

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Lenovo USB-A Bluetooth Audio Receiver

MODEL NUMBER: L23BTD

FCC ID: A5ML23BTD

IC: 5903G-L23BTD

REPORT NUMBER: 4789787451-1

ISSUE DATE: February 04, 2021

Prepared for

Lenovo (Beijing) limited (FCC) 201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China 100085

LENOVO CHINA (ISED) No.6 Chuang Ye Road, Shangdi Information Industry Haidan District Beijing 100085 China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	02/04/2021	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/ISED Rules	Test Results		
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass		
2	Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass		
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass		
4	Number of Hopping Frequency15.247 (a) (1) IIIRSS-247 Clause 5.1 (d)		Pass		
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass		
6	Conducted Bandedge	FCC 15.247 (d) RSS-247 Clause 5.5	Pass		
7	Radiated Bandedge and Spurious RSS-247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.1		Pass		
8	Conducted Emission Test for ACFCC 15.207Power PortRSS-GEN Clause 8.8		Pass		
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Pass		
Note:		•			

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TE	ST METHODOLOGY	8
3.	FA	CILITIES AND ACCREDITATION	8
4.	СА	LIBRATION AND UNCERTAINTY	9
2	4.1.	MEASURING INSTRUMENT CALIBRATION	9
4	4.2.	MEASUREMENT UNCERTAINTY	9
5.	EQ	UIPMENT UNDER TEST	10
ł	5.1.	DESCRIPTION OF EUT	10
ł	5.2.	MAXIMUM PEAK OUTPUT POWER	10
ł	5.3.	PACKET TYPE CONFIGURATION	10
ł	5.4.	CHANNEL LIST	11
Ę	5.5.	TEST CHANNEL CONFIGURATION	11
ł	5.6.	WORST-CASE CONFIGURATIONS	11
ł	5.7.	THE WORSE CASE POWER SETTING PARAMETER	12
ł	5.8.	DESCRIPTION OF AVAILABLE ANTENNAS	12
ł	5.9.	DESCRIPTION OF TEST SETUP	13
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	14
6. 7.		ASURING INSTRUMENT AND SOFTWARE USED	
7.			16
7 .	AN	TENNA PORT TEST RESULTS	16 16
7 .	AN 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	16 16 17
7.	AN 7.1. 7.2.	ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	16 16 17 19
7.	AN 7.1. 7.2. 7.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	16 16 17 19 20
7.	AN 7.1. 7.2. 7.3. 7.4.	ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION	16 17 17 20 22
7.	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES	16 17 17 20 22 24
7.	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME)	16 16 17 19 20 22 24 26
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. RA 3. 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE	16 17 19 20 22 24 26 28 34
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. RA	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE .1	16 17 19 20 22 24 26 28 34 34 34
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. 8. 1. 8. 1. 8. 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE .1 GFSK MODE .2 8DPSK MODE	16 17 19 20 22 24 26 28 34 34 37
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. 8. 1. 8. 1. 8. 1. 8. 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE .1 GFSK MODE .2 8DPSK MODE .2 8DPSK MODE	16 17 19 20 22 24 26 28 34 34 37 40
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	AN 7. 1. 7. 2. 7. 3. 7. 4. 7. 5. 7. 6. 7. 7. RA 8. 1. 8. 1. 8. 1. 8. 1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE .1 GFSK MODE .2 8DPSK MODE .1 GFSK MODE	16 17 19 20 22 24 26 28 26 28 34 34 37 40 40 40

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	REPORT NO.: 4789787451-1 Page 5 of 92
8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 8.4.1. 8DPSK MODE	
8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.5.1. 8DPSK MODE	
8.6. SPURIOUS EMISSIONS BELOW 30 MHz 8.6.1. 8DPSK MODE	
9. AC POWER LINE CONDUCTED EMISSIONS	65
9.1.1. 8DPSK MODE	
10. ANTENNA REQUIREMENTS	
APPENDIX A: DUTY CYCLE	
APPENDIX B: 20DB BANDWIDTH	
APPENDIX C: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX D: PEAK CONDUCTED OUTPUT POWER	
APPENDIX E: CARRIER FREQUENCY SEPARATION	
APPENDIX F: NUMBER OF HOPPING FREQUENCIES	
APPENDIX G: TIME OF OCCUPANCY (DWELL TIME)	
APPENDIX H: BAND EDGE MEASUREMENTS	
APPENDIX I: CONDUCTED SPURIOUS EMISSION	

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
Date of Tested:	Jan 21, 2021~ February 04, 2021
Sample ID:	3606609
Sample Status:	Normal
Sample Received Date:	Jan 20, 2021
Brand:	Lenovo
Model:	L23BTD
EUT Name:	Lenovo USB-A Bluetooth Audio Receiver
EUT Information	
Address:	No.6 Chuang Ye Road, Shangdi Information Industry Haidan District Beijing 100085 China
Company Name:	LENOVO CHINA
Manufacturer Information	
ISED	
Autress.	District Beijing 100085 China
Company Name: Address:	LENOVO CHINA No.6 Chuang Ye Road, Shangdi Information Industry Haidan
Applicant Information	
ISED	
1055	
Address:	201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China 100085
Company Name:	Lenovo (Beijing) limited
Manufacturer Information	
FCC	
Address.	District, Beijing, China 100085
Address:	Lenovo (Beijing) limited 201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian
Applicant Information Company Name:	Lanava (Raijing) limited
FCC	

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

kolon sha

Kebo Zhang Project Engineer

Approved By:

Serberbus

Stephen Guo Laboratory Manager

Checked By:

les hem

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	· · · · ·
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
Duty Cycle	±0.028%	
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%	
Carrier Frequency Separation	±1.9%	
Maximum Conducted Output Power	±0.743 dB	
Number of Hopping Channel	±1.9%	
Time of Occupancy	±0.028%	
Conducted Band-edge Compliance	±1.328 dB	
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)	
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Lenovo USB-A Bluetooth Audio Receiver			
Square Register Model	L23BTD			
Technology	Bluetooth – BR & EDR			
Transmit Frequency Range	2402 MHz ~ 2480 MHz			
Mode	Basic Rate Enhanced Data Rate			
Modulation	GFSK ∏/4-DQPSK 8DPSK		8DPSK	
Packet Type (Maximum Payload):	DH5	2DH5	3DH5	
Data Rate	1 Mbps 2 Mbps		3 Mbps	
Power Supply DC 5V				

5.2. MAXIMUM PEAK OUTPUT POWER

Modulation Frequency (MHz)		Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)	
GFSK	2402 ~ 2480	0-78[79]	4.68	4.18	
8DPSK	2402 ~ 2480	0-78[79]	5.18	4.68	

5.3. PACKET TYPE CONFIGURATION

Modulation	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.4. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	2402 MHz ~ 2480 MHz
8DPSK-3DH5	Hopping	2402 MHz ~ 2480 MHz

5.6. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate	Packet Type
BR	FHSS	GFSK	1Mbit/s	DH5
EDR	FHSS	8DPSK	3Mbit/s	3-DH5

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates. Only GFSK and 8DPSK test data were report in this report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.7. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5 MHz Band						
Test S	oftware	Bluetooth test 3				
Modulation	Madulation Transmit Antenna		Test Software Setting Value			
Wouldton	Number	CH 00	CH 39	CH 78		
GFSK	1	default	default	default		
8DPSK	1	default default default				

5.8. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB	-0.5

Modulation	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

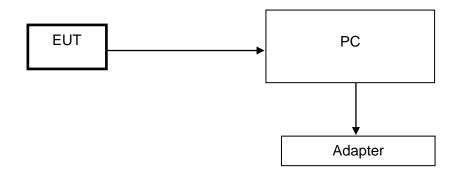
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	TP00094A	/
2	Adapter	Lenovo	ADLX65YDC3D	Input: AC120V,60Hz Output: DC15V,3A

<u>I/O PORT</u>

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in an engineering mode though the laptop before the testing.

SETUP DIAGRAM FOR TESTS

Note: The Adapter only use for AC power line conducted testing.

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021	
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021	
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Nov. 12, 2020	Nov. 11, 2021	
	Software					
Description			Manufacturer	Name	Version	
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1	

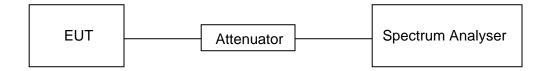
		Radiated	Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 11, 2018	Aug. 10, 2021
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021
Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021
Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Nov. 12, 2020	Nov. 11, 2021
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

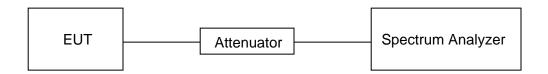
RESULTS

Please refer to appendix A.

7.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Frequency Range (MHz)		
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5


TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector Peak	
RBW For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span Approximately 2 to 3 times the 20dB bandwidth	
Trace Max hold	
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

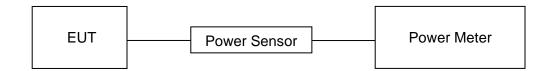
Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix B and C.

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

<u>RESULTS</u>

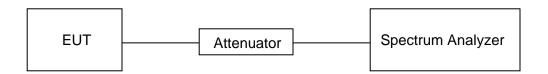
Please refer to appendix D.

7.4. CARRIER FREQUENCY SEPARATION

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Connect the EUT to the spectrum analyzer and use the following settings:	Connect the EUT to the s	pectrum analyzer and	use the following settings:
--	--------------------------	----------------------	-----------------------------


Center Frequency	The center frequency of the channel under test	
Span	wide enough to capture the peaks of two adjacent channels	
Detector	Peak	
RBW Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel space.		
VBW ≥RBW		
Trace	Max hold	
Sweep time	Auto couple	

LIMITS

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

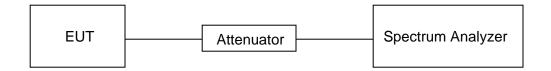
RESULTS

Please refer to Appendix E.

7.5. NUMBER OF HOPPING FREQUENCIES

LIMITS

	CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2		
Section Test Item			Limit
	CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels


TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW ≥RBW	
	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix F.

7.6. TIME OF OCCUPANCY (DWELL TIME)

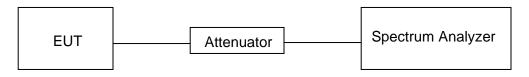
LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	ection Test Item Limit		
CFR 47 15.247 (a) (1) III ISED RSS-247 ClauseTime of Occupancy (Dwell Time)The average time of occupancy on any channel shall not be greater than 0.4 secon 		The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel


Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

Please refer to appendix G.

