RF TEST REPORT **Applicant** MOBILE DEVICES INGENIERIE FCC ID A6GC4D-4G4USV7 Product OBDV7+ 4G CAT4 US **Brand** T-Mobile, Metro, Munic Model C4D-4G4USAB_V7+ Marketing C4D-4G4USAB_V7+ **Report No.** R1906A0298-R5 **Issue Date** August 6, 2019 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2018)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Peng Tao Approved by: Kai Xu # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** | 1. Test Laboratory | | |--|----| | 1.1. Notes of the test report | 4 | | 1.2. Test facility | | | 1.3. Testing Location | 5 | | 2. General Description of Equipment under Test | | | 3. Applied Standards | | | 4. Test Configuration | | | 5. Test Case Results | (| | 5.1. Unwanted Emission | g | | 5.2. Conducted Emission | 42 | | 6. Main Test Instruments | 4 | | ANNEX A: EUT Appearance and Test Setup | 46 | | A.1 EUT Appearance | | | A.2 Test Setup | | ## **Summary of measurement results** | Number | Summary of measurements of results | Clause in FCC rules | Verdict | | | | | |--------|--|----------------------------------|-------------------------|--|--|--|--| | 1 | Maximum Average conducted output power | 15.247(b)(3) | Reference module report | | | | | | 2 | 6 dB bandwidth | 15.247(a)(2) | Reference module report | | | | | | 3 | Power spectral density | 15.247(e) | Reference module report | | | | | | 4 | Band Edge | 15.247(d) | Reference module report | | | | | | 5 | Spurious RF Conducted Emissions | RF Conducted Emissions 15.247(d) | | | | | | | 6 | Unwanted Emissions | 15.247(d),
15.205,15.209 | PASS | | | | | | 7 | Conducted Emissions | 15.207 | PASS | | | | | | | Date of Testing: June 27, 2019 ~ July 14, 2019 | | | | | | | Only Radiates Unwanted Emissions and Conducted Emissions were tested for C4D-4G4USAB_V7+ in this report. Other conducted test items refer to the AriPrime BX 3210 Module report (Report No. :FR922501AL and FR922501AC). FCC RF Test Report 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility CNAS (accreditation number: L2264) TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS). FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. IC (recognition number is 8510A) TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. VCCI (recognition number is C-4595, T-2154, R-4113, G-10766) TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. ## 1.3. Testing Location TA Technology (Shanghai) Co., Ltd. Company: Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2. General Description of Equipment under Test ### **Client Information** | Applicant | MOBILE DEVICES INGENIERIE | |----------------------|--| | Applicant address | 100 AVENUE DE STALINGRAD VILLEJUIF, France | | Manufacturer | MOBILE DEVICES INGENIERIE | | Manufacturer address | 100 AVENUE DE STALINGRAD VILLEJUIF, France | ### **General information** | EUT Description | | | | | | |---|---|--|--|--|--| | Model: | C4D-4G4USAB_V7+ | | | | | | IMEI: | 354328090017986 | | | | | | Hardware Version: | SAP00422+SAP00421 | | | | | | Software Version: | V2107 | | | | | | Power Supply: | Battery | | | | | | Antenna Type: | metallic antenna | | | | | | Antenna Connector: | A permanently attached antenna (meet with the standard FCC Part 15.203 requirement) | | | | | | Antenna Gain: | 2.7 dBi for Wi-Fi 2.4G
