

FCC Test Report

APPLICANT	:	LENOVO (BEIJING) LIMITED
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	Lenovo
MODEL NAME	:	Lenovo L19111
FCC ID	:	A5ML20A11
STANDARD	:	47 CFR Part 15 Subpart B
CLASSIFICATION	:	Certification

The product was received on Apr. 28, 2020 and testing was completed on May 06, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Joimes Muang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	EVISION HISTORY					
SU	MMAR	Y OF TEST RESULT	.4			
1.	GENE	RAL DESCRIPTION	.5			
	1.1. 1.2. 1.3. 1.4.	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test	5 5 6			
	1.5. 1.6. 1.7. 1.8.	Modification of EUT Test Location Test Software Applicable Standards	7 7			
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8			
	2.1. 2.2. 2.3. 2.4.	Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup	9 10			
3.	TEST	RESULT	11			
	3.1. 3.2.	Test of AC Conducted Emission Measurement Test of Radiated Emission Measurement				
4.	LIST	OF MEASURING EQUIPMENT	19			
5.	UNCE	RTAINTY OF EVALUATION	20			

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC042807	Rev. 01	Initial issue of report	May 26, 2020

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	12.48 dB at
					0.449 MHz
					Under limit
3.2	15.109	15.109 Radiated Emission	< 15.109 limits	PASS	8.63 dB at
					933.07 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1. Applicant

LENOVO (BEIJING) LIMITED

201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China 100085

1.2. Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong P.R.China

1.3. Product Feature of Equipment Under Test

	Product Feature
Equipment	Mobile Phone
Brand Name	Lenovo
Model Name	Lenovo L19111
FCC ID	A5ML20A11
	GSM/WCDMA/LTE
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20
EOT Supports Radios application	Bluetooth BR/EDR/LE
	FM Receiver and GNSS
IMEL Code	Conduction: 865756040077266/865756040077274
IMEI Code	Radiation: 866355040004278/866355040004286
HW Version	DVT2-2
SW Version	LENOVO_AK47_V01_20191209
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4.	Product \$	Specification	of Ea	uipment	Under	Test

Standards-related Product Specification				
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz LTE Band 5 : 824.7 MHz ~ 848.3 MHz LTE Band 7 : 2502.5 MHz ~ 2567.5 MHz LTE Band 38 : 2572.5 MHz ~ 2617.5 MHz LTE Band 41 : 2498.5 MHz ~ 2687.5 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz			
Rx Frequency	Bluetooth: 2402 MHz ~ 2480 MHz GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz WCDMA Band V: 871.4 MHz ~ 891.6 MHz WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz LTE Band 5 : 869.7 MHz ~ 893.3 MHz LTE Band 7 : 2622.5 MHz ~ 2687.5 MHz LTE Band 38: 2572.5 MHz ~ 2687.5 MHz LTE Band 41 : 2498.5 MHz ~ 2687.5 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz GNSS : 1559 MHz ~ 1610 MHz FM : 88 MHz ~ 108 MHz			
Antenna Type	WWAN : PIFA Antenna WLAN : PIFA Antenna Bluetooth : PIFA Antenna GNSS: PIFA Antenna FM : External Earphone Antenna			
Type of Modulation	GSM: GMSK GPRS: GMSK EDGE(MCS 0-4): GMSK / (MCS 5-9): 8PSK WCDMA : BPSK (Uplink) HSDPA/DC-HSDPA : QPSK (Uplink) HSUPA : QPSK (Uplink) HSPA+ : 16QAM DC-HSDPA : 64QAM LTE: QPSK / 16QAM 802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM) Bluetooth LE : GFSK GNSS : BPSK FM: FM			

GNSS: BDS + GLONASS + GPS

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North F	Road, Kunshan Economic	Development Zone		
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test Sile Location	TEL : +86-512-57900158				
	FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	CO01-KS 03CH02-KS	CN1257	314309		

1.7. Test Software

I	ltem	Site	Manufacture	Name	Version
	1.	03CH02-KS	AUDIX	E3	6.2009-8-24a
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

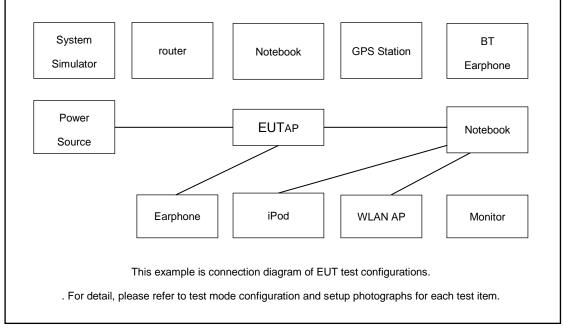
Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).


