Page: 1 of 48

FCC TEST REPORT

FCC ID : A5MWD770-B

Applicant : Lenovo (Beijing) Limited

Address : No.6 Chuang Ye Road, Shangdi Information Industry Base, Haidian

District, Beijing, China

Equipment Under Test (EUT):

Product Name : Lenovo Wireless Headset W770

Model No : WD770-B

Standards : FCC CFR47 Part 15 Section 15.247:2009

Date of Test : February 25 ~ February 28, 2012

Date of Issue : February 29, 2012

: February 29, 2012
: Maikou.zhang / Engineer / Eng **Test Engineer**

Reviewed By

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd. 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

> Tel:+86-755-27553488 Fax:+86-755-27553868

FCC ID: A5MWD770-B

Lenovo (Beijing) Limited

2 Test Summary

Test Items	Test Requirement	Result
Dodistad Spurious Emissions	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
(9kHz to 25GHz)	15.247(d)	
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	1 1207(b)(1)	DACC
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

FCC ID: A5MWD770-B

3 Contents

	Page
1 COVER PAGE	
2 TEST SUMMARY	2
3 CONTENTS	3
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF E.U.T.	
4.3 DETAILS OF E.U.T	
4.4 DESCRIPTION OF SUPPORT UNITS	
4.6 TEST FACILITY	
4.7 Test Location	6
5 EQUIPMENT USED DURING TEST	7
6 CONDUCTED EMISSION	9
6.1 E.U.T. OPERATION	9
6.2 EUT Setup	
6.3 CONDUCTED EMISSION TEST RESULT	
6.4 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	
7 RADIATED SPURIOUS EMISSIONS	
7.1 EUT OPERATION:	
7.2 MEASUREMENT UNCERTAINTY	
7.4 SPECTRUM ANALYZER SETUP	
7.5 Test Procedure	
7.6 CORRECTED AMPLITUDE & MARGIN CALCULATION	
7.7 SUMMARY OF TEST RESULTS	
7.8 PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	
8 BAND EDGE MEASUREMENT	
8.1 TEST RESULT:	
9.1 TEST PROCEDURE: 9.2 TEST RESULT:	
10 MAXIMUM PEAK OUTPUT POWER	
10.1 Test Procedure:	
10.2 Test Result:	
11 HOPPING CHANNEL SEPARATION	36
11.1 Test Procedure:	36
11.2 Test Result:	36
12 NUMBER OF HOPPING FREQUENCY	39
12.1 TEST PROCEDURE:	39
12.2 Test Result:	39
13 DWELL TIME	40
13.1 TEST PROCEDURE:	
13.2 TEST RESULT:	
14 ANTENNA REQUIREMENT	43

Page: 4 of 48

Lenovo	(Beijing) Limited	FCC ID: A5MWD770-B
15 RF	EXPOSURE	44
	REQUIMENTS:	
	MEASUREMENT RESULT:	
16 PH	IOTOGRAPHS - CONSTRUCTIONAL DETAILS	45
	EUT – Appearance View	
	EUT – OPEN VIEW	
16.3	EUT – PCB View	46
17 FC	CC LABEL	48

Page: 5 of 48

FCC ID: A5MWD770-B

Lenovo (Beijing) Limited

4 General Information

4.1 Client Information

Applicant : Lenovo (Beijing) Limited

Address of Applicant : No.6 Chuang Ye Road, Shangdi Information Industry Base, Haidian

District, Beijing, China

Trade Mark lenovo.

Manufacturer : Lenovo (Beijing) Limited

Address of Manufacturer : No.6 Chuang Ye Road, Shangdi Information Industry Base, Haidian

District, Beijing, China

4.2 General Description of E.U.T.

Product Name : Lenovo Wireless Headset WD770

Model No. : WD770-B

Remark : The product maybe have different color.

4.3 Details of E.U.T.

Technical Data : 5.0 VDC

Operation Frequency : $2404MHz \sim 2476MHz$

Antenna Gain : 0 dBi

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Lenovo Wireless Headset W770. The standards used were FCC CFR47 Part 15 Section 15.203, Section 15.207, Section 15.209 and Section 15.247.

Page: 6 of 48

FCC ID: A5MWD770-B

Lenovo (Beijing) Limited

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, August 3, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

FCC ID: A5MWD770-B

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY45114943	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Broad-band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	f < 10 GHz: ±1dB 10GHz < f < 18 GHz: ±1.5dB
Broadband Preamplifier	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	±1.2dB
Broad-band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9170	399	W2008005	15-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	±1.5dB
Broadband Preamplifier	SCHWARZB ECK MESS- ELEKTROM / BBV 9719	9719-254	W2008006	18-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.

FCC ID: A5MWD770-B

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Uncertainty
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Two-Line V- Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	±10%
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: 60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1B
Active Loop Antenna	Beijing Dazhi / ZN30900A	-	-	-	Aug. 2, 2011	Aug. 1, 2012	±1dB
AC Power Supply	TONGYUN/ DTDGC-4	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
PC1	Lenovo	T2900D	-	-	Aug.2, 2011	Aug.1, 2012	±1dB
PC2	IBM	ThinkPad X31	-	-	Aug.2, 2011	Aug.1, 2012	±1dB
Display	ViewSonic	S27996-1W	ı	-	Aug.2, 2011	Aug.1, 2012	±0.5dB
K/B	Dell	L100	=	-	Aug.2, 2011	Aug.1, 2012	±0.5dB
Mouse	Acer	M-UVACR1	-	-	Aug.2, 2011	Aug.1, 2012	±0.5dB