7.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

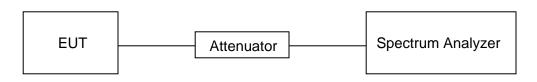
LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5 °C	Relative Humidity	54.5 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

<u>RESULTS</u>

Please refer to appendix H & I.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range (MHz)) at 3 m	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	PeakAverage7454		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)	
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

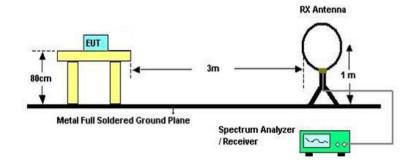
Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

Table 7 – Restricted frequency bands ^{Note 1}				
MHz	MHz	GHz		
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2		
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5		
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7		
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4		
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5		
4.17725 - 4.17775	240 - 285	15.35 - 16.2		
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4		
5.677 - 5.683	399.9 - 410	22.01 - 23.12		
6.215 - 6.218	608 - 614	23.6 - 24.0		
6.26775 - 6.26825	960 - 1427	31.2 - 31.8		
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5		
8.291 - 8.294	1845.5 - 1848.5	Above 38.6		
8.362 - 8.366	1660 - 1710			
8.37625 - 8.38675	1718.8 - 1722.2			
8.41425 - 8.41475	2200 - 2300			
12.29 - 12.293	2310 - 2390			
12.51975 - 12.52025	2483.5 - 2500			
12.57675 - 12.57725	2655 - 2900			
13.36 - 13.41	3280 - 3287			
18.42 - 18.423	3332 - 3339			
16.69475 - 16.69525	3345.8 - 3358			
16.80425 - 16.80475	3500 - 4400			
25.5 - 25.67	4500 - 5150			
37.5 - 38.25	5350 - 5480			
73 - 74.8	7250 - 7750			
74.8 - 75.2	8025 - 8500			
108 - 138				

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

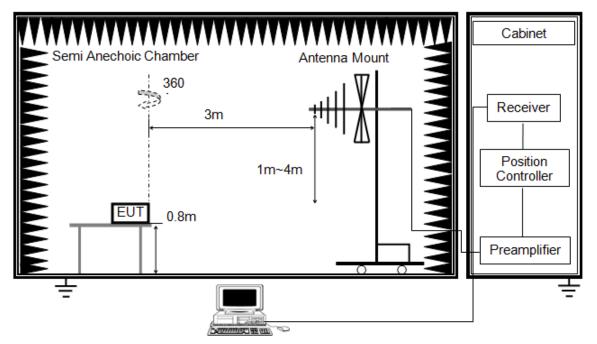
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

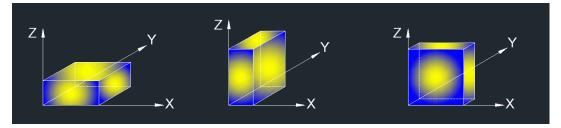
The setting of the spectrum analyser

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: The manufacturer has recommended that the EUT only be used in the desktop (horizontal) orientation; therefore, all radiated testing was performed in desktop orientation(X).

TEST ENVIRONMENT

Temperature	21.3 °C	Relative Humidity	57.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

8.1. RESTRICTED BANDEDGE

8.1.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL. VERTICAL)

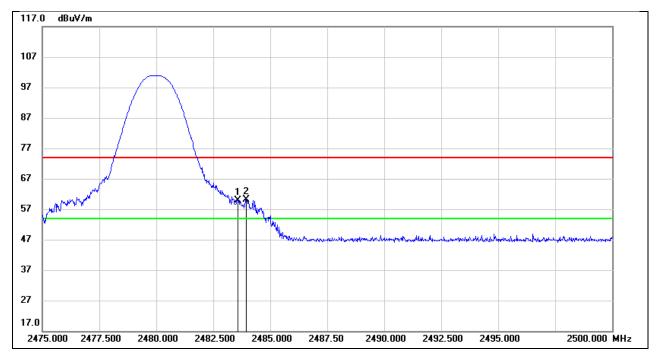
117.0 dBu¥/m 107 97 87 77 67 57 47 37 27 17.0 2333.000 2344.500 2356.000 2402.000 2425.000 MHz 2310.000 2321.500 2367.50 2379.000 2390.500

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2376.930	35.70	11.50	47.20	74.00	-26.80	peak
2	2390.000	34.47	11.59	46.06	74.00	-27.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

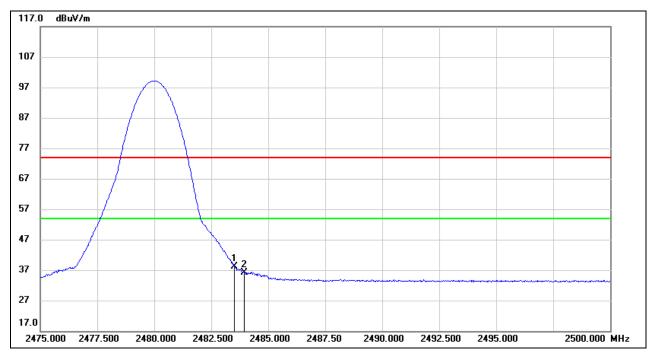

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.560	47.98	11.97	59.95	74.00	-14.05	peak
2	2483.950	48.19	11.97	60.16	74.00	-13.84	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	26.20	11.97	38.17	54.00	-15.83	AVG
2	2483.950	24.20	11.97	36.17	54.00	-17.83	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

8.1.2. 8DPSK MODE

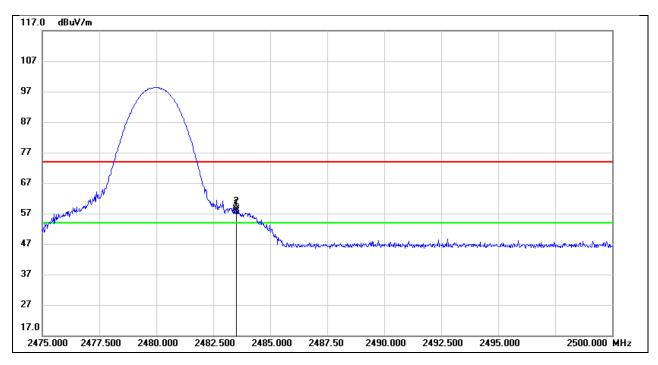
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

117.0 dBuV/m 107 97 87 77 67 57 47 37 27 17.0 2310.000 2321.500 2333.000 2344.500 2356.000 2367.50 2379.000 2390.500 2402.000 2425.000 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.485	35.25	11.55	46.80	74.00	-27.20	peak
2	2390.000	34.84	11.59	46.43	74.00	-27.57	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

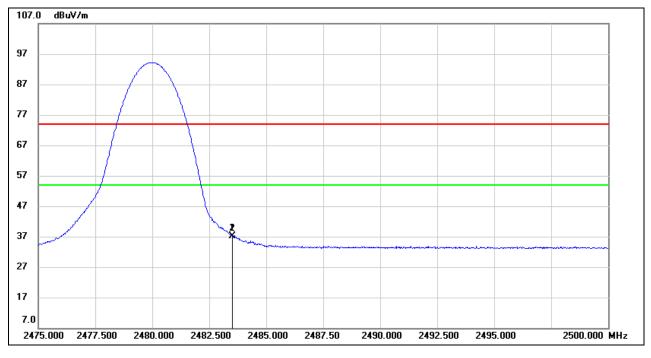

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	45.62	11.97	57.59	74.00	-16.41	peak
2	2483.525	46.38	11.97	58.35	74.00	-15.65	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. Peak: Peak detector.

3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	25.14	11.97	37.11	54.00	-16.89	AVG
2	2483.525	25.04	11.97	37.01	54.00	-16.99	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

3. For the transmitting duration, please refer to clause 7.1.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Both horizontal and vertical had been tested, only the worst data was recorded in the report.

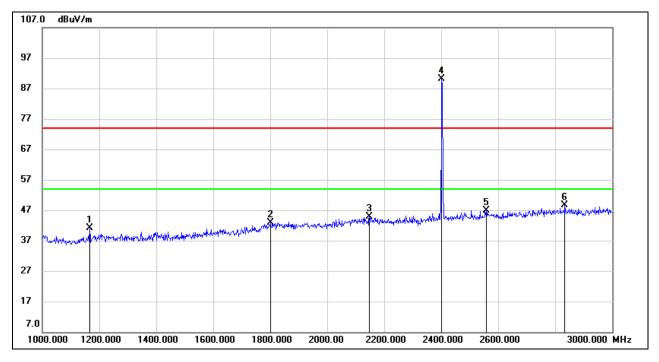
8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. GFSK MODE

dBuV/m 107.0 97 **4** X 87 77 67 57 6 X 5 X 47 1 X 37 27 17 7.0 3000.000 MHz 1200.000 1400.000 1600.000 1800.000 2000.00 2200.000 2400.000 2600.000 1000.000

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1586.000	34.11	7.78	41.89	74.00	-32.11	peak
2	1788.000	33.69	9.46	43.15	74.00	-30.85	peak
3	1914.000	34.98	9.81	44.79	74.00	-29.21	peak
4	2402.000	80.19	11.66	91.85	/	/	fundamental
5	2638.000	35.80	12.18	47.98	74.00	-26.02	peak
6	2858.000	35.20	13.37	48.57	74.00	-25.43	peak

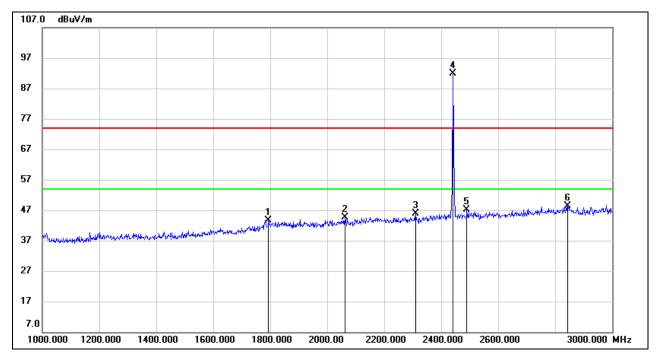

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1166.000	35.01	6.11	41.12	74.00	-32.88	peak
2	1800.000	33.15	9.65	42.80	74.00	-31.20	peak
3	2148.000	33.89	10.90	44.79	74.00	-29.21	peak
4	2402.000	78.53	11.66	90.19	/	/	fundamental
5	2558.000	34.95	11.99	46.94	74.00	-27.06	peak
6	2834.000	35.30	13.32	48.62	74.00	-25.38	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL. HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1794.000	34.10	9.55	43.65	74.00	-30.35	peak
2	2062.000	34.12	10.49	44.61	74.00	-29.39	peak
3	2310.000	34.92	11.06	45.98	74.00	-28.02	peak
4	2441.000	79.98	11.81	91.79	/	/	fundamental
5	2490.000	35.20	12.00	47.20	74.00	-26.80	peak
6	2844.000	35.15	13.35	48.50	74.00	-25.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

