

FCC Part 15.247

TEST REPORT

For

TRANSCEND INFORMATION INC.

No.70, Xingzhong Rd., Neihu Dist., Taipei City 114, Taiwan, R.O.C.

FCC ID: A4Z-B0046

Report Type: Original Report	Product Type: Body Camera		
Report Producer : <u>Jojo Lu</u>	I		
Report Number : <u>RXZ22</u>	1220003RF05		
Report Date : <u>2023-05</u>			
Reviewed By: <u>David I</u>	Hourd, Hou		
Prepared By: Bay Area	Compliance Laboratories Corp.		
(New Taip	ei Laboratory)		
70, Lane 1	69, Sec. 2, Datong Road, Xizhi Dist.,		
New Taipei City 22183, Taiwan, R.O.C.			
Tel: +886	(2) 2647 6898		
Fax: +886	(2) 2647 6895		
www.bacl.	com.tw		

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ221220003	RXZ221220003RF05	2023-05-04	Original Report	Jojo Lu

TABLE OF CONTENTS

1	Gei	neral Information	. 5
	1.1	Product Description for Equipment under Test (EUT)	
	1.2	Objective	
	1.3 1.4	Related Submittal(s)/Grant(s) Test Methodology	
	1.4	Statement of Compliance	
	1.6	Measurement Uncertainty	
	1.7	Environmental Conditions	8
	1.8	Test Facility	8
2	Sys	tem Test Configuration	. 9
	2.1	Description of Test Configuration	
	2.2	Equipment Modifications	
	2.3 2.4	EUT Exercise Software Test Mode	
	2.4	Support Equipment List and Details	
	2.6	External Cable List and Details	
	2.7	Block Diagram of Test Setup	
	2.8	Duty Cycle	
3	Sur	nmary of Test Results	16
4	Tes	t Equipment List and Details	17
5		C §15.247(i), §1.1307(b)(3)(i) - RF Exposure	
5			
	5.1 5.2	Applicable Standard RF Exposure Evaluation Result	
6		C §15.203 – Antenna Requirements	
	6.1	Applicable Standard	20
		Antenna List and Details	
7		C §15.207(a) – AC Line Conducted Emissions	
-	7.1	Applicable Standard	
		EUT Setup	
	7.3	EMI Test Receiver Setup	
	7.4	Test Procedure	
	7.5	Corrected Factor & Margin Calculation	
		Test Results	
8	FC	C §15.209, §15.205 , §15.247(d) – Spurious Emissions	25
	8.1	Applicable Standard	
	8.2	EUT Setup	
	8.3 8.4	EMI Test Receiver & Spectrum Analyzer Setup	
	8.5	Test Procedure Corrected Factor & Margin Calculation	
	8.6	Test Results	
9		C §15.247(a)(2) – 6 dB Emission Bandwidth	
	9.1	Applicable Standard	
	9.2	Test Procedure	
	9.3	Test Results	64
10	FC	C §15.247(b)(3) – Maximum Output Power	73

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ221220003RF05
10.1 Applicable Standard	
10.2 Test Procedure10.3 Test Results	
11 FCC§15.247(d) – 100 kHz Bandwidth of Frequency E	Band Edge 76
11.1 Applicable Standard	
11.2 Test Procedure11.3 Test Results	
12 FCC §15.247(e) – Power Spectral Density	
12.1 Applicable Standard	
12.2 Test Procedure	
12.3 Test Results	

1 General Information

Manufacturer	TRANSCEND INFORMATION INC.		
	No.70, Xingzhong Rd., Neihu Dist., Taipei City 114, Taiwan, R.O.C.		
Brand(Trade) Name	Transcend [®]		
Product (Equipment)	Body Camera		
Main Model Name	DrivePro Body 70		
	DPB70, DrivePro Body 7XXXXX, DPB7XXXXX,		
	TSXXXXDPB7XXXXX, DrivePro Body 60, DPB60, DrivePro		
Carias Madal Nama	Body 6XXXXX, DPB6XXXXX,		
Series Model Name	TSXXXXDPB6XXXXX		
	(Multiple Listing: The "X" in the Model Number could be defined as		
	AZ, 0-9, -, _, or blank for marketing differentiation.)		
Model Discrepancy	Reference below ** Model Discrepancy statement:		
	IEEE 802.11b/g/n HT20 Mode: 2412 ~ 2462 MHz		
Frequency Range	IEEE 802.11n HT40 Mode: 2422 ~ 2452 MHz		
	BLE(1M): 2402 ~ 2480 MHz		
	IEEE 802.11b Mode: 13.42 dBm		
Construction 1 Account of Continued	IEEE 802.11g Mode: 5.83 dBm		
Conducted Average Output	IEEE 802.11n HT20 Mode: 5.25 dBm		
Power	IEEE 802.11n HT40 Mode: 6.09 dBm		
	BLE(1M) Mode : 2.87 dBm		
	IEEE 802.11b Mode: DSSS		
Modulation Technique	IEEE 802.11g/n HT20/n HT40 Mode: OFDM		
	BLE(1M) Mode: GFSK		
Power Operation (Voltage Range)	 AC Adapter Brand Name: APD Model:WB-10G05R I/P:AC 100V~240V~50-60Hz O/P:DC 5V/2A By AC Power Cord DC Type Battery 3.6V li-polymer battery pack Model:DPB30 DC Power Supply External from USB Cable 		
Received Date	2022-12-20		
Date of Test	2022-12-23~2023-05-03		

1.1 Product Description for Equipment under Test (EUT)

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 5 of 92 *All measurement and test data in this report was gathered from production sample serial number: RXZ221220003-1-1&RXZ221220003-1-2 (Assigned by BACL (New Taipei Laboratory)).