Page: 9 of 48

Lenovo (Beijing) Limited

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class B

Limit: 66-56 dB_{\textstyle V} between 0.15MHz & 0.5MHz

56 dBμV between 0.5MHz & 5MHz 60 dBμV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within

FCC ID: A5MWD770-B

6dB of Average Limit

6.1 E.U.T. Operation

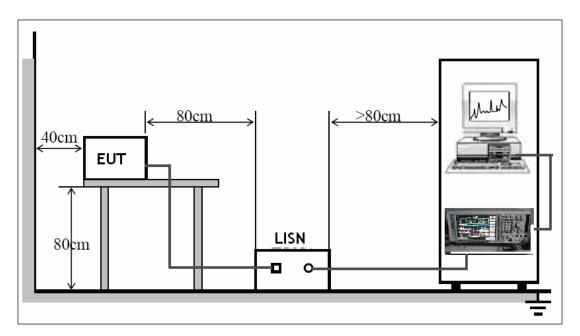
Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1012 mbar

EUT Operation:

The EUT was tested in Normal Link mode.


The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

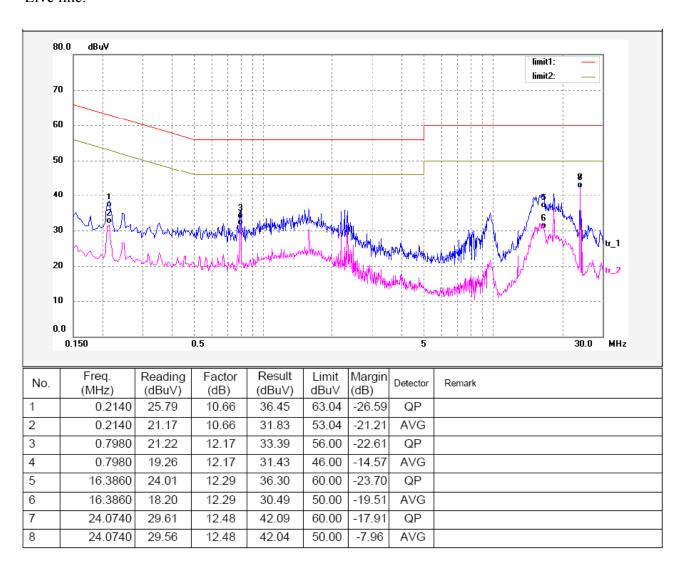
The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

FCC ID: A5MWD770-B

6.2 EUT Setup

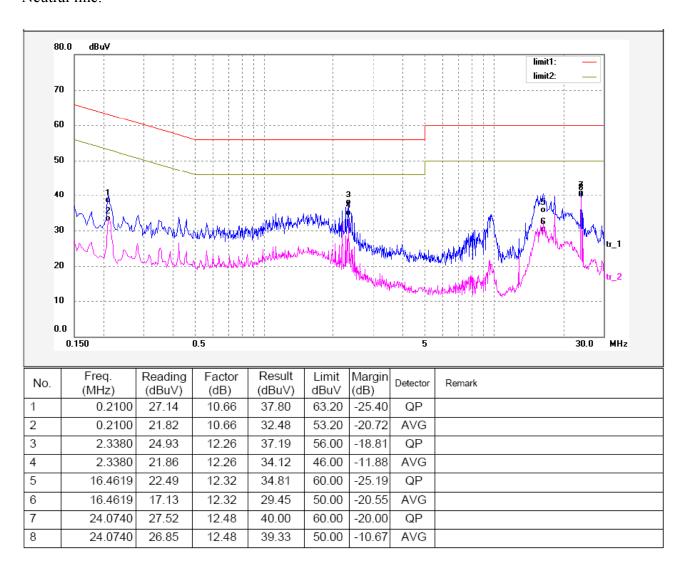
The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part 15.207 limits.

The EUT was placed on the test table in shielding room


6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

The EUT was tested in normal link mode.


FCC ID: A5MWD770-B

Live line:

FCC ID: A5MWD770-B

Neutral line:

FCC ID: A5MWD770-B

6.4 Photograph – Conducted Emission Test Setup

Page: 14 of 48

Lenovo (Beijing) Limited

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: Based on DA 00-705

Test Result: PASS

Frequency Range: 9kHz to 25GHz

Measurement Distance: 3m

Limit:

L/11111t.						
Г	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
$0.009 \sim 0.490$	2400/F(kHz) 300		10000 * 2400/F(kHz)	$20\log^{(2400/F(kHz))} + 80$		
$0.490 \sim 1.705$	24000/F(kHz)	30	100 * 24000/F(kHz)	$20\log^{(24000/F(kHz))} + 40$		
1.705 ~ 30	30	30	100 * 30	$20\log^{(30)} + 40$		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

Test mode:

The EUT was tested in continuously Transmit mode.