1000.000

1200.000

1400.000

2600.000

3000.000 MHz

107.0 dBu¥/m 97 5 X 87 77 67 57 Z 6 X 3 47 37 27 17 7.0

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

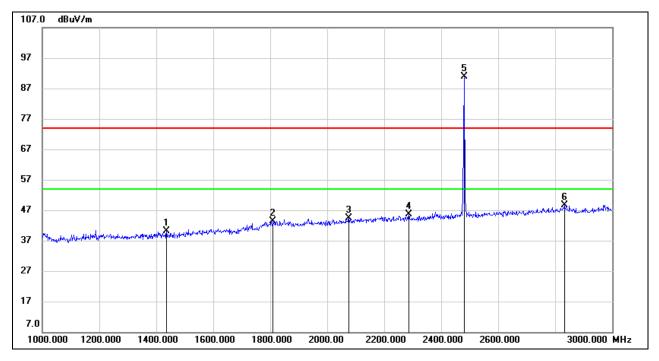
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1746.000	33.04	8.81	41.85	74.00	-32.15	peak
2	1812.000	34.71	9.67	44.38	74.00	-29.62	peak
3	2042.000	34.71	10.35	45.06	74.00	-28.94	peak
4	2254.000	34.26	11.01	45.27	74.00	-28.73	peak
5	2441.000	80.75	11.81	92.56	/	/	fundamental
6	2688.000	35.33	12.45	47.78	74.00	-26.22	peak
7	2842.000	35.11	13.33	48.44	74.00	-25.56	peak

2000.00

2200.000

2400.000

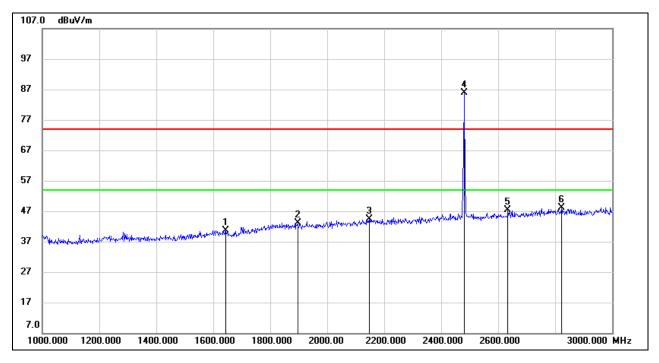
1800.000


Note: 1. Measurement = Reading Level + Correct Factor.

1600.000

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1436.000	33.23	6.78	40.01	74.00	-33.99	peak
2	1810.000	33.61	9.66	43.27	74.00	-30.73	peak
3	2076.000	33.66	10.60	44.26	74.00	-29.74	peak
4	2286.000	34.66	10.99	45.65	74.00	-28.35	peak
5	2480.000	78.93	11.95	90.88	/	/	fundamental
6	2832.000	35.31	13.32	48.63	74.00	-25.37	peak

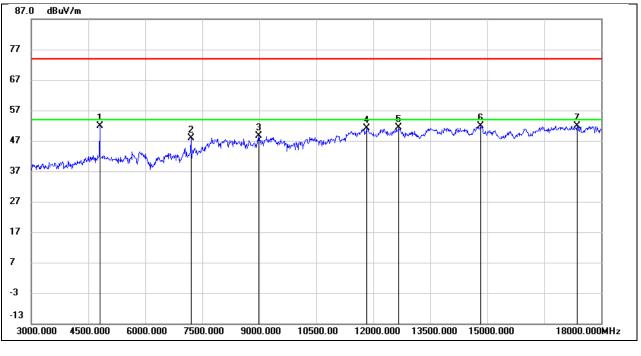
Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL. VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1644.000	32.69	8.00	40.69	74.00	-33.31	peak
2	1896.000	33.39	9.78	43.17	74.00	-30.83	peak
3	2148.000	33.54	10.90	44.44	74.00	-29.56	peak
4	2480.000	73.93	11.95	85.88	/	/	fundamental
5	2634.000	35.26	12.14	47.40	74.00	-26.60	peak
6	2822.000	34.85	13.29	48.14	74.00	-25.86	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

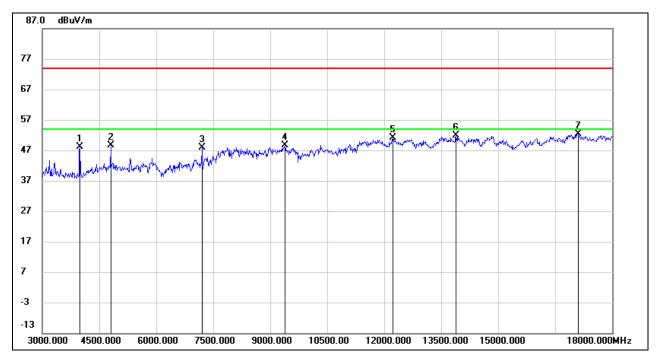
8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL. HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	50.46	1.40	51.86	74.00	-22.14	peak
2	7200.000	40.60	7.36	47.96	74.00	-26.04	peak
3	8985.000	37.62	10.99	48.61	74.00	-25.39	peak
4	11835.000	35.80	15.34	51.14	74.00	-22.86	peak
5	12675.000	35.75	15.66	51.41	74.00	-22.59	peak
6	14820.000	33.94	17.91	51.85	74.00	-22.15	peak
7	17370.000	29.87	22.10	51.97	74.00	-22.03	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

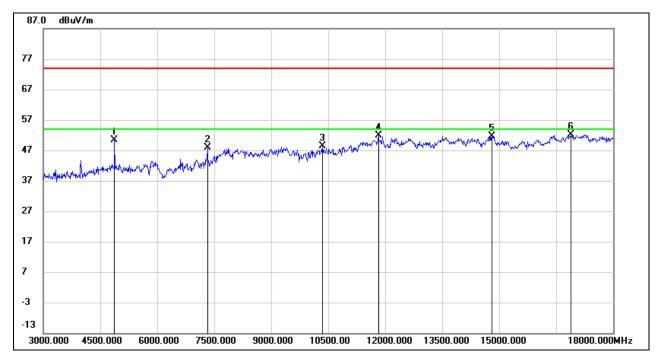
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL. VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	50.70	-2.51	48.19	74.00	-25.81	peak
2	4800.000	47.23	1.40	48.63	74.00	-25.37	peak
3	7200.000	40.48	7.36	47.84	74.00	-26.16	peak
4	9390.000	37.71	10.92	48.63	74.00	-25.37	peak
5	12225.000	35.24	15.99	51.23	74.00	-22.77	peak
6	13890.000	34.29	17.53	51.82	74.00	-22.18	peak
7	17100.000	30.59	21.90	52.49	74.00	-21.51	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

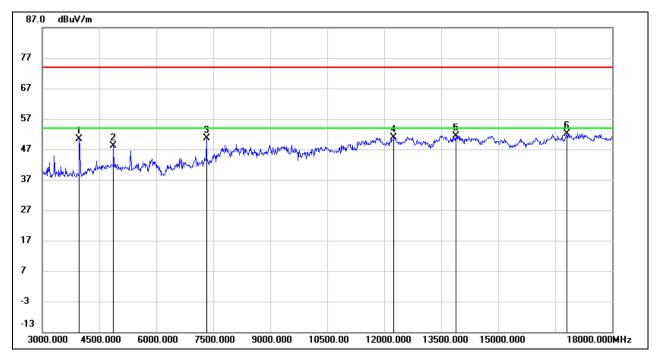
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	49.01	1.32	50.33	74.00	-23.67	peak
2	7320.000	40.70	7.28	47.98	74.00	-26.02	peak
3	10350.000	36.35	12.02	48.37	74.00	-25.63	peak
4	11820.000	36.54	15.29	51.83	74.00	-22.17	peak
5	14805.000	33.75	18.00	51.75	74.00	-22.25	peak
6	16890.000	30.73	21.49	52.22	74.00	-21.78	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

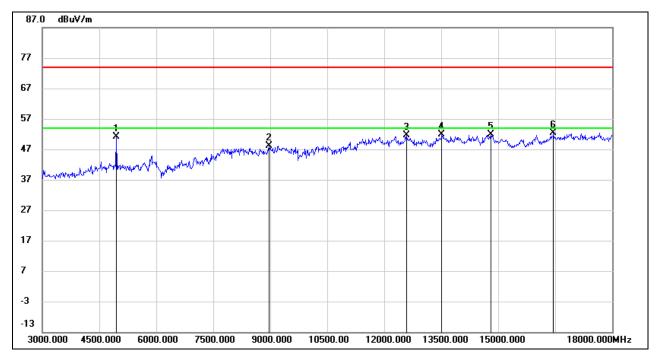
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	52.96	-2.57	50.39	74.00	-23.61	peak
2	4875.000	46.85	1.32	48.17	74.00	-25.83	peak
3	7320.000	43.43	7.28	50.71	74.00	-23.29	peak
4	12255.000	34.80	16.03	50.83	74.00	-23.17	peak
5	13890.000	33.97	17.53	51.50	74.00	-22.50	peak
6	16815.000	31.33	20.84	52.17	74.00	-21.83	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

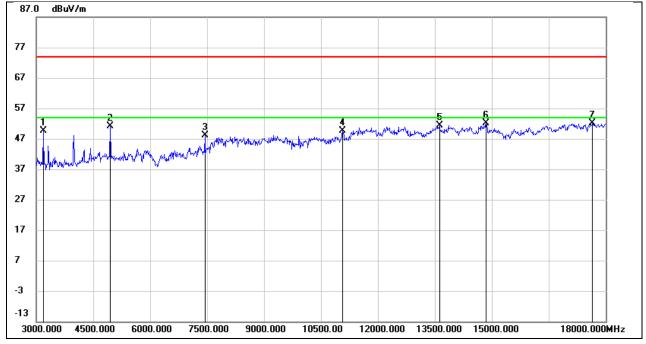
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	49.48	1.71	51.19	74.00	-22.81	peak
2	8970.000	37.46	10.70	48.16	74.00	-25.84	peak
3	12585.000	35.84	15.77	51.61	74.00	-22.39	peak
4	13515.000	34.71	17.19	51.90	74.00	-22.10	peak
5	14805.000	33.76	18.00	51.76	74.00	-22.24	peak
6	16455.000	32.81	19.68	52.49	74.00	-21.51	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