** Model Discrepancy statement:

A description of the differences between the tested model and those that are declared similar are as follows:

Model Name	DrivePro Body 70	
	DPB70, DrivePro Body 7XXXXX, DPB7XXXXX, TSXXXXDPB7XXXXX,	DrivePro Body 60, DPB60, DrivePro Body 6XXXXX, DPB6XXXXX, TSXXXXDPB6XXXXX
Serial Model Name	(Multiple Listing: The "X" in the Model Number could be defined as A- Z, 0-9, -, _, or blank for marketing differentiation.)	(Multiple Listing: The "X" in the Model Number could be defined as A-Z, 0-9, -, _, or blank for marketing differentiation.)
Difference Description	F/W version is 0.9.12, camera outlook is round	F/W version is 0.9.7 , camera outlook is square

1.2 Objective

This report is prepared on behalf of **TRANSCEND INFORMATION INC.** in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules. The objective is to determine compliance with FCC Part 15.247 rules for Output Power, Antenna Requirements, 6 dB Bandwidth, Power Spectral Density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions.

1.3 Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS submissions with FCC ID: A4Z-B0046

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices KDB 558074 D01 15.247 Meas Guidance v05r02

1.5 Statement of Compliance

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

Parameter		Uncertainty
AC Mains		±2.36 (dB)
RF output power, conducte	d	±0.93 (dB)
Power Spectral Density, co	nducted	±0.92 (dBm/kHz)
Occupied Bandwidth		±0.35 (MHz)
Unwanted Emissions, conducted		±1.69 (dB)
	30 MHz~1GHz	±5.22(dB)
Emissions radiated	1 GHz~6 GHz	±6.12(dB)
Emissions, radiated	6 GHz~18 GHz	±6.12(dB)
	18 GHz~40 GHz	±4.99(dB)
Temperature		+/- 1.27 °C
Humidity		+/- 3 %

1.6 Measurement Uncertainty

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2022-12-28	20.6	70	1010	Andy Cheng
Radiation Spurious Emissions	2022-12-23~2022-12-30	16.8~19.8	50~74	1010	Aaron Pan Jim Chen
Conducted Spurious Emissions	2023-04-14	23.1	61	1010	Andy Cheng
6 dB Emission Bandwidth	2022-12-29	24.2	47	1010	Andy Cheng
Maximum Output Power	2023-04-14	23.1	61	1010	Andy Cheng
100 kHz Bandwidth of Frequency Band Edge	2023-04-14	23.1	61	1010	Andy Cheng
Power Spectral Density	2023-04-19~2023-05-03	24.4~24.8	55~60	1010	Aaron Pan

1.7 Environmental Conditions

1.8 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2 System Test Configuration

2.1 Description of Test Configuration

For WIFI mode, there are totally 11 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

For 802.11 b/g/n20 Modes were tested with channel 1, 6 and 11.

For 802.11n40 Mode were tested with channel 3, 6 and 9.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
2	2406		
3	2408	37	2476
		38	2478
19	2440	39	2480

For BLE mode, there are totally 40 channels.

For BLE Modes were tested with channel 0, 19 and 39.

The system was configured for testing in engineering mode, which was provided by manufacturer.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The test software was used "Putty"

Test Frequency		Low	Mid	High
	B Mode	35	35	35
	G Mode	30	30	30
Power Level Setting	N20 Mode	29	29	29
	N40 Mode	31	31	31
	BLE 1M	0x1C	0x1C	0x1C

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

802.11b: 1Mbps

802.11g: 6Mbps

802.11n HT20: MCS0

802.11n HT40: MCS0

BLE 1M: 1 Mbps

2.4 Test Mode

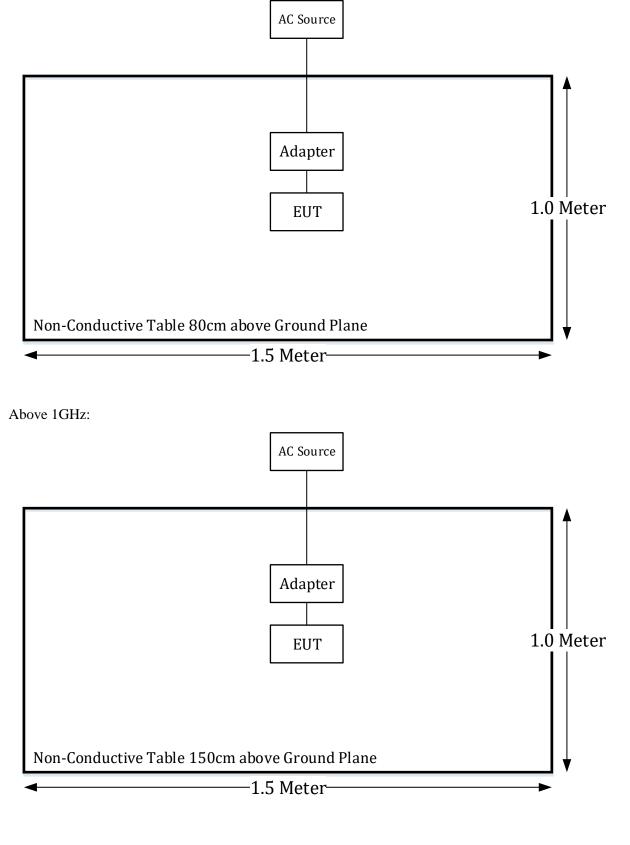
There are two modes:

MODE1: DrivePro Body 70 (Sample serial number: RXZ221220003-1-1).