The EUT uses a USB interface and microprocessor operating 800MHz which is the maximum frequency used.

Test Items	Function Type
	Mode 1: GSM850 Rx (Middle) + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + Camera(Rear) + Battery 1 + USB Cable(Charging from Adapter 1)
	Mode 2: WCDMA 1900 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + Camera(Front) + Battery 2 + USB Cable(Charging from Adapter 2)
AC Conducted Emission	Mode 3: LTE Band 5 Rx(High) + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + MP4 + Battery 1 + USB Cable(Charging from Adapter 1)
	Mode 4: LTE Band 7 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + FM Rx(98MHz) + Battery 1 + USB Cable(Charging from Adapter 1)
	Mode 5: LTE Band 38 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + GNSS Rx + Battery 1 + USB Cable(Data Link with Notebook)
	Mode 1: GSM850 Rx (Middle) + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + Camera(Rear) + Battery 1 + USB Cable(Charging from Adapter 1)
	Mode 2: WCDMA 1900 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + Camera(Front) + Battery 2 + USB Cable(Charging from Adapter 2)
Radiated Emissions	Mode 3: LTE Band 5 Rx(High) + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + MP4 + Battery 1 + USB Cable(Charging from Adapter 3)
	Mode 4: LTE Band 7 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + FM Rx(88MHz) + Battery 1 + USB Cable(Charging from Adapter 1)
	Mode 5: LTE Band 38 Rx + Bluetooth Idle + WLAN Idle(2.4G) + Earphone + GNSS Rx + Battery 1 + USB Cable(Data Link with Notebook)
Remark:	

- **1.** The worst case of AC is mode 5; only the test data of this mode is reported.
- 2. The worst case of RE is mode 1; only the test data of this mode is reported.
- **3.** Data Link with Notebook means data application transferred mode between EUT and Notebook.
- 4. Pre-scanned Low/Middle/High channel for GSM 850/WCDMA850/LTE Band 5 and FM Rx, the worst channel was recorded in this report.

2.2. Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Vector Signal Generator	R&S	SMBV100A	258305	N/A	N/A
3.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
4.	WLAN AP	TP-Link	TL-WDR5600	N/A	N/A	Unshielded,1.8m
5.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
6.	Bluetooth Earphone	Xiaomi	LYEJ02LM	N/A	N/A	N/A
7.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
8.	Notebook	Dell	Latitude3440	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
9.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A
10.	Hard disk	KINGSHARE	KSP6120G	Fcc DoC	Shielded, 1.2m	N/A
11.	SD Card	Kingston	8GB	N/A	N/A	N/A
12.	SD Card	SanDisk	Uitra	N/A	N/A	N/A

2.4. EUT Operation Test Setup

The EUT was in GSM or WCDMA or LTE idle mode during the testing. The EUT was synchronized to the BCCH, and is in continuous receiving mode by setting system simulator's paging reorganization.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test.

- 1. Data application is transferred between notebook and EUT via USB cable.
- 2. Turn on camera to capture images.
- 3. Turn on MPEG4 function.
- 4. Turn on GNSS function to make the EUT receive continuous signals from GNSS station.
- 5. Turn on FM function to make the EUT receive continuous signals from FM station.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1 Limits of AC Conducted Emission

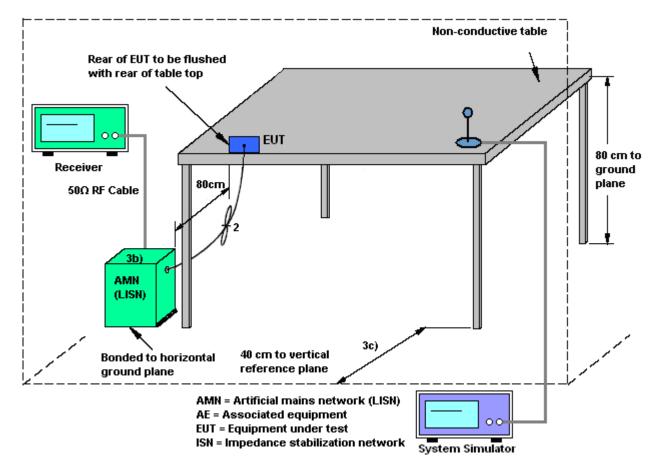
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

