

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

ThinkSmart Bar XL

MODEL NUMBER: L10TSS2M

FCC ID: A5ML10TSS2M

REPORT NUMBER: 4789884640-1

ISSUE DATE: March 26, 2021

Prepared for

Lenovo (Beijing) limited 201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China, 100085

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	03/26/2021	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1)	Pass	
2	Conducted Output Power	FCC 15.247 (b) (1)	Pass	
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1)	Pass	
4	Number of Hopping Frequency	15.247 (a) (1) III	Pass	
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III	Pass	
6	Conducted Bandedge	FCC 15.247 (d)	Pass	
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass	
8	Conducted Emission Test for AC Power Port	FCC 15.207	Pass	
9	Antenna Requirement	FCC 15.203	Pass	
Noto:				

Note:

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	AT٦	ESTATION OF TEST RESULTS	. 6
2.	TES	T METHODOLOGY	. 7
3.	FAC	CILITIES AND ACCREDITATION	. 7
4.	CAI	-IBRATION AND UNCERTAINTY	. 8
4	1.1.	MEASURING INSTRUMENT CALIBRATION	. 8
4	1.2.	MEASUREMENT UNCERTAINTY	. 8
5.	EQI	JIPMENT UNDER TEST	. 9
5	5.1.	DESCRIPTION OF EUT	. 9
5	5.2.	MAXIMUM PEAK OUTPUT POWER	. 9
5	5.3.	PACKET TYPE CONFIGURATION	. 9
5	5.4.	CHANNEL LIST	10
5	5.5.	TEST CHANNEL CONFIGURATION	10
5	5.6.	WORST-CASE CONFIGURATIONS	10
5	5.7.	THE WORSE CASE POWER SETTING PARAMETER	11
5	5.8.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	5.9.	DESCRIPTION OF TEST SETUP	12
U			
6.	-	ASURING INSTRUMENT AND SOFTWARE USED	
-	ME		14
6. 7.	ME	ASURING INSTRUMENT AND SOFTWARE USED	14 16
6. 7. 7	ME.	ASURING INSTRUMENT AND SOFTWARE USED	14 16 16
6. 7. 7	ME AN 7.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS	14 16 16 17
6. 7. 7 7 7	ME AN 7. 1. 7.2.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	14 16 17 19
6. 7. 7 7 7 7	ME AN 7.1. 7.2. 7.3.	ASURING INSTRUMENT AND SOFTWARE USED	14 16 17 19 20
6. 7. 7 7 7 7 7	MEA AN 7.1. 7.2. 7.3. 7.4.	ASURING INSTRUMENT AND SOFTWARE USED	14 16 17 19 20 22
6. 7. 7 7 7 7 7 7 7	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5.	ASURING INSTRUMENT AND SOFTWARE USED	14 16 17 19 20 22 24
6. 7. 7 7 7 7 7 7 7	ME AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7.	ASURING INSTRUMENT AND SOFTWARE USED	14 16 17 19 20 22 24 26
6. 7. 7 7 7 7 7 7 7 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RAI 8.1.	ASURING INSTRUMENT AND SOFTWARE USED	 14 16 17 19 20 22 24 26 28 33
6. 7. 7 7 7 7 7 7 7 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.1. 8.1.	ASURING INSTRUMENT AND SOFTWARE USED	 14 16 17 19 20 22 24 26 28 33 33
6. 7. 7 7 7 7 7 7 8. 8	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.1. 8.1. 8.1. 8.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE 1. GFSK MODE 2. 8DPSK MODE	 14 16 17 19 20 22 24 26 28 33 33 37
6. 7. 7 7 7 7 7 7 8. 8	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.1. 8.1.	ASURING INSTRUMENT AND SOFTWARE USED	 14 16 17 19 20 22 24 26 28 33 33 37 41

8.3.2.	8DPSK	MODE			53
8.5. SPL 8.5.1.	<i>JRIOUS</i> 8DPSK	EMISSIONS (30 MHz MODE	~ 1 GHz)		61 61
8.6. SPL	JRIOUS	EMISSIONS BELOW	30 MHz		63
AC POV	VER LIN	E CONDUCTED EMIS	SIONS		66
9.1.1.	8DPSK	MODE			67
. ANTE	NNA RE	QUIREMENTS			69
APPENDIX	KA: DUT	TY CYCLE			70
APPENDIX	K B: 20D	B BANDWIDTH			72
APPENDIX	(C: OC	CUPIED CHANNEL BA	NDWIDTH		75
APPENDIX	K D: PEA	AK CONDUCTED OUT	PUT POWER.		78
APPENDIX	K E: CAF	RRIER FREQUENCY S	EPARATION.		79
APPENDIX	K F: NUN	MBER OF HOPPING F	REQUENCIES	5	80
APPENDIX	KG: TIM	E OF OCCUPANCY (L	WELL TIME).		81
APPENDIX	K H: BAN	ND EDGE MEASUREN	ENTS		
APPENDIX	KI: CON	IDUCTED SPURIOUS	EMISSION		
	8.4. SPU 8.4.1. 8.5. SPU 8.5.1. 8.6. SPU 8.6.1. AC POW 9.1.1. AC POW 9.1.1. APPENDI APPENDI APPENDI APPENDI APPENDI	 8.4. SPURIOUS 8.4.1. 8DPSK 8.5. SPURIOUS 8.5.1. 8DPSK 8.6. SPURIOUS 8.6.1. 8DPSK AC POWER LIN 9.1.1. 8DPSK D. ANTENNA RE APPENDIX A: DUX APPENDIX B: 20D APPENDIX C: OCK APPENDIX C: OCK APPENDIX C: OCK APPENDIX C: NUK APPENDIX F: NUK APPENDIX G: TIM APPENDIX H: BAI 	 8.4. SPURIOUS EMISSIONS (18 GHz 8.4.1. 8DPSK MODE	 8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 8.4.1. 8DPSK MODE 8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.5.1. 8DPSK MODE 8.6. SPURIOUS EMISSIONS BELOW 30 MHz 8.6.1. 8DPSK MODE AC POWER LINE CONDUCTED EMISSIONS 9.1.1. 8DPSK MODE 9.1.1. 8DPSK MODE ANTENNA REQUIREMENTS APPENDIX A: DUTY CYCLE APPENDIX A: DUTY CYCLE APPENDIX C: OCCUPIED CHANNEL BANDWIDTH APPENDIX D: PEAK CONDUCTED OUTPUT POWER. APPENDIX E: CARRIER FREQUENCY SEPARATION. APPENDIX F: NUMBER OF HOPPING FREQUENCIES APPENDIX G: TIME OF OCCUPANCY (DWELL TIME). APPENDIX H: BAND EDGE MEASUREMENTS 	8.6.1. 8DPSK MODE AC POWER LINE CONDUCTED EMISSIONS 9.1.1. 8DPSK MODE

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Lenovo (Beijing) limited
Address:	201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China 100085

Manufacturer Information

Company Name:	Lenovo (Beijing) limited
	201-H2-6, Floor 2, Building 2, No.6 Shangdi West Road, Haidian District, Beijing, China 100085

EUT Information

EUT Name:	ThinkSmart Bar XL
Model:	L10TSS2M
Brand:	Lenovo
Sample Received Day:	March 24, 2021
Sample Status:	Normal
Sample ID:	3745133
Date of Tested:	March 24, 2021 ~ March 26, 2021

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	PASS		

Prepared By:

Aucur

Checked By:

Shawn Wen

Shenny dees

Laboratory Leader

Denny Huang Project Engineer

Approved By:

entrio

Stephen Guo Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject
Accreditation Certificate	to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%
Carrier Frequency Separation	±1.9%
Maximum Conducted Output Power	±0.743 dB
Number of Hopping Channel	±1.9%
Time of Occupancy	±0.028%
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)
Note: This uncertainty represents an expanded uncertainty 95% confidence level using a coverage factor of k=2.	expressed at approximately the

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	ThinkSmart Bar XL		
Model	L10TSS2M		
Technology	Bluetooth – BR & EDR		
Transmit Frequency Range	2402 MHz ~ 2480 MHz		
Mode	Basic Rate Enhanced Data Rate		
Modulation	GFSK	∏/4-DQPSK	8DPSK
Packet Type (Maximum Payload):	DH5	2DH5	3DH5
Data Rate	1 Mbps	2 Mbps	3M bps
Ratings	DC 20 V		

5.2. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
GFSK	2402 ~ 2480	0-78[79]	-6.37	-2.45
8DPSK	2402 ~ 2480	0-78[79]	-5.96	-2.04

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.4. CHANNEL LIST

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK	Hopping	2402 MHz ~ 2480 MHz
8DPSK	Hopping	2402 MHz ~ 2480 MHz

5.6. WORST-CASE CONFIGURATIONS

Test Mode	Modulation Technology	Modulation Type	Data Rate	Packet Type
BR	FHSS	GFSK	1Mbit/s	DH5
EDR	FHSS	8DPSK	3Mbit/s	3-DH5

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates. Only GFSK and 8DPSK test data were report in this report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

5.7. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5 MHz Band						
Test S	oftware	FCC_Tool				
Test Mode Transmit Antenna		Test Software Setting Value				
Test Mode	Number	CH 00	CH 39	CH 78		
GFSK	1	7	7	7		
8DPSK	1	8 8 8				

5.8. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402 ~ 2480	PCB	3.92

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

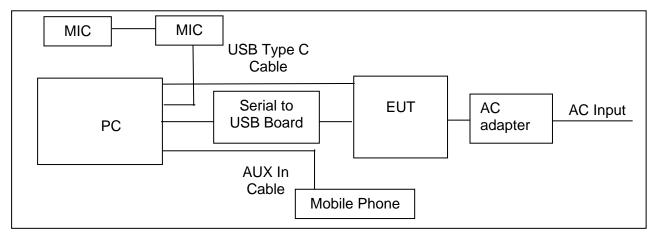
Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	X230i	/
2	Serial to USB Board	/	/	/
3	Mobile Phone	MEIZU	Note 2	/

I/O CABLES

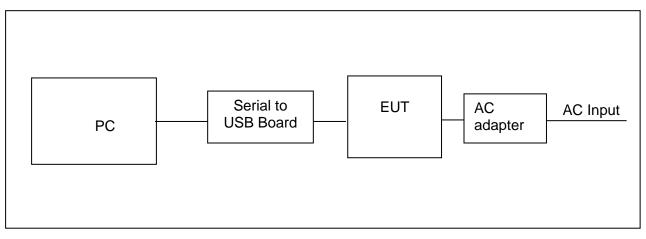
Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB Type-C	USB Type-C	Shielded	5.0 m	/
2	AUX In	AUX	Unshielded	1.5 m	/
3	MIC In	AUX	Unshielded	6.0 m	/
4	DC In	DC	Unshielded	1.0 m	/

ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	AC Adapter	Lenovo	ADLX65NCC3A	Input: AC 100 ~ 240 V, 1.8 A, 50/60 Hz Output: DC 20 V, 3.25 A, 56W
2	MIC	/	/	/
3	MIC	/	/	1


TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.



