	LTE	LTE	LTE	LTE	LTE	MAX.
Test Position		Band II	Band IV	Band V	FDD 2	FDD 4	FDD 5	FDD 12	FDD 66	FDD 71	SAR _{1g}
	Back Side	0.693	0.549	0.117	0.520	0.569	0.077	0.186	0.348	0.161	0.693
	Front Side	0.613	0.852	0.066	0.607	0.683	0.055	0.174	0.418	0.261	0.852
Body	Left Edge	0.451	0.299	0.122	0.407	0.243	0.144	0.272	0.257	0.354	0.451
SAR	Right Edge	0.074	0.120	0.008	0.062	0.071	0.015	0.042	0.097	0.057	0.120
	Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bottom Edge	0.286	0.448	0.026	0.264	0.364	0.035	0.147	0.350	0.134	0.448

About BT, Wi-Fi2.4G and WCDMA/LTE Antenna

Test Position	SAR _{1g} (W/kg)	WCDMA/LTE Antenna	Wi-Fi 2.4G	ВТ	MAX. ΣSAR _{1g}
	Back Side	0.693	0.179	0.044	0.916
	Front Side	0.852	0.140	0.044	1.036
Body SAR	Left Edge	0.451	0.021	0.044	0.516
Bouy SAK	Right Edge	0.120	0.320	0.044	0.484
	Top Edge	N/A	N/A	0.044	0.044
	Bottom Edge	0.448	0.035	0.044	0.527

Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value.

2.MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. ΣSAR_{1g} =1.036W/kg<1.6W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and Wi-Fi 2.4G and WCDMA/LTE Antenna.

About Wi-Fi 5G and WCDMA/LTE Antenna

, , , , , , , , , , , , , , , , , , , ,							
Test Position	SAR _{1g} (W/kg)	WCDMA/LTE Antenna	Wi-Fi 5G U-NII-1	Wi-Fi 5G U-NII-3	MAX. ΣSAR _{1g}		
	Back Side	0.693	0.027	0.124	0.817		
	Front Side	0.852	0.380	0.657	1.509		
Dody CAD	Left Edge	0.451	0.016	0.026	0.477		
Body SAR	Right Edge	0.120	0.163	0.445	0.565		
	Top Edge	N/A	N/A	N/A	N/A		
	Bottom Edge	0.448	0.019	0.063	0.511		

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

2.MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

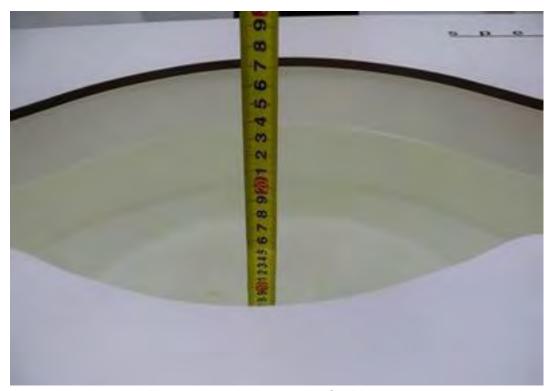
MAX. ΣSAR_{1g} =1.509W/kg<1.6W/kg, so the Simultaneous transimition SAR with volum scan are not required for Wi-Fi 5G and WCDMA/LTE Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.

Report No.: R1906A0298-S1

ANNEX A: Test Layout



Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3 and Picture 4.

Picture 3: liquid depth in the head Phantom

Picture 4: Liquid depth in the flat Phantom

ANNEX B: System Check Results

Plot 1 System Performance Check at 750 MHz Body TSL

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3

Date: 6/25/2019

Communication System:CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; σ = 0.95 S/m; ε_r = 56.9; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

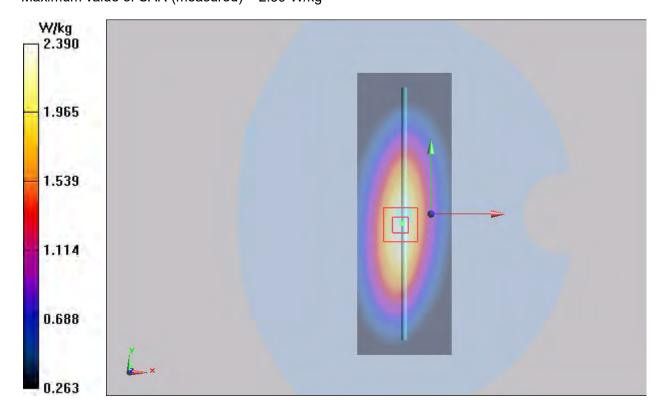
Probe: EX3DV4 - SN3677; ConvF(9.75, 9.75, 9.75); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm, Pin=250mW/Area Scan (41x121x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.36 W/kg


d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.998 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.24 W/kg

SAR(1 g) = 2.22 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 2.39 W/kg

Plot 2 System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 6/25/2019

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.96 S/m; ε_r = 54.2; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.40, 9.40, 9.40); Calibrated: 6/19/2019;

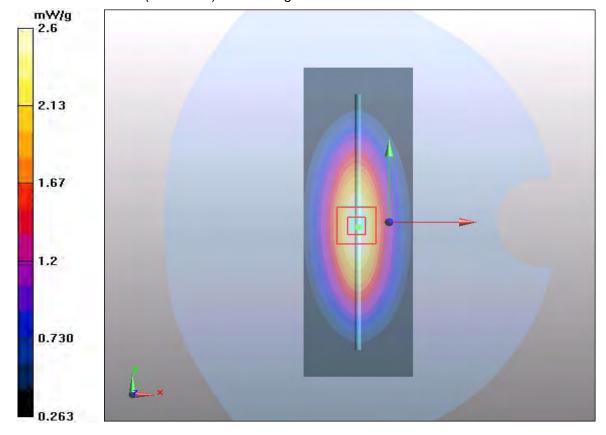
Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.58 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.6 mW/g

Plot 3 System Performance Check at 1750 MHz Body TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2

Date: 6/23/2019

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 ℃ Liquid Temperature: 21.7 ℃

DASY5 Configuration:

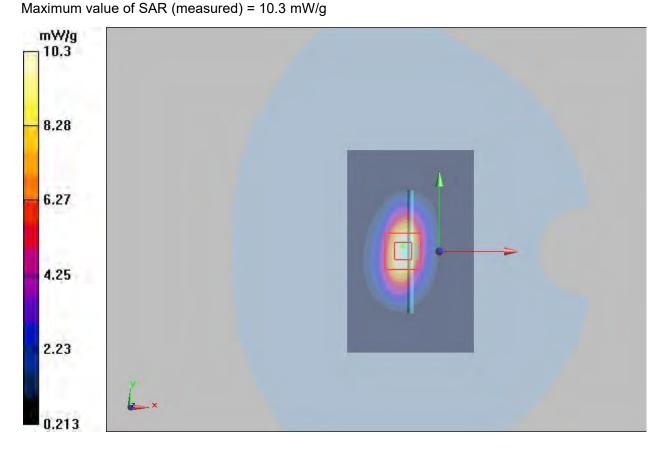
Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.86, 7.86, 7.86); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 10.6 mW/g

d=10mm, Pin=250mW/Area Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 mW/g; SAR(10 g) = 4.9 mW/g

Plot 4 System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Date: 6/23/2019

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.51 S/m; ε_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

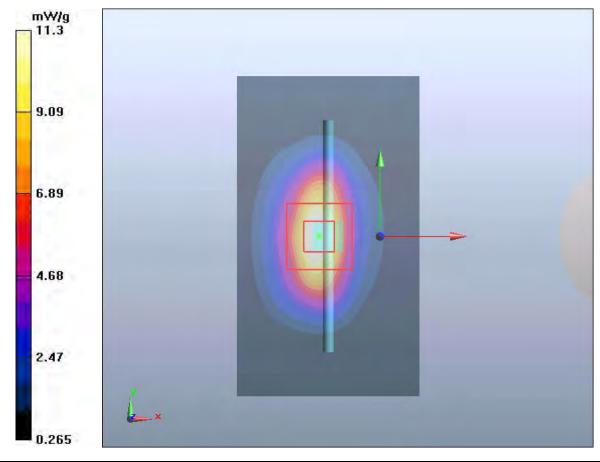
Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 11.3 mW/g

Plot 5 System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2

Date: 6/24/2019

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.98 S/m; ϵ_r = 52.5; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

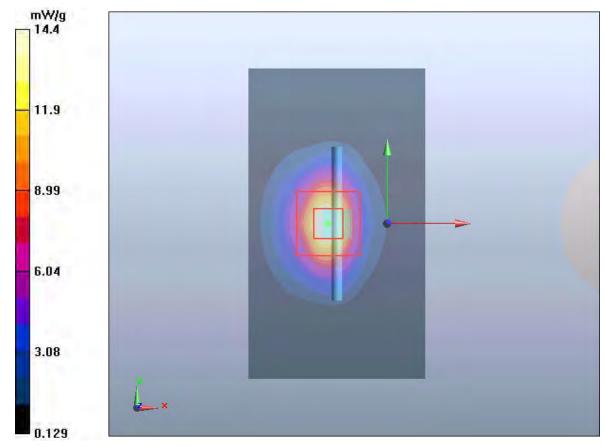
Probe: EX3DV4 - SN3677; ConvF(7.57, 7.57, 7.57); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 16 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g Maximum value of SAR (measured) = 14.4 mW/g

Plot 6 System Performance Check at 5250 MHz Body TSL

DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 6/24/2019

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 5.32 S/m; ϵ_r = 48.1; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(4.93, 4.93, 4.93); Calibrated: 6/19/2019;

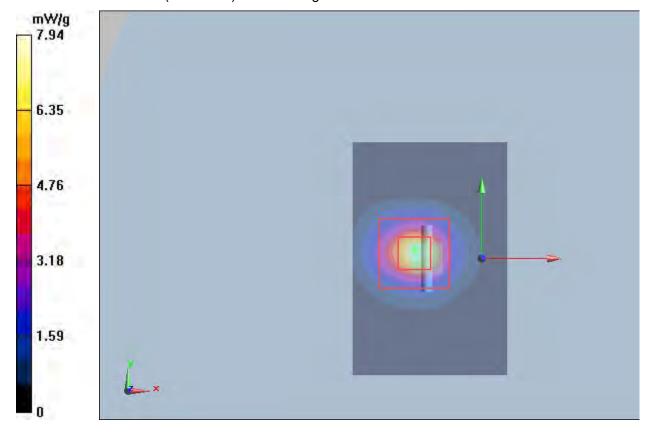
Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.69 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 36.3 V/m; Power Drift = 0.0277 dB

Peak SAR (extrapolated) = 47.7 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 7.94 mW/g

Plot 7 System Performance Check at 5750 MHz Body TSL

DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 6/24/2019

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; σ = 6.14 S/m; ϵ_r = 47.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

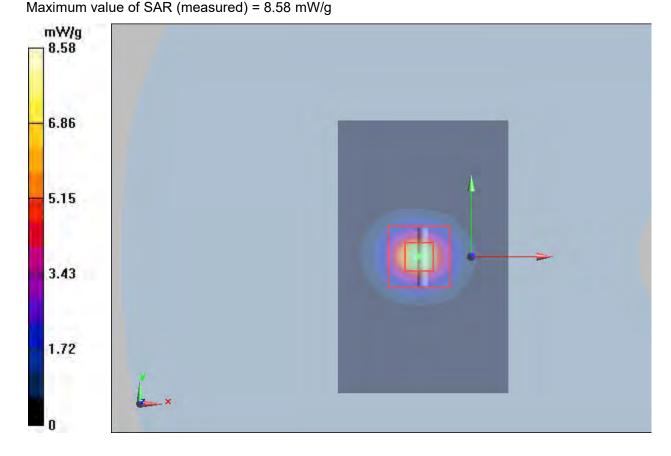
Probe: EX3DV4 - SN3677; ConvF(4.35, 4.35, 4.35); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.84 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 38 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 7.15 mW/g; SAR(10 g) = 1.99 mW/g

ANNEX C: Highest Graph Results

Plot 8 UMTS Band II Back Side Middle (Distance 15mm)

Date: 6/23/2019

Communication System: UID 0, WCDMA II (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.489$ S/m; $\varepsilon_r = 52.896$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

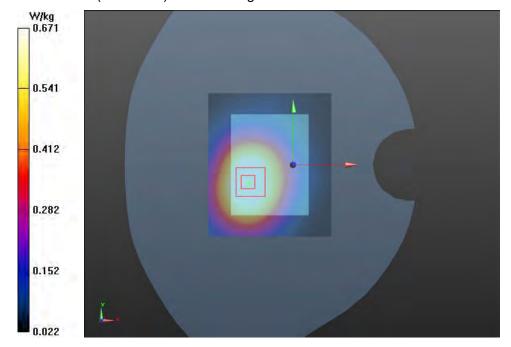
Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (41x51x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.679 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.87 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.370 W/kg

Maximum value of SAR (measured) = 0.671 W/kg

Plot 9 UMTS Band IV Front Side High (Distance 15mm)