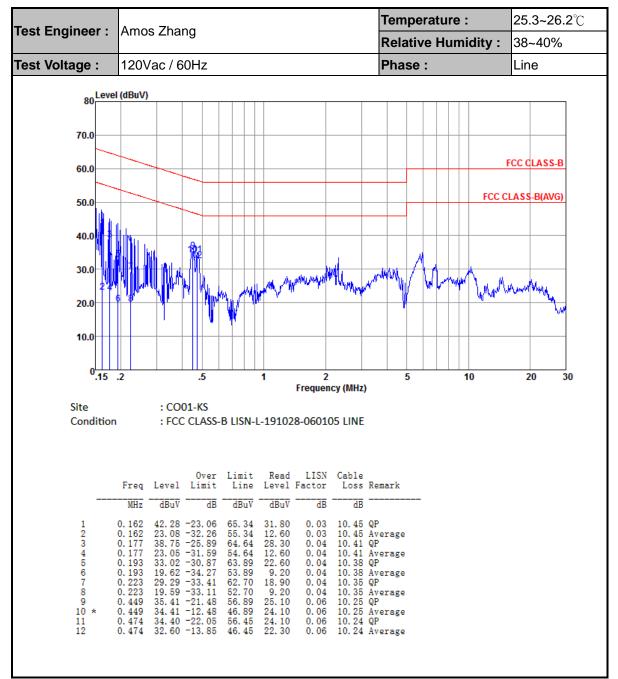
Frequency of emission	Conducted limit (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

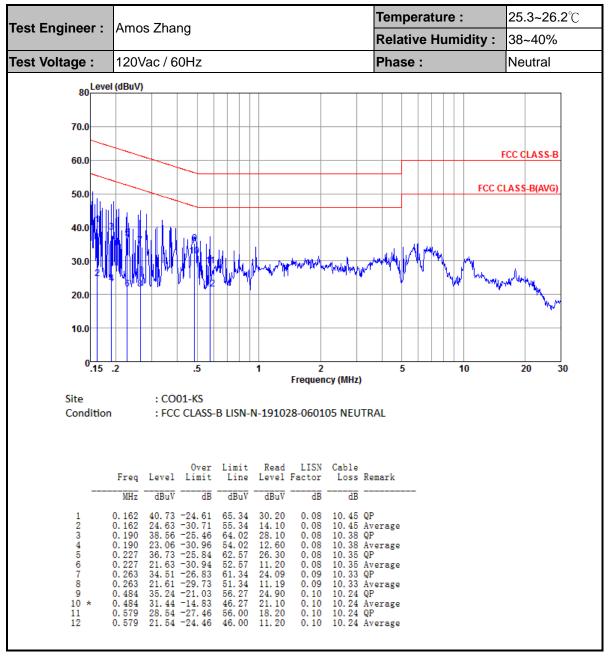
3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup



3.1.5 Test Result of AC Conducted Emission

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

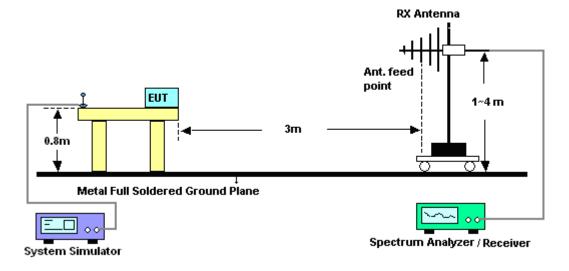
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B Limit>

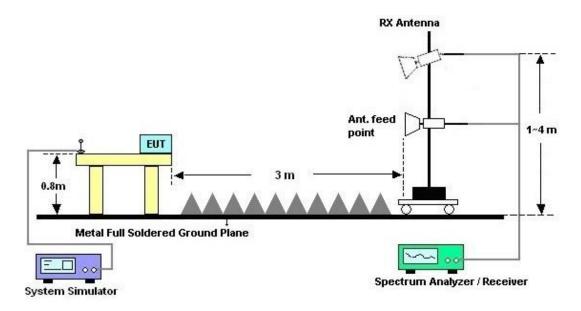
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