SETUP DIAGRAM FOR TESTS

For Radiated Test:

For Conducted Test:

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021	
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021	
		So	ftware			
Description			Manufacturer	Name	Version	
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1	

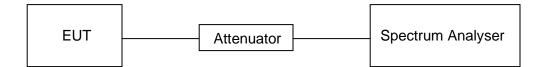
Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 11, 2018	Aug. 10, 2021	
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021	
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021	
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021	
Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021	
Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021	
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Nov. 12, 2020	Nov. 11, 2021	
Software						
[Description		Manufacturer	Name	Version	
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Other instruments				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

RESULTS

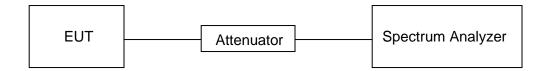
Please refer to appendix A.

7.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IRBVV	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
NBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

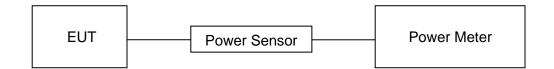
Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

RESULTS

Please refer to appendix B and C.

7.3. CONDUCTED OUTPUT POWER

LIMITS


	CFR 47 FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

<u>RESULTS</u>

Please refer to appendix D.

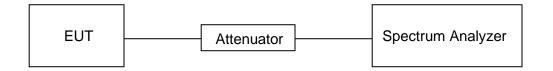
7.4. CARRIER FREQUENCY SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247)		
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

<u>RESULTS</u>

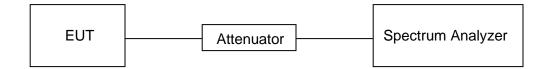
Please refer to Appendix E.

7.5. NUMBER OF HOPPING FREQUENCIES

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C		
Section Test Item Limit		
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

<u>RESULTS</u>

Please refer to appendix F.

7.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C		
Section Test Item Limit		
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lak This report shall not be reproduced except in full, without the wi (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.: 10-SL-F0086 tion Services

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

RESULTS

Please refer to appendix G.

7.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

	CFR 47 FCC Part15 (15.247), Subpart C		
Section Test Item Limit			
CFR	47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

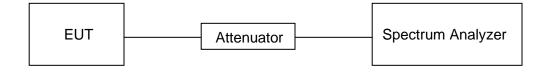
Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


Shan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.8 °C	Relative Humidity	54.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

RESULTS

Please refer to appendix H & I.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

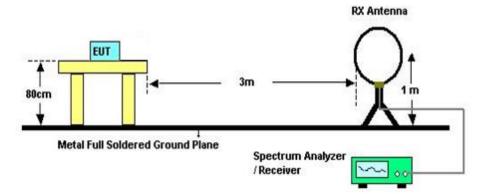
Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
(Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

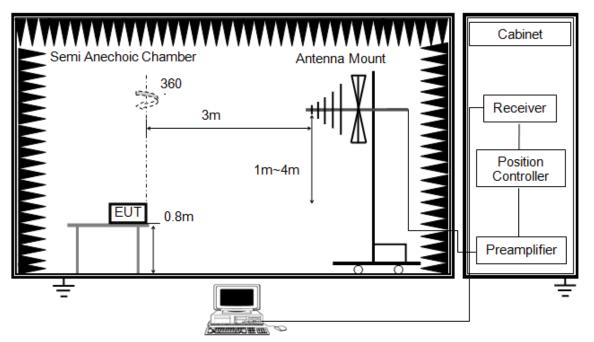
RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

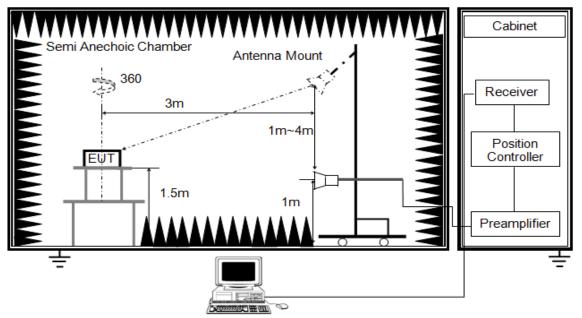
Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyser

RBW	1 MHz
	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

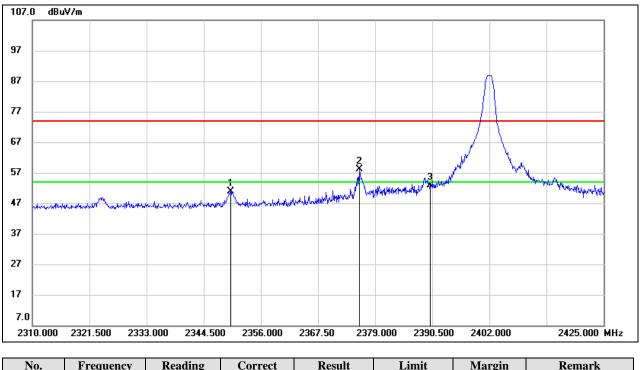
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

Note: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

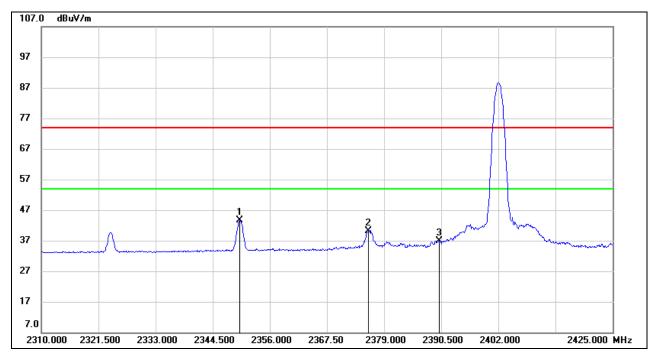
Temperature	19.3 °C	Relative Humidity	50.6 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V


RESULTS

8.1.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEKA</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2349.905	17.81	33.04	50.85	74.00	-23.15	peak
2	2375.780	24.85	33.25	58.10	74.00	-15.90	peak
3	2390.000	19.45	33.35	52.80	74.00	-21.20	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVERAGE</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2349.905	10.70	33.04	43.74	54.00	-10.26	AVG
2	2375.780	6.88	33.25	40.13	54.00	-13.87	AVG
3	2390.000	3.56	33.35	36.91	54.00	-17.09	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

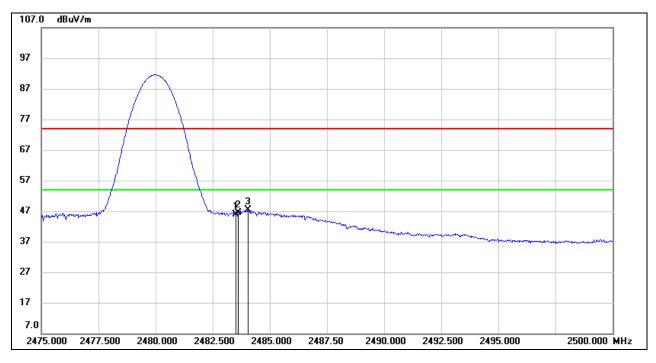
3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.93	33.71	65.64	74.00	-8.36	peak
2	2483.625	32.27	33.71	65.98	74.00	-8.02	peak
3	2484.050	29.46	33.71	63.17	74.00	-10.83	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

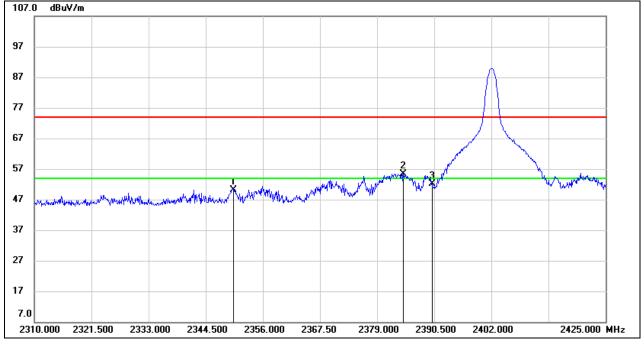
AVERAGE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.06	33.71	45.77	54.00	-8.23	AVG
2	2483.625	12.79	33.71	46.50	54.00	-7.50	AVG
3	2484.050	13.68	33.71	47.39	54.00	-6.61	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

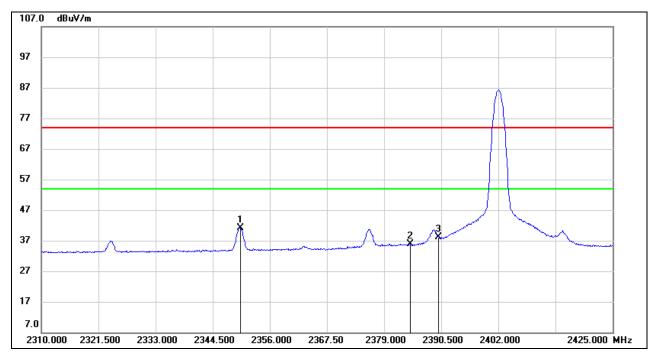

4. For the transmitting duration, please refer to clause 7.1.

8.1.2. 8DPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEKA</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2350.020	17.17	33.05	50.22	74.00	-23.78	peak
2	2384.290	22.16	33.31	55.47	74.00	-18.53	peak
3	2390.000	18.76	33.35	52.11	74.00	-21.89	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

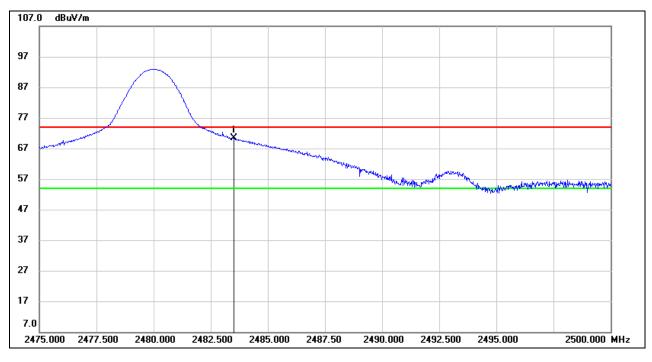
<u>AVERAGE</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2350.020	8.17	33.05	41.22	54.00	-12.78	AVG
2	2384.290	2.53	33.31	35.84	54.00	-18.16	AVG
3	2390.000	4.85	33.35	38.20	54.00	-15.80	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