MODE2: DrivePro Body 60 (Sample serial number: RXZ221220003-1-2).

After pre scan, mode1 was the worst case which was used for all the test items.

Full System (model: **DrivePro Body 70**) for all test item.

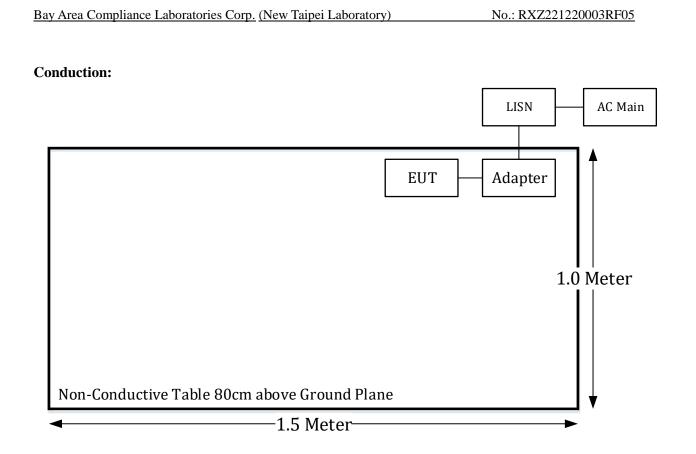

2.5 Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
Adapter	Asian Power Devices	WB-10G05R	Y17310056692

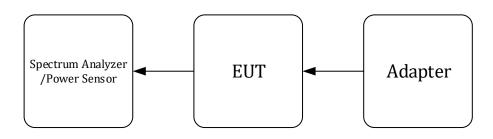
2.6 External Cable List and Details

Cable Description Length (m)		From	То	
USB to 3.5mm Cable	1m	Adapter	EUT	

See test photographs attached in setup photos for the actual connections between EUT and support


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 11 of 92

Block Diagram of Test Setup


2.7

equipment.

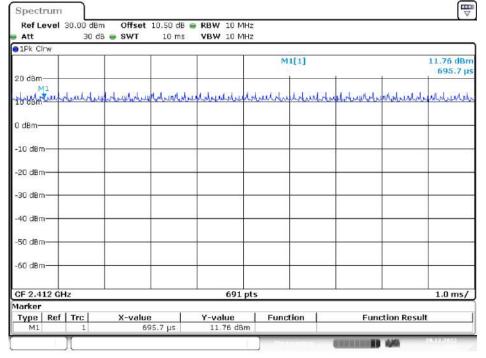
Radiation:

Conducted:

2.8 Duty Cycle

The duty cycle as below:

Dadia Mada	Radio Mode On Time (ms)		Duty Cycle	Duty Cycle Correction Factor
Kaulo Mode			(%)	(dB)
802.11b	1	0	100	0
802.11g	1	0	100	0
802.11n20	1	0	100	0
802.11n40	1	0	100	0
BLE(1M)	1	0	100	0


Note: Duty Cycle Correction Factor = 10*log (1/duty cycle)

Please refer to the following plots.

	• Offset 10.50 d • SWT 10 m	B 🖶 RBW 10 MH: s VBW 10 MH:			
1Pk Cirw			M1[1]		12.90 dBr 695.7 µ
20 dBm M1			1	1 1	0.0.7
10 dBm					
) dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
GF 2.412 GHz		691 pl	ts		1.0 ms/
larker Type Ref Trc	X-value	Y-value	Function	Function	

B Mode

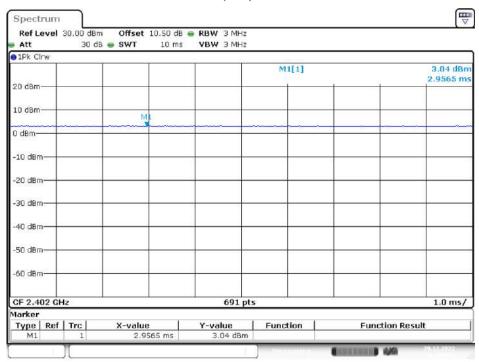
Date: 29.DEC.2022 10:56:15

G Mode

Date: 29.DEC.2022 11:12:07

N20 Mode

Att	vel 30.00 dBr 30 d		0 dB 👄 RBW 10 1 0 ms VBW 10 1				
1Pk Cir	W						
				M1[1	1		11.31 dBr 6.5507 m
20 dBm-					MI		
194994		mappendication	mahanamhana	appendicted and	Up Ballangerthing	understand higher	An Marthan Marth
0 d8m—							
-10 dBm-							
-20 dBm-							-
-30 dBm-							
-40 dBm-	_						-
-50 dBm-							
-60 dBm-			12				-
CF 2.41	2 GHz		691	L pts			1.0 ms/
larker		22.100 No.22.000	1 (1822) (1823) (1844)		22 JUNE		10)
Type M1	Ref Trc	X-value 6.5507 (<u>Y-value</u> ms 11.31 d	Function	n	Function Resu	lt


Date: 29.DEC.2022 11:16:28

Ref Level	30.00 dBm	Offset	10.50 dB 🖷	RBW 10 MH	:		
Att	30 dB	. SWT	10 ms	VBW 10 MHz	2		
1Pk Clrw				5	1.1.11.111		11.000
					M1[1]		8.70 dBr
20 dBm							6.5507 m
10.dam	Astrait aller	sikanatasalin dan	Lote a little hales	AND MARIE AMER	h anno da da han a	M1	unuhran Mugmanuhr
a construction of the		-000 -00		1	are a constrained of the		
0 dBm				-			
10.10							
-10 dBm							
-20 dBm							
-30 dBm				-			
-40 dBm							
50 JD-							
-50 dBm							
-60 dBm							
CF 2.422 GH	7			691 pt	· c		1.0 ms/
larker	-			Ustp			1.0 1137
Type Ref	Trc	X-value		Y-value	Function	Fui	nction Result
M1	1	6.55	507 ms	8.70 dBm			