2.4 dBi for BLE | | | | | | Directional Gain: | NA | | | | | | additional beamforming gain: | NA | | | | | | Test Mode: | Bluetooth(Low Energy)
802.11b
802.11g, 802.11n(HT20); | | | | | | Modulation Type: | BLE :GFSK
802.11b: DSSS;
802.11g/n(HT20): OFDM | | | | | | Operating Frequency Range(s) | 802.11b/g/n(HT20): 2412 ~ 2462 MHz
BLE: 2402 ~2480 MHz | | | | | | | EUT Accessory | | | | | | Battery | Manufacturer: HOWELL Energy Co., Ltd
Model: Li-polymer 352535H | | | | | | Note: The information of the EUT is declared by the manufacturer. | | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 6 of 48 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. ## 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: #### **Test standards** - FCC CFR47 Part 15C (2018) Radio Frequency Devices - · ANSI C63.10 (2013) - · KDB 558074 D01 DTS Meas Guidance v04 ## 4. Test Configuration #### **Test Mode** The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded. In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item. Worst-case data rates are shown as following table. | Band | Data Rate | |-----------------------|-----------| | Bluetooth(Low Energy) | 1Mbps | | 802.11b | 1 Mbps | | 802.11g | 6 Mbps | | 802.11n HT20 | MCS0 | **FCC RF Test Report** ## 5. Test Case Results #### 5.1. Unwanted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 102.5kPa | #### Method of Measurement The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported. This method refer to ANSI C63.10-2013. The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: - I) Peak emission levels are measured by setting the instrument as follows: - 1) RBW = 1 MHz. - 2) VBW ≥ [3 × RBW] - 3) Detector = peak. - 4) Sweep time = auto. - 5) Trace mode = max hold. - 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle. - II) Average emission levels are measured by setting the instrument as follows: - a) RBW = 1 MHz. - b) VBW \geq [3 × RBW]. - c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the FCC RF Test Report No: R1906A0298-R5 condition is not satisfied, then the detector mode shall be set to peak. d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.) - e) Sweep time = auto. - f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.) - g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: - 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. - 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. - 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. The test is in transmitting mode. **Test setup** ## 9KHz ~ 30MHz ### 30MHz ~ 1GHz ## **Above 1GHz** Note: Area side:2.4mX3.6m CC RF Test Report No: R1906A0298-R5 #### Limits Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))." Limit in restricted band | Frequency of emission (MHz) | Field strength(uV/m) | Field strength(dBuV/m) | |-----------------------------|----------------------|------------------------| | 0.009–0.490 | 2400/F(kHz) | 1 | | 0.490–1.705 | 24000/F(kHz) | 1 | | 1.705–30.0 | 30 | 1 | | 30-88 | 100 | 40 | | 88-216 | 150 | 43.5 | | 216-960 | 200 | 46 | | Above960 | 500 | 54 | §15.35(b) There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m Average Limit=54 dBuV/m Spurious Radiated Emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |----------------------------|-----------------------|----------------------------|---------------| | 0.090 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | ¹ 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614 | 5.35 - 5.46 | | 2.1735 - 2.1905 | 16.80425 - 16.80475 | 960 - 1240 | 7.25 - 7.75 | | 4.125 - 4.128 | 25.5 - 25.67 | 1300 - 1427 | 8.025 - 8.5 | | 4.17725 - 4.17775 | 37.5 - 38.25 | 1435 - 1626.5 | 9.0 - 9.2 | | 4.20725 - 4.20775 | 73 - 74.6 | 1645.5 - 1646.5 | 9.3 - 9.5 | | 6.215 - 6.218 | 74.8 - 75.2 | 1660 - 1710 | 10.6 - 12.7 | | 6.26775 - 6.26825 | 108 - 121.94 | 1718.8 - 1722.2 | 13.25 - 13.4 | | 6.31175 - 6.31225 | 123 - 138 | 2200 - 2300 | 14.47 - 14.5 | | 8.291 - 8.294 | 149.9 - 150.05 | 149.9 - 150.05 2310 - 2390 | | | 8.362 - 8.366 | 156.52475 - 156.52525 | 2483.5 - 2500 | 17.7 - 21.4 | | 8.37625 - 8.38675 | 156.7 - 156.9 | 2690 - 2900 | 22.01 - 23.12 | | 8.41425 - 8.41475 | 162.0125 - 167.17 | 3260 - 3267 | 23.6 - 24.0 | | 12.29 - 12.293 | 167.72 - 173.2 | 3332 - 3339 | 31.2 - 31.8 | | 12.51975 - 12.52025 | 240 - 285 | 3345.8 - 3358 | 36.43 - 36.5 | | 12.57675 - 12.57725 | 322 - 335.4 | 3600 - 4400 | (²) | | 13.36 - 13.41 | | | | FCC RF Test Report No: R1906A0298-R5 ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |--------------|-------------| | 9KHz-30MHz | 3.55 dB | | 30MHz-200MHz | 4.02 dB | | 200MHz-1GHz | 3.28 dB | | 1-18GHz | 3.70 dB | | 18-26.5GHz | 5.78 dB | ## **Test Results:** FCC RF Test Report No: R1906A0298-R5 #### Result of RE #### Test result Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b CH1 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. #### Continuous TX mode: Radiates Emission from 30MHz to 1GHz | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 47.985138 | 38.6 | 100.0 | V | 75.0 | -4.9 | 1.4 | 40.0 | | 76.810494 | 30.8 | 125.0 | V | 10.0 | -13.4 | 9.2 | 40.0 | | 83.865412 | 32.6 | 125.0 | V | 251.0 | -11.7 | 7.4 | 40.0 | | 120.027581 | 35.7 | 100.0 | V | 191.0 | -13.3 | 7.8 | 43.5 | | 240.005000 | 40.0 | 120.0 | Н | 292.0 | -11.7 | 6.0 | 46.0 | | 720.034500 | 37.8 | 100.0 | V | 91.0 | -1.6 | 8.2 | 46.