4. For the transmitting duration, please refer to clause 7.1.

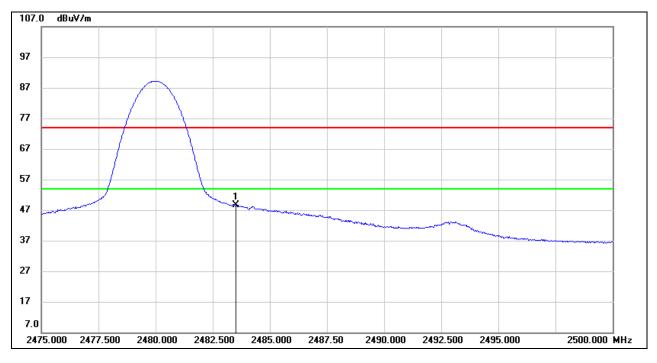
5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	36.56	33.71	70.27	74.00	-3.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

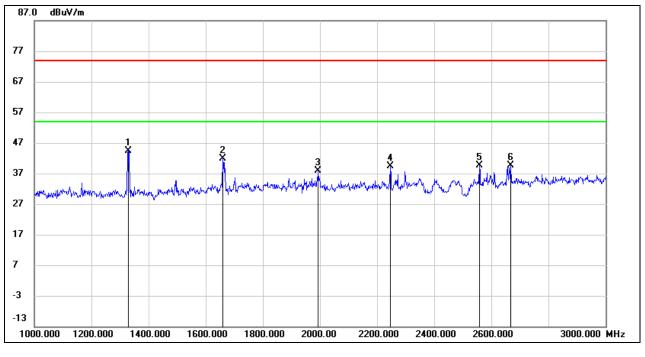
AVERAGE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.81	33.71	48.52	54.00	-5.48	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


4. For the transmitting duration, please refer to clause 7.1.

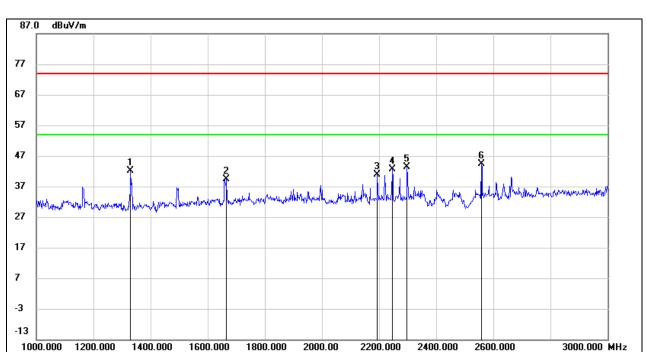
5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Both horizontal and vertical polarities had been tested, only the worst data was recorded in the report.

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

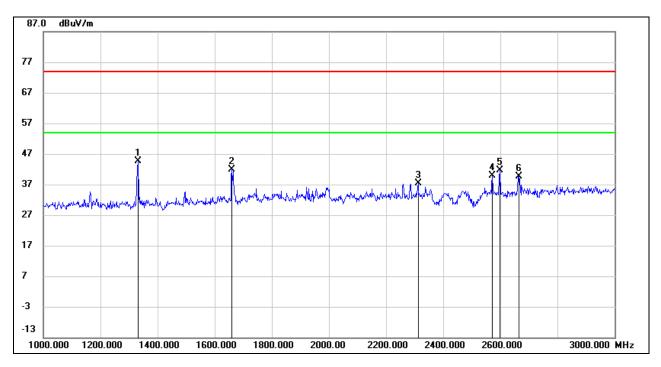

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	57.19	-12.81	44.38	74.00	-29.62	peak
2	1660.000	53.10	-11.10	42.00	74.00	-32.00	peak
3	1994.000	48.13	-10.18	37.95	74.00	-36.05	peak
4	2246.000	48.28	-8.90	39.38	74.00	-34.62	peak
5	2558.000	47.58	-8.01	39.57	74.00	-34.43	peak
6	2668.000	47.09	-7.42	39.67	74.00	-34.33	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

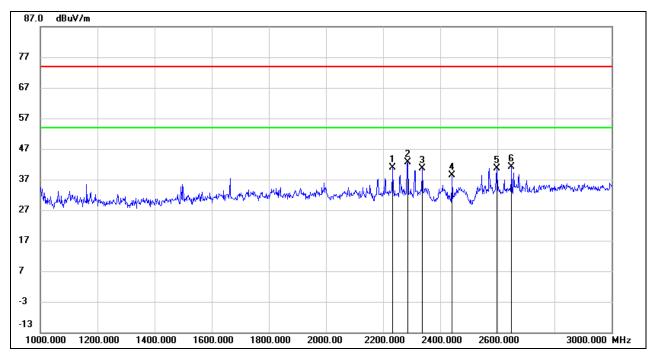
3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	54.85	-12.81	42.04	74.00	-31.96	peak
2	1666.000	50.53	-11.06	39.47	74.00	-34.53	peak
3	2194.000	49.86	-9.08	40.78	74.00	-33.22	peak
4	2246.000	51.60	-8.90	42.70	74.00	-31.30	peak
5	2298.000	52.13	-8.72	43.41	74.00	-30.59	peak
6	2558.000	52.33	-8.01	44.32	74.00	-29.68	peak

Note: 1. Measurement = Reading Level + Correct Factor.

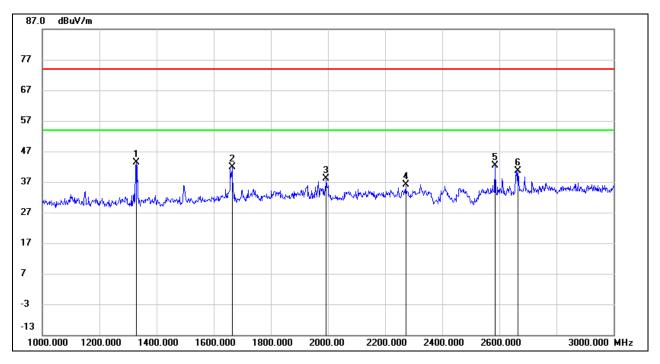
If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1332.000	57.39	-12.80	44.59	74.00	-29.41	peak
2	1660.000	53.05	-11.10	41.95	74.00	-32.05	peak
3	2312.000	45.98	-8.68	37.30	74.00	-36.70	peak
4	2572.000	47.72	-7.96	39.76	74.00	-34.24	peak
5	2598.000	49.47	-7.88	41.59	74.00	-32.41	peak
6	2664.000	47.00	-7.44	39.56	74.00	-34.44	peak

Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2234.000	49.74	-8.94	40.80	74.00	-33.20	peak
2	2286.000	51.41	-8.78	42.63	74.00	-31.37	peak
3	2338.000	49.32	-8.60	40.72	74.00	-33.28	peak
4	2441.000	46.70	-8.33	38.37	74.00	-35.63	peak
5	2598.000	48.45	-7.88	40.57	74.00	-33.43	peak
6	2650.000	48.69	-7.54	41.15	74.00	-32.85	peak

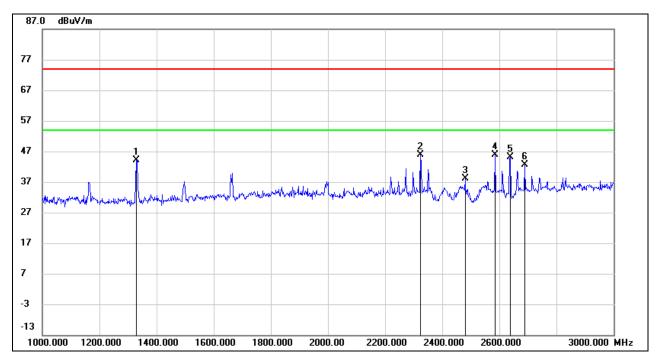

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

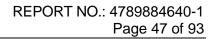
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	56.13	-12.81	43.32	74.00	-30.68	peak
2	1664.000	52.89	-11.08	41.81	74.00	-32.19	peak
3	1994.000	48.38	-10.18	38.20	74.00	-35.80	peak
4	2272.000	44.89	-8.81	36.08	74.00	-37.92	peak
5	2584.000	50.29	-7.92	42.37	74.00	-31.63	peak
6	2666.000	47.98	-7.43	40.55	74.00	-33.45	peak


Note: 1. Measurement = Reading Level + Correct Factor.

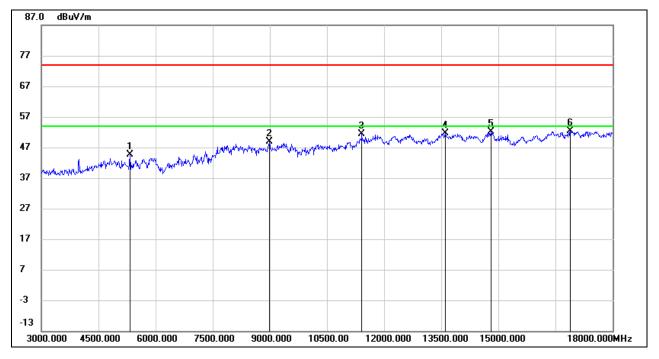
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	56.94	-12.81	44.13	74.00	-29.87	peak
2	2324.000	54.65	-8.65	46.00	74.00	-28.00	peak
3	2480.000	46.42	-8.26	38.16	74.00	-35.84	peak
4	2584.000	53.79	-7.92	45.87	74.00	-28.13	peak
5	2638.000	52.74	-7.61	45.13	74.00	-28.87	peak
6	2688.000	49.81	-7.28	42.53	74.00	-31.47	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

Note: All the modes have been tested, only the worst data was recorded in the report.