N40 Mode

Date: 29.DEC.2022 11:18:28

BLE (1M) Mode

Date: 29.DEC.2022 07:58:41

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1307(b)(3)(i)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

4 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
	AC I	Line Conduction H	Room (CON-A)	2	2 40 2 400
LISN	Rohde & Schwarz	ENV216	101248	2022/6/22	2023/6/21
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2022/6/16	2023/6/15
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2022/7/19	2023/7/18
RF Cable	EMEC	EM-CB5D	1	2022/6/7	2023/6/6
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
	I	Radiation 3M Roo	om (966-A)		
Active Loop Antenna	ETS-Lindgren	6502	35796	2022/3/25	2023/3/24
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/15542_01	2022/2/14	2023/2/13
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2022/11/2	2023/11/1
Horn Antenna	EMCO	SAS-571	1020	2022/5/25	2023/5/24
Horn Antenna	ETS-Lindgren	3116	62638	2022/8/18	2023/8/17
Preamplifier	Sonoma	310N	130602	2022/6/16	2023/6/15
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2023/1/6	2024/1/5
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2023/2/1	2024/1/31
Coaxial Cable	COMMATE	PEWC	8Dr	2022/12/24	2023/12/23
Coaxial Cable	JUNFLON	J12J102248- 00-B-5	AUG-07-15-044	2022/12/24	2023/12/23
Preamplifier	A.H. system Inc.	PAM-0118P	470	2022/3/28	2023/3/27
Software	AUDIX	E3	18621a	N.C.R	N.C.R
		Conducted	Room		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101204	2022/6/16	2023/6/15
Cable	UTIFLEX	UFA210A	9435	2022/10/3	2023/10/2
Attenuator	MINI-CIRCUITS	BW-S10W5+	1419	2022/2/11	2023/2/10
		D. 010005	1717	2023/2/2	2024/2/1
OSP	Rohde & Schwarz	OSP-B157W8	1A322C4	2022/5/13	2023/5/12

***Statement of Traceability:** BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

5 FCC §15.247(i), §1.1307(b)(3)(i) - RF Exposure

5.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph
(b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph
(b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *Pth* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz

(inclusive). *Pth* is given by:

	$P_{th} (mW) =$	$\begin{cases} ERP_{20\ cm}(d/2) \\ ERP_{20\ cm} \end{cases}$	20 cm)*	$d \le 20 \text{ cm}$ $20 \text{ cm} < d \le 100 \text{ cm}$	≤ 40 cm
Where					
	<i>x</i> = -	$-\log_{10}\left(\frac{6}{ERP_{20}}\right)$	$\left(\frac{0}{cm\sqrt{f}}\right)$	and <i>f</i> is in GHz	:
and					
	FRI	$P_{20 \ em} \ (mW) =$	∫ ²⁰⁴⁰ f	$0.3 \text{ GHz} \leq f$	$< 1.5 \mathrm{GHz}$
	LA	20 cm (1111) -	(3060	$1.5 \text{ GHz} \leq f$	$\leq 6 \mathrm{GHz}$

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine
Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 18 of 92

5.2 **RF Exposure Evaluation Result**

Project info

Band	Freq (MHz)	Turn-up Average Power (dBm)	Ant Gain (dBi)	Distances (mm)	Turn-up (mW)	ERP (dBm)	ERP (mW)
BLE	2480	3	2.64	5	2.00	3.49	2.23

1.1307(b)(3)(i)(A) and 1.1307(b)(3)(i)(C) method os not applicable.

§ 1.1307(b)(3)(i)(B)

Band	Freq	Pth	v	ERP 20cm	Result
	(MHz)	(mW)	^	(mW)	Option B
BLE	2480	2.72	1.905	3060	exempt

The available maximum time-averaged power or effective radiated power (ERP), whichever is greater.

This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive).

Note: For Wi-Fi 2.4G compliance assessment, please refer to SAR report: RXZ22122003SA01.

Result: The device meets the exemption requirement.

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

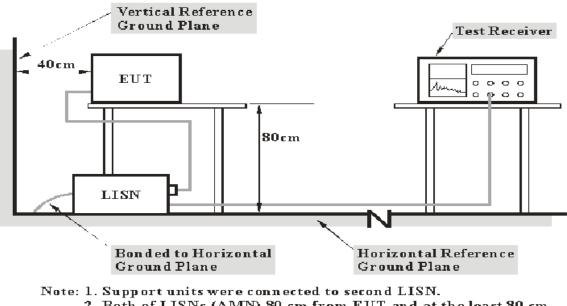
6.2 Antenna List and Details

Manufacturer	Model	Antenna Type	Antenna Gain
Walsin Technology Corporation	RFECA3216060A1T	Chip	2.64 dBi

Result: Compliance

7 FCC §15.207(a) – AC Line Conducted Emissions

7.1 Applicable Standard


According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56 (Note 1)	56 to 46 (Note 1)	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency.