Date: 6/23/2019

Communication System: UID 0, WCDMA (0); Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1753 MHz; $\sigma = 1.44$ S/m; $\epsilon_r = 51.424$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

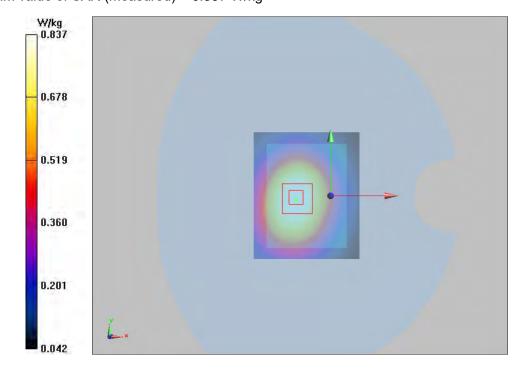
Probe: EX3DV4 - SN3677; ConvF(7.86, 7.86, 7.86); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (51x61x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.901 W/kg


Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.14 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.511 W/kg

Maximum value of SAR (measured) = 0.837 W/kg

Plot 10 UMTS Band V Left Edge Middle (Distance 15mm)

Date: 6/25/2019

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.995$ S/m; $\epsilon_r = 54.571$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

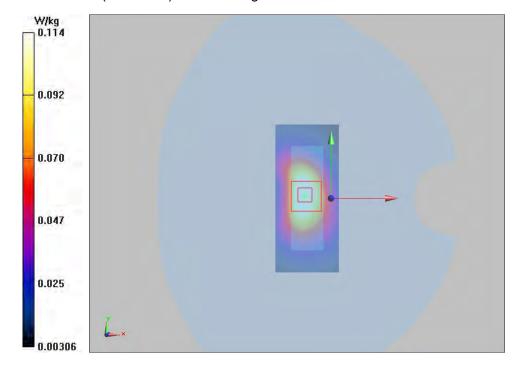
Probe: EX3DV4 - SN3677; ConvF(9.40, 9.40, 9.40); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Left Edge Middle/Area Scan (51x111x1): Interpolated grid: dx=10 mm, dy=10mm

Maximum value of SAR (interpolated) = 0.146 W/kg


Left Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.61 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.059 W/kg

Maximum value of SAR (measured) = 0.114 W/kg

Plot 11 LTE Band 2 1RB Front Side Middle (Distance 15mm)

Date: 6/23/2019

Communication System: UID 0, LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.489$ S/m; $\epsilon_r = 52.896$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

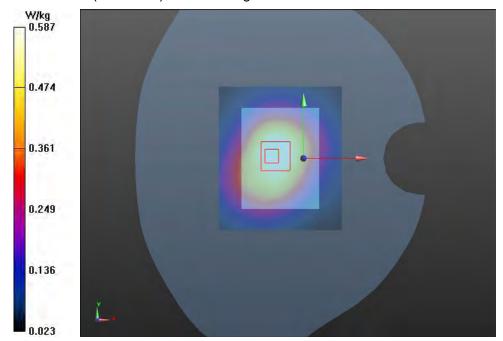
Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (61x71x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.658 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.12 V/m; Power Drift = -0.104 dB

Peak SAR (extrapolated) = 0.877 W/kg

SAR(1 g) = 0.550 W/kg; SAR(10 g) = 0.349 W/kg

Maximum value of SAR (measured) = 0.587 W/kg

FCC SAR Test Report No.: R1906A0298-S1

Plot 12 LTE Band 4 1RB Front Side High (Distance 15mm)

Date: 6/23/2019

Communication System: UID 0, LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.432$ S/m; $\epsilon_r = 51.445$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

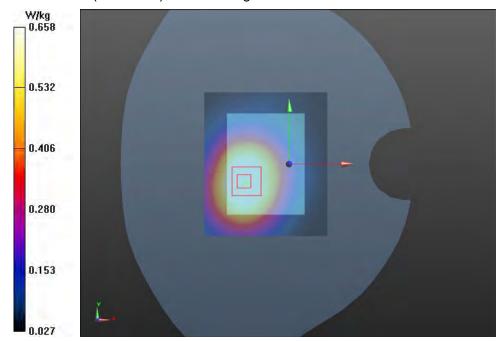
Probe: EX3DV4 - SN3677; ConvF(7.86, 7.86, 7.86); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (61x71x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.782 W/kg


Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.61 V/m; Power Drift = -0.150 dB

Peak SAR (extrapolated) = 0.947 W/kg

SAR(1 g) = 0.613 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.658 W/kg

FCC SAR Test Report Report No.: R1906A0298-S1

Plot 13 LTE Band 5 1RB Left Edge High (Distance 15mm)

Date: 6/25/2019

Communication System: UID 0, LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.571$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

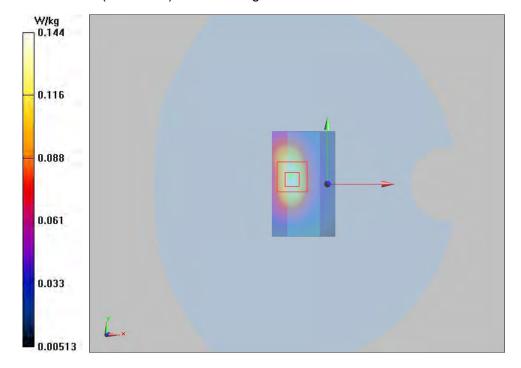
Probe: EX3DV4 - SN3677; ConvF(9.40, 9.40, 9.40); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Left Edge High/Area Scan (51x81x1): Interpolated grid: dx=10 mm, dy=10mm

Maximum value of SAR (interpolated) = 0.144 W/kg


Left Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.19 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.144 W/kg

FCC SAR Test Report No.: R1906A0298-S1

Plot 14 LTE Band 12 1RB Left Edge Low (Distance 15mm)

Date: 6/25/2019

Communication System: UID 0, LTE (0); Frequency: 704 MHz; Duty Cycle: 1:1 Medium parameters used: f = 704 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 57.382$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

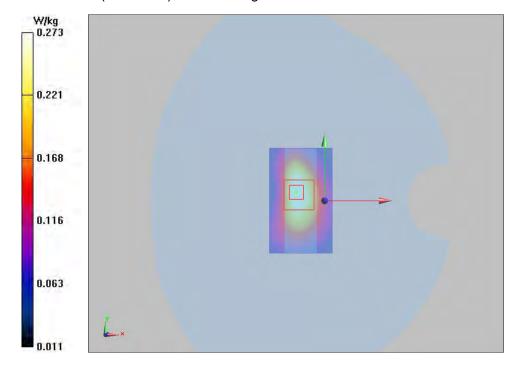
Probe: EX3DV4 - SN3677; ConvF(9.75, 9.75, 9.75); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Left Edge Low/Area Scan (51x81x1): Interpolated grid: dx=10 mm, dy=10mm