FCC ID: A5MWD770-B

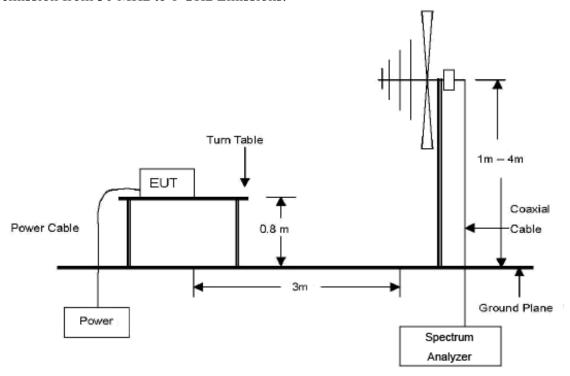
7.1 EUT Operation:

Operating Environment: Temperature: 25.5 °C Humidity: 51 % RH

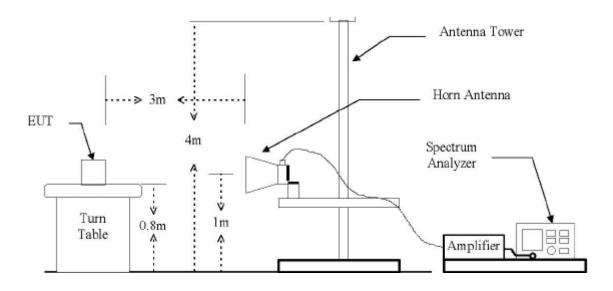
Atmospheric Pressure: 1012 mbar

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

FCC ID: A5MWD770-B


7.3 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 25 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.

Page: 16 of 48

Lenovo (Beijing) Limited

FCC ID: A5MWD770-B

7.4 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

 $9kHz \sim 30MHz$

Start Frequency	9kHz
Stop Frequency	30MHz
Sweep Speed	Auto
IF Bandwidth	10KHz
Video Bandwidth	10KHz
Resolution Bandwidth	10KHz

 $30MHz \sim 1GHz$

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	.1000 MHz
Stop Frequency	.25000MHz
Sweep Speed	. Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.1MHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	. Normal
Resolution Bandwidth	.1MHz

Page: 17 of 48

FCC ID: A5MWD770-B

Lenovo (Beijing) Limited

7.5 **Test Procedure**

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.

Corrected Amplitude & Margin Calculation 7.6

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

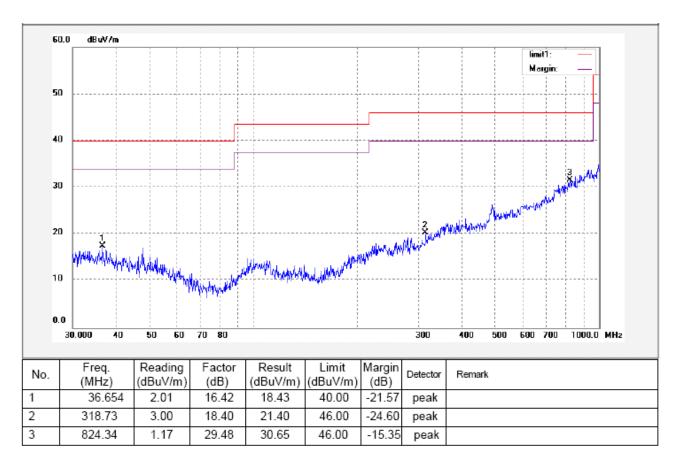
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WT11116682R1-D-E-F WALTEK SERVICES

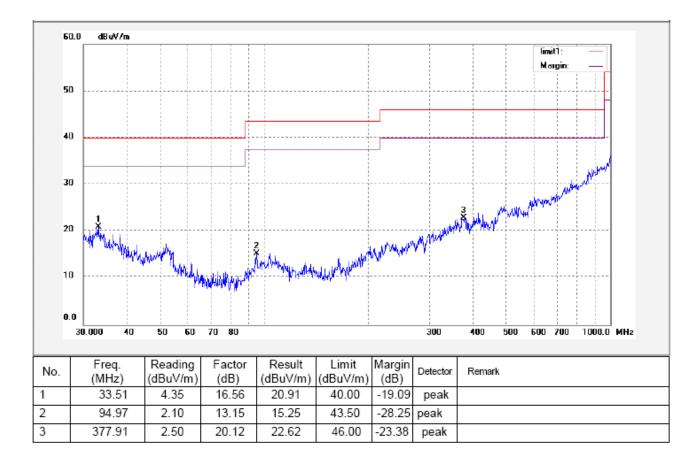
FCC ID: A5MWD770-B

7.7 Summary of Test Results


According to the data in this section, the EUT complied with the FCC CFR47 Part 15 Section 15.209 & 15.247 standards.

Test mode: continuously recevie mode

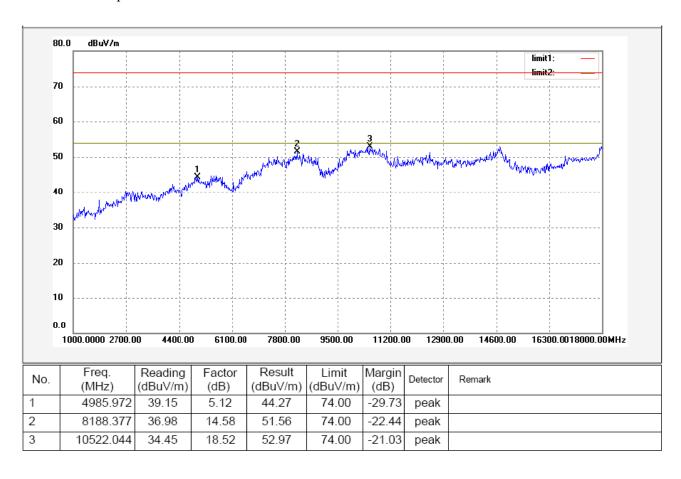
Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only. Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.