7.2 EUT Setup

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

7.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

7.5 Corrected Factor & Margin Calculation

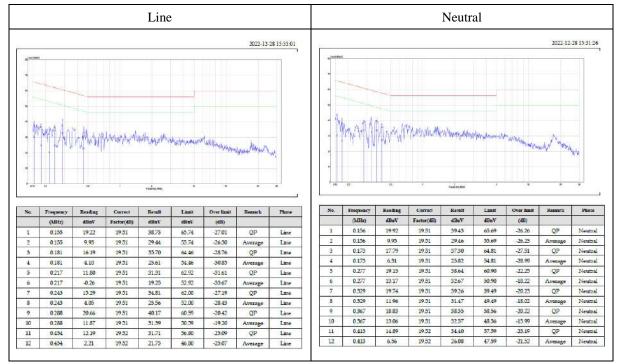
The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


No.: RXZ221220003RF05

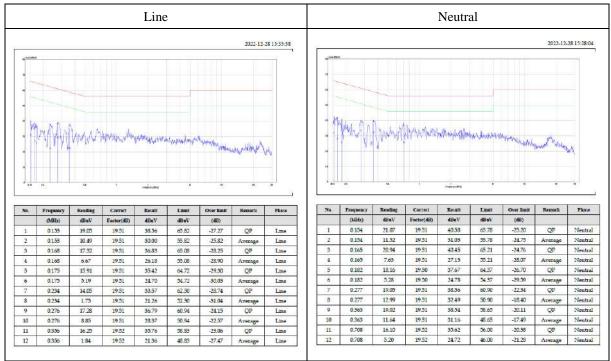
7.6 Test Results

Test Mode: Transmitting

Power: AC120V/60Hz

WIFI Mode (Worst case is 802.11b mode, Middle Channel)

Note:


Result = Reading +Correct Factor

Over Limit = Result– Limit Line

Correct Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Power: AC120V/60Hz

BLE Mode (Worst case is BLE (1M) mode Middle Channel)

Note:

Result = Reading +Correct Factor

Over Limit = Result- Limit Line

Correct Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

8 FCC §15.209, §15.205 , §15.247(d) – Spurious Emissions

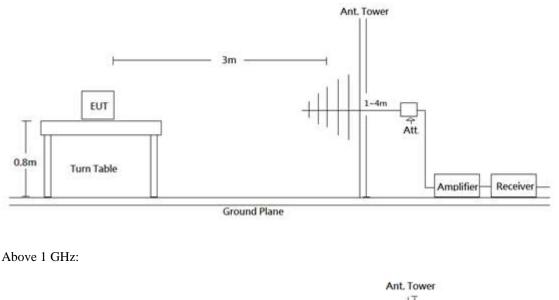
8.1 Applicable Standard

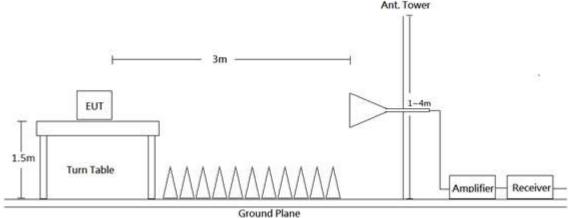
As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4.5-5.15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5. 35 – 5. 46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 - 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an


Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3


** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(c).

8.2 EUT Setup

Below 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	/	QP
	1 MHz	3 MHz	/	РК
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

8.5 Corrected Factor & Margin Calculation

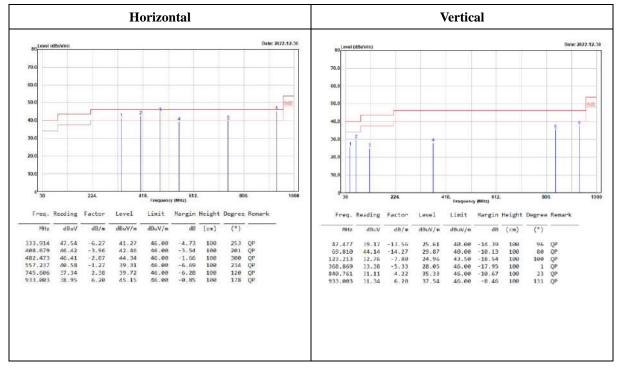
The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Result – Limit

8.6 Test Results

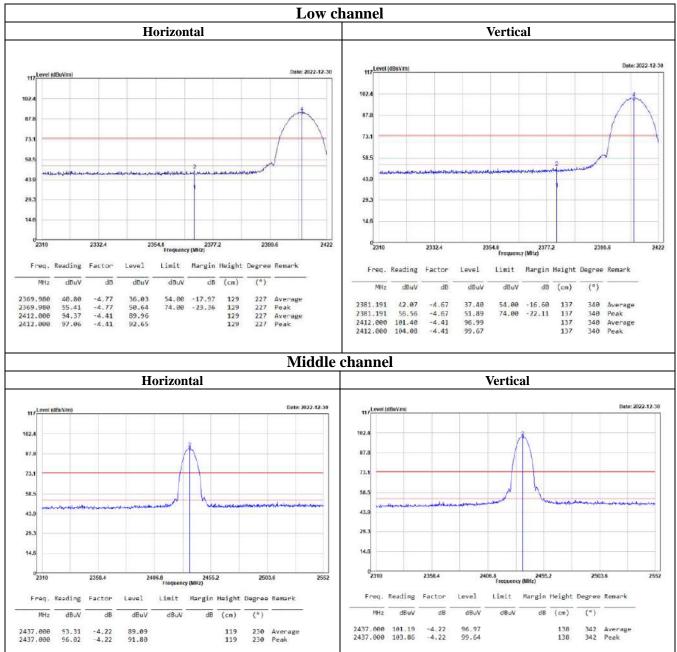

Test Mode: Transmitting

WIFI Mode (Pre-scan with three orthogonal axis, and worse case as Y axis.)