Maximum value of SAR (interpolated) = 0.325 W/kg


Left Edge Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.436 W/kg

SAR(1 g) = 0.253 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.273 W/kg

FCC SAR Test Report No.: R1906A0298-S1

Plot 15 LTE Band 66 1RB Front Side Low (Distance 15mm)

Date: 6/23/2019

Communication System: UID 0, LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.409$ S/m; $\epsilon_r = 51.527$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

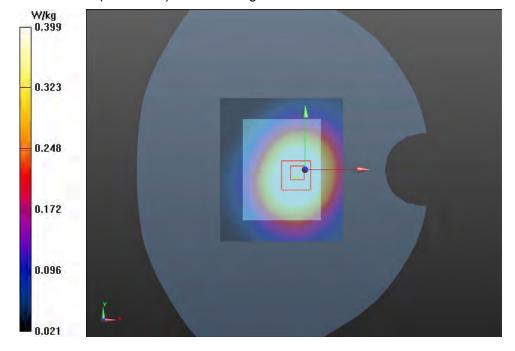
Probe: EX3DV4 - SN3677; ConvF(7.86, 7.86, 7.86); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Low/Area Scan (61x71x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.540 W/kg


Front Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.09 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.565 W/kg

SAR(1 g) = 0.369 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.399 W/kg

FCC SAR Test Report Report No.: R1906A0298-S1

Plot 16 LTE Band 71 1RB Right Edge Middle (Distance 15mm)

Date: 6/25/2019

Communication System: UID 0, LTE (0); Frequency: 683 MHz; Duty Cycle: 1:1 Medium parameters used: f = 683 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 55.096$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

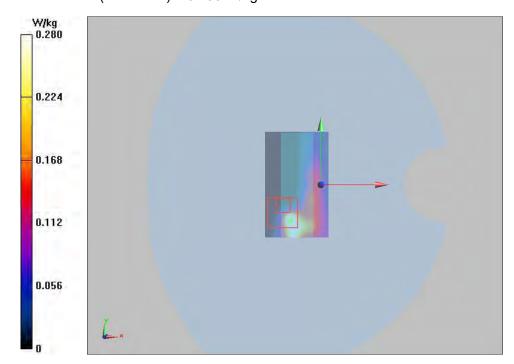
Probe: EX3DV4 - SN3677; ConvF(9.75, 9.75, 9.75); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Right Edge Middle/Area Scan (51x81x1): Interpolated grid: dx=10 mm, dy=10mm

Maximum value of SAR (interpolated) = 0.383 W/kg


Right Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.60 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.280 W/kg

Wi-Fi-Antenna

Plot 17 802.11b Right Edge High (Distance 15mm)

Date: 6/24/2019

Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 51.059$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

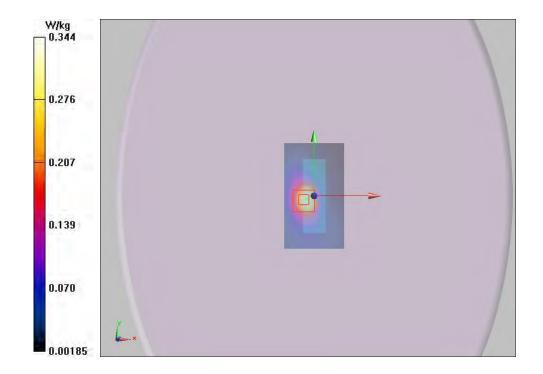
Probe: EX3DV4 - SN3677; ConvF(7.57, 7.57, 7.57); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Right Edge High/Area Scan (61x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.346 W/kg


Right Edge High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.289 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 0.663 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.122 W/kg

Maximum value of SAR (measured) = 0.344 W/kg

FCC SAR Test Report No.: R1906A0298-S1

Plot 18 802.11a U-NII-1 Front Side High (Distance 15mm)

Date: 6/24/2019

Communication System: UID 0, 802.11a (0); Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 5.382$ S/m; $\epsilon_r = 49.212$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

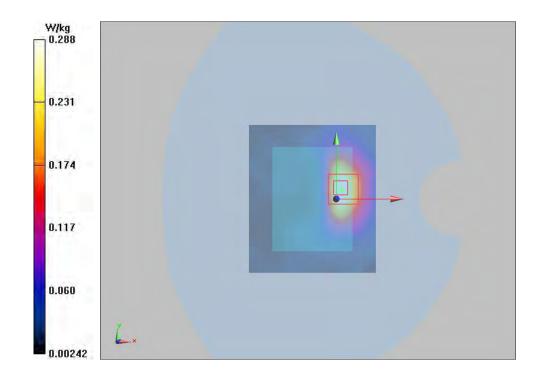
Probe: EX3DV4 - SN3677; ConvF(4.93, 4.93, 4.93); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (91x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.340 W/kg


Front Side High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.150 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.131 W/kg

Maximum value of SAR (measured) = 0.288 W/kg

FCC SAR Test Report Report No.: R1906A0298-S1

Plot 19 802.11a U-NII-3 Front Side Middle (Distance 15mm)

Date: 6/24/2019

Communication System: UID 0, 802.11a (0); Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5785 MHz; $\sigma = 6.24$ S/m; $\epsilon_r = 47.724$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

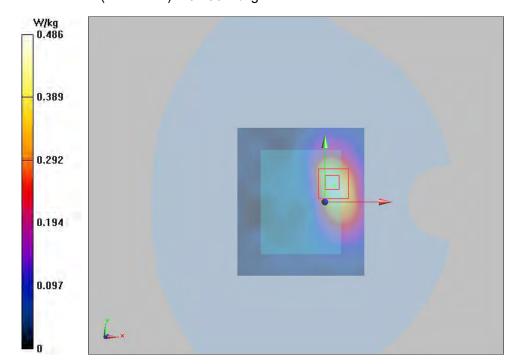
Probe: EX3DV4 - SN3677; ConvF(4.35, 4.35, 4.35); Calibrated: 6/19/2019;

Electronics: DAE4 SN1291; Calibrated: 12/4/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (91x111x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.487 W/kg


Front Side Middle/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.030 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.486 W/kg

ANNEX D: Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Report No.: R1906A0298-S1

Client TA(Shanghai)

Certificate No: Z19-60169

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3677

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date: June 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