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak 802.11b CH1 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1199.750000 | 45.0 | 100.0 | V | 95.0 | 0.7 | 29.0 | 74.0 | | 1429.250000 | 46.6 | 200.0 | V | 124.0 | 2.0 | 27.4 | 74.0 | | 1625.750000 | 47.0 | 200.0 | Н | 202.0 | 2.7 | 27.0 | 74.0 | | 2017.000000 | 48.0 | 200.0 | Н | 344.0 | 4.3 | 26.0 | 74.0 | | 2608.750000 | 48.8 | 100.0 | V | 314.0 | 6.7 | 25.2 | 74.0 | | 2937.000000 | 50.0 | 100.0 | V | 0.0 | 7.9 | 24.0 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1188.000000 | 34.5 | 200.0 | V | 44.0 | 0.7 | 19.5 | 54.0 | | 1424.000000 | 35.6 | 200.0 | Н | 95.0 | 2.0 | 18.4 | 54.0 | | 1664.000000 | 36.6 | 200.0 | V | 80.0 | 2.9 | 17.4 | 54.0 | | 2028.500000 | 38.1 | 200.0 | V | 146.0 | 4.4 | 15.9 | 54.0 | | 2614.250000 | 38.8 | 200.0 | Н | 127.0 | 6.7 | 15.2 | 54.0 | | 2892.500000 | 39.9 | 100.0 | V | 336.0 | 7.7 | 14.1 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11b CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1197.250000 | 45.0 | 100.0 | V | 183.0 | 0.7 | 29.0 | 74.0 | | 1392.000000 | 45.9 | 100.0 | V | 340.0 | 1.8 | 28.1 | 74.0 | | 1597.000000 | 47.1 | 200.0 | V | 43.0 | 2.5 | 26.9 | 74.0 | | 2031.750000 | 48.0 | 100.0 | Н | 140.0 | 4.4 | 26.0 | 74.0 | | 2267.500000 | 47.7 | 100.0 | V | 326.0 | 5.3 | 26.3 | 74.0 | | 2711.000000 | 49.3 | 200.0 | Н | 1.0 | 7.1 | 24.7 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1182.750000 | 34.6 | 100.0 | Н | 148.0 | 0.6 | 19.4 | 54.0 | | 1439.750000 | 35.6 | 200.0 | V | 172.0 | 2.0 | 18.4 | 54.0 | | 1730.750000 | 36.6 | 100.0 | V | 36.0 | 3.1 | 17.4 | 54.0 | | 2068.000000 | 37.4 | 100.0 | V | 296.0 | 4.4 | 16.6 | 54.0 | | 2268.750000 | 38.2 | 100.0 | V | 168.0 | 5.3 | 15.8 | 54.0 | | 2720.000000 | 38.8 | 200.0 | Н | 185.0 | 7.1 | 15.2 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11b CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1002.000000 | 45.2 | 100.0 | V | 207.0 | -0.5 | 28.8 | 74.0 | | 1436.750000 | 46.3 | 200.0 | Н | 0.0 | 2.0 | 27.7 | 74.0 | | 1728.500000 | 47.0 | 100.0 | Н | 239.0 | 3.1 | 27.0 | 74.0 | | 2006.750000 | 48.8 | 100.0 | V | 341.0 | 4.3 | 25.2 | 74.0 | | 2322.750000 | 48.1 | 100.0 | Н | 239.0 | 5.5 | 25.9 | 74.0 | | 2678.750000 | 49.1 | 200.0 | V | 298.0 | 7.0 | 24.9 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1199.750000 | 34.5 | 200.0 | V | 100.0 | 0.7 | 19.5 | 54.0 | | 1434.000000 | 35.6 | 200.0 | V | 39.0 | 2.0 | 18.4 | 54.0 | | 1636.000000 | 36.7 | 100.0 | V | 162.0 | 2.7 | 17.3 | 54.0 | | 2024.000000 | 37.6 | 200.0 | V | 55.0 | 4.3 | 16.4 | 54.0 | | 2331.750000 | 38.2 | 200.0 | V | 18.0 | 5.5 | 15.8 | 54.0 | | 2679.000000 | 39.3 | 100.0 | V | 33.0 | 7.0 | 14.7 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1099.500000 | 45.3 | 200.0 | V | 248.0 | 0.1 | 28.7 | 74.0 | | 1391.000000 | 46.1 | 100.0 | V | 45.0 | 1.8 | 27.9 | 74.0 | | 1472.500000 | 46.4 | 200.0 | V | 0.0 | 2.1 | 27.6 | 74.0 | | 1899.750000 | 48.2 | 100.0 | V | 165.0 | 3.8 | 25.8 | 74.0 | | 2565.750000 | 49.4 | 100.0 | V | 112.0 | 6.4 | 24.6 | 74.0 | | 2971.000000 | 50.8 | 100.0 | V | 0.0 | 8.1 | 23.2 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1200.500000 | 35.1 | 200.0 | V | 301.0 | 0.8 | 18.9 | 54.0 | | 1427.250000 | 35.1 | 200.0 | V | 217.0 | 2.0 | 18.9 | 54.0 | | 1704.500000 | 35.6 | 100.0 | V | 311.0 | 3.0 | 18.4 | 54.0 | | 2020.750000 | 37.5 | 100.0 | V | 89.0 | 4.3 | 16.5 | 54.0 | | 2570.500000 | 38.5 | 200.0 | Н | 160.0 | 6.5 | 15.5 | 54.0 | | 2986.000000 | 39.9 | 200.0 | Н | 183.0 | 8.2 | 14.1 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 900 44~ CUC 802.11g CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz 49.9 200.0 2698.500000 Frequency Height Azimuth Correct Limit Peak Margin **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1110.250000 45.5 200.0 ٧ 124.0 0.1 28.5 74.0 1280.000000 45.6 100.0 Н 262.0 1.1 28.4 74.0 1452.250000 45.9 100.0 Н 0.0 2.0 28.1 74.0 4.2 26.2 1973.500000 47.8 100.0 Н 55.0 74.0 2247.000000 48.4 200.0 Н 128.0 5.2 25.6 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 270.0 7.1 V | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1079.750000 | 35.5 | 100.0 | V | 126.0 | -0.1 | 18.5 | 54.0 | | 1407.000000 | 35.8 | 100.0 | Н | 123.0 | 1.9 | 18.2 | 54.0 | | 1568.250000 | 35.4 | 200.0 | Н | 39.0 | 2.4 | 18.6 | 54.0 | | 1990.000000 | 37.3 | 100.0 | V | 200.0 | 4.2 | 16.7 | 54.0 | | 2247.500000 | 37.5 | 200.0 | Н | 0.0 | 5.2 | 16.5 | 54.0 | | 2701.250000 | 38.8 | 200.0 | Н | 17.0 | 7.1 | 15.2 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Report No: R1906A0298-R5 24.1 74.0 802.11g CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1199.750000 | 45.4 | 200.0 | Н | 206.0 | 0.7 | 28.6 | 74.0 | | 1415.750000 | 46.8 | 100.0 | V | 27.0 | 1.9 | 27.2 | 74.0 | | 1720.000000 | 47.0 | 200.0 | Н | 259.0 | 3.1 | 27.0 | 74.0 | | 1936.500000 | 48.1 | 100.0 | V | 265.0 | 3.9 | 25.9 | 74.0 | | 2254.250000 | 48.3 | 200.0 | V | 17.0 | 5.2 | 25.7 | 74.0 | | 2680.000000 | 49.8 | 200.0 | V | 305.0 | 7.0 | 24.2 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1200.000000 | 35.0 | 200.0 | Н | 168.0 | 0.7 | 19.0 | 54.0 | | 1436.000000 | 35.8 | 100.0 | Н | 348.0 | 2.0 | 18.2 | 54.0 | | 1721.250000 | 36.6 | 200.0 | V | 198.0 | 3.1 | 17.4 | 54.0 | | 2030.750000 | 37.5 | 200.0 | V | 243.0 | 4.4 | 16.5 | 54.0 | | 2248.000000 | 37.6 | 200.0 | V | 123.0 | 5.2 | 16.4 | 54.0 | | 2678.500000 | 38.7 | 100.0 | V | 258.0 | 7.0 | 15.3 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## 802.11n (HT20) CH1 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1122.250000 | 45.4 | 100.0 | Н | 187.0 | 0.2 | 28.6 | 74.0 | | 1406.000000 | 46.5 | 200.0 | Н | 66.0 | 1.9 | 27.5 | 74.0 | | 1630.500000 | 47.0 | 200.0 | Н | 151.0 | 2.7 | 27.0 | 74.0 | | 1796.000000 | 48.0 | 100.0 | V | 292.0 | 3.4 | 26.0 | 74.0 | | 2509.750000 | 49.0 | 200.0 | Н | 151.0 | 6.1 | 25.0 | 74.0 | | 2758.250000 | 50.4 | 100.0 | Н | 291.0 | 7.2 | 23.6 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1080.250000 | 34.9 | 100.0 | V | 147.0 | -0.1 | 19.1 | 54.0 | | 1426.500000 | 35.9 | 200.0 | Н | 151.0 | 2.0 | 18.1 | 54.0 | | 1661.250000 | 36.7 | 200.0 | Н | 45.0 | 2.8 | 17.3 | 54.0 | | 2009.000000 | 37.9 | 100.0 | V | 0.0 | 4.3 | 16.1 | 54.0 | | 2499.250000 | 40.0 | 100.0 | Н | 239.0 | 6.1 | 14.0 | 54.0 | | 2758.750000 | 39.3 | 200.0 | Н | 195.0 | 7.2 | 14.7 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## 802.11n (HT20) CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1229.250000 | 46.1 | 200.0 | Н | 5.0 | 0.9 | 27.9 | 74.0 | | 1392.750000 | 45.9 | 200.0 | Н | 20.0 | 1.8 | 28.1 | 74.0 | | 1661.750000 | 47.4 | 200.0 | Н | 124.0 | 2.8 | 26.6 | 74.0 | | 2021.750000 | 48.5 | 200.0 | Н | 163.0 | 4.3 | 25.5 | 74.0 | | 2258.250000 | 47.9 | 200.0 | V | 223.0 | 5.2 | 26.1 | 74.0 | | 2673.250000 | 49.7 | 100.0 | Н | 225.0 | 7.0 | 24.3 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1232.250000 | 34.1 | 200.0 | Н | 27.0 | 0.9 | 19.9 | 54.0 | | 1403.000000 | 35.9 | 200.0 | Н | 42.0 | 1.9 | 18.1 | 54.0 | | 1683.750000 | 36.7 | 200.0 | Н | 269.0 | 2.9 | 17.3 | 54.0 | | 2012.000000 | 37.9 | 200.0 | Н | 57.0 | 4.3 | 16.1 | 54.0 | | 2245.000000 | 38.4 | 200.0 | Н | 139.0 | 5.2 | 15.6 | 54.0 | | 2683.750000 | 39.4 | 200.0 | V | 275.0 | 7.0 | 14.6 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## 802.11n (HT20) CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1183.500000 | 45.3 | 200.0 | V | 284.0 | 0.6 | 28.7 | 74.0 | | 1377.500000 | 46.5 | 200.0 | V | 224.0 | 1.7 | 27.5 | 74.0 | | 1618.750000 | 47.4 | 200.0 | V | 313.0 | 2.6 | 26.6 | 74.0 | | 2056.000000 | 48.7 | 200.0 | Н | 1.0 | 4.4 | 25.3 | 74.0 | | 2316.000000 | 48.7 | 200.0 | Н | 127.0 | 5.5 | 25.3 | 74.0 | | 2695.000000 | 49.2 | 200.0 | Н | 0.0 | 7.0 | 24.8 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1080.000000 | 35.2 | 100.0 | V | 27.0 | -0.1 | 18.8 | 54.0 | | 1417.500000 | 36.2 | 100.0 | V | 0.0 | 1.9 | 17.8 | 54.0 | | 1715.750000 | 37.1 | 100.0 | V | 27.0 | 3.1 | 16.9 | 54.0 | | 2039.750000 | 38.3 | 200.0 | Н | 61.0 | 4.4 | 15.7 | 54.0 | | 2316.250000 | 38.1 | 100.0 | V | 124.0 | 5.5 | 15.9 | 54.0 | | 2689.500000 | 39.3 | 200.0 | Н | 68.0 | 7.0 | 14.7 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) TA-MB-04-005R ### **BLE-Channel 0** Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) (dBuV/m) Factor (dB) (dB) (dBuV/m) (cm) (deg) 1190.500000 45.4 200.0 ٧ 329.0 0.7 28.6 74.0 1415.250000 46.2 200.0 Н 270.0 1.9 27.8 74.0 47.0 ٧ 1679.250000 200.0 64.0 2.9 27.0 74.0 47.8 222.0 4.3 74.0 2024.500000 100.0 Н 26.2 V 2260.000000 47.8 200.0 311.0 5.2 26.2 74.0 V 2947.750000 50.1 100.0 287.0 8.0 23.9 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1080.000000 | 34.5 | 100.0 | V | 30.0 | -0.1 | 19.5 | 54.0 | | 1402.500000 | 35.5 | 200.0 | Н | 182.0 | 1.9 | 18.5 | 54.0 | | 1617.000000 | 36.2 | 100.0 | Н | 222.0 | 2.6 | 17.8 | 54.0 | | 2040.000000 | 37.3 | 200.0 | V | 338.0 | 4.4 | 16.7 | 54.0 | | 2239.500000 | 37.6 | 100.0 | V | 22.0 | 5.1 | 16.4 | 54.0 | | 2931.750000 | 39.2 | 100.0 | V | 339.0 | 7.9 | 14.8 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## **BLE-Channel 19** Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) (dBuV/m) Factor (dB) (dB) (dBuV/m) (cm) (deg) 1116.000000 44.7 100.0 Н 223.0 0.2 29.3 74.0 1420.750000 46.2 200.0 V 351.0 1.9 27.8 74.0 1717.750000 46.6 200.0 Н 103.0 3.1 27.4 74.0 47.8 ٧ 4.4 74.0 2055.000000 200.0 308.0 26.2 2265.750000 46.9 200.0 Н 147.0 5.3 27.1 74.0 2910.000000 49.7 200.0 Н 33.0 7.8 24.3 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1200.750000 | 34.5 | 100.0 | V | 0.0 | 0.8 | 19.5 | 54.0 | | 1420.000000 | 35.3 | 200.0 | V | 342.0 | 1.9 | 18.7 | 54.0 | | 1644.000000 | 36.3 | 100.0 | V | 335.0 | 2.8 | 17.7 | 54.0 | | 2040.250000 | 37.4 | 200.0 | V | 359.0 | 4.4 | 16.6 | 54.0 | | 2276.750000 | 37.4 | 100.0 | Н | 214.0 | 5.3 | 16.6 | 54.0 | | 2919.250000 | 39.2 | 200.0 | Н | 138.0 | 7.8 | 14.8 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## **BLE-Channel 39** Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) (dBuV/m) Factor (dB) (dB) (dBuV/m) (cm) (deg) 1056.250000 45.1 200.0 ٧ 259.0 -0.3 28.9 74.0 1425.000000 45.8 200.0 V 155.0 2.0 28.2 74.0 ٧ 1567.250000 46.9 100.0 97.0 2.4 27.1 74.0 ٧ 4.3 25.2 74.0 2007.000000 48.8 100.0 340.0 V 2298.000000 47.4 200.0 318.0 5.4 26.6 74.0 V 2647.000000 49.7 200.0 0.0 6.9 24.3 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1079.750000 | 34.6 | 100.0 | V | 17.0 | -0.1 | 19.4 | 54.0 | | 1407.750000 | 35.5 | 200.0 | Н | 279.0 | 1.9 | 18.5 | 54.0 | | 1706.000000 | 36.2 | 200.0 | V | 47.0 | 3.0 | 17.8 | 54.0 | | 2040.250000 | 37.0 | 200.0 | V | 301.0 | 4.4 | 17.0 | 54.0 | | 2292.000000 | 37.4 | 100.0 | V | 149.0 | 5.4 | 16.6 | 54.0 | | 2973.500000 | 39.3 | 100.0 | V | 357.0 | 8.1 | 14.7 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ## 5.2. Conducted Emission ### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | | Report No: R1906A0298-R5 #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. The test is in transmitting mode. ## **Test Setup** Note: AC Power source is used to change the voltage 110V/60Hz. ## Limits | Frequency | Conducted Limits(dBμV) | | | | | | | |--|------------------------|-----------------------|--|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | | 0.15 - 0.5 | 66 to 56 [*] | 56 to 46 [*] | | | | | | | 0.5 - 5 | 56 | 46 | | | | | | | 5 - 30 | 60 | 50 | | | | | | | * Decreases with the logarithm of the frequency. | | | | | | | | ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB. FCC RF Test Report No: R1906A0298-R5 ## **Test Results:** Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes (WIFI 2.4G/BLE) with all channels, 802.11b CH1 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.34 | | 20.58 | 49.17 | 28.59 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.34 | 21.47 | | 59.17 | 37.70 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.48 | | 44.28 | 46.40 | 2.12 | 1000.0 | 9.000 | L1 | ON | 19.23 | | 0.48 | 44.11 | | 56.40 | 12.29 | 1000.0 | 9.000 | L1 | ON | 19.23 | | 0.95 | | 37.87 | 46.00 | 8.13 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 0.95 | 37.57 | | 56.00 | 18.43 