(Worst case is 802.11b mode Middle channel)

30MHz-1GHz

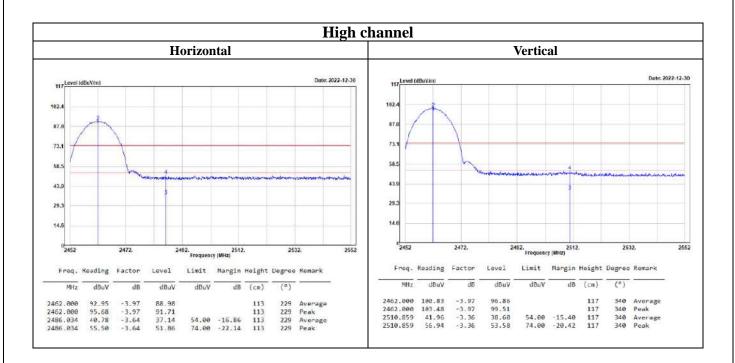
Power: AC120V/60Hz



Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Fundamental:

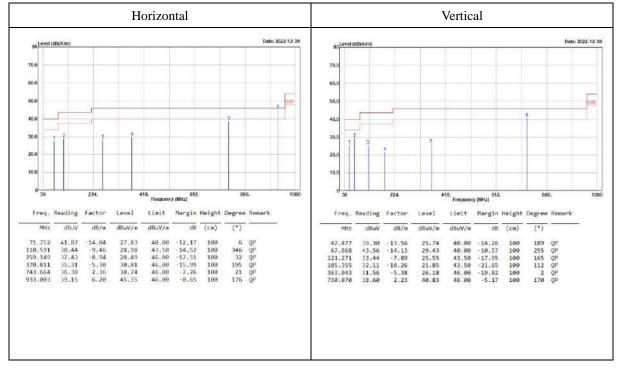
Level = Reading + Factor.

Margin = Level - Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Level = Reading + Factor.

Margin = Level – Limit.

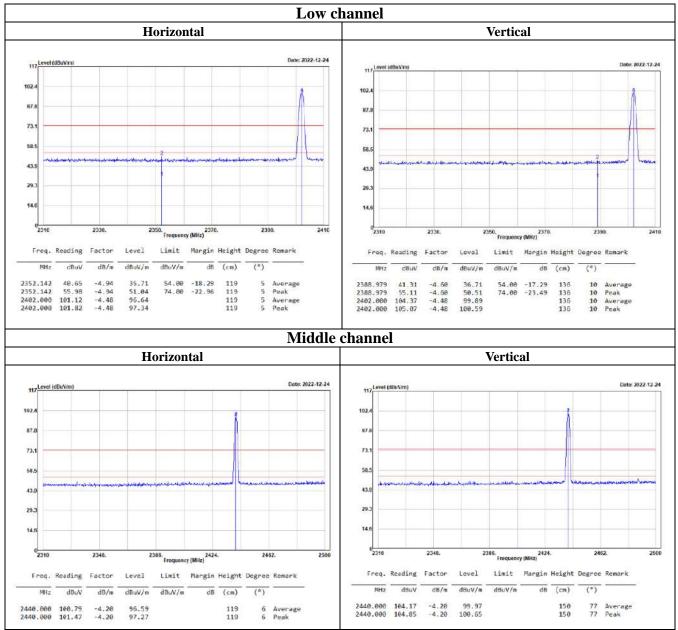

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

 $BLE \ (1M) \ Mode \ (\mbox{Pre-scan with three orthogonal axis, and worse case as Y axis.)}$

(Worst case is BLE (1M) mode Middle channel)

Power: AC120V/60Hz

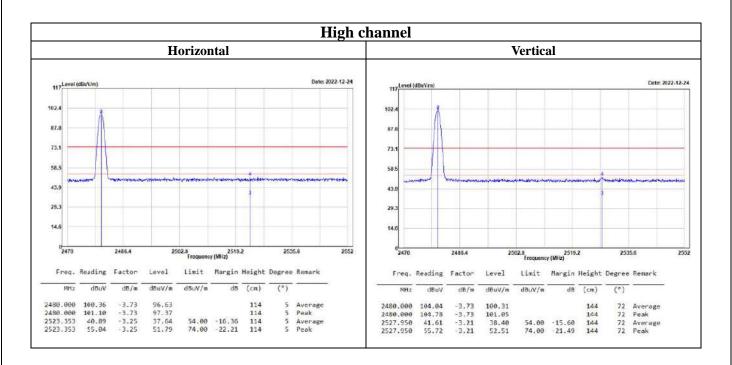
30MHz-1GHz



Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Fundamental:

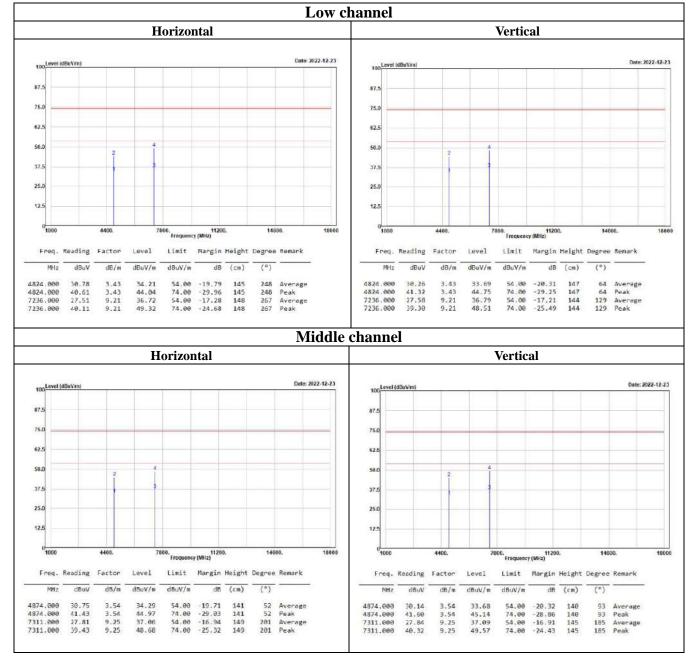
Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Level = Reading + Factor.