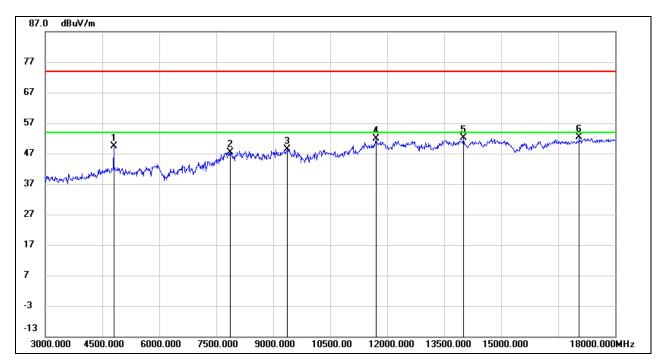
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL. VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	53.44	-3.81	49.63	74.00	-24.37	peak
2	4950.000	49.38	1.71	51.09	74.00	-22.91	peak
3	7440.000	39.99	8.13	48.12	74.00	-25.88	peak
4	11070.000	36.06	13.65	49.71	74.00	-24.29	peak
5	13620.000	34.28	17.19	51.47	74.00	-22.53	peak
6	14850.000	34.49	17.71	52.20	74.00	-21.80	peak
7	17655.000	29.03	23.14	52.17	74.00	-21.83	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

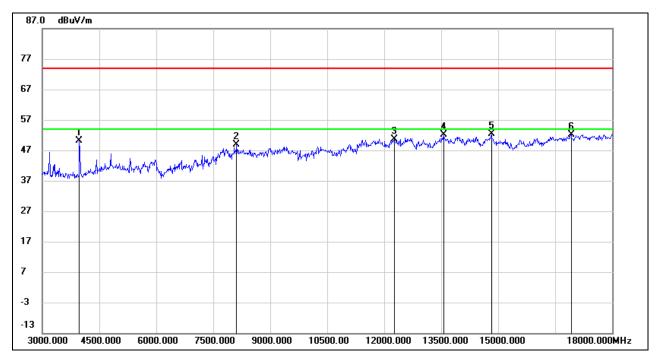

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.2. 8DPSK MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	48.03	1.40	49.43	74.00	-24.57	peak
2	7875.000	38.29	8.98	47.27	74.00	-26.73	peak
3	9375.000	37.64	10.83	48.47	74.00	-25.53	peak
4	11700.000	36.46	15.35	51.81	74.00	-22.19	peak
5	14010.000	34.42	17.64	52.06	74.00	-21.94	peak
6	17055.000	30.68	21.60	52.28	74.00	-21.72	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

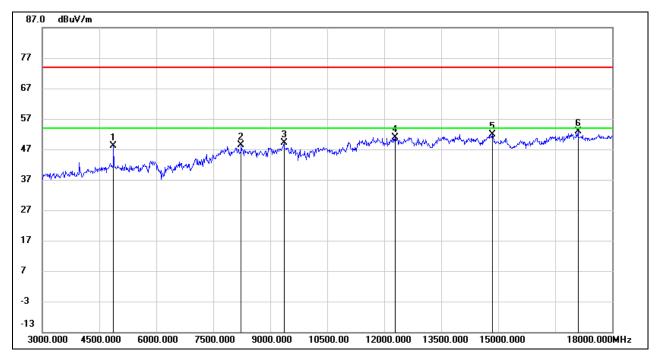
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	52.81	-2.57	50.24	74.00	-23.76	peak
2	8115.000	38.72	10.13	48.85	74.00	-25.15	peak
3	12270.000	34.58	16.04	50.62	74.00	-23.38	peak
4	13560.000	34.89	17.15	52.04	74.00	-21.96	peak
5	14820.000	34.40	17.91	52.31	74.00	-21.69	peak
6	16920.000	30.55	21.51	52.06	74.00	-21.94	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

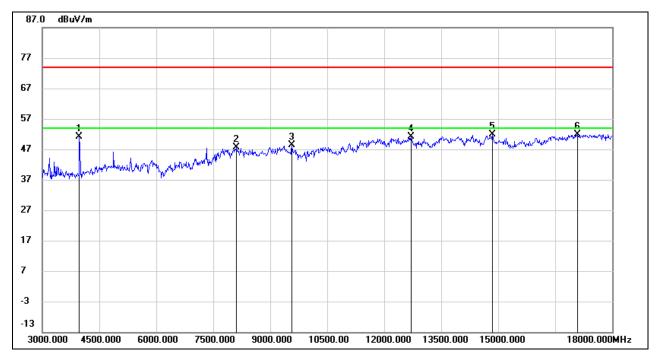
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	46.85	1.32	48.17	74.00	-25.83	peak
2	8235.000	38.61	9.76	48.37	74.00	-25.63	peak
3	9360.000	38.41	10.75	49.16	74.00	-24.84	peak
4	12285.000	34.80	16.08	50.88	74.00	-23.12	peak
5	14850.000	34.25	17.71	51.96	74.00	-22.04	peak
6	17100.000	30.94	21.90	52.84	74.00	-21.16	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

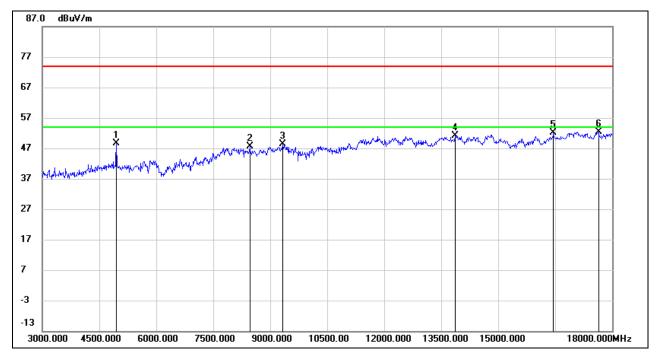
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL. VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	53.70	-2.57	51.13	74.00	-22.87	peak
2	8115.000	37.60	10.13	47.73	74.00	-26.27	peak
3	9570.000	37.42	10.88	48.30	74.00	-25.70	peak
4	12705.000	35.60	15.64	51.24	74.00	-22.76	peak
5	14850.000	34.20	17.71	51.91	74.00	-22.09	peak
6	17085.000	30.18	21.80	51.98	74.00	-22.02	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

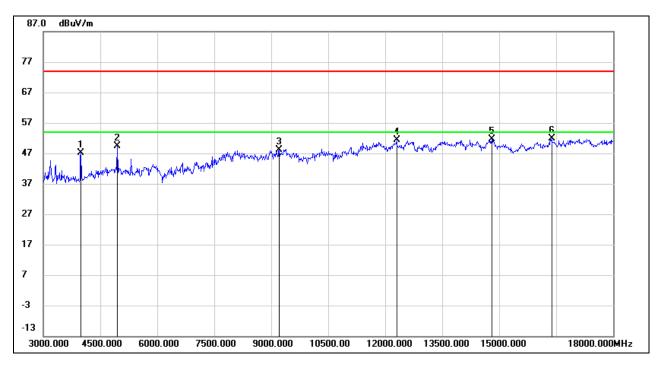
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.82	1.71	48.53	74.00	-25.47	peak
2	8460.000	38.52	9.21	47.73	74.00	-26.27	peak
3	9330.000	37.73	10.57	48.30	74.00	-25.70	peak
4	13875.000	33.59	17.55	51.14	74.00	-22.86	peak
5	16455.000	32.45	19.68	52.13	74.00	-21.87	peak
6	17640.000	29.28	23.03	52.31	74.00	-21.69	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

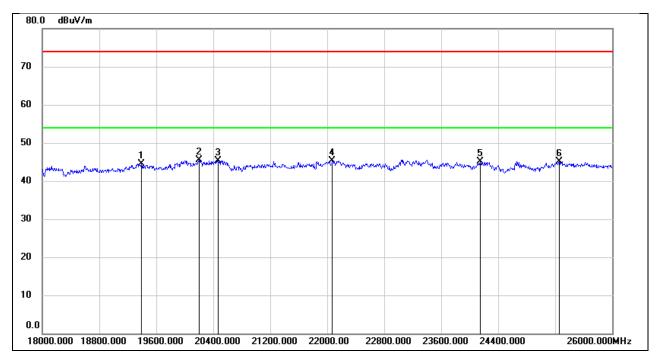
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL. VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.72	-2.51	47.21	74.00	-26.79	peak
2	4950.000	47.61	1.71	49.32	74.00	-24.68	peak
3	9210.000	38.07	9.95	48.02	74.00	-25.98	peak
4	12300.000	35.39	16.09	51.48	74.00	-22.52	peak
5	14805.000	33.54	18.00	51.54	74.00	-22.46	peak
6	16380.000	32.23	19.67	51.90	74.00	-22.10	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

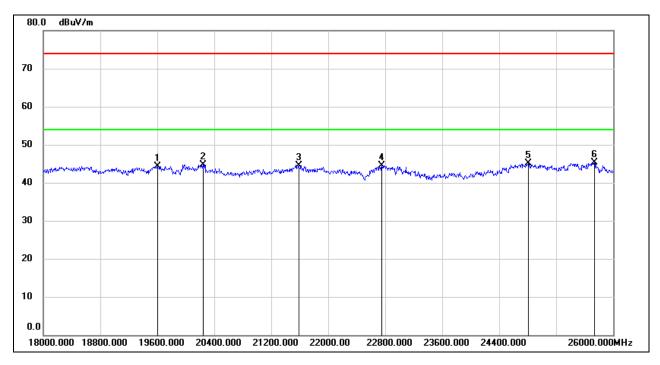

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. 8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL. WORST-CASE CONFIGURATION. HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19392.000	50.12	-5.57	44.55	74.00	-29.45	peak
2	20200.000	51.04	-5.58	45.46	74.00	-28.54	peak
3	20472.000	50.69	-5.39	45.30	74.00	-28.70	peak
4	22072.000	49.77	-4.41	45.36	74.00	-28.64	peak
5	24144.000	47.91	-2.79	45.12	74.00	-28.88	peak
6	25256.000	46.79	-1.67	45.12	74.00	-28.88	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

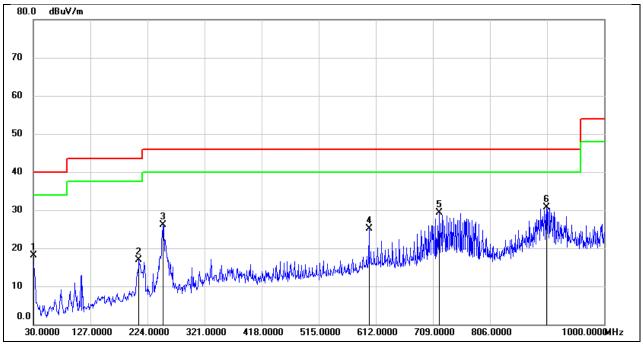
3. Peak: Peak detector.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19600.000	49.79	-5.43	44.36	74.00	-29.64	peak
2	20240.000	50.32	-5.61	44.71	74.00	-29.29	peak
3	21584.000	49.10	-4.56	44.54	74.00	-29.46	peak
4	22752.000	48.22	-3.69	44.53	74.00	-29.47	peak
5	24808.000	47.43	-2.27	45.16	74.00	-28.84	peak
6	25736.000	45.94	-0.68	45.26	74.00	-28.74	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.3. Peak: Peak detector.