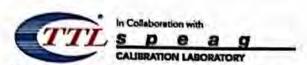
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb -20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20,
	(Lando	C. a. C. a.	250

Name Function

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader


Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60169

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettls/echinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization 0 0 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 11

Certificate No: Z19-60169

Probe EX3DV4

SN: 3677

Calibrated: June 19, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60169

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.41	0.46	0.40	±10.0%
DCP(mV) ⁸	101.1	102.9	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	152.0	±2.6%	
		Y	0.0	0.0	1.0		170.1	900
		Z	0.0	0.0	1.0		147.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60169

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

In Collaboration with

S D E A G

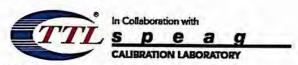
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.54	9.54	9.54	0.11	1.56	±12.1%
835	41.5	0.90	9.20	9.20	9.20	0.11	1.61	±12.1%
1750	40.1	1.37	8.21	8.21	8.21	0.22	1.11	±12.1%
1900	40.0	1.40	7.79	7.79	7.79	0.22	1.04	±12.1%
2300	39.5	1.67	7.66	7.66	7.66	0.57	0.72	±12.1%
2450	39.2	1.80	7.50	7.50	7.50	0.59	0.71	±12.1%
2600	39.0	1.96	7.20	7.20	7.20	0.65	0.68	±12.1%
5250	35.9	4.71	5.56	5.56	5.56	0.40	1.40	±13.3%
5600	35.5	5.07	4.90	4.90	4.90	0.45	1.40	±13.3%
5750	35.4	5.22	4.99	4.99	4.99	0.50	1.35	±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60169 Page 5 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

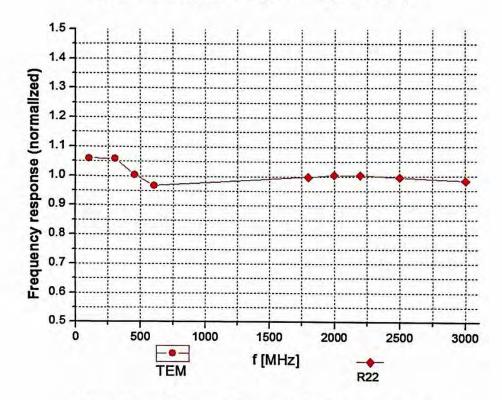
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.75	9.75	9.75	0.40	0.75	±12.1%
835	55.2	0.97	9.40	9.40	9.40	0.18	1.38	±12.1%
1750	53.4	1.49	7.86	7.86	7.86	0.23	1.09	±12.1%
1900	53.3	1.52	7.62	7.62	7.62	0.22	1.15	±12.1%
2300	52.9	1.81	7.67	7.67	7.67	0.55	0.81	±12.1%
2450	52.7	1.95	7.57	7.57	7.57	0.59	0.75	±12.1%
2600	52.5	2.16	7.33	7.33	7.33	0.74	0.65	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.55	±13.3%
5600	48.5	5.77	4.24	4.24	4.24	0.50	1.45	±13.3%
5750	48.3	5.94	4.35	4.35	4.35	0.50	1.50	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60169

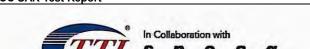
Page 6 of 11


F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

CALIBRATION LABORATORY

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

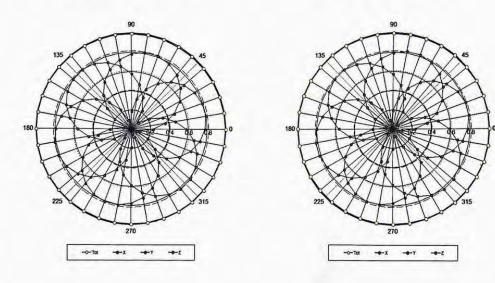


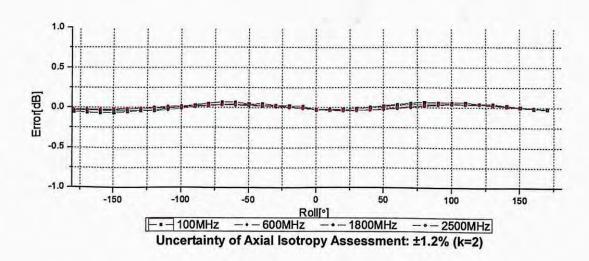
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60169

Page 7 of 11

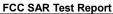
CALIBRATION LABORATORY

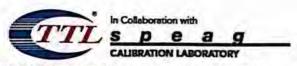

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

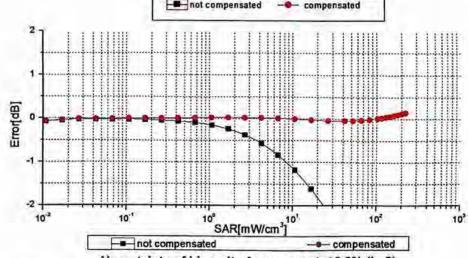

Report No.: R1906A0298-S1



Certificate No: Z19-60169

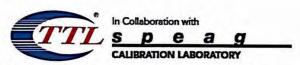
Page 8 of 11





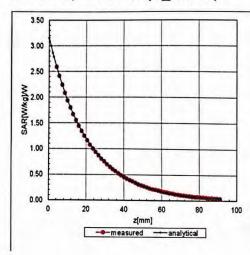
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 F.mail: cttl@chinattl.com Http://www.chinattl.cn

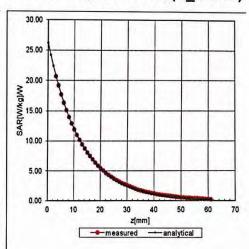
Dynamic Range f(SARhead) (TEM cell, f = 900 MHz)



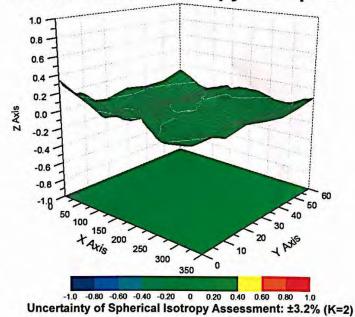
Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z19-60169 Page 9 of 11

Report No.: R1906A0298-S1

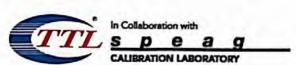



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H convF)



Deviation from Isotropy in Liquid

Certificate No: Z19-60169 Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z19-60169

Page 11 of 11

ANNEX E: D750V3 Dipole Calibration Certificate

Certificate No: Z17-97113

Report No.: R1906A0298-S1

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1045

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 27, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
	102083 100595 SN 3617 SN 1331 ID# MY49071430	102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286)

Calibrated by:

Function

Signature

Reviewed by:

Zhao Jing SAR Test Engineer

Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: August 30, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97113

Page 1 of 8

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97113

Page 2 of 8

Report No.: R1906A0298-S1

In Collaboration with

CALIERATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as n

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.34 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.36 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.45 mW /g ± 18.7 % (k=2)

Body TSL parameters

no parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.7 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	8.78 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.46 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	5.87 mW /g ±18.7 % (k=2)

Certificate No: Z17-97113

Page 3 of 8

• In Collaboration with

S D E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

CALIBRATION LABORATORY

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω- 2.95jΩ	
Return Loss	- 28.5dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5Ω- 5.53jΩ	
Return Loss	- 24.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.140 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97113

Page 4 of 8

Report No.: R1906A0298-S1

Date: 08.27.2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 41.66$; $\rho = 1000$ kg/m³

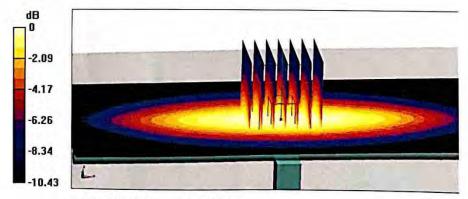
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.05, 10.05, 10.05); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

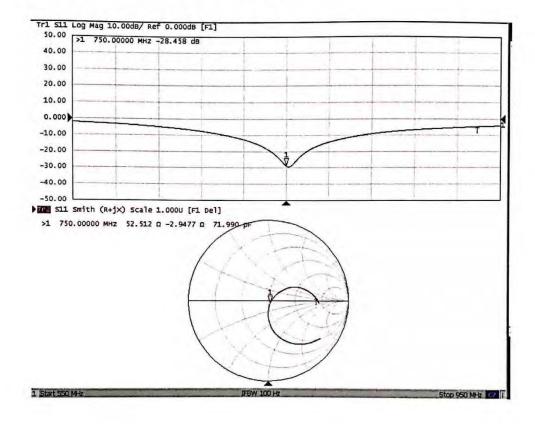
Reference Value = 54.59 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg


Certificate No: Z17-97113

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97113 Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Body TSL

Date: 08.27.2017

Report No.: R1906A0298-S1

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.952 \text{ S/m}$; $\epsilon_r = 55.68$; $\rho = 1000 \text{ kg/m}^3$

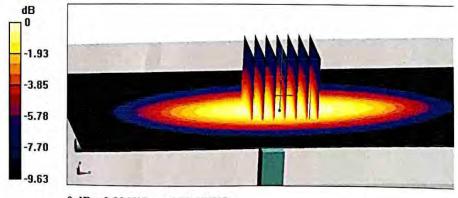
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.8, 9.8, 9.8); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

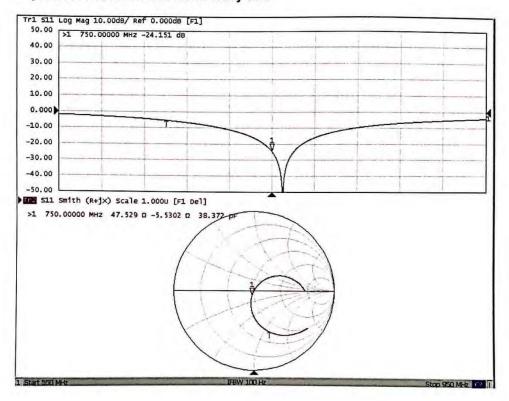
Reference Value = 54.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.23 W/kg

SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 2.88 W/kg

0 dB = 2.88 W/kg = 4.59 dBW/kg


Certificate No: Z17-97113

Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97113 Page 8 of 8

Report No.: R1906A0298-S1

ANNEX F: D835V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

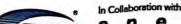
Certificate No: Z17-97114

TA(Shanghai) CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)


ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
	102083 100595 SN 3617 SN 1331 ID# MY49071430	102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286)

Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 31, 20 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97114

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,v,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97114

Page 2 of 8

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	_

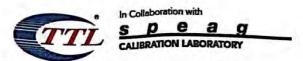
SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.34 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	9.45 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	6.09 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	-


SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.75 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.63 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97114

Page 3 of 8

CC SAR Test Report No.: R1906A0298-S1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω- 2.54jΩ	
Return Loss	- 31.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8Ω- 4.57jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

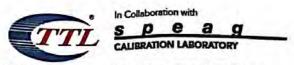
Electrical Delay (one direction)	1.495 ns
the same amounty	1.400 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------


Certificate No: Z17-97114

Page 4 of 8

Report No.: R1906A0298-S1

Date: 08.28.2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.887$ S/m; $\varepsilon_r = 41.22$; $\rho = 1000$ kg/m³

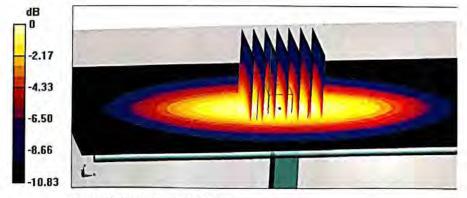
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 58.74V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.60 W/kg

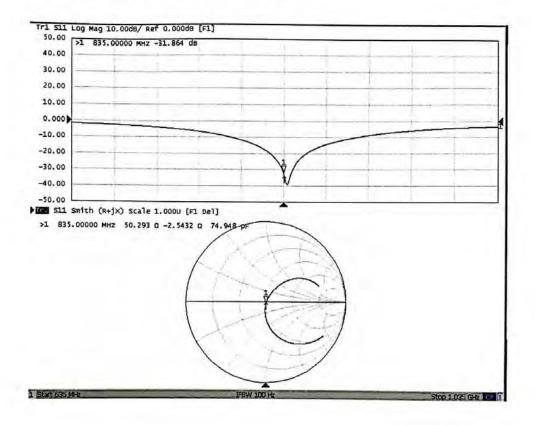
SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 3.16 W/kg

0 dB = 3.16 W/kg = 5.00 dBW/kg

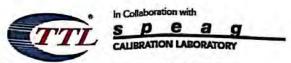
Certificate No: Z17-97114

Page 5 of 8



Report No.: R1906A0298-S1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn


Impedance Measurement Plot for Head TSL

Certificate No: Z17-97114

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 08.27.2017

Report No.: R1906A0298-S1

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r = 55.62$; $\rho = 1000$ kg/m³

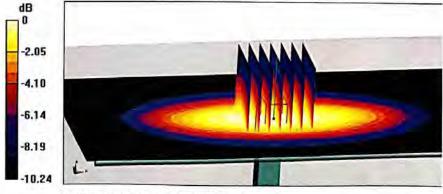
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 56.55 V/m; Power Drift = 0.02 dB