Test Frequency: 30MHz ~ 1000MHz

Antenna polarization: Vertical

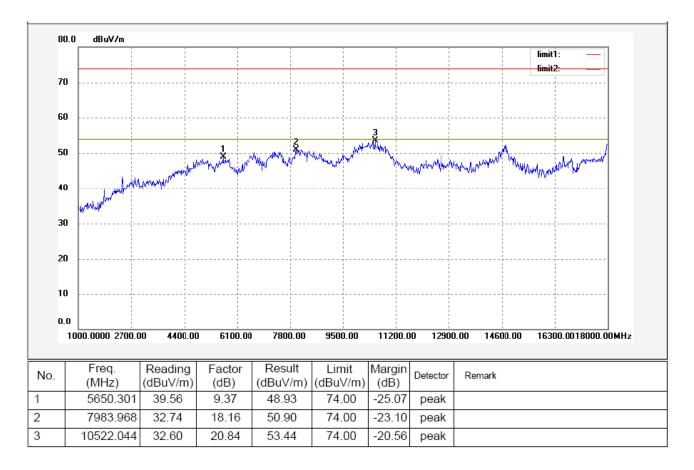
FCC ID: A5MWD770-B

Antenna polarization: Horizontal



FCC ID: A5MWD770-B

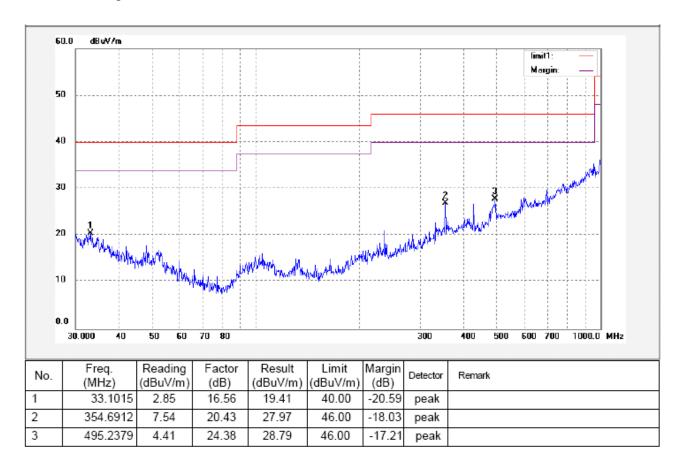
Test Frequency: Above 1GHz radiation test data:


Remark: No any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Antenna polarization: Vertical

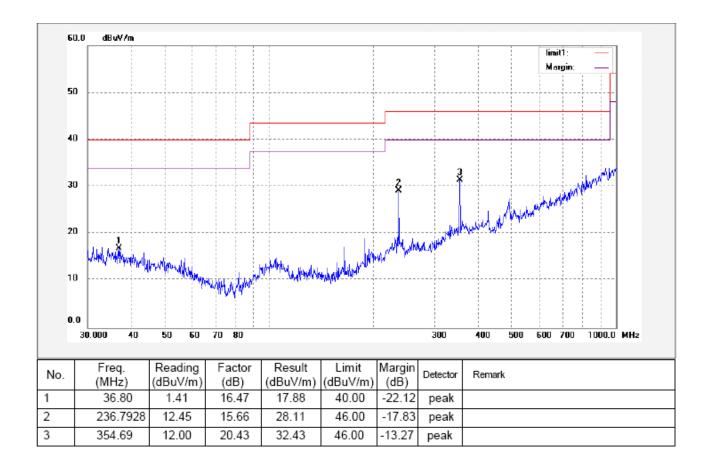
FCC ID: A5MWD770-B

Antenna polarization: Horizontal


FCC ID: A5MWD770-B

Test mode: continuously transmit mode

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only. Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.