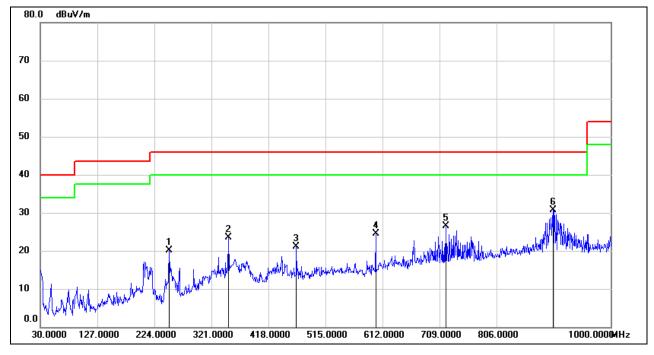

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. 8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	37.06	-18.94	18.12	40.00	-21.88	QP
2	209.4500	34.14	-17.23	16.91	43.50	-26.59	QP
3	250.1900	44.98	-18.91	26.07	46.00	-19.93	QP
4	600.3600	34.66	-9.54	25.12	46.00	-20.88	QP
5	719.6700	37.44	-8.08	29.36	46.00	-16.64	QP
6	902.0300	35.80	-5.16	30.64	46.00	-15.36	QP


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	249.2200	38.95	-18.94	20.01	46.00	-25.99	QP
2	350.1000	37.84	-14.32	23.52	46.00	-22.48	QP
3	465.5300	33.26	-12.06	21.20	46.00	-24.80	QP
4	600.3600	34.13	-9.54	24.59	46.00	-21.41	QP
5	719.6700	34.55	-8.08	26.47	46.00	-19.53	QP
6	902.0300	35.94	-5.16	30.78	46.00	-15.22	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

8.6. SPURIOUS EMISSIONS BELOW 30 MHz

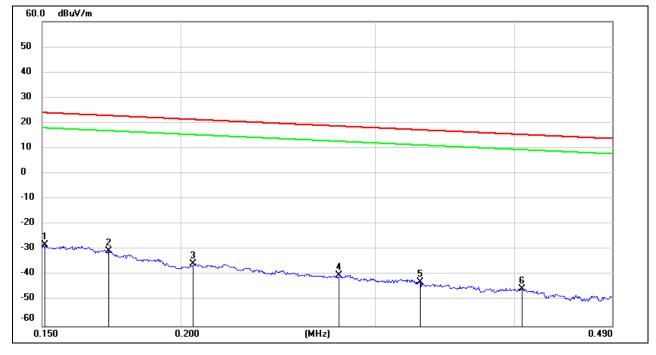
8.6.1. 8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL. LOOP ANTENNA FACE ON TO THE EUT. WORST-CASE CONFIGURATION)

dBuV/m 60.0 50 40 30 20 10 0 -10 -20 -30 -40 6 -50 -60 0.009 (MHz) 0.150

9 kHz~ 150 kHz

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-77.68	-3.90	-73.78	peak
2	0.0171	69.38	-101.36	-31.98	42.94	-83.48	-8.56	-74.92	peak
3	0.0223	66.29	-101.35	-35.06	40.63	-86.56	-10.87	-75.69	peak
4	0.0376	62.25	-101.42	-39.17	36.1	-90.67	-15.40	-75.27	peak
5	0.0675	58.64	-101.56	-42.92	31.02	-94.42	-20.48	-73.94	peak
6	0.1188	54.06	-101.74	-47.68	26.11	-99.18	-25.39	-73.79	peak

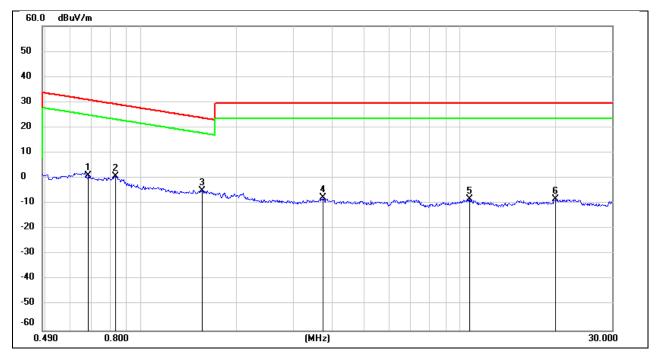

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1508	73.61	-101.63	-28.02	24.03	-79.52	-27.47	-52.05	peak
2	0.1720	71.19	-101.67	-30.48	22.9	-81.98	-28.60	-53.38	peak
3	0.2053	66.29	-101.73	-35.44	21.35	-86.94	-30.15	-56.79	peak
4	0.2782	61.79	-101.83	-40.04	18.71	-91.54	-32.79	-58.75	peak
5	0.3286	59.21	-101.88	-42.67	17.27	-94.17	-34.23	-59.94	peak
6	0.4062	56.64	-101.96	-45.32	15.43	-96.82	-36.07	-60.75	peak


Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.6834	63.21	-62.11	1.1	30.91	-50.40	-20.59	-29.81	peak
2	0.8296	62.94	-62.17	0.77	29.23	-50.73	-22.27	-28.46	peak
3	1.5564	57.18	-62.02	-4.84	23.76	-56.34	-27.74	-28.60	peak
4	3.7100	53.70	-61.41	-7.71	29.54	-59.21	-21.96	-37.25	peak
5	10.7299	52.48	-60.83	-8.35	29.54	-59.85	-21.96	-37.89	peak
6	19.9954	52.44	-60.83	-8.39	29.54	-59.89	-21.96	-37.93	peak

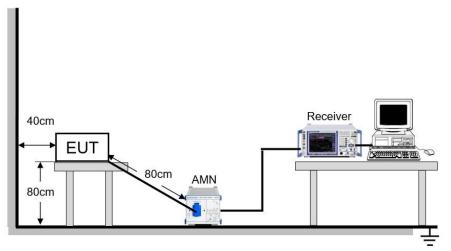
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

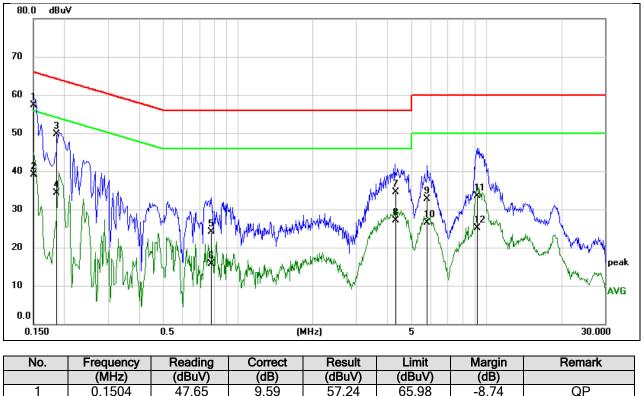
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	58.3 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V/60 Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

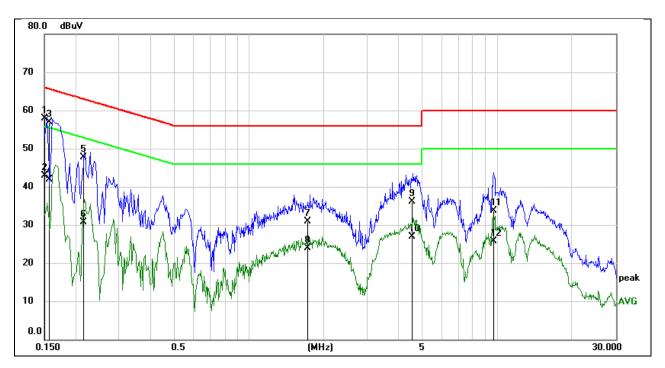
9.1.1.8DPSK MODE

LINE L RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1504	47.65	9.59	57.24	65.98	-8.74	QP
2	0.1504	29.54	9.59	39.13	55.98	-16.85	AVG
3	0.1858	40.14	9.59	49.73	64.22	-14.49	QP
4	0.1858	24.71	9.59	34.30	54.22	-19.92	AVG
5	0.7827	14.53	9.60	24.13	56.00	-31.87	QP
6	0.7827	6.07	9.60	15.67	46.00	-30.33	AVG
7	4.3252	24.82	9.60	34.42	56.00	-21.58	QP
8	4.3252	17.45	9.60	27.05	46.00	-18.95	AVG
9	5.7649	23.05	9.63	32.68	60.00	-27.32	QP
10	5.7649	16.82	9.63	26.45	50.00	-23.55	AVG
11	9.2835	23.85	9.62	33.47	60.00	-26.53	QP
12	9.2835	15.54	9.62	25.16	50.00	-24.84	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time:

auto.

LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1505	48.26	9.59	57.85	65.97	-8.12	QP
2	0.1505	33.27	9.59	42.86	55.97	-13.11	AVG
3	0.1570	47.36	9.59	56.95	65.62	-8.67	QP
4	0.1570	32.31	9.59	41.90	55.62	-13.72	AVG
5	0.2143	38.21	9.59	47.80	63.04	-15.24	QP
6	0.2143	21.05	9.59	30.64	53.04	-22.40	AVG
7	1.7390	21.22	9.62	30.84	56.00	-25.16	QP
8	1.7390	14.22	9.62	23.84	46.00	-22.16	AVG
9	4.5513	26.54	9.61	36.15	56.00	-19.85	QP
10	4.5513	17.26	9.61	26.87	46.00	-19.13	AVG
11	9.7410	24.17	9.62	33.79	60.00	-26.21	QP
12	9.7410	16.04	9.62	25.66	50.00	-24.34	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

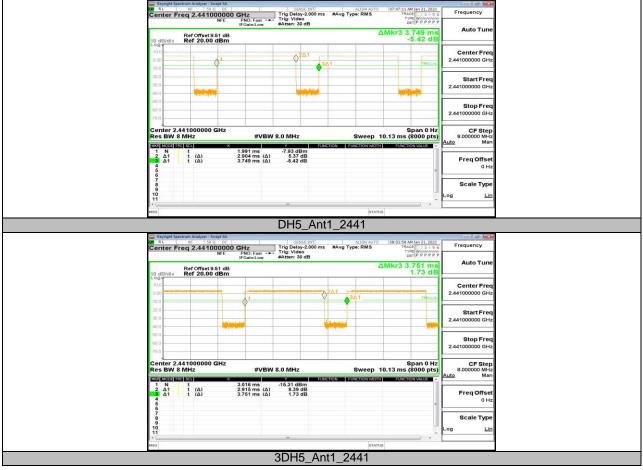
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