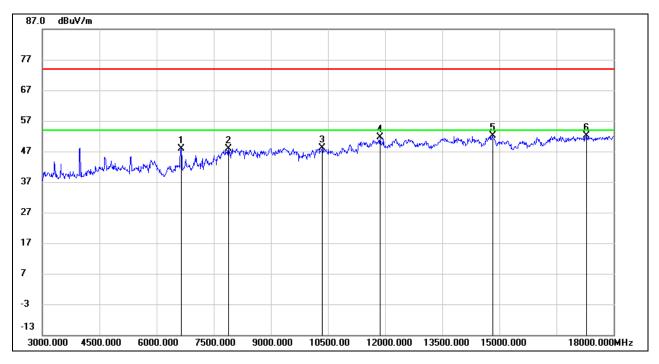
8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

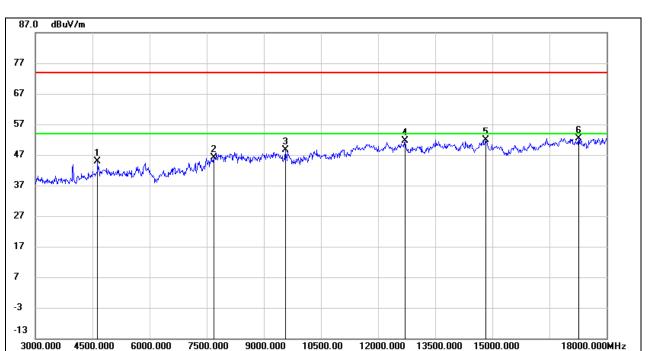
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5325.000	42.33	2.38	44.71	74.00	-29.29	peak
2	8985.000	37.81	10.99	48.80	74.00	-25.20	peak
3	11415.000	36.73	14.74	51.47	74.00	-22.53	peak
4	13605.000	34.49	17.12	51.61	74.00	-22.39	peak
5	14805.000	34.09	18.00	52.09	74.00	-21.91	peak
6	16890.000	30.83	21.49	52.32	74.00	-21.68	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6645.000	41.82	5.95	47.77	74.00	-26.23	peak
2	7890.000	39.04	8.91	47.95	74.00	-26.05	peak
3	10350.000	36.07	12.02	48.09	74.00	-25.91	peak
4	11865.000	36.22	15.42	51.64	74.00	-22.36	peak
5	14820.000	34.30	17.91	52.21	74.00	-21.79	peak
6	17280.000	29.69	22.48	52.17	74.00	-21.83	peak

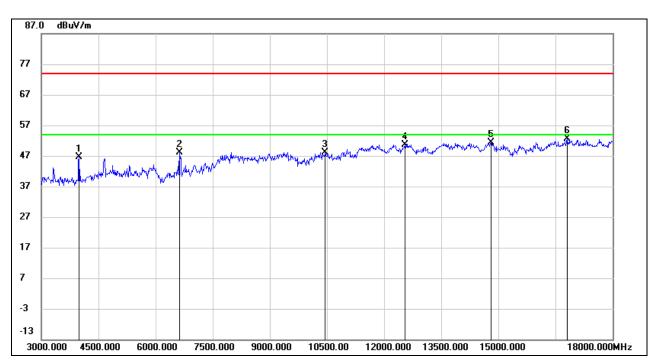
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4635.000	44.65	0.26	44.91	74.00	-29.09	peak
2	7680.000	37.79	8.34	46.13	74.00	-27.87	peak
3	9570.000	37.70	10.88	48.58	74.00	-25.42	peak
4	12705.000	36.07	15.64	51.71	74.00	-22.29	peak
5	14820.000	33.92	17.91	51.83	74.00	-22.17	peak
6	17265.000	30.09	22.39	52.48	74.00	-21.52	peak

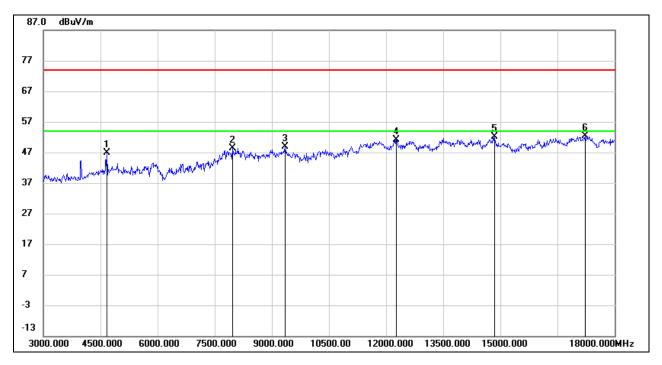

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

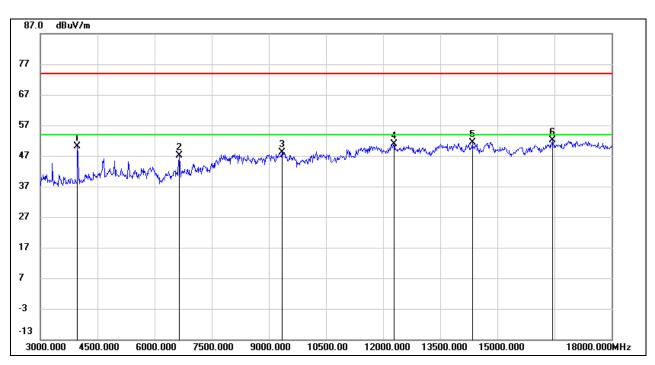
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.16	-2.51	46.65	74.00	-27.35	peak
2	6630.000	42.27	5.95	48.22	74.00	-25.78	peak
3	10455.000	35.82	12.31	48.13	74.00	-25.87	peak
4	12540.000	34.98	15.72	50.70	74.00	-23.30	peak
5	14805.000	33.44	18.00	51.44	74.00	-22.56	peak
6	16800.000	31.81	20.71	52.52	74.00	-21.48	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4665.000	46.61	0.25	46.86	74.00	-27.14	peak
2	7965.000	39.67	8.71	48.38	74.00	-25.62	peak
3	9345.000	38.21	10.66	48.87	74.00	-25.13	peak
4	12270.000	35.15	16.04	51.19	74.00	-22.81	peak
5	14850.000	34.39	17.71	52.10	74.00	-21.90	peak
6	17220.000	30.18	22.12	52.30	74.00	-21.70	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	52.68	-2.57	50.11	74.00	-23.89	peak
2	6645.000	41.08	5.95	47.03	74.00	-26.97	peak
3	9345.000	37.51	10.66	48.17	74.00	-25.83	peak
4	12285.000	34.85	16.08	50.93	74.00	-23.07	peak
5	14340.000	33.45	17.84	51.29	74.00	-22.71	peak
6	16455.000	32.50	19.68	52.18	74.00	-21.82	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

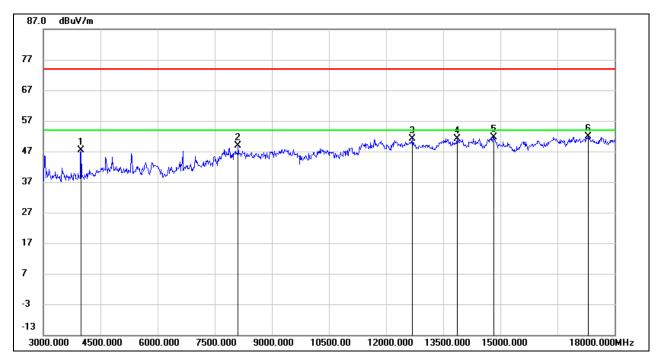
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.2. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS ((LOW CHANNEL, HORIZONTAL)

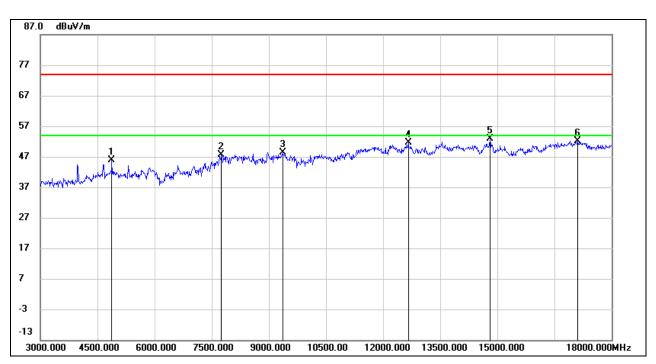
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	45.85	1.40	47.25	74.00	-26.75	peak
2	8115.000	37.85	10.13	47.98	74.00	-26.02	peak
3	9375.000	37.39	10.83	48.22	74.00	-25.78	peak
4	11715.000	35.81	15.34	51.15	74.00	-22.85	peak
5	14760.000	33.98	17.90	51.88	74.00	-22.12	peak
6	16305.000	32.83	19.62	52.45	74.00	-21.55	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

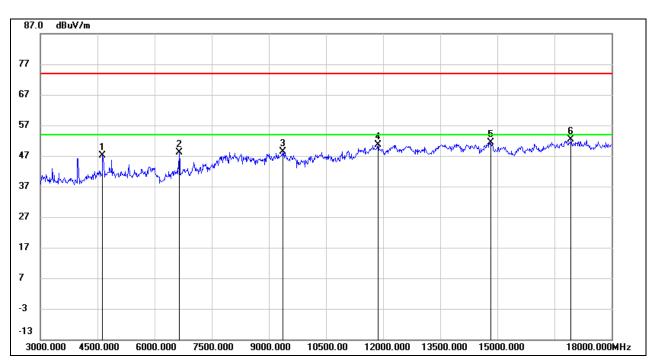
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.87	-2.51	47.36	74.00	-26.64	peak
2	8115.000	38.85	10.13	48.98	74.00	-25.02	peak
3	12690.000	35.41	15.64	51.05	74.00	-22.95	peak
4	13860.000	33.68	17.55	51.23	74.00	-22.77	peak
5	14820.000	33.83	17.91	51.74	74.00	-22.26	peak
6	17310.000	29.41	22.54	51.95	74.00	-22.05	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

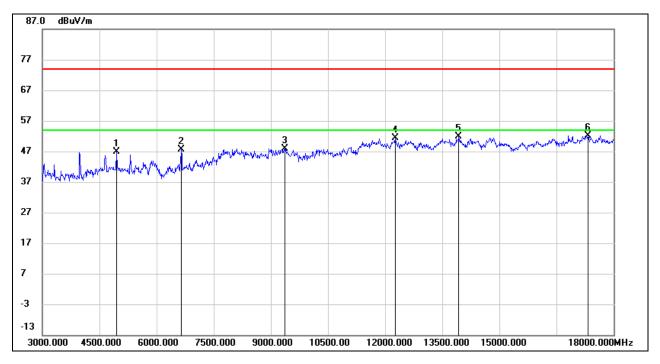

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	44.58	1.32	45.90	74.00	-28.10	peak
2	7755.000	38.65	8.94	47.59	74.00	-26.41	peak
3	9360.000	37.71	10.75	48.46	74.00	-25.54	peak
4	12660.000	35.91	15.69	51.60	74.00	-22.40	peak
5	14805.000	34.78	18.00	52.78	74.00	-21.22	peak
6	17115.000	30.24	21.91	52.15	74.00	-21.85	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

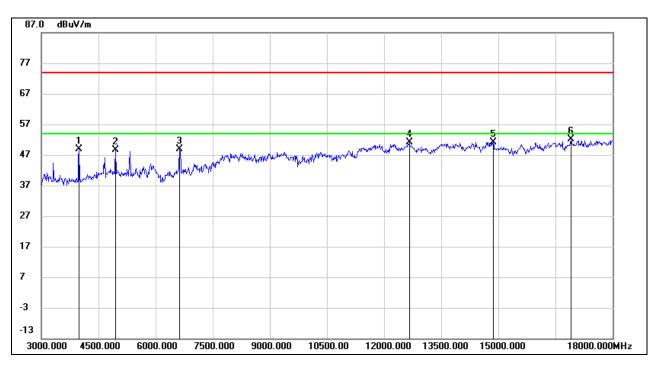
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4635.000	46.79	0.26	47.05	74.00	-26.95	peak
2	6645.000	42.19	5.95	48.14	74.00	-25.86	peak
3	9375.000	37.50	10.83	48.33	74.00	-25.67	peak
4	11865.000	35.20	15.42	50.62	74.00	-23.38	peak
5	14820.000	33.58	17.91	51.49	74.00	-22.51	peak
6	16935.000	30.81	21.45	52.26	74.00	-21.74	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