Test Frequency: 30MHz ~ 1000MHz

Antenna polarization: Vertical

FCC ID: A5MWD770-B

Antenna polarization: Horizontal

FCC ID: A5MWD770-B

Lenovo (Beijing) Limited

Test Frequency: 1GHz ~ 25GHz

And the below is the Fundamental and Harmonic

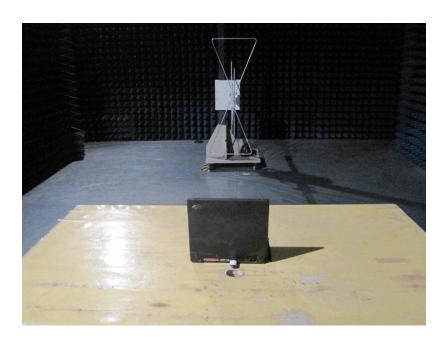
Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)		
	Low frequency								
2404.00	AV	Vertical	95.44		(Fund.)	1.5	60		
4808.00	AV	Vertical	46.33	54.00	-7.67	1.4	95		
7212.00	AV	Vertical	47.27	54.00	-6.73	1.7	180		
9616.00	AV	Vertical	44.00	54.00	-10.00	2.0	110		
12020.00	AV	Vertical	40.36	54.00	-13.64	1.4	195		
14424.00	AV	Vertical	41.65	54.00	-12.35	1.6	150		
16828.00	AV	Vertical	38.46	54.00	-15.54	1.5	150		
19232.00	AV	Vertical	36.74	54.00	-17.26	1.7	140		
21636.00	AV	Vertical	34.52	54.00	-19.48	1.4	60		
24040.00	AV	Vertical	35.67	54.00	-18.33	1.4	115		
2404.00	AV	Horizontal	89.34		(Fund.)	1.3	50		
4808.00	AV	Horizontal	45.50	54.00	-8.50	1.4	180		
7212.00	AV	Horizontal	43.25	54.00	-10.75	1.3	115		
9616.00	AV	Horizontal	40.36	54.00	-13.64	1.4	130		
12020.00	AV	Horizontal	42.34	54.00	-11.66	1.3	115		
14424.00	AV	Horizonta	37.25	54.00	-16.75	1.4	190		
16828.00	AV	Horizontal	43.35	54.00	-10.65	1.3	170		
19232.00	AV	Horizontal	35.20	54.00	-18.80	2.0	150		
21636.00	AV	Horizontal	36.53	54.00	-17.47	1.0	150		
24040.00	AV	Horizontal	38.30	54.00	-15.70	1.7	75		
2404.00	PK	Vertical	107.60		(Fund.)	1.7	45		
4808.00	PK	Vertical	59.74	74.00	-14.26	2.0	100		
7212.00	PK	Vertical	60.68	74.00	-13.32	1.4	140		
9616.00	PK	Vertical	57.41	74.00	-16.59	1.6	250		
12020.00	PK	Vertical	53.77	74.00	-20.23	1.0	135		
14424.00	PK	Vertical	55.06	74.00	-18.94	1.4	100		
16828.00	PK	Vertical	51.87	74.00	-22.13	1.2	195		
19232.00	PK	Vertical	50.15	74.00	-23.85	1.4	180		
21636.00	PK	Vertical	47.93	74.00	-26.07	1.5	105		
24040.00	PK	Vertical	49.08	74.00	-24.92	1.6	135		
2404.00	PK	Horizontal	101.30		(Fund.)	2.1	100		
4808.00	PK	Horizontal	46.24	74.00	-27.76	2.0	170		
7212.00	PK	Horizontal	43.99	74.00	-30.01	1.6	130		
9616.00	PK	Horizontal	41.10	74.00	-32.90	1.4	40		
12020.00	PK	Horizontal	43.08	74.00	-30.92	1.0	200		
14424.00	PK	Horizontal	37.99	74.00	-36.01	1.7	50		
16828.00	PK	Horizontal	44.09	74.00	-29.91	1.6	235		
19232.00	PK	Horizontal	35.94	74.00	-38.06	1.7	100		

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.

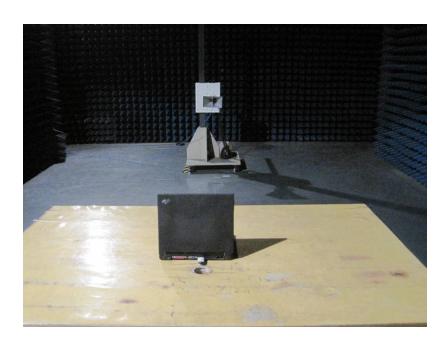
FCC ID: A5MWD770-B

	.,,	1	1	1			1
21636.00	PK	Horizontal	37.27	74.00	-36.73	1.0	160
24040.00	PK	Horizontal	39.04	74.00	-34.96	1.4	145
			Middle from	equency			
2440.00	AV	Vertical	95.12		(Fund.)	1.2	60
4880.00	AV	Vertical	45.88	54.00	-8.12	1.2	140
7320.00	AV	Vertical	43.99	54.00	-10.01	1.2	160
9760.00	AV	Vertical	42.85	54.00	-11.15	1.4	70
12200.00	AV	Vertical	46.09	54.00	-7.91	1.3	60
14640.00	AV	Vertical	38.76	54.00	-15.24	1.2	180
17080.00	AV	Vertical	42.01	54.00	-11.99	1.3	50
19520.00	AV	Vertical	36.82	54.00	-17.18	1.7	90
21960.00	AV	Vertical	40.81	54.00	-13.19	1.5	260
24400.00	AV	Vertical	33.87	54.00	-20.13	1.2	145
2440.00	AV	Horizontal	89.48		(Fund.)	1.1	170
4880.00	AV	Horizontal	43.81	54.00	-10.19	1.2	150
7320.00	AV	Horizontal	45.54	54.00	-8.46	1.2	335
9760.00	AV	Horizontal	39.65	54.00	-14.35	1.2	170
12200.00	AV	Horizontal	42.40	54.00	-11.60	1.4	205
14640.00	AV	Horizontal	37.80	54.00	-16.20	1.6	250
17080.00	AV	Horizontal	34.99	54.00	-19.01	1.3	205
19520.00	AV	Horizontal	37.68	54.00	-16.32	1.4	150
21960.00	AV	Horizontal	38.91	54.00	-15.09	1.3	220
24400.00	AV	Horizontal	33.59	54.00	-20.41	1.9	185
2440.00	PK	Vertical	106.83		(Fund.)	1.1	45
4880.00	PK	Vertical	62.29	74.00	-11.71	1.1	130
7320.00	PK	Vertical	60.40	74.00	-13.60	1.2	160
9760.00	PK	Vertical	56.26	74.00	-17.74	1.5	210
12200.00	PK	Vertical	59.50	74.00	-14.50	1.4	255
14640.00	PK	Vertical	52.17	74.00	-21.83	1.2	40
17080.00	PK	Vertical	55.42	74.00	-18.58	1.2	60
19520.00	PK	Vertical	50.23	74.00	-23.77	1.7	190
21960.00	PK	Vertical	54.22	74.00	-19.78	1.2	200
24400.00	PK	Vertical	47.28	74.00	-26.72	1.2	165
2440.00	PK	Horizontal	99.43		(Fund.)	1.3	40
4880.00	PK	Horizontal	57.55	74.00	-16.45	1.9	125
7320.00	PK	Horizontal	59.28	74.00	-14.72	1.3	170
9760.00	PK	Horizontal	53.39	74.00	-20.61	1.5	120
12200.00	PK	Horizontal	56.14	74.00	-17.86	1.2	215
14640.00	PK	Horizontal	51.54	74.00	-22.46	1.4	200
17080.00	PK	Horizontal	48.73	74.00	-25.27	1.4	175
19520.00	PK	Horizontal	51.42	74.00	-22.58	1.5	200
21960.00	PK	Horizontal	52.65	74.00	-21.35	1.3	60
	DIZ	TT ' / 1	47.22	74.00	-26.67	1.8	220
24400.00	PK	Horizontal	47.33	/4.00	-20.07	1.0	220

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.