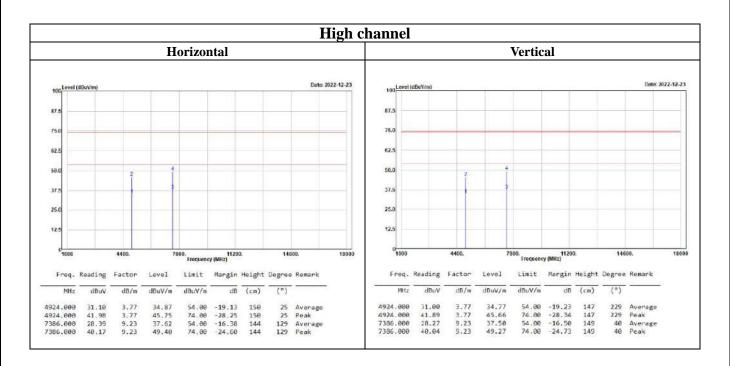
Margin = Level – Limit.


Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Above 1GHz

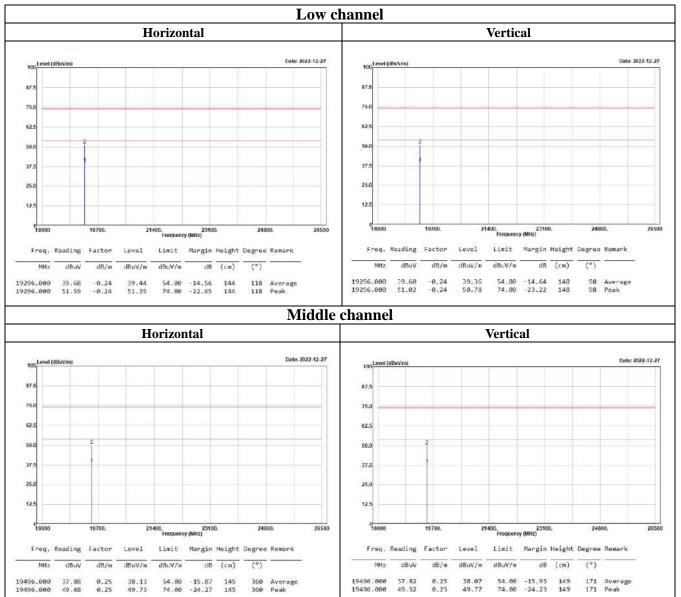
B Mode

Power: AC120V/60Hz


1GHz-18GHz:

Level = Reading + Factor.

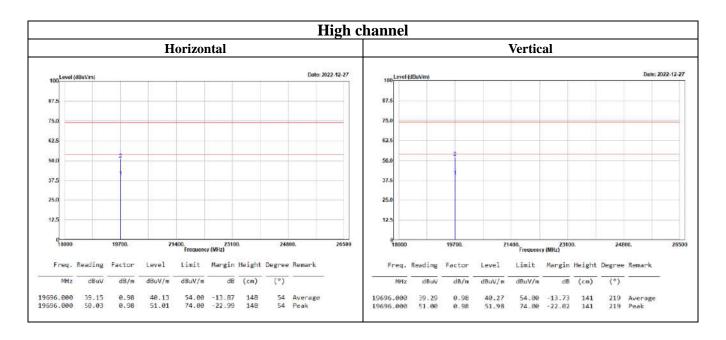
Margin = Level – Limit.


 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

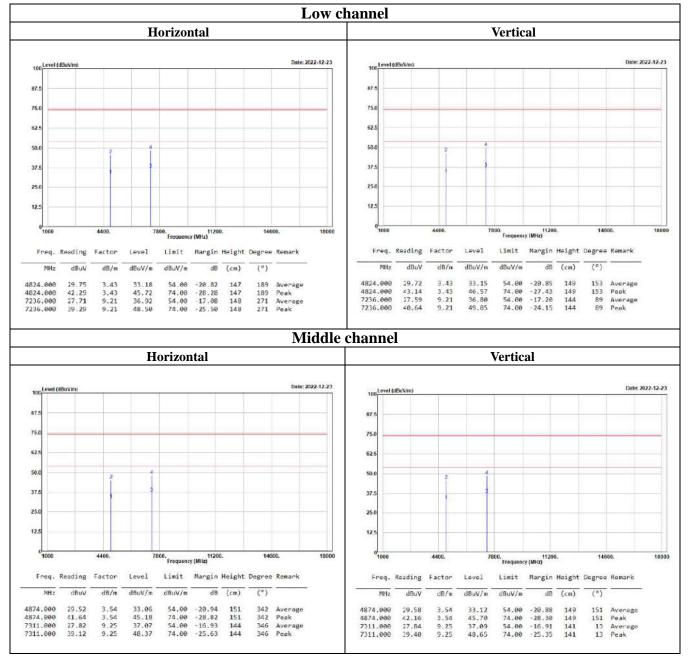


18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level – Limit.