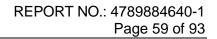

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	45.27	1.71	46.98	74.00	-27.02	peak
2	6645.000	41.72	5.95	47.67	74.00	-26.33	peak
3	9360.000	37.22	10.75	47.97	74.00	-26.03	peak
4	12270.000	35.32	16.04	51.36	74.00	-22.64	peak
5	13935.000	34.21	17.58	51.79	74.00	-22.21	peak
6	17325.000	29.78	22.42	52.20	74.00	-21.80	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

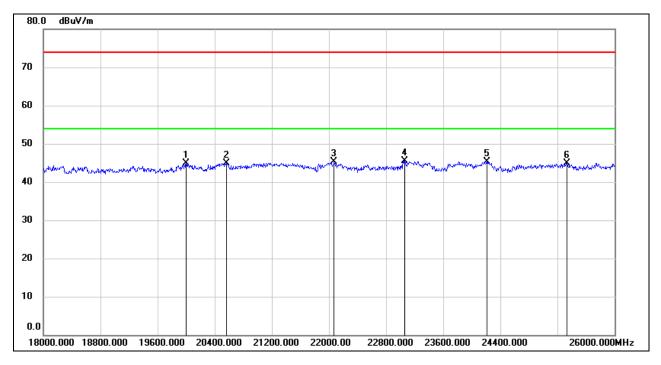

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	51.32	-2.51	48.81	74.00	-25.19	peak
2	4950.000	46.98	1.71	48.69	74.00	-25.31	peak
3	6630.000	42.91	5.95	48.86	74.00	-25.14	peak
4	12660.000	35.42	15.69	51.11	74.00	-22.89	peak
5	14865.000	33.59	17.61	51.20	74.00	-22.80	peak
6	16905.000	30.61	21.55	52.16	74.00	-21.84	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.



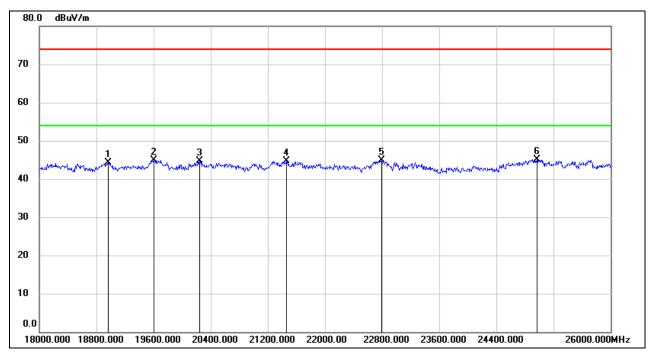
8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1.8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	20000.000	50.31	-5.45	44.86	74.00	-29.14	peak
2	20560.000	50.23	-5.30	44.93	74.00	-29.07	peak
3	22072.000	49.77	-4.41	45.36	74.00	-28.64	peak
4	23064.000	48.99	-3.42	45.57	74.00	-28.43	peak
5	24208.000	48.21	-2.81	45.40	74.00	-28.60	peak
6	25336.000	46.66	-1.71	44.95	74.00	-29.05	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18960.000	49.51	-5.25	44.26	74.00	-29.74	peak
2	19600.000	50.29	-5.43	44.86	74.00	-29.14	peak
3	20240.000	50.32	-5.61	44.71	74.00	-29.29	peak
4	21456.000	49.35	-4.70	44.65	74.00	-29.35	peak
5	22792.000	48.61	-3.65	44.96	74.00	-29.04	peak
6	24968.000	47.26	-2.14	45.12	74.00	-28.88	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

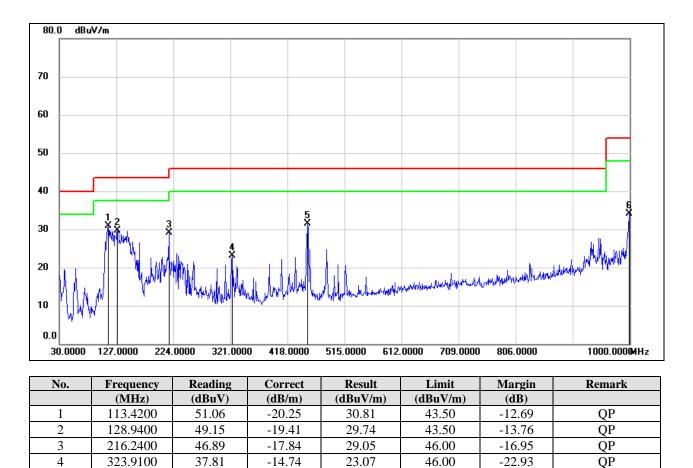
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

Note: All the modes have been tested, only the worst data was recorded in the report.

8.5.1.8DPSK MODE


5

6

451.9500

999.0300

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

43.92

38.26

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

31.50

34.11

46.00

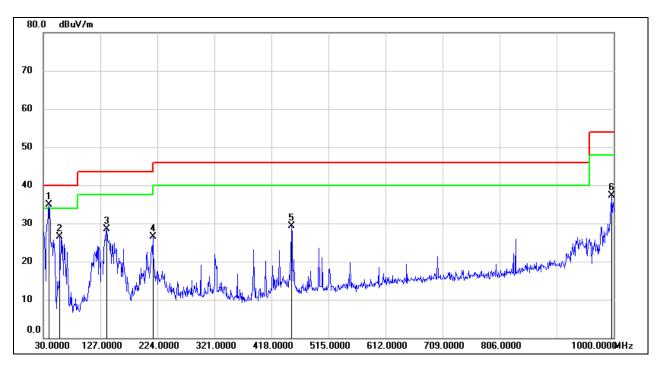
54.00

-14.50

-19.89

QP

OP


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

-12.42

-4.15

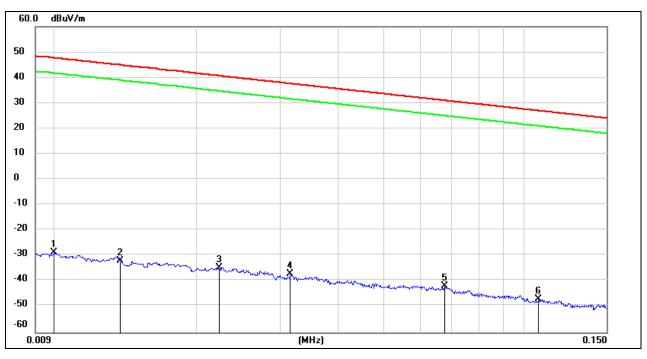
SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	39.7000	54.85	-19.96	34.89	40.00	-5.11	QP
2	58.1300	47.12	-20.55	26.57	40.00	-13.43	QP
3	137.6700	47.53	-18.95	28.58	43.50	-14.92	QP
4	216.2400	44.44	-17.84	26.60	46.00	-19.40	QP
5	451.9500	41.78	-12.42	29.36	46.00	-16.64	QP
6	997.0900	41.39	-4.18	37.21	54.00	-16.79	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

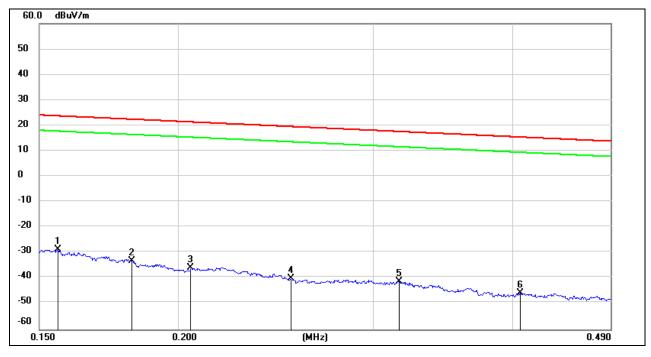

Note: All the modes have been tested, only the worst data was recorded in the report.

8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1.8DPSK MODE

(HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

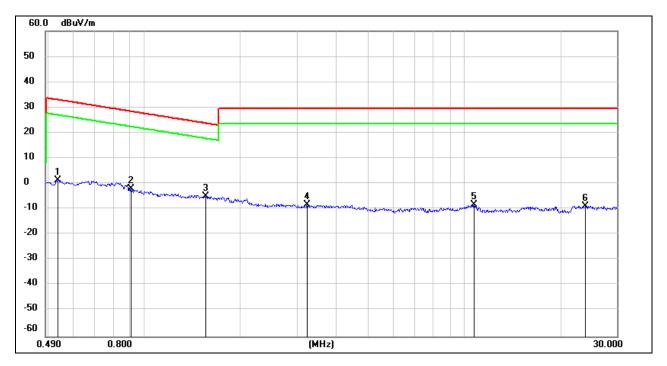

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	72.72	-101.40	-28.68	47.6	-80.18	-3.90	-76.28	peak
2	0.0137	69.36	-101.38	-32.02	44.87	-83.52	-6.63	-76.89	peak
3	0.0223	66.79	-101.35	-34.56	40.63	-86.06	-10.87	-75.19	peak
4	0.0316	64.24	-101.40	-37.16	37.61	-88.66	-13.89	-74.77	peak
5	0.0675	59.64	-101.56	-41.92	31.02	-93.42	-20.48	-72.94	peak
6	0.1073	54.80	-101.77	-46.97	26.99	-98.47	-24.51	-73.96	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1559	73.15	-101.65	-28.5	23.74	-80.00	-27.76	-52.24	peak
2	0.1817	68.53	-101.68	-33.15	22.42	-84.65	-29.08	-55.57	peak
3	0.2053	65.79	-101.73	-35.94	21.35	-87.44	-30.15	-57.29	peak
4	0.2530	61.64	-101.80	-40.16	19.54	-91.66	-31.96	-59.70	peak
5	0.3163	60.70	-101.87	-41.17	17.6	-92.67	-33.90	-58.77	peak
6	0.4062	56.14	-101.96	-45.82	15.43	-97.32	-36.07	-61.25	peak

Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5361	63.46	-62.08	1.38	33.02	-50.12	-18.48	-31.64	peak
2	0.9082	60.15	-62.21	-2.06	28.44	-53.56	-23.06	-30.50	peak
3	1.5564	57.18	-62.02	-4.84	23.76	-56.34	-27.74	-28.60	peak
4	3.2343	53.29	-61.53	-8.24	29.54	-59.74	-21.96	-37.78	peak
5	10.7299	52.48	-60.83	-8.35	29.54	-59.85	-21.96	-37.89	peak
6	23.9800	51.67	-60.53	-8.86	29.54	-60.36	-21.96	-38.40	peak