FCC ID: A5MWD770-B

2476.00	AV	Vertical	94.36		(Fund.)	1.2	190
4952.00	AV	Vertical	45.64	54.00	-8.36	1.2	10
7428.00	AV	Vertical	42.07	54.00	-11.93	1.4	130
9904.00	AV	Vertical	44.53	54.00	-9.47	1.6	75
12380.00	AV	Vertical	39.63	54.00	-14.37	1.6	105
14856.00	AV	Vertical	46.18	54.00	-7.82	1.8	130
17332.00	AV	Vertical	40.21	54.00	-13.79	1.3	110
19808.00	AV	Vertical	41.08	54.00	-12.92	1.3	210
22284.00	AV	Vertical	39.40	54.00	-14.60	1.1	145
24760.00	AV	Vertical	33.02	54.00	-20.98	1.5	145
2476.00	AV	Horizontal	88.28		(Fund.)	1.1	150
4952.00	AV	Horizontal	43.99	54.00	-10.01	2.0	170
7428.00	AV	Horizontal	42.30	54.00	-11.70	1.5	125
9904.00	AV	Horizontal	43.12	54.00	-10.88	1.5	175
12380.00	AV	Horizontal	40.98	54.00	-13.02	1.4	145
14856.00	AV	Horizontal	35.17	54.00	-18.83	1.4	170
17332.00	AV	Horizontal	39.38	54.00	-14.62	1.1	210
19808.00	AV	Horizontal	34.05	54.00	-19.95	1.8	60
22284.00	AV	Horizontal	36.88	54.00	-17.12	1.4	105
24760.00	AV	Horizontal	32.26	54.00	-21.74	1.8	110
2476.00	PK	Vertical	106.22		(Fund.)	1.1	205
4952.00	PK	Vertical	61.15	74.00	-12.85	1.2	30
7428.00	PK	Vertical	57.58	74.00	-16.42	1.6	110
9904.00	PK	Vertical	60.04	74.00	-13.96	1.7	135
12380.00	PK	Vertical	55.14	74.00	-18.86	1.1	120
14856.00	PK	Vertical	61.69	74.00	-12.31	1.2	80
17332.00	PK	Vertical	55.72	74.00	-18.28	1.0	110
19808.00	PK	Vertical	56.59	74.00	-17.41	1.4	130
22284.00	PK	Vertical	54.91	74.00	-19.09	1.3	130
24760.00	PK	Vertical	48.53	74.00	-25.47	1.4	135
2476.00	PK	Horizontal	97.81		(Fund.)	1.4	200
4952.00	PK	Horizontal	57.73	74.00	-16.27	1.6	100
7428.00	PK	Horizontal	56.04	74.00	-17.96	1.2	140
9904.00	PK	Horizontal	56.86	74.00	-17.14	1.3	185
12380.00	PK	Horizontal	54.72	74.00	-19.28	1.0	110
14856.00	PK	Horizontal	48.91	74.00	-25.09	1.9	120
17332.00	PK	Horizontal	53.12	74.00	-20.88	2.1	165
19808.00	PK	Horizontal	47.79	74.00	-26.21	1.5	140
22284.00	PK	Horizontal	50.62	74.00	-23.38	2.0	125
24760.00	PK	Horizontal	46.00	74.00	-28.00	1.2	220


FCC ID: A5MWD770-B

7.8 Photograph – Radiation Spurious Emission Test Setup

Below 1GHz

Above 1GHz

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.

Page: 28 of 48

Lenovo (Beijing) Limited

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

FCC ID: A5MWD770-B

15.209(a) (see Section 15.205(c)).

Test Method: Based on DA 00-705

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

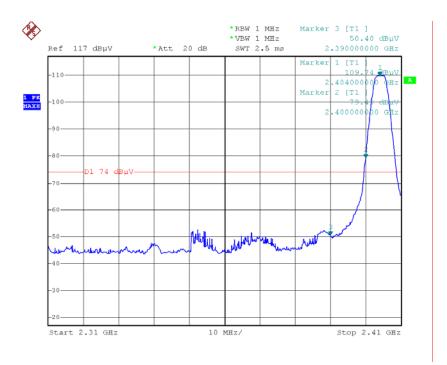
74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto Detector function = peak

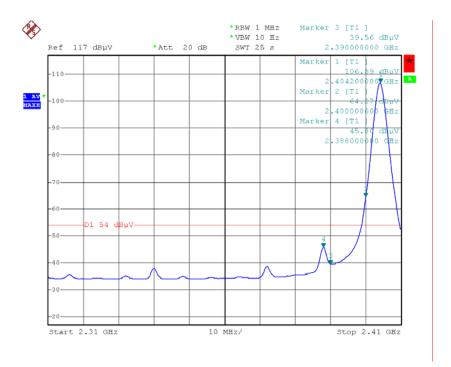
Trace = max hold For AVG value:

RBW = 1 MHz for $f \ge 1$ GHz VBW = 10Hz; Sweep = auto Detector function = AVG

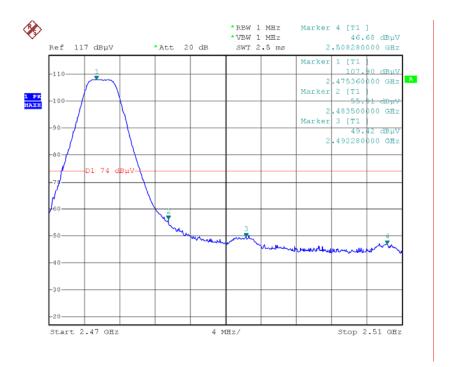

Trace = \max hold

FCC ID: A5MWD770-B

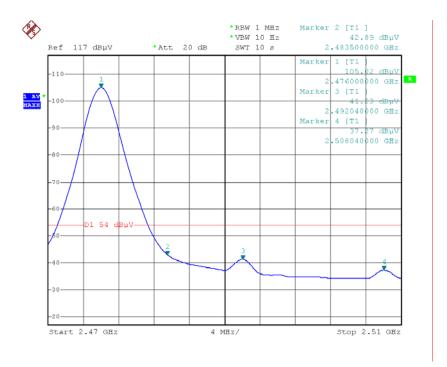
Lenovo (Beijing) Limited


8.1 Test Result:

Low Channel - Peak


FCC ID: A5MWD770-B

Low Channel - AV


FCC ID: A5MWD770-B

High Channel – Peak

FCC ID: A5MWD770-B

High Channel - AV

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: Based on DA 00-705

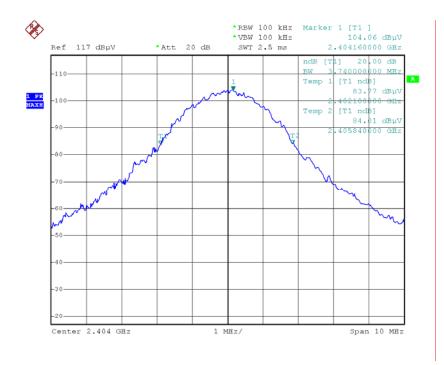
Test Mode: Test in fixing operating frequency at low, Middle, high

FCC ID: A5MWD770-B

channel.

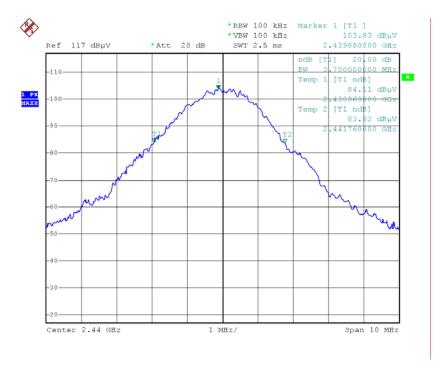
9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

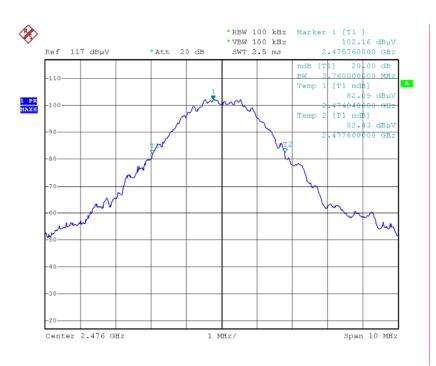

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

9.2 Test Result:

Test Channel	Bandwidth
Low	3.74MHz
Middle	3.70MHz
High	3.76MHz


Test result plot as follows:

Low Channel



FCC ID: A5MWD770-B

Middle Channel

High Channel

Page: 35 of 48

Lenovo (Beijing) Limited

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: Based on DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

> operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-

FCC ID: A5MWD770-B

2483.5 MHz band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this document. The 0.125 watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 5 MHz. VBW = 5 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Test Channel	Output Power (dBm)	Limit (dBm)
Low	3.92	20.97
Middle	2.47	20.97
High	1.26	20.97

WALTEK SERVICES

Page: 36 of 48

Lenovo (Beijing) Limited

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: Based on DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an

FCC ID: A5MWD770-B

output power no greater than 1W.

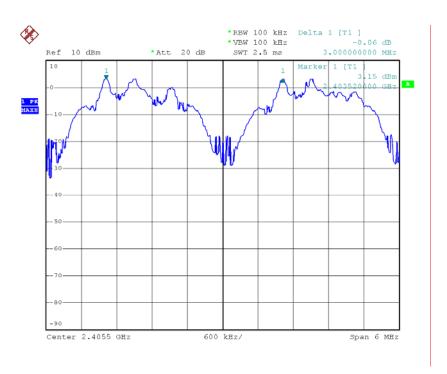
Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure:

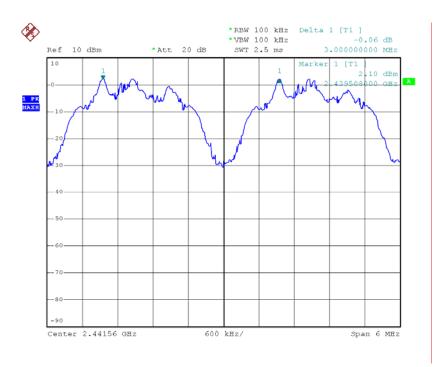
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 100kHz, Span = 6MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

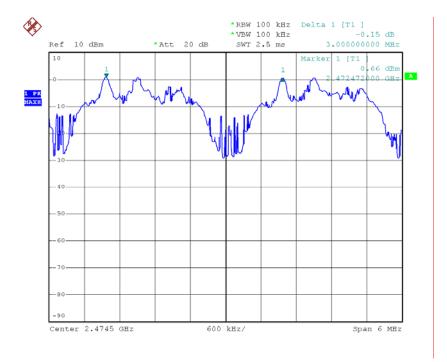

11.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	3.000	PASS
Middle	3.000	PASS
High	3.000	PASS