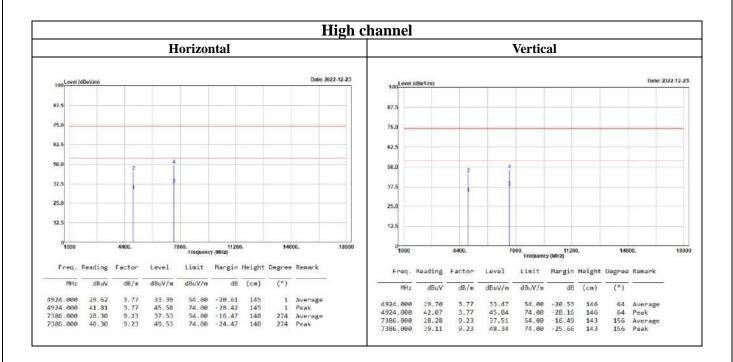
Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Margin = Level – Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

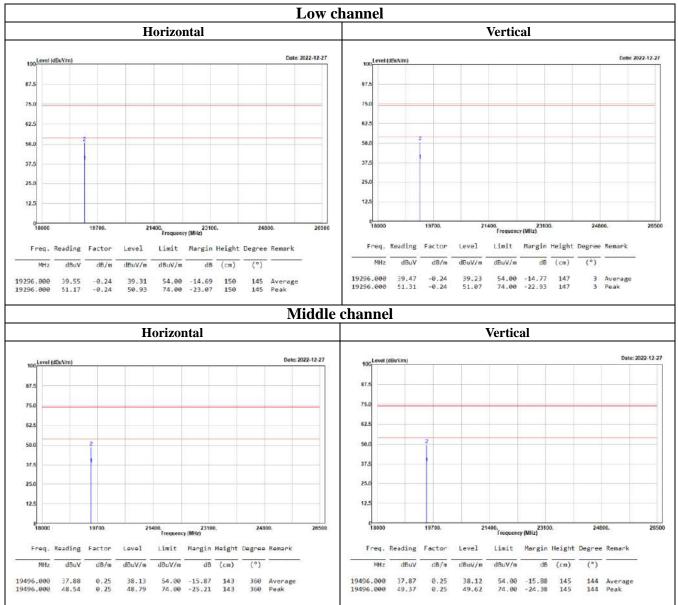
G Mode

Power: AC120V/60Hz


1GHz-18GHz:

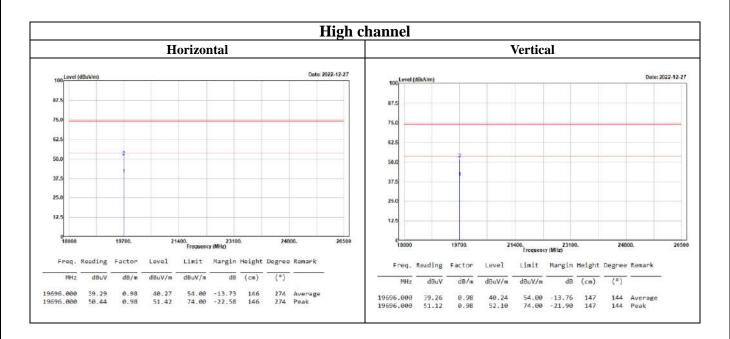
Level = Reading + Factor.

Margin = Level - Limit.


Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Margin = Level – Limit.

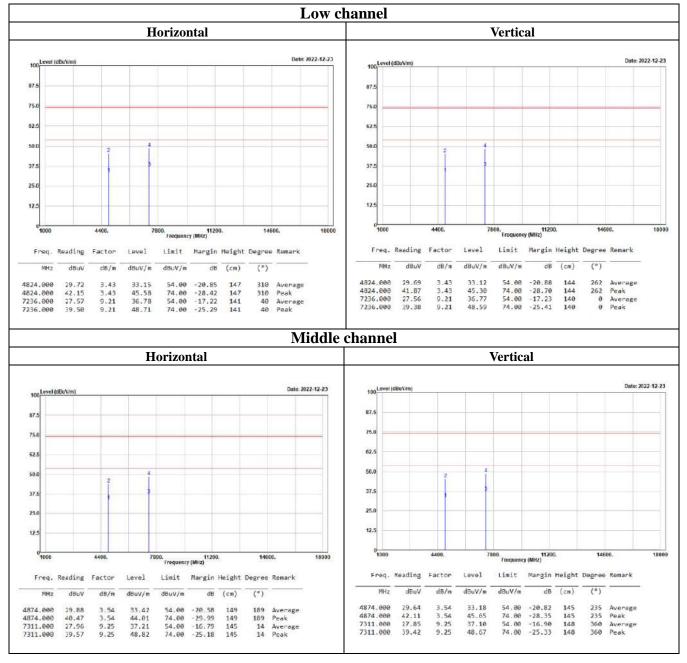
Factor = Antenna Factor + Cable Loss – Amplifier Gain.


18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level – Limit.

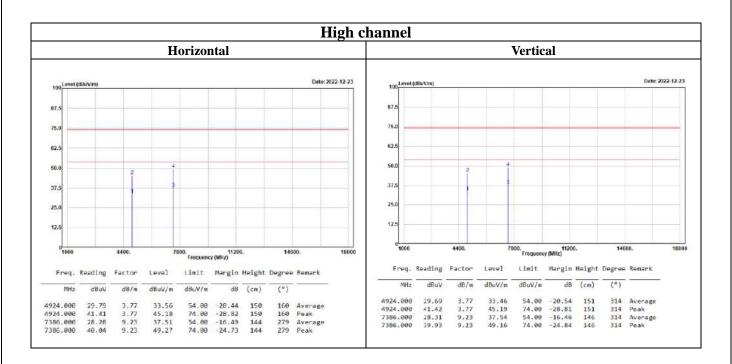
Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Margin = Level – Limit.