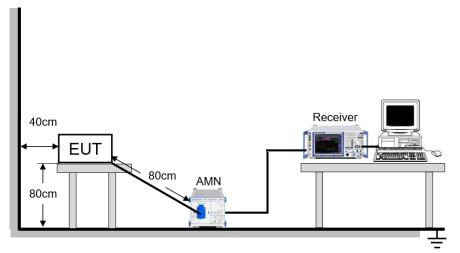
Note: 1. Measurement = Reading Level + Correct Factor ($dBuA/m = dBuV/m - 20Log10[120\pi] = dBuV/m - 51.5$).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a)

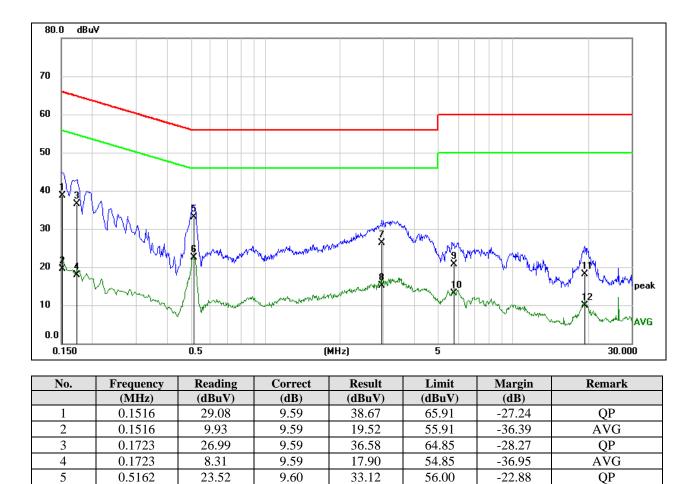
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	22.8 °C	Relative Humidity	60.3 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 20 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.1.1.8DPSK MODE

LINE L RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

Note: 1. Result = Reading + Correct Factor.

0.5162

2.9600

2.9600

5.7483

5.7483

19.5051

19.5051

6

7

8

9

10

11

12

12.87

16.69

5.57

11.17

3.42

8.38

0.14

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

22.47

26.31

15.19

20.80

13.05

18.20

9.96

46.00

56.00

46.00

60.00

50.00

60.00

50.00

-23.53

-29.69

-30.81

-39.20

-36.95

-41.80

-40.04

AVG

QP

AVG

QP

AVG

QP

AVG

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

9.60

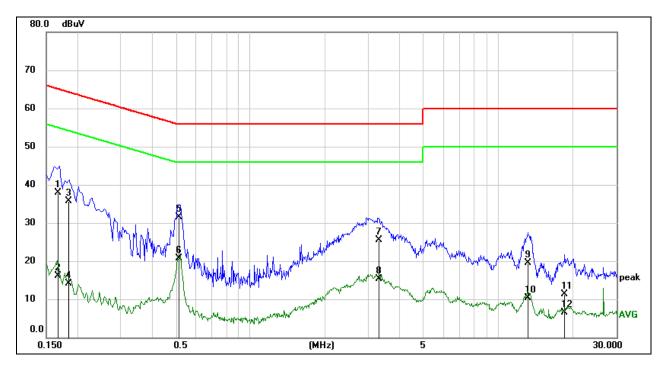
9.62

9.62

9.63

9.63

9.82


9.82

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1672	28.29	9.59	37.88	65.10	-27.22	QP
2	0.1672	6.46	9.59	16.05	55.10	-39.05	AVG
3	0.1841	26.08	9.59	35.67	64.30	-28.63	QP
4	0.1841	4.61	9.59	14.20	54.30	-40.10	AVG
5	0.5138	21.95	9.60	31.55	56.00	-24.45	QP
6	0.5138	11.19	9.60	20.79	46.00	-25.21	AVG
7	3.3193	15.91	9.61	25.52	56.00	-30.48	QP
8	3.3193	5.69	9.61	15.30	46.00	-30.70	AVG
9	13.2035	9.81	9.66	19.47	60.00	-40.53	QP
10	13.2035	0.64	9.66	10.30	50.00	-39.70	AVG
11	18.5161	1.55	9.72	11.27	60.00	-48.73	QP
12	18.5161	-3.30	9.72	6.42	50.00	-43.58	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

APPENDIX A: DUTY CYCLE

Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.97	3.75	0.7920	79.20	1.01	0.34	0.5
3DH5	2.97	3.75	0.7920	79.20	1.01	0.34	0.5

Note:

Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.

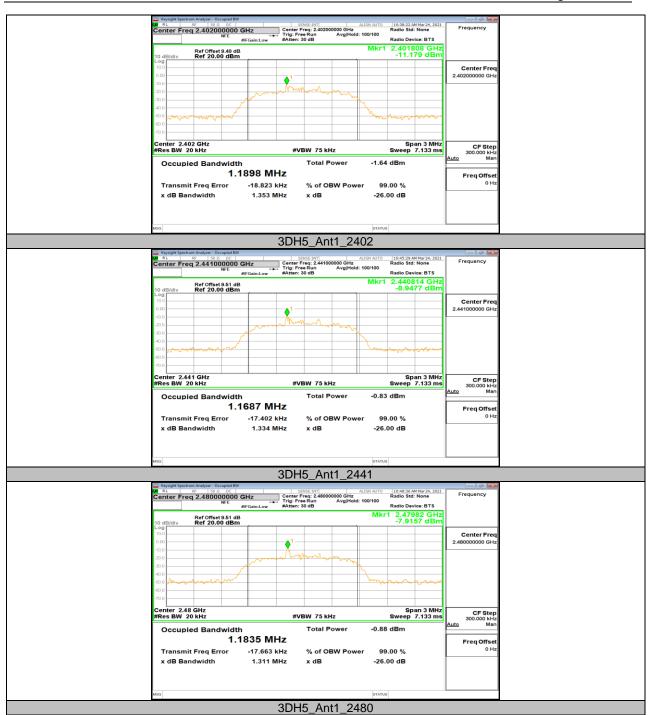
Test Graphs

APPENDIX B: 20DB BANDWIDTH

Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
DH5	Ant1	2402	0.918	2401.535	2402.453	PASS
		2441	0.855	2440.538	2441.393	PASS
		2480	0.939	2479.529	2480.468	PASS
3DH5	Ant1	2402	1.164	2401.424	2402.588	PASS
		2441	1.257	2440.364	2441.621	PASS
		2480	1.233	2479.361	2480.594	PASS

REPORT NO.: 4789884640-1 Page 74 of 93


APPENDIX C: OCCUPIED CHANNEL BANDWIDTH

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.88047	2401.555	2402.435	PASS
DH5	Ant1	2441	0.90827	2440.548	2441.456	PASS
		2480	0.88515	2479.556	2480.441	PASS
		2402	1.1779	2401.408	2402.586	PASS
3DH5	Ant1	2441	1.1845	2440.407	2441.592	PASS
		2480	1.1737	2479.409	2480.583	PASS

APPENDIX D: PEAK CONDUCTED OUTPUT POWER

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402 -6.97		<=20.97	PASS
DH5	Ant1	2441	-6.56	<=20.97	PASS
		2480	-6.37	<=20.97	PASS
		2402	-6.57	<=30	PASS
3DH5	Ant1	2441	-6.12	<=30	PASS
		2480	-5.96	<=30	PASS

APPENDIX E: CARRIER FREQUENCY SEPARATION

Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.008	>=1.029	PASS
3DH5	Ant1	Нор	1.008	>=0.838	PASS

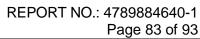
ш к	eysight S	Spectrum Analyzer -	Swept SA								
Sta	nt Fr	Spectrum Analyzer - RF 50 RF 50	00000 GHz	2	SET		#Avg Type: F Avg[Hold: 10	GN AUTO	10:54:48 A TRAI	M Mar 24, 2021	Frequency
			NFE F	PNO: Wide Gain:Low	#Atten: 3	0 dB	Avginoid: 10				Auto Tune
10 c	IB/div	Ref Offset	9.51 dB 0 dBm						/kr2 1.0 -0	08 MHz .269 dB	Auto Turie
Log						[Center Freq
10.0	-		_								2.441500000 GHz
0.00											
	Ι,					2			2∆1		Start Freq 2.439500000 GHz
-10.0	N			1		J		$\langle \rangle$	1	- N	2.43200000 0112
-20.0	- H							~			Stop Freq
-30.0											2.443500000 GHz
-40.0											CF Step
-40.0											400.000 kHz Auto Man
-50.0	-										
-60.0											Freq Offset 0 Hz
-70.0											
											Scale Type
		39500 GHz				A	-			3500 GHz	
#Re	es BV	V 300 kHz		#VBW	/ 910 kHz		SV	status		(1001 pts)	
					ПΗ	5 Ant	t1_Hop		1		
- K	eysight S	Spectrum Analyzer - RF 50	Swept SA		DIR	<u></u>		<u> </u>			
Sta	nt Fr	RF 50	0000 GHz	2		SE:INT	#Avg Type: F Avg[Hold: 10	GN AUTO	TRA	M Mar 24, 2021	Frequency
			NEE E	PNO: Wide FGain:Low	#Atten: 3	a Run 0 dB	Avg Hold: 10		D	ETPPPPP	Auto Tune
10 c	IB/div	Ref Offset	9.51 dB 0 dBm						/kr2 1.0 -0	08 MHz .494 dB	Auto Tulle
Log											Center Freq
10.0	-		_								2.441500000 GHz
0.00			_								
						Q			2∆1		Start Freq 2.439500000 GHz
-10.0	·		and a second		A. 100 C	No. And State		the state of the s			
-20.0			_								Stop Freq
-30.0											2.443500000 GHz
-40.0											CF Step
-40.0											400.000 kHz Auto Man
-50.0											
-60.0											Freq Offset 0 Hz
-70.0											
											Scale Type
Cto.	124	39500 GHz		1				s	Stop 2.44	3500 GHz	Log <u>Lin</u>
ola	. 2.4							Ē			
#Re	s BV	V 300 kHz		#VBW	/ 910 kHz		Sv	status	.000 ms	1001 pts)	
#Re	s BV	V 300 kHz		#VBW		5 An	s⊮ it1_Hoj	status		(1001 pts)	