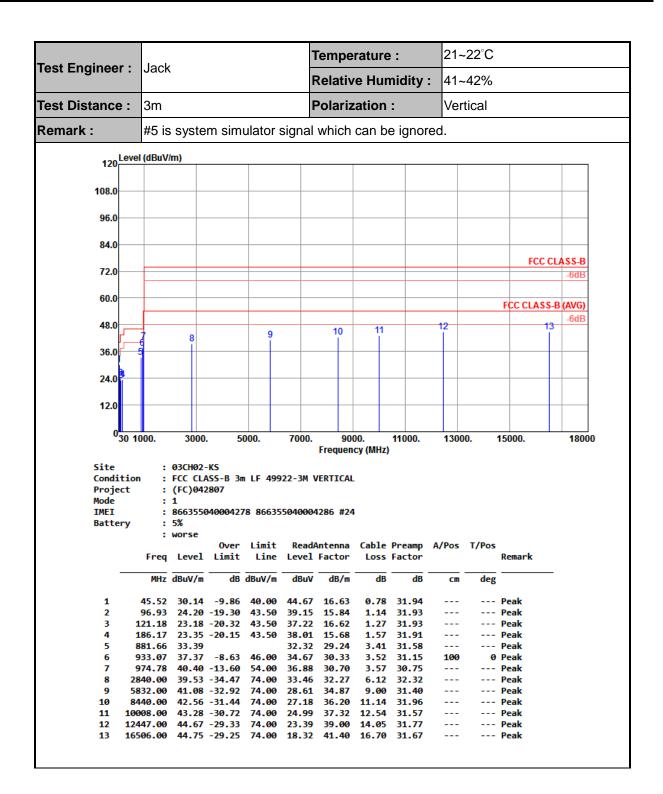
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