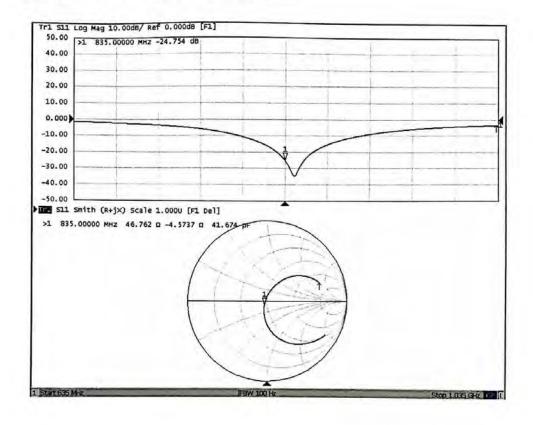
Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg

Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

Certificate No: Z17-97114


Page 7 of 8

Report No.: R1906A0298-S1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97114

Page 8 of 8

ANNEX G: D1750V2 Dipole Calibration Certificate

Client TA(Shanghai) Certificate No: Z17-97002

CALIBRATION CERTIFICATE

Object D1750V2 - SN: 1033

Calibration Procedure(s) FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: January 10, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17
	101547 SN 7307 SN 771 ID# MY49071430	101919 27-Jun-16 (CTTL, No.J16X04777) 101547 27-Jun-16 (CTTL, No.J16X04777) SN 7307 19-Feb-16(SPEAG,No.EX3-7307_Feb16) SN 771 02-Feb-16(CTTL-SPEAG,No.Z16-97011) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 01-Feb-16 (CTTL, No.J16X00893)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是
Reviewed by:	Qi Dianyuan	SAR Project Leader	36
Approved by:	Lu Bingsong	Deputy Director of the laboratory	m 4353

Issued: January 12, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97002

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97002

Page 2 of 8

In Collaboration with

S D E A G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	(-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.2 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.90 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.7 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.40 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.03 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.1 mW /g ± 20.4 % (k=2)

Certificate No; Z17-97002

Page 3 of 8

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8Ω+ 0.93jΩ	
Return Loss	- 40.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.7Ω- 0.10jΩ	
Return Loss	- 25.0dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.327 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97002

In Collaboration with

S P E A G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.352$ S/m; $\varepsilon = 39.36$; $\rho = 1000$ kg/m³

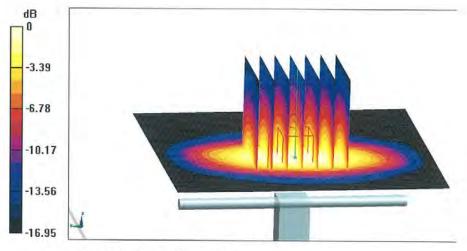
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.21 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.1W/kg

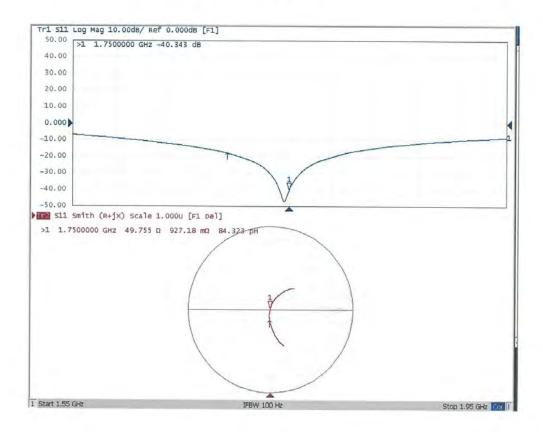
SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.9 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Certificate No: Z17-97002 Page 5 of 8

Report No.: R1906A0298-S1


Date: 01.10.2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.484 S/m; ϵ_r = 53.05; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7307; ConvF(8.18, 8.18, 8.18); Calibrated: 2/19/2016;

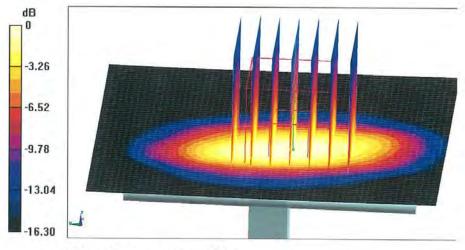
· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn771; Calibrated: 2/2/2016

Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.52 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.03 W/kg

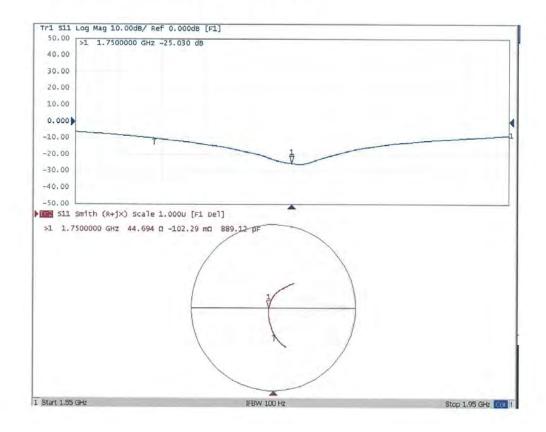
Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Certificate No: Z17-97002

Page 7 of 8

Report No.: R1906A0298-S1


Date: 01.10.2017

CC SAR Test Report No.: R1906A0298-S1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

Impedance Measurement Plot for Body TSL

ANNEX H: D1900V2 Dipole Calibration Certificate

http://www.chinattl.cn TA(Shanghai)

CALIBRATION CERTIFICATE

Z17-97115 Certificate No:

D1900V2 - SN: 5d060

Calibration Procedure(s)

Object

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: August 26, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
102083		Sep-17
100595		Sep-17
SN 3617		Jan-18
SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
	102083 100595 SN 3617 SN 1331 ID# MY49071430	102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286)

Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: August 30, 20

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z17-97115

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97115

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	V2.00
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.1 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	1	_

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.90 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.21 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97115

Page 3 of 8

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 6.59jΩ
Return Loss	- 23.4dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.7Ω+ 8.35jΩ	
Return Loss	- 21,4dB	

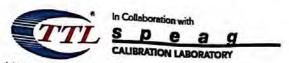
General Antenna Parameters and Design

Land with providing the Company of t	
Electrical Delay (one direction)	1.302 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
Manage Control of the	