APPENDIX F: NUMBER OF HOPPING FREQUENCIES

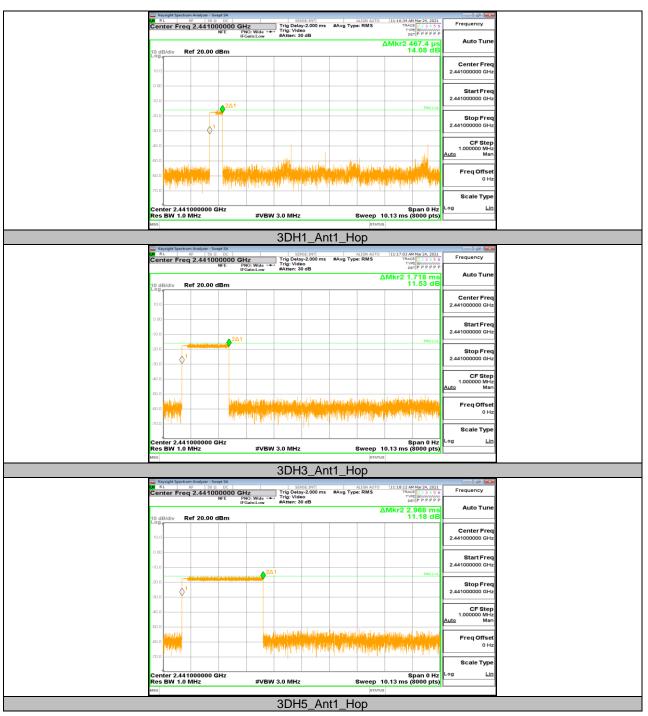
Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS

Keysight Spectrum Analyzer - Swept SA	
RL RF 50 0 0C SENSE:INT ALIGN AUTO 10:55:09 AM Mar24, 20 Center Freq 2.441750000 GHz Web F DND: East the Trig: Free Run Avg Type: RMS TRACE[1:3:4:1 Avg Type: RMS TRACE[1:3:4:1	Frequency
NFE PNO: Fast Trig: Free Run AvgjHold: 1000/1000 TryPE Avvent	Auto Tune
10 dB/div Ref 20.00 dBm	Auto Tulle
Log	Center Freq
10.0	2.441750000 GHz
0.00	
	Start Freq 2.40000000 GHz
	Stop Freq
30.0	2.483500000 GHz
40.0	CF Step 8.350000 MHz
	Auto Man
	Freq Offset
0.08	0 Hz
-70.0	Scale Type
Start 2.40000 GHz Stop 2.48350 GH	
#Res BW 200 kHz #VBW 200 kHz Sweep 1.733 ms (1001 pt	
MSG STATUS	
DH5_Ant1_Hop	
Keysight Spectrum Analyzer - Swept SA Sector Sect	
Knycht Spetten Anderer, Sengt 5A <	1
Register Access to acccess to access to access to access to access to access to access	1
Knywith Sternine Analyses: Serget 5A States: Entry ALL Ser Auth 2A1 200 W R & State: State: Entry ALLSR Auth 2A1 200 State: Entry ALLSR Auth 2A1 200 Center Freq 2.441750000 GHz; BW/L Exat - +- Trig: Free Run Augit Add: 1000 1176 #14 www.	Auto Tune
Knight Stantum Aduptin - Seet 3A School 2 <	Frequency
Registifications Advice: Served 1A Served 19 Autor Auro Titls: 50:4 AM Mir 24: 20 Center Freq 2.441750000 GHz MFE NFE Free Run IFGainsLow #Avg Type: RMS AvgiHold: 1000/1000 #Avg Type: RMS AvgiHold: 1000/1000 Trode[1:2:3:4] NFE FGainsLow #Atten: 30 dB #avg Type: RMS AvgiHold: 1000/1000 Trode[1:2:3:4] 10 dB/d/v Ref 20:00 dBm Image: Ref 20:00 dBm Image: Ref 20:00 dBm Image: Ref 20:00 dBm 10 dB/d/v Ref 20:00 dBm Image: Ref 20:00 dBm<	Auto Tune
Registing Restances Analyse: Seet SA SENSE: Linf ALION AUTO 11:15:36:44 Mar 24:20 Center Freq 2.441750000 GHz MFE NFE Free Run IFGains.tow #Avg Type: RMS AvgiHold: 1000/1000 #avg Type: RMS AvgiHold: 1000/1000 Trig: Free Run Ref Offset 3 46 dB 10 dBirdiv Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm 10 dBirdiv Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm	1 6 Frequency P Auto Tune Center Freq 2.441750000 GHz Start Freq
Registifications Advice: Served 1A Served 19 Autor Auro Titls: 50:4 AM Mir 24: 20 Center Freq 2.441750000 GHz MFE NFE Free Run IFGainsLow #Avg Type: RMS AvgiHold: 1000/1000 #Avg Type: RMS AvgiHold: 1000/1000 Trode[1:2:3:4] NFE FGainsLow #Atten: 30 dB #avg Type: RMS AvgiHold: 1000/1000 Trode[1:2:3:4] 10 dB/d/v Ref 20:00 dBm Image: Ref 20:00 dBm Image: Ref 20:00 dBm Image: Ref 20:00 dBm 10 dB/d/v Ref 20:00 dBm Image: Ref 20:00 dBm<	1 Frequency P Auto Tune Center Freq 2.441750000 GHz
Registing Restances Analyse: Seet SA SENSE: Linf ALION AUTO 11:15:36:44 Mar 24:20 Center Freq 2.441750000 GHz MFE NFE Free Run IFGains.tow #Avg Type: RMS AvgiHold: 1000/1000 #avg Type: RMS AvgiHold: 1000/1000 Trig: Free Run Ref Offset 3 46 dB 10 dBirdiv Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm 10 dBirdiv Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm Image: Ref 20.00 dBm	L Frequency Auto Tune Center Freq 2.441750000 GHz Start Freq 2.40000000 GHz Stop Freq
Regult Statutum Aduptor - Statt Aduptor	Auto Tune Center Freq 2.441750000 GHz
Regult instrume Analyze: -beard A. State State ALL INF	Auto Tune Center Freq 2.441750000 GHz 2.400000000 GHz 2.483500000 GHz
Register and August - leads A Served II Allon All O Fill Served II Center Freq 2.441750000 GHz FR0() rank Allon All O Trick Free Run Avg Type: RMS Trick Free Run Avg Type: Run Avg Typ	Auto Tune Center Frequency Center Freq 2.441750000 GHz Cater Freq 2.440000000 GHz Cater Freq 2.40000000 GHz Cater Freq 2.40000000 GHz Cater Freq 2.40350000 GHz Cater Freq Cater
Register former hanger-beert ha Center Freq 2.3441750000 GHz Strict IIII Allon All O Till 536 A4 Mar24, 20 Center Freq 2.3441750000 GHz Freq 2.3441750000 GHz Trig: Free Run Fredelization Avg Type: RMS Avg/Hold: 1000/1000 Trict III:336 A4 Mar24, 20 NFE Fredelization Trig: Free Run Fredelization Avg Type: RMS Avg/Hold: 1000/1000 Trict III:336 A4 Mar24, 20 0 dBid NFE Free Run Fredelization Avg Type: RMS Avg Type: RMS	Auto Tune Center Freq 2.441750000 GHz 2.40000000 GHz 2.46350000 GHz 2.46350000 GHz 2.46350000 GHz 2.46350000 GHz Auto The Freq 2.46350000 GHz Auto The Freq 2.46350000 GHz Auto The Freq 2.4635000 GHz Auto The Freq 2.4635000 GHz Auto The Freq 2.4635000 GHz Auto The Freq 2.4635000 GHz Auto The Freq 2.463500 GHz Auto The Freq 3.5605 GHz Auto The Freq 3.5605 GHz Auto The Freq 3.5605 GHz Auto The Freq 4.560500 GHz Auto The Freq 4.5605000 GHz Auto The Freq 4.56050000000000000000000000000000000000
Register form Register Stress Hard Allon Allon Allon Hills 34 Att Mar 24, 20 Conter Freq 2.441750000 GHz FR0, rast Trips Free Run Avg Type: RMS Trics Free Run NFE FR0, rast Trips Free Run Avg Type: RMS Trics Free Run 0 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 10 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 0 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 10 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 10 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 10 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Trics Free Run 10 dB/div Ref Offset 3.48 dB Free Run Avg Type: RMS Free Run 10 dD Ref 20.00 dBm Free Run Free Run Free Run Free Run 10 dD Free Run Free Run Free Run Free Run F	1 0 Frequency Auto Tune Center Frequency 2.441750000 GH2 Start Frequency 2.46350000 GH2 Center Frequency 2.46350000 GH2 Center Frequency 2.46350000 GH2 Center Frequency
Regent Service	Auto Tune Center Freq 2.441750000 GHz 2.441750000 GHz 2.400000000 GHz 2.403500000 GHz 2.403500000 GHz Auto Mar Freq Offset 0 Hz
Recent Section Adjust - Lengt SA State Lint Align Adjust - Lengt SA R. Rec 2012 ME PRO_01 Align Adjust - Lint SA Ad Mod SA, 20 R. Rec 2012 PRO_01 PRO_01 PRO_01 PRO_01 International Control of Control	Auto Tune Center Freq 2.441750000 GHz 2.441750000 GHz 2.443500000 GHz 2.48350000 GHz 2.48350000 GHz 2.48350000 GHz CF Step B SCF Step G Hz CF Step S
Registerium Ausgure: Sengel XA School (INT) ALSON AUTO TL15/354 AM Mor 24, 20 Center Freq. 2.441750000 CH2 Trig: Free Run Avg Type: RMS Trig: Free Run Trig: F	Auto Tune Center Freq 2.441750000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000 GHz 3.5000 GHz 0.42
Ref Office Stock	Auto Tune Center Freq 2.441750000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000 GHz 3.5000 GHz 0.42
Recycle Sector Allow Allow State State </th <td>Auto Tune Center Freq 2.441750000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000 GHz 3.5000 GHz 0.42</td>	Auto Tune Center Freq 2.441750000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000000 GHz 2.40000 GHz 3.5000 GHz 0.42



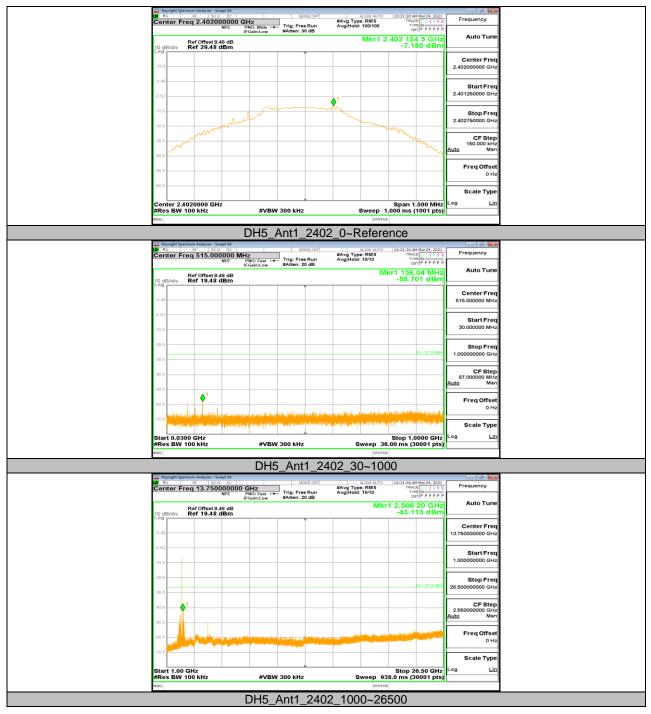
APPENDIX G: TIME OF OCCUPANCY (DWELL TIME)