3.2.5. Test Result of Radiated Emission

Toot Engineer	look					Temperature : Relative Humidity : Polarization :			21~	21~22°C			
Fest Engineer :	Jack				ł				: 41~	41~42% Horizontal			
Fest Distance :	3m				I				Hor				
Remark :	#7 is system simulator signa			signal	al which can be ignored								
120	el (dBuV/	/m)			1						1		
108.0													
96.0													
50.0													
84.0													
											FC	C CLASS-B	
72.0												-6dB	
60.0													
											FCC CLA	SS-B (AVG)	
48.0	-					11	12			13		17 ⁶ dB	
	7		9 I	10		ï							
36.0													
245 (24.0	5												
12.0													
	1000.	3000	. 5	000.	7000.	90		11000.	1300	0.	15000.	18000	
0 <mark>30</mark>				000.	7000.	90 Frequen			1300	0.	15000.	18000	
	:	03CH02-	KS	000. n LF 499		Frequen	cy (MHz)		1300	0.	15000.	18000	
0 ₃₀	:	03CH02-	KS			Frequen	cy (MHz)		1300	0.	15000.	18000	
0 ₃₀	:	03CH02-	KS			Frequen	cy (MHz)		1300	0.	15000.	18000	
0 ₃₀	:	03CH02-	KS			Frequen	cy (MHz)		1300	0.	15000.	18000	
0 ₃₀	: on :	03CH02- FCC CL4	·KS \SS-B 3r Over	n LF 499 Limit	22-3M I Read	Frequen HORIZONT Antenna	Cy (MHz) AL Cable	Preamp				18000	
0 ₃₀	: on :	03CH02-	·KS \SS-B 3r Over	n LF 499 Limit	22-3M I Read	Frequen	Cy (MHz) AL Cable	•				18000	
0 ₃₀	: on : Freq	03CH02- FCC CL4	-KS \SS-B 3r Over Limit	n LF 499 Limit	22-3M I Read	Frequen HORIZONT Antenna	Cy (MHz) AL Cable	Preamp			Remark	18000	
0 ₃₀ Site Conditio	: on : Freq MHz	03CH02- FCC CL4 Level	KS SS-B 3r Over Limit dB	Limit Limit dBuV/m	Readu Level dBuV	Frequen HORIZONT Antenna Factor dB/m	Cy (MHz) AL Cable Loss dB	Preamp Factor dB	A/Pos	T/Pos deg	Remark	18000	
0 ₃₀	: on : Freq MHz 31.94	03CH02- FCC CLA Level dBuV/m 17.95	KS SS-B 3r Over Limit dB -22.05	n LF 499 Limit Line	Readu Level dBuV 27.44	Frequen HORIZONT Antenna Factor dB/m 21.80	Cy (MHz) AL Cable Loss dB 0.68	Preamp Factor dB	A/Pos	T/Pos 	Remark	18000	
0 ₃₀ Site Conditio	: on : Freq MHz 31.94 132.82 184.23	03CH02- FCC CL4 Level dBuV/m 17.95 25.41 27.26	KS SS-B 3 Over Limit dB -22.05 -18.09 -16.24	Limit Limit dBuV/m 40.00 43.50 43.50	Readu Level dBuV 27.44 39.22 41.85	Frequen HORIZONT Antenna Factor dB/m 21.80 16.85 15.76	Cy (MHZ) FAL Cable Loss dB 0.68 1.28 1.56	Preamp Factor dB 31.97 31.94 31.91	A/Pos cm	T/Pos 	Remark Peak Peak Peak	18000	
0 ₃₀ Site Conditio	: on : Freq MHz 31.94 132.82 184.23 292.87	03CH02- FCC CL4 Level dBuV/m 17.95 25.41 27.26 26.01	KS SS-B 3 Over Limit -22.05 -18.09 -16.24 -19.99	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Read Level 27.44 39.22 41.85 36.89	Frequen HORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22	Cy (MHz) FAL Cable Loss dB 0.68 1.28 1.56 1.96	Preamp Factor dB 31.97 31.94 31.91 32.06	A/Pos cm 100 	T/Pos deg Ø	Remark Peak Peak Peak Peak Peak	18000	
0 ₃₀ Site Conditio	: on : Freq MHz 31.94 132.82 138.23 292.87 389.87	03CH02- FCC CLA Level dBuV/m 17.95 25.41 27.26 26.01 25.85	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15	Limit Line dBuV/m 40.00 43.50 46.00 46.00	Read Level dBuV 27.44 39.22 41.85 36.89 34.08	Frequen IORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65	Cy (MHz) AL Cable Loss dB 0.68 1.28 1.28 1.96 2.22	Preamp Factor dB 31.97 31.94 31.91 32.06 32.10	A/Pos 	T/Pos 0 	Remark Peak Peak Peak Peak Peak Peak	18000	
0 ₃₀ Site Conditio	Freq MHz 31.94 132.82 184.23 292.87 628.49	03CH02- FCC CLA Level dBuV/m 17.95 25.41 27.26 26.01 25.85	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Read/ Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52	Frequen IORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65	Cy (MHz) AL Cable Loss dB 0.68 1.28 1.56 1.56 2.22 2.83	Preamp Factor dB 31.97 31.94 31.91 32.06	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak	18000	
0 ₃₀ Site Conditio	Freq MHz 31.94 132.82 184.23 292.87 389.87 628.49 881.66	03CH02- FCC CL4 Level dBuV/m 17.95 25.41 27.26 26.01 25.85 25.31 34.10	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15 -20.69	Limit Line dBuV/m 40.00 43.50 46.00 46.00	Read/ Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52 33.03	Frequen IORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65 26.34 29.24	Cable Cable Loss dB 0.68 1.28 1.56 1.96 2.28 3.41	Preamp Factor dB 31.97 31.94 31.91 32.06 32.10 32.38	A/Pos cm 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak		
0 ₃₀ Site Conditio	: on : Freq MHz 31.94 132.82 184.23 292.87 389.87 628.49 881.66 881.66 881.66	03CH02- FCC CL/ Level 17.95 25.41 27.26 26.01 25.85 25.31 34.10 32.66 39.85	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15 -20.69 -21.34 -34.15	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 54.00 74.00	Read/ Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52 33.03 29.14 31.94	Frequen HORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65 26.34 29.24 30.70 32.90	Cy (MHZ) FAL Cable Loss dB 0.68 1.28 1.56 1.96 2.22 2.83 3.41 3.57 6.95	Preamp Factor dB 31.97 31.94 31.91 32.06 32.10 32.38 31.58 30.75 31.94	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	18000	
0 ₃₀ Site Conditio	: n : Freq MHz 31.94 132.82 184.23 292.87 389.87 628.49 881.66 974.78 496.00 5600.00	03CH02- FCC CL4 Level 17.95 25.41 27.26 26.01 25.85 25.31 34.10 32.66 39.85 40.16	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15 -20.69 -21.34 -34.15 -33.84	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00 46.00 54.00 74.00 74.00	Read Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52 33.03 29.14 31.94 27.72	Frequen HORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65 26.34 29.24 30.70 32.90 34.50	Cy (MHz) AL Cable Loss dB 0.68 1.28 1.56 2.22 2.83 3.41 3.57 6.95 8.94	Preamp Factor 31.97 31.94 31.91 32.06 32.10 32.38 31.58 30.75 31.94 31.00	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	18000	
0 ₃₀ Site Conditio	Freq MHz 31.94 132.82 184.23 292.87 628.49 881.66 974.78 496.00 704.00	03CH02- FCC CL4 Level dBuV/m 17.95 25.41 27.26 26.01 25.85 25.31 34.10 32.66 39.85 40.16 41.15	KS SS-B 3r Over Limit -22.05 -18.09 -16.24 -19.99 -20.15 -20.69 -21.34 -34.15 -33.84 -32.85	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00 54.00 74.00 74.00 74.00	Read/ Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52 33.03 29.14 31.94 27.72 26.66	Frequen IORIZONTI IORIZONTI IOR	Cy (MHz) AL Cable Loss dB 0.68 1.28 1.56 1.96 2.22 2.83 3.41 3.57 6.95 8.94 10.60	Preamp Factor dB 31.97 31.94 32.06 32.10 32.38 31.58 30.75 31.94 31.60 32.01	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea		
0 ₃₀ Site Conditio	Freq HHz 31.94 132.82 184.23 292.87 389.87 628.49 881.66 974.78 8496.00 6600.00 6704.00 9999.00	03CH02- FCC CL4 Level 17.95 25.41 27.26 26.01 25.85 25.31 34.10 32.66 39.85 40.16 41.15 44.92	KS SS-B 3r Over Limit 	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00 46.00 54.00 74.00 74.00	Read/ Level dBuV 27.44 39.22 41.85 36.89 34.08 28.52 33.03 29.14 31.94 27.72 26.66 26.73	Frequen HORIZONT Antenna Factor dB/m 21.80 16.85 15.76 19.22 21.65 26.34 29.24 30.70 32.90 34.50 35.90 37.20	Cable Cable Loss dB 0.68 1.28 1.56 1.96 2.22 2.83 3.41 3.57 6.95 8.94 10.60 12.46	Preamp Factor dB 31.97 31.94 31.91 32.06 32.10 32.38 31.58 30.75 31.94 31.00 32.01 31.47	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea		