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 2.27 | 20.59 | | 56.00 | 35.41 | 1000.0 | 9.000 | L1 | ON | 19.05 | | 2.38 | | 23.43 | 46.00 | 22.57 | 1000.0 | 9.000 | L1 | ON | 19.03 | | 5.23 | 19.21 | | 60.00 | 40.79 | 1000.0 | 9.000 | L1 | ON | 19.09 | | 5.23 | | 17.06 | 50.00 | 32.94 | 1000.0 | 9.000 | L1 | ON | 19.09 | | 16.94 | | 13.85 | 50.00 | 36.15 | 1000.0 | 9.000 | L1 | ON | 19.56 | | 17.76 | 14.47 | | 60.00 | 45.53 | 1000.0 | 9.000 | L1 | ON | 19.56 | L line Conducted Emission from 150 KHz to 30 MHz | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.35 | | 20.17 | 49.06 | 28.89 | 1000.0 | 9.000 | N | ON | 19.18 | | 0.35 | 21.19 | | 59.06 | 37.87 | 1000.0 | 9.000 | N | ON | 19.18 | | 0.48 | | 44.40 | 46.40 | 2.00 | 1000.0 | 9.000 | N | ON | 19.23 | | 0.48 | 44.31 | | 56.40 | 12.09 | 1000.0 | 9.000 | N | ON | 19.23 | | 0.95 | | 37.82 | 46.00 | 8.18 | 1000.0 | 9.000 | N | ON | 19.24 | | 0.95 | 37.75 | | 56.00 | 18.25 | 1000.0 | 9.000 | N | ON | 19.24 | | 2.28 | 24.37 | | 56.00 | 31.63 | 1000.0 | 9.000 | N | ON | 19.05 | | 2.38 | | 23.62 | 46.00 | 22.38 | 1000.0 | 9.000 | N | ON | 19.03 | | 5.23 | | 14.83 | 50.00 | 35.17 | 1000.0 | 9.000 | N | ON | 19.09 | | 5.23 | 18.94 | | 60.00 | 41.06 | 1000.0 | 9.000 | N | ON | 19.09 | | 15.80 | | 13.57 | 50.00 | 36.43 | 1000.0 | 9.000 | N | ON | 19.37 | | 26.43 | 15.62 | | 60.00 | 44.38 | 1000.0 | 9.000 | N | ON | 19.81 | N line Conducted Emission from 150 KHz to 30 MHz # 6. Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration Date | |--|-------------------------|-----------------|------------------|---------------------|-----------------| | Spectrum Analyzer | R&S | FSV30 | 100815 | 2018-12-16 | 2019-12-15 | | EMI Test Receiver | R&S | ESCI | 100948 | 2019-05-20 | 2020-05-19 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2017-09-26 | 2019-09-25 | | TRILOG Broadband
Antenna | Schwarzbeck | VULB 9163 | 9163-201 | 2017-11-18 | 2019-11-17 | | Double Ridged
Waveguide Horn
Antenna | R&S | HF907 | 100126 | 2018-07-07 | 2020-07-06 | | Standard Gain Horn | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2020-06-19 | | EMI Test Receiver | R&S | ESR | 101667 | 2019-05-20 | 2020-05-19 | | LISN | R&S | ENV216 | 101171 | 2016-12-16 | 2019-12-15 | | Spectrum Analyzer | Agilent | N9010A | MY47191109 | 2019-05-20 | 2020-05-19 | | Power Meter | R&S | NRP | 104306 | 2019-05-20 | 2020-05-19 | | Power Sensor | R&S | NRP-Z21 | 104799 | 2019-05-20 | 2020-05-19 | | 20dB Attenuator | Star River
Highlight | UCL-TS2S-
20 | 18013001 | 2018-12-16 | 2019-12-15 | | RF Cable | Agilent | SMA 15cm | 0001 | 2019-06-14 | 2019-09-13 | | Software | R&S | EMC32 | 9.26.0 | 1 | 1 | *****END OF REPORT ***** Report No: R1906A0298-R5 # **ANNEX A: EUT Appearance and Test Setup** # A.1 EUT Appearance Front Side **Back Side** a: EUT **Picture 1 EUT and Accessory** # A.2 Test Setup 30M Hz-1GHz Above 1GHz Picture 2 Radiated Emission Test Setup **Picture 3 Conducted Emission Test Setup**