APPENDIX A: DUTY CYCLE

Test Result


Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.9	3.75	0.7733	77.33	1.12	0.34	0.5
3DH5	2.91	3.75	0.7760	77.60	1.10	0.34	0.5

Note:

Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

Test Graphs

APPENDIX B: 20DB BANDWIDTH

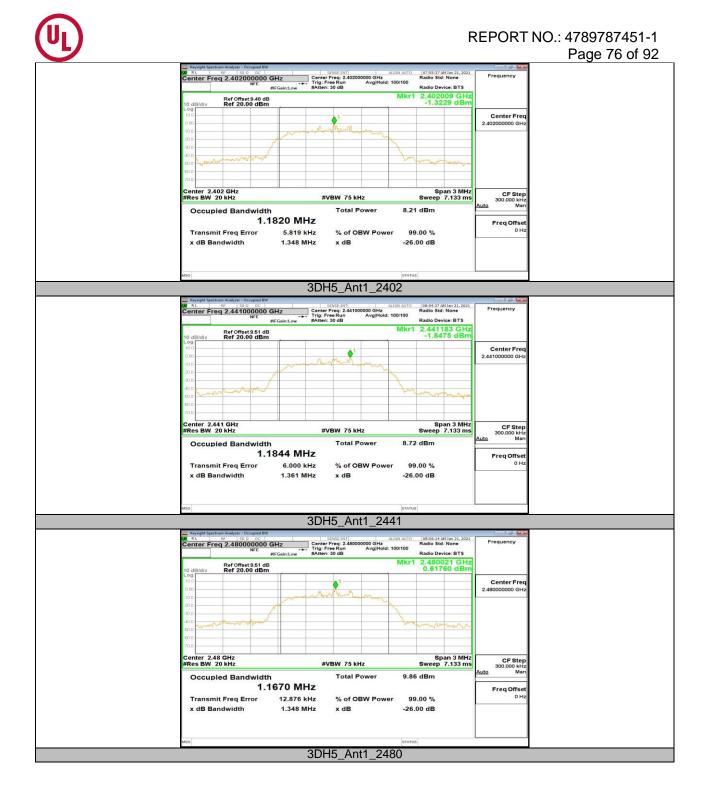
Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.939	2401.556	2402.495	PASS
DH5	Ant1	2441	0.939	2440.556	2441.495	PASS
		2480	0.924	2479.553	2480.477	PASS
	Ant1	2402	1.266	2401.367	2402.633	PASS
3DH5		2441	1.248	2440.385	2441.633	PASS
		2480	1.308	2479.349	2480.657	PASS

Test Graphs

REPORT NO.: 4789787451-1 Page 72 of 92

REPORT NO.: 4789787451-1 Page 73 of 92



APPENDIX C: OCCUPIED CHANNEL BANDWIDTH

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.88886	2401.573	2402.462	PASS
DH5	Ant1	2441	0.87274	2440.575	2441.448	PASS
		2480	0.87634	2479.571	2480.448	PASS
		2402	1.1820	2401.415	2402.597	PASS
3DH5	3DH5 Ant1	2441	1.1844	2440.414	2441.598	PASS
		2480	1.1670	2479.429	2480.596	PASS

APPENDIX D: PEAK CONDUCTED OUTPUT POWER

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	4.29	<=30	PASS
DH5	Ant1	2441	4.68	<=30	PASS
		2480	4.24	<=30	PASS
		2402	4.34	<=21	PASS
3DH5	Ant1	Ant1 2441 4.47	4.47	<=21	PASS
		2480	5.18	<=21	PASS

APPENDIX E: CARRIER FREQUENCY SEPARATION

Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.016	>=0.939	PASS
3DH5	Ant1	Нор	1.012	>=0.872	PASS

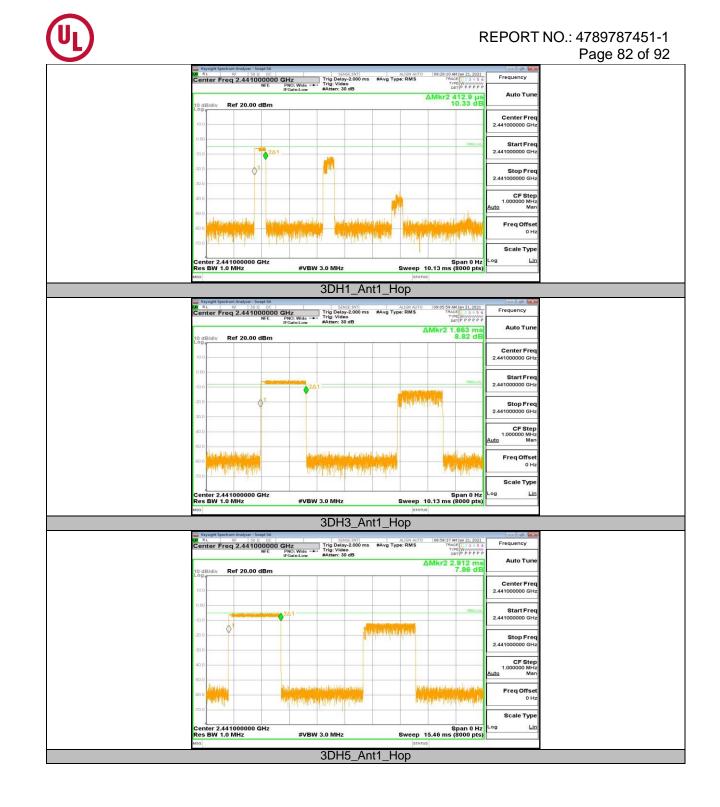
APPENDIX F: NUMBER OF HOPPING FREQUENCIES

Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS

	Keysight Spectrum Analyzer - Swept SA					
	(X RL RF 50 Ω DC	SENSE:INT	#Avg Type: RMS	08:26:01 AM Jan 21, 2021	Frequency	
	Center Freq 2.441750000 GHz NFE PNO: Fas	st Trig: Free Run	Avg[Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE M WWWWWW		
	NEE PNO: Fas IFGain:Lo	#Atten: 30 dB		DETPPPPP		
					Auto Tune	
	Ref Offset 9.48 dB 10 dB/div Ref 20.00 dBm					
	Log					
		20 D			Center Freq	
	10.0				2.441750000 GHz	
				A 400 440 1400 440 440	2.441700000 GH2	
	analianahanahanahanahanahanahanah	10ADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	nautumutumut		
	0.00		NYYYUUU IVY ITUUU		Start Freq	
		13374777777747477777171		9771711711711	2.400000000 GHz	
	-10.0		and a state of a state		2.40000000 GHZ	
	-20.0				Stop Freq	
					2.483500000 GHz	
	30.0				2.483500000 GHz	
				10	CF Step	
	-40.0			H.	8.350000 MHz	
					<u>Auto</u> Man	
	-50.0			+		
					Eres Off	
	-60.0				Freq Offset	
					0 Hz	
	70.0					
	70.0				Scale Type	
					ocure rype	
	Start 2.40000 GHz		St	top 2.48350 GHz	Log <u>Lin</u>	
	#Res BW 200 kHz #V	VBW 200 kHz	Sweep 17	33 ms (1001 pts)		
				(1001 pts)		
	MSG		STATUS			
		DH5 An				
		DH5_An				
	мэа	DH5_An				
	MSG	DH5_An	t1_Hop	08:58:20 AM Jan 21, 2021		
	Keysight Spectrum Analyzer - Swept SA Ke Key Key S0 0 DC Center Freq 2.441750000 GHz	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency	
	MSG	SENSE:INT	t1_Hop	08:58:20 AM Jan 21, 2021 TRACE 1 2 3 5 5 TYPE M WWWWW DET P P P P P		
	Keysight Spectrum Analyzer - Swept SA. A.L. 20 [30:5 0:0] Center Freq 2.441750000 GHz N ^E EFRO: Fa	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6		
		SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency	
	Keysight Spectrum Analyzer - Swept SA A.L. 20 [30:5 0:0] Center Freq 2.441750000 GHz N ^E EFRO: Fa	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency	
_	Kayagati Spectrum Analyser - Swept SA AL = 100 parts Center Freq 2,441750000 GHz Figure 2 Figure 2	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency Auto Tune	
	Krysgift Spectrum Analyser - Swept SA AL = 10 - 000 GHz Proc - Fax For - Fax Fo	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency Auto Tune Center Freq	
	Kayagati Spectrum Analyser - Swept SA AL = 100 parts Center Freq 2,441750000 GHz Figure 2 Figure 2	SENSE:INT	t1_Hop	TRACE 1 2 3 4 5 6	Frequency Auto Tune	
	With Mail Standard Spectrum Analyses - Swept SA. Image: Standard Spectrum Analyses - Swept SA. Mail Standard	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq	
	With Mail Standard Spectrum Analyses - Swept SA. Image: Standard Spectrum Analyses - Swept SA. Mail Standard	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz	
	Miss If graph Spathur Analyze: Swap 5A. Center Freq 2.441750000 GHz NFC PNO Tax ID dB/div Ref Offset 9a dib Log 10.0	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq	
	With Mail Standard Spectrum Analyses - Swept SA. Image: Standard Spectrum Analyses - Swept SA. Mail Standard	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz	
	Miss Execute Analyse: Sweet 5A Center Freq 2.441750000 GHz Center Freq 2.441750000 GHz PRO Tas PRO Tas Profile	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq	
	Mission Exception Section Analyse: Sweet SA Center Freq 2.441750000 GHz PRO: Fan Center Freq 2.441750000 GHz PRO: Fan To dB/div Ref Offset 9.49 dBm Conter S.40 dBm Conter	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz	
	Miss Execute Analyse: Sweet 5A Center Freq 2.441750000 GHz Center Freq 2.441750000 GHz PRO Tas PRO Tas Profile	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq	
	Miss Records Spectrum Analyser - Swept SA. R.t. No Dot OC Center Freq 2.441750000 GHz PNO: France In dB/div Ref Offset 9.48 dB Production In dB/div Ref Offset 9.49 dB Production In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz	
	Mission Exception Section Analyse: Sweet SA Center Freq 2.441750000 GHz PRO: Fan Center Freq 2.441750000 GHz PRO: Fan To dB/div Ref Offset 9.49 dBm Conter S.40 dBm Conter	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq	
	Miss Records Spectrum Analyser - Swept SA. R.t. No Dot OC Center Freq 2.441750000 GHz PNO: France In dB/div Ref Offset 9.48 dB Production In dB/div Ref Offset 9.49 dB Production In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz	
	Miss Records Spectrum Analyser - Swept SA. R.t. No Dot OC Center Freq 2.441750000 GHz PNO: France In dB/div Ref Offset 9.48 dB Production In dB/div Ref Offset 9.49 dB Production In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB Ref Offset 9.48 dB In dB/div Ref Offset 9.48 dB	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	TRACE 123456 TYPE WWWWWDET DET P P P P P	Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.40000000 GHz Stop Freq 2.483500000 GHz CF Step	
	Miss Exception Rest of the section Source Section Center Freq 2.441750000 GHz PHO: Frag Center Freq 2.441750000 GHz PHO: Frag To dB/div Ref Offset 9.48 dB PHO: Frag Ioo Pho: Frag Pho: Frag	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.41156000 GHz Start Freq 2.40000000 GHz Stop Freq 2.48350000 GHz Stop Freq 2.48350000 GHz Stop Freq S.50000 GHz	
	Miss Exception Restantion Restantion <threstantion< th=""> <threstanting andedddddddddd<="" td=""><td>stenstint] at ↔ Trig: Free Run #Atten: 30 dB</td><td>t1_Hop</td><td></td><td>Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.40000000 GHz Stop Freq 2.483500000 GHz CF Step</td><td></td></threstanting></threstantion<>	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.40000000 GHz Stop Freq 2.483500000 GHz CF Step	
	Miss Exception Rest of the section Source Section Center Freq 2.441750000 GHz PHO: Frag Center Freq 2.441750000 GHz PHO: Frag To dB/div Ref Offset 9.48 dB PHO: Frag Ioo Pho: Frag Pho: Frag	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz B.3500000 GHz B.350000 GHz	
	Visio	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz B.3500000 GHz B.350000 GHz	
	Miss Exception Restantion Restantion <threstantion< th=""> <threstanting andedddddddddd<="" td=""><td>stenstint] at ↔ Trig: Free Run #Atten: 30 dB</td><td>t1_Hop</td><td></td><td>Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.43550000 GHz 0.35000 MHz Man Freq Offset</td><td></td></threstanting></threstantion<>	stenstint] at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.43550000 GHz 0.35000 MHz Man Freq Offset	
	Visio	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.483500000 GHz B.3500000 GHz B.350000 GHz	
	Visio	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.43550000 GHz 0.35000 MHz Man Freq Offset	
	Miss Image: Symplet	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.41750000 GHz Stant Freq 2.400000000 GHz Stop Freq 2.483500000 GHz S.500000 GHz B.350000 GHz GF Step S.350000 GHz B.350000 GHz OFF Step S.350000 GHz B.350000 GHz S.350000 GHz B.350000 GHz S.350000 GHz S.350000 GHz B.350000 GHz S.350000 GHz S.35000 GHz S.35000 GHz S.35000 GHz S.35000 GHz S.35000 GHz	
	Miss Image: Specific Spectrum Analyses - Sweet SA. Image: Specific Spectrum Analyses - Sweet Spectrum Analyses - Sweet Spectrum Analyses - Sweet Specific Spectrum Analyses - Sweet Specific Spectrum Analyses - Sweet Spec	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq 2.43550000 GHz 0.35000 MHz Man Freq Offset	
	Visc Figure 15 and 5	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.41176000 GHz Start Freq 2.40000000 GHz 2.4300000 GHz 2.4350000 GHz Stop Freq 2.4300000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz Scale Type	
	Miss Image: Standing Systems Analyses - Sweet SA. Image: Sweet SA.	stenseinnt at ↔ Trig: Free Run #Atten: 30 dB	t1_Hop	100 2.48350 GHz	Frequency Auto Tune Center Freq 2.41176000 GHz Start Freq 2.40000000 GHz 2.4300000 GHz 2.4350000 GHz Stop Freq 2.4300000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz Scale Type	
	Miss Image: Standing Systems Analyses - Sweet SA. Image: Sweet SA.	School Live Trig: Pres Rum Attent 30 dB	t1_Hop		Frequency Auto Tune Center Freq 2.41176000 GHz Start Freq 2.40000000 GHz 2.4300000 GHz 2.4350000 GHz Stop Freq 2.4300000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz Scale Type	
	Miss Image: Standing Systems Analyses - Sweet SA. Image: Sweet SA.	Scheel (10)	t1_Hop	100 2.48350 GHz	Frequency Auto Tune Center Freq 2.41176000 GHz Start Freq 2.40000000 GHz 2.4300000 GHz 2.4350000 GHz Stop Freq 2.4300000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz Scale Type	
	Miss Image: Standing Systems Analyses - Sweet SA. Image: Sweet SA.	School Live Trig: Pres Rum Attent 30 dB	t1_Hop	100 2.48350 GHz	Frequency Auto Tune Center Freq 2.41176000 GHz Start Freq 2.40000000 GHz 2.4300000 GHz 2.4350000 GHz Stop Freq 2.4300000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz B.350000 GHz Scale Type	