Certificate No: Z17-97115

Page 4 of 8

Add; No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

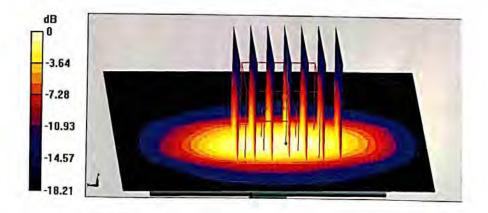
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.413$ S/m; $\epsilon r = 39.85$; $\rho = 1000$ kg/m3

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

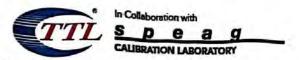
- Probe: EX3DV4 SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

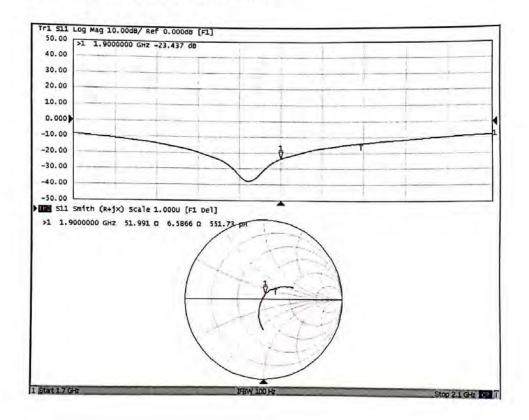
dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.94 V/m; Power Drift = 0.01 dB

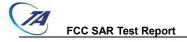
Peak SAR (extrapolated) = 19.5 W/kg

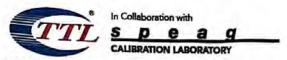

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.19 W/kgMaximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg


Certificate No: Z17-97115 Page 5 of 8 Report No.: R1906A0298-S1

Date: 08.26.2017




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97115

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

DASY5 Validation Report for Body TSL

Date: 08.26.2017

Report No.: R1906A0298-S1

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\epsilon_r = 53.55$; $\rho = 1000$ kg/m³

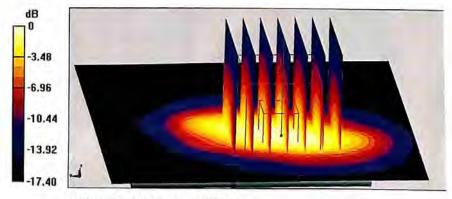
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

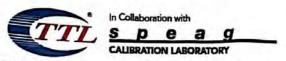
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

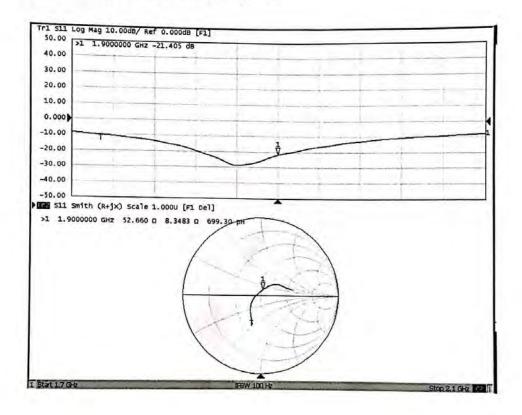

dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.19 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.21 W/kg

Maximum value of SAR (measured) = 15.3 W/kg



0 dB = 15.3 W/kg = 11.85 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97115

Page 8 of 8

ANNEX I: D2450V2 Dipole Calibration Certificate

Client TA(Shanghai) Certificate No: Z17-97116

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 786

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: August 29, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

02083 00595 SN 3617	22-Sep-16 (CTTL, No.J16X06809) 22-Sep-16 (CTTL, No.J16X06809) 23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Sep-17 Sep-17 Jan-18
SN 3617		
	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
D#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
AY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
D	# Y49071430	# Cal Date(Calibrated by, Certificate No.) Y49071430 13-Jan-17 (CTTL, No.J17X00286)

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: September 1, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97116

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97116

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

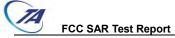
Head TSL parameters

The following parameters and calculations were applied

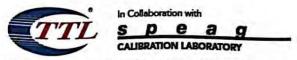
	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.16 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	24.6 mW /g ± 18.7 % (k=2)


Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	-


SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12,7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.87 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97116

CC SAR Test Report No.: R1906A0298-S1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4Ω+ 4.29jΩ	
Return Loss	- 25.5dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0Ω+ 6.61jΩ	
Return Loss	- 23.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.265 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	poet a
Manufactured by	SPEAG

Certificate No: Z17-97116

Date: 08.29.2017

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.822 \text{ S/m}$; $\epsilon r = 39.65$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

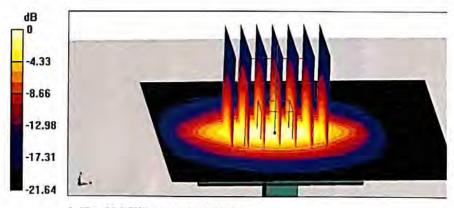
Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1331; Calibrated: 1/19/2017

Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

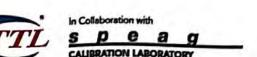

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.1 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.5 W/kg

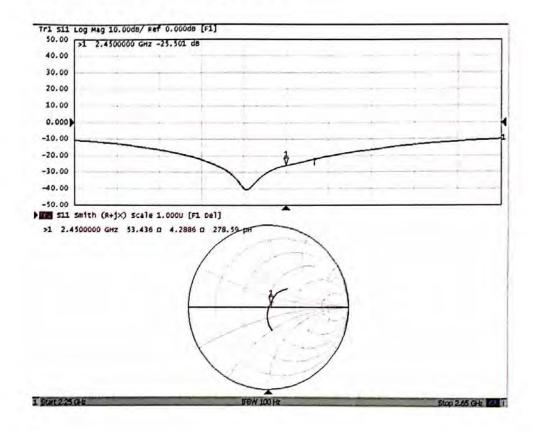
SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 22.2 W/kg



0 dB = 22.2 W/kg = 13.46 dBW/kg

Certificate No: Z17-97116


Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

Impedance Measurement Plot for Head TSL

Certificate No: Z17-97116

Page 6 of 8

FCC SAR Test Report

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.943$ S/m; $\epsilon_r = 52.45$; $\rho = 1000$ kg/m³

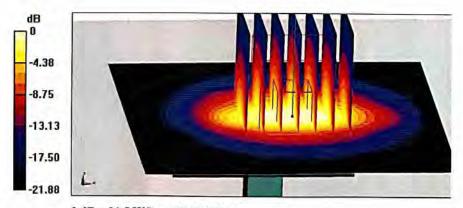
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 1/19/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 92.28 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.87 W/kg

Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

Certificate No: Z17-97116

Page 7 of 8

Report No.: R1906A0298-S1

Date: 08.29.2017