FHSS Mode										
Test Mode	Antenna	Channel	Burst Width	Deputtel	L ins Mal	Verdict				
Test Mode	Antenna	Channel	[ms]	Result[s]	Limit[s]	Verdict				
DH1	Ant1	Нор	0.46	0.147	<=0.4	PASS				
DH3	Ant1	Нор	1.72	0.275	<=0.4	PASS				
DH5	Ant1	Нор	2.97	0.317	<=0.4	PASS				
3DH1	Ant1	Нор	0.47	0.150	<=0.4	PASS				
3DH3	Ant1	Нор	1.72	0.275	<=0.4	PASS				
3DH5	Ant1	Нор	2.97	0.317	<=0.4	PASS				
			AFHSS Mode							
Test Mode	Antenna	Observat	Burst Width	Deputtel	Limitel) (or elist				
Test Mode	Antenna	Channel	[ms]	Result[s]	Limit[s]	Verdict				
DH1	Ant1	Нор	0.46	0.074	<=0.4	PASS				
DH3	Ant1	Нор	1.72	0.138	<=0.4	PASS				
DH5	Ant1	Нор	2.97	0.158	<=0.4	PASS				
3DH1	Ant1	Нор	0.47	0.075	<=0.4	PASS				
3DH3	Ant1	Нор	1.72	0.138	<=0.4	PASS				
3DH5	Ant1	Нор	2.97	0.158	<=0.4	PASS				

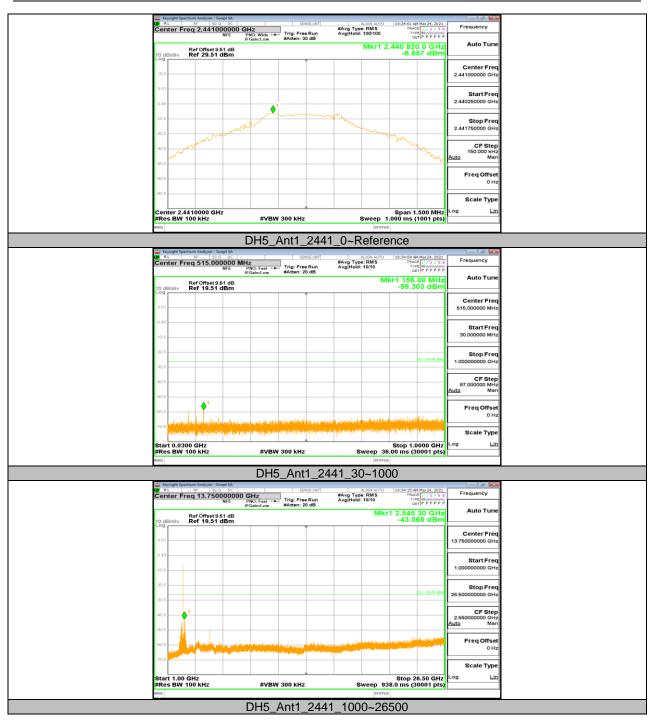
APPENDIX H: BAND EDGE MEASUREMENTS

Test Result

Test Mode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	-7.07	-44.47	<=-27.07	PASS
DH5	Ant1	High	2480	-6.57	-47.24	<=-26.57	PASS
DHD	Anti	Low	Hop_2402	-7.81	-43.65	<=-27.81	PASS
		High	Hop_2480	-6.50	-40.23	<=-26.5	PASS
		Low	2402	-8.26	-42.96	<=-28.26	PASS
2045	Ant1	High	2480	-7.71	-45.27	<=-27.71	PASS
3DH5	Anti	Low	Hop_2402	-8.37	-45.35	<=-28.37	PASS
		High	Hop_2480	-7.72	-42.93	<=-27.72	PASS

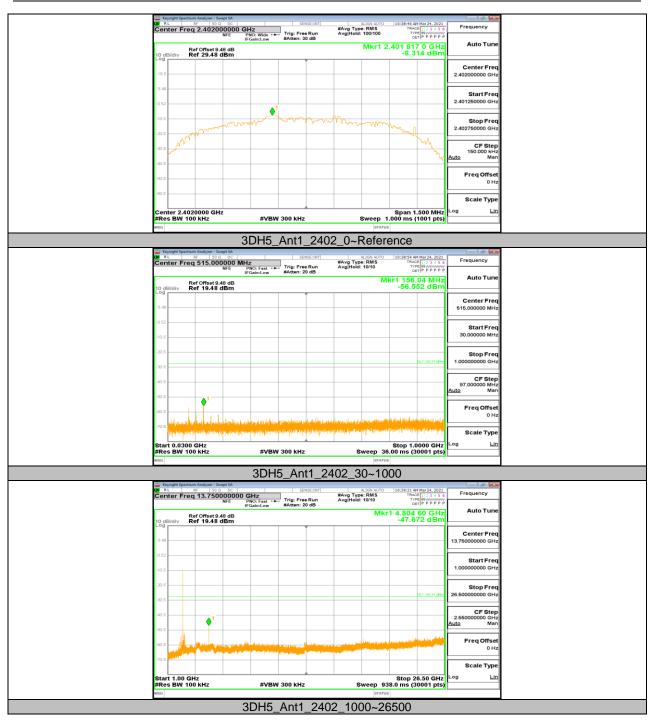

REPORT NO.: 4789884640-1 Page 86 of 93

APPENDIX I: CONDUCTED SPURIOUS EMISSION

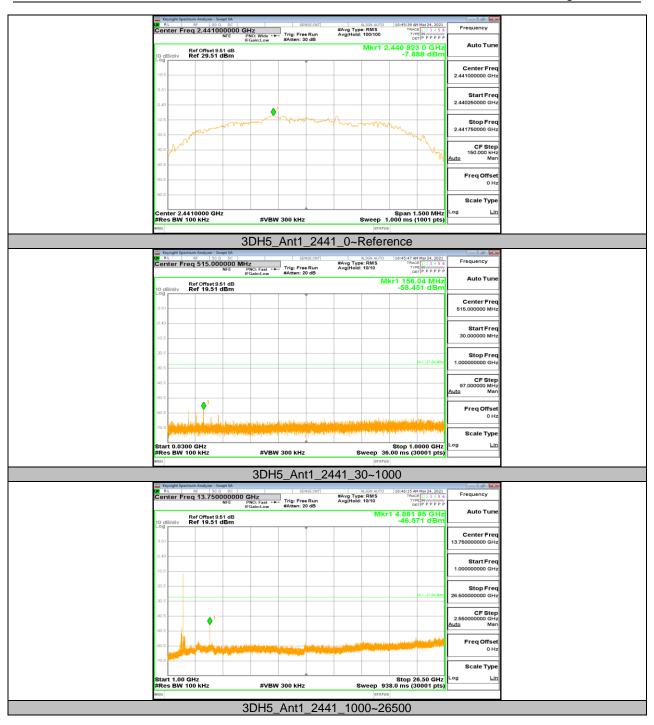

Test Mode	Antenna	Channel	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	-7.18	-7.18		PASS
		2402	30~1000	-7.18	-58.7	<=-27.18	PASS
			1000~26500	-7.18	-43.11	<=-27.18	PASS
			Reference	-6.66	-6.66		PASS
DH5	Ant1	2441	30~1000	-6.66	-59.3	<=-26.66	PASS
			1000~26500	-6.66	-43.57	<=-26.66	PASS
		2480	Reference	-6.52	-6.52		PASS
			30~1000	-6.52	-58.32	<=-26.52	PASS
			1000~26500	-6.52	-43.87	<=-26.52	PASS
		2402	Reference	-8.31	-8.31		PASS
			30~1000	-8.31	-56.55	<=-28.31	PASS
			1000~26500	-8.31	-47.67	<=-28.31	PASS
			Reference	-7.89	-7.89		PASS
3DH5	Ant1	2441	30~1000	-7.89	-58.45	<=-27.89	PASS
			1000~26500	-7.89	-46.57	<=-27.89	PASS
			Reference	-7.82	-7.82		PASS
		2480	30~1000	-7.82	-57.22	<=-27.82	PASS
			1000~26500	-7.82	-43.3	<=-27.82	PASS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

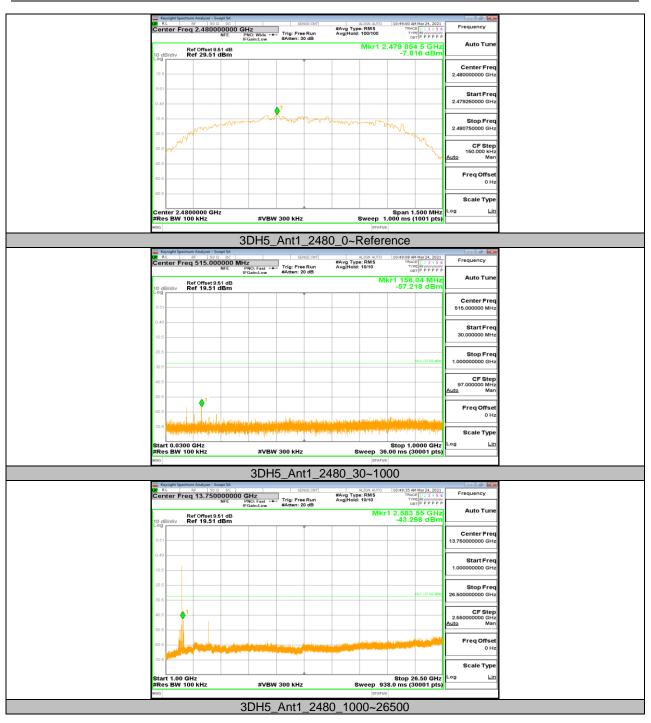
REPORT NO.: 4789884640-1 Page 89 of 93



REPORT NO.: 4789884640-1 Page 90 of 93



REPORT NO.: 4789884640-1 Page 91 of 93



REPORT NO.: 4789884640-1 Page 92 of 93

REPORT NO.: 4789884640-1 Page 93 of 93

END OF REPORT

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.