APPENDIX G: TIME OF OCCUPANCY (DWELL TIME)


	FHSS Mode								
Test Mode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict			
DH1	Ant1	Нор	0.4	0.128	<=0.4	PASS			
DH3	Ant1	Нор	1.66	0.266	<=0.4	PASS			
DH5	Ant1	Нор	2.9	0.309	<=0.4	PASS			
3DH1	Ant1	Нор	0.41	0.131	<=0.4	PASS			
3DH3	Ant1	Нор	1.66	0.266	<=0.4	PASS			
3DH5	Ant1	Нор	2.91	0.310	<=0.4	PASS			

	AFHSS Mode								
Test Mode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict			
DH1	Ant1	Нор	0.4	0.064	<=0.4	PASS			
DH3	Ant1	Нор	1.66	0.133	<=0.4	PASS			
DH5	Ant1	Нор	2.9	0.155	<=0.4	PASS			
3DH1	Ant1	Нор	0.41	0.066	<=0.4	PASS			
3DH3	Ant1	Нор	1.66	0.133	<=0.4	PASS			
3DH5	Ant1	Нор	2.91	0.155	<=0.4	PASS			

REPORT NO.: 4789787451-1 Page 81 of 92

APPENDIX H: BAND EDGE MEASUREMENTS

Test Result

Test Mode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	4.71	-37.81	<=-15.29	PASS
DH5	A set 1	High	2480	5.86	-50.97	<=-14.14	PASS
DHD	Ant1	Low	Hop_2402	3.90	-48.88	<=-16.1	PASS
		High	Hop_2480	5.75	-49.88	<=-14.26	PASS
		Low	2402	1.85	-38.56	<=-18.15	PASS
3DH5	A not 1	High	2480	3.49	-50.82	<=-16.51	PASS
3DH5 Ant1	Anti	Low	Hop_2402	2.95	-50.42	<=-17.05	PASS
	High	Hop_2480	2.89	-50.58	<=-17.11	PASS	

REPORT NO.: 4789787451-1 Page 84 of 92

REPORT NO.: 4789787451-1 Page 85 of 92

APPENDIX I: CONDUCTED SPURIOUS EMISSION

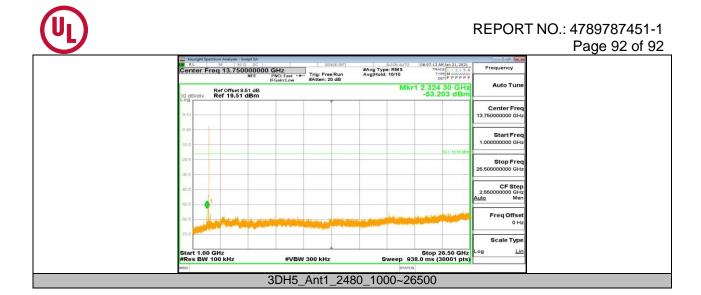
Test Mode	Antenna	Channel	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	4.65		PASS
		2402	30~1000	-63.83	<=-15.35	PASS
			1000~26500	-49.27	<=-15.35	PASS
			Reference	5.06		PASS
DH5	Ant1	2441	30~1000	-64.2	<=-14.94	PASS
			1000~26500	-52.01	<=-14.94	PASS
			Reference	5.44		PASS
		2480	30~1000	-63.52	<=-14.56	PASS
			1000~26500	-50.3	<=-14.56	PASS
			Reference	1.92		PASS
		2402	30~1000	-64.02	<=-18.08	PASS
			1000~26500	-53.74	<=-18.08	PASS
3DH5	Ant1	2441	Reference	2.37		PASS
			Reference	3.52		PASS
		2480	30~1000	-62.87	<=-16.48	PASS
			1000~26500	-53.2	<=-16.48	PASS

REPORT NO.: 4789787451-1 Page 88 of 92

	Page 88 of 92
Keysight Spectrum Analyzer : Swept SA Keysight Spectrum Analyze	
NFE PNO: Wide Trig: Free Run Avg Hold: 100/100 TYPE M WWWWW IFGain: I ow #Atten: 30 dB	-
Ref Offset 9.51 dB Mkr1 2.441 018 0 GHz Auto Tur 10 dB/div Ref 29.51 dBm 5.064 dBm 4.000 mm	ie -
Log Center Fre	a
19.5 2.44100000 GH	iz
9.51 Start Fre	a
0.49 2.440250000 GH	
10.6 Stop Free	a
20.5 2.441750000 GH	12
30.5 CF Ste	P
405 Auto Ma	
FreqOffs	
01	12
Scale Typ	e
Center 2.4410000 GHz Span 1.500 MHz Log L #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts)	<u>n</u>
 MSG STATUS	
DH5_Ant1_2441_0~Reference	
Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyze	
NFE PNO: Fast Trig: Free Run Avg Hold: 10/10 TYPE M WWWWW IFGain:Low #Atten: 20 dB DET P P P P P P	-
Ref Offset 9.51 dB	e
10 dB/div Ref 19,51 dBm -64.197 dBm -66.197 dBm -66.19	
951 Center Pre	
0.49 Start Fre	
10.5	u Iz
20.5 Stop Fre	a
30.5 1.0000000 GH	
CF Ste	P
43.5 97,000000 M- Auto Ma	n
Freq Offs	et .
70.5 In the design of the set of	e
Start 0.0300 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 36.00 ms (30001 pts)	<u>n</u>
M53 STATUS	_
DH5_Ant1_2441_30~1000	
Kennight Spectrum Analyzer - Sweet SA	
Center Freq 13.750000000 GHz NFE PN0: Fast - Trig: Free Run IFGaint.cow #Atten: 20 dB	-
Ref Offset 9.51 dB Mkr1 2.285 20 GHz Auto Tur 10 dB/div Ref 19.51 dBm -52.008 dBm	e
10 dB/div Ref 19.51 dBm Center Free	a
951 13.7500000 GH	
0.49 Start Fre	a
10.5 Ex1.199.000	
30.5 Stop Fre	9
26.50000000 GH	IZ
43.6 CF Ste	p
40.5 20.5	n
Freq Offs	
70.5 Scale Typ	e
Start 1.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 938.0 ms (30001 pts)	<u>n</u>
MSG STATUS	
DH5_Ant1_2441_1000~26500	