FCC ID: A5MWD770-B

Test result plot as follows:

Low Channel:



Middle Channel

FCC ID: A5MWD770-B

High Channel

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: Based on DA 00-705

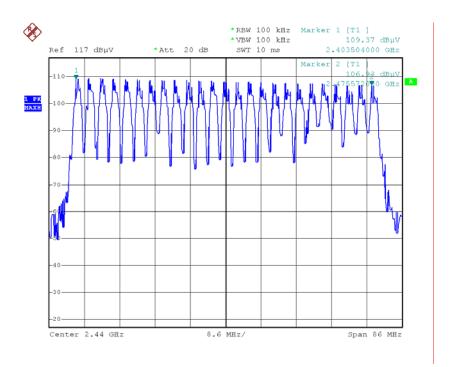
Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems

in the 2400-2483.5 MHz band shall use at least 15

FCC ID: A5MWD770-B

channels.

Test Mode: Test in hopping transmitting operating mode.


12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Center Frequency = 2441MHz, Span = 86MHz. Submit the test result graph.

12.2 Test Result:

Total Channels are 25 Channels.

Page: 40 of 48

Lenovo (Beijing) Limited

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: Based on DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

FCC ID: A5MWD770-B

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

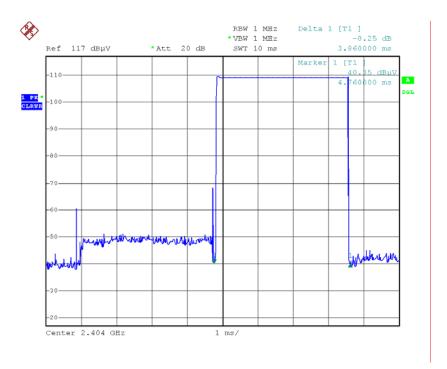
4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result:

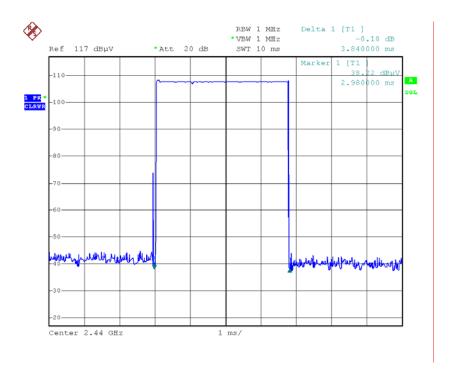
Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 25 = 10 (s)

So, the Dwell Time can be calculated as follows:

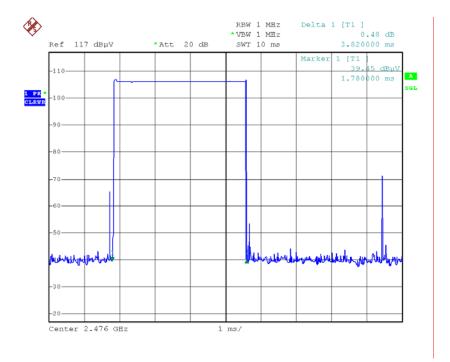

Dwell time = 10 * 10 * (MkrDelta) / 1000

Note: Mkr Delta is once pulse time.


		1		l
Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
2402 MHz	3.86	0.386	0.400	Pass
2441 MHz	3.84	0.384	0.400	Pass
2480 MHz	3.82	0.382	0.400	Pass

FCC ID: A5MWD770-B

Low Channel



Middle Channel

FCC ID: A5MWD770-B

High Channel

Page: 43 of 48

Lenovo (Beijing) Limited

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent PCB antenna, fulfill the requirement of this section.

FCC ID: A5MWD770-B

15 RF Exposure

15.1 Requiments:

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

FCC ID: A5MWD770-B

This is a portable device.

15.2 Measurement Result:

Antenna Gain (dBi)	Antenna Gain (numeric)	Conducted Power (dBm)	Conducted Power (mW)	Radiated Power (e.i.r.p) (mW)
0	1	3.92	2.466	2.466
0	1	2.47	1.766	1.766
0	1	1.26	1.337	1.337

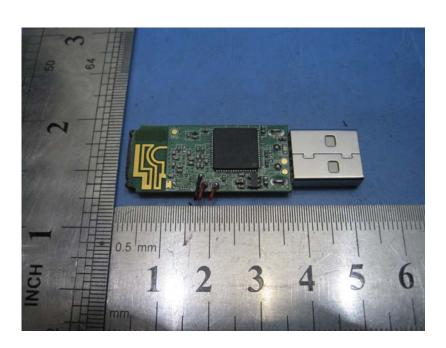
The EUT works on the 2.4G ISM band, and the max output power (conducted) of which is 2.466 mW lower than low threshold 60/f (GHz) mW (24.48mW), d < 2.5cm in general population category.

The SAR evaluation is not required.

FCC ID: A5MWD770-B

16 Photographs - Constructional Details

16.1 EUT – Appearance View

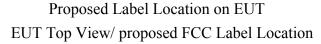

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.

FCC ID: A5MWD770-B

16.2 EUT – Open View

16.3 EUT – PCB View

The results shown in this test report refer only to the sample(s) tested, This Test report cannot be reproduced, except in full, without prior written permission of the Company.



FCC ID: A5MWD770-B

17 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