Note:

- Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB) Preamp Factor(dB)
- 2. Over Limit(dB) = Level(dBµV/m) Limit Line(dBµV/m)

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	May 06, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	May 06, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	May 06, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	May 06, 2020	Oct. 17, 2020	Conduction (CO01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct, 18, 2019	May 06, 2020	Oct, 17,2020	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 18, 2019	Apr. 30, 2020	Oct, 17, 2020	Radiation (03CH02-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Apr. 30, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 30, 2019	Apr. 30, 2020	Dec. 29, 2020	Radiation (03CH02-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 10, 2019	Apr. 30, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	100MHz-18GHz	Aug.14, 2019	Apr. 30, 2020	Aug.13, 2020	Radiation (03CH02-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Apr. 30, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2019	Apr. 30, 2020	Aug. 05, 2020	Radiation (03CH02-KS)
Amplifier	Keysight	83017A	MY53270316	500MHz~26.5G Hz	Oct. 18, 2019	Apr. 30, 2020	Oct. 17,2020	Radiation (03CH02-KS)
Amplifier	MITEQ	EM18G40GGA	060728	18~40GHz	Jan. 08, 2020	Apr. 30, 2020	Jan. 07, 2021	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	61601000247 3	N/A	NCR	Apr. 30, 2020	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Apr. 30, 2020	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Apr. 30, 2020	NCR	Radiation (03CH02-KS)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9dB
of 95% (U = 2Uc(y))	7.500

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B