REPORT NO.: 4789787451-1 Page 89 of 92

			Page 89 of 92
Keysight Spectrum Analyzer - Swept SA RL RF 50.Ω DC SENSE:INT	ALIGN AUTO 07:50:05 AM Jan 21, 2021	Frequency	
Center Freq 2.48000000 GHz NFE PNO: Wide Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100		
Ref Offset 9.51 dB 10 dB/div Ref 29.51 dBm	Mkr1 2.479 871 0 GHz 5.442 dBm	Auto Tune	
Log		Center Freq	
19.5		2.480000000 GHz	
9.51	n m	Start Freq	
0.49	m	2.479250000 GHz	
-10.5	when	Stop Freq 2.480750000 GHz	
30.5	month		
30.5		CF Step 150.000 kHz	
40.5		<u>Auto</u> Man	
50.5		Freq Offset 0 Hz	
60.5		Scale Type	
Center 2.4800000 GHz	Span 1.500 MHz	- 10 mm	
#Res BW 100 kHz #VBW 300 kHz	Sweep 1.000 ms (1001 pts)		
DH5_Ant1_2480			
 Key sight Exactions Andrews Front FA			
Notes Notes Sense: Note Rt AF 300 pC Sense: Notes Center Freq 515.0000000 MHz Frain: Sense: Notes Trig: Free Run NFE PN0: Fast ++ IFGain: Low #Atten: 20 dB	ALIGN AUTO 07:50:13 AM Jan 21, 2021 #Avg Type: RMS TRACE 1.2.3 + 5.6 Avg[Hold: 10/10 TYPE M WWWWWW DET P P P P P P	Frequency	
Ref Offset 9.51 dB	Mkr1 967.83 MHz -63.515 dBm	Auto Tune	
10 dB/div Ref 19.51 dBm	-63.010 (15)	Center Freq	
9.51		515.000000 MHz	
-0.49		Start Freq	
-10.5	DE1 -/14.55 dbm	30.000000 MHz	
-20.6		Stop Freq	
30.5		1.00000000 GHz	
40.6		CF Step 97.000000 MHz	
40.5		Auto Man	
-60.5	_1	Freq Offset 0 Hz	
70.5 attille along the distribution of the second state training of the second state of the second state of the			
Start 0.0300 GHz		Scale Type	
#Res BW 100 kHz #VBW 300 kHz	Sweep 36.00 ms (30001 pts)		
DH5_Ant1_24			
RL 6F 550 CC RL 6F 550 CC Center Freq 13.750000000 GHZ NFE PN0: Fast →→ Trig: Free Run IFGain:Low FAtten: 20 dB	ALIGN AUTO 07:50:41 AM Jan 21, 2021 #Avg Type: RMS TRACE 12 3 4 5 6 Avg[Hold: 10/10 TYPE M WWWWW DET P P P P P P	Frequency	
Ref Offset 9.51 dB	Mkr1 4.960 15 GHz -50.296 dBm	Auto Tune	
10 dB/div Ref 19.51 dBm	-50.296 dBm	0	
9.51		Center Freq 13.750000000 GHz	
0.49		Start Freq	
-10.5	0.1 /14.55 dbm	1.00000000 GHz	
-20.6		Stop Freq	
-30.5		26.50000000 GHz	
40.6		CF Step 2.55000000 GHz	
50.5 1		<u>Auto Man</u>	
50.5	and the second	Freq Offset 0 Hz	
70.5			
		Scale Type	
Start 1.00 GHz #Res BW 100 kHz #VBW 300 kHz	Sweep 938.0 ms (30001 pts)		
DH5_Ant1_2480			
DH0_A111_2460	_1000~20000		


REPORT NO.: 4789787451-1 Page 90 of 92

			Page 90 of 92
Keysight Spectrum Analyzer - Swept SA RE	ALIGN AUTO 07:56:00 AM Jan 21, 2021	Frequency	
Center Freq 2.402000000 GHz NFE PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO 07:56:00 AVJan 21, 2021 #Avg Type: RMS TRACE [1 2 3 4 5 6 Avg[Hold: 100/100 DET P P P P P P	Frequency	
Ref Offset 9.48 dB	Mkr1 2.402 018 0 GHz 1.918 dBm	Auto Tune	
10 dB/div Ref 29.48 dBm		Center Freq 2.402000000 GHz	
9.48	F	Start Freq	
1052 Martin Martin Martin Martin	Two was was a series of the se	2.401250000 GHz	
30.5	- minor	Stop Freq 2.402750000 GHz	
30.5	e	CF Step 150.000 kHz Man	
50.5		Freq Offset 0 Hz	
60.5		Scale Type	
Center 2.4020000 GHz #Res BW 100 kHz #VBW 300 kHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)	og <u>Lin</u>	
3DH5_Ant1_2402			
Keysight Spectrum Analyzer - Swept SA			
M RL RF 50 Ω DC SENSE:INT	ALIGN AUTO 07:56:08 AM Jan 21, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg[Hold: 10/10 DET P P P P P P	Frequency	
NFE PNO: Fast	Avg Hold: 10/10 TYPE MAXWAW DET (P. P. P	Auto Tune	
10 dB/div Ref 19.48 dBm		Center Freq 515.000000 MHz	
0.52		Start Freq	
-10.5	01.1 -15.00 cBm	30.000000 MHz Stop Freq	
		1.00000000 GHz	
43.5	A	CF Step 97.000000 MHz uto Man	
60.5	1	Freq Offset 0 Hz	
-70.5 Martin da se aleman alimite de la Baltine de la Casta esta de la Casta de la Casta de la Casta de la Casta Martin de la Casta de la C	a da parte da calificación de la calificita de la calificación de la calificación de la calificación de la cali Na calificación de la calificación d	Scale Type	
Start 0.0300 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 1.0000 GHz Sweep 36.00 ms (30001 pts)	og Lin	
#Res BW 100 KH2 #VBW 300 KH2	SWEEP 30.00 ms (30001 pts)		
3DH5_Ant1_24	02_30~1000		
Keysight Spectrum Analyzer - Swept SA Q# RL RF 50 Ω SENSE:INT		Frequency	
NFE PNO: Fast - The Processon IFGain:Low #Atten: 20 dB	ALIGN AUTO 07:56:36 A4Jan 21, 2021 #Avg Type: RMS TRACE 3 5 0 AvglHold: 10/10 TRACE 1 3 5 0 DET P P P P P	Auto Tune	
Ref Offset 9.48 dB 10 dB/div Ref 19.48 dBm	Mkr1 2.558 05 GHz -53.744 dBm		
9.40		Center Freq 13.750000000 GHz	
-0.52		Start Freq 1.000000000 GHz	
-20.5	05,1 -16.00 oDm	Stop Freq	
30.5		26.500000000 GHz	
43.5		2.550000000 GHz uto Man	
		Freq Offset 0 Hz	
		Scale Type	
Start 1.00 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 26.50 GHz Sweep 938.0 ms (30001 pts)		
3DH5_Ant1_240	2 1000~26500		
5D115_AII(1_240.	2_1000-20000		

REPORT NO.: 4789787451-1 Page 91 of 92

			Page 91 of 92
	Keysight Spectrum Analyzer - Swept SA Sense:INT Sense:INT Sense:INT	ALIGN AUTO 08:04:48 AM Jan 21, 2021	quency
	Center Freq 2.441000000 GHz NFE PNO: Wide	ALIGN AUTO 08:04:48 A4/Jan 21, 2021 #Avg Type: RMS TRACE [1:3 + 5 6 Avg]Hold: 100/100 TYPE M VWWW HOLD F P P P P P	
	Ref Offset 9.51 dB	Mkr1 2.441 019 5 GHz 2.373 dBm	Auto Tune
	10 dB/div Ref 29.51 dBm		unter Frag
	19.5	2.4410	enter Freq 000000 GHz
	9.51		
	0.42	2,4402	Start Freq 250000 GHz
	10.5	a portunation	
	- The second	2.4417	Stop Freq 750000 GHz
	30.6		
	-30.5	1	CF Step 150.00 kHz Man
	-40.5	Auto	wan
	50.5	Fr	req Offset 0 Hz
	60.5		
			cale Type
	Center 2.4410000 GHz #Res BW 100 kHz #VBW 300 kHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)	Lin
	MSG	STATUS	
	3DH5_Ant1_244	11_0~Reference	
	Keysight Spectrum Analyzer - Swept SA		
	Center Freq 2.480000000 GHz NFE PNO: Wide	ALIGN AUTO 06:06:37 AMJan 21,2021 #Avg Type: RMS TRACE[1:3:3:4:5:6 Avg[Hold: 100/100 TYPE] M WWW DET P P P P P P	quency
	Ref Offeet 9 51 dB	Mkr1 2.479 850 0 GHz	Auto Tune
	10 dB/div Ref 29.51 dBm	3.524 dBm	
	19.5		enter Freq
		2.4800	
	9.51		Start Freq 50000 GHz
	0.49 month manual be again the	2.4792	50000 GHz
	-10.6	- market	Stop Freq
	-30.5	2.4807	750000 GHz
	-30.6		CF Step 50.000 kHz
	-63.5	Auto	Man
		Fr	req Offset
	50.5		0 Hz
	-60.5	S	cale Type
	Center 2.4800000 GHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)	Lin
	#Res BW 100 kHz #VBW 300 kHz	Sweep 1.000 ms (1001 pts)	
3DH5_Ant1_2480_0~Reference			
	Keysight Spectrum Analyzer - Swept SA		
	Center Freq 515.000000 MHz	ALIGN AUTO 06:06:46 AMJan 21, 2021 #Avg Type: RMS TRACE[1:3:3:4:5:6 Avg[Hold: 10/10 DET P.P.P.P.P.	quency
	NFE PNO: Fast Thg: Free Run IFGain:Low #Atten: 20 dB		Auto Tune
	Ref Offset 9.51 dB 10 dB/div Ref 19.51 dBm	Mkr1 864.52 MHz -62.873 dBm	
			enter Freq
	9.51	515.0	00000 MHz
	-0.49		Start Freq
	-10.5		00000 MHz
	.20.5	55.1 - 10.48 dim.	Stop Freq
	30.6	1.0000	00000 GHz
	-0.5		CF Step
		97.0 <u>Auto</u>	00000 MHz Man
	50.5		req Offset
	60.5	Fr	0 Hz
	70.5 South States of the fillential along the table of the hard size the hand been		cale Type
	Start 0.0300 GHz		Lin
	Start 0.0300 GHz #Res BW 100 kHz #VBW 300 kHz	Sweep 36.00 ms (30001 pts)	
	3DH5_Ant1_2	480_30~1000	

END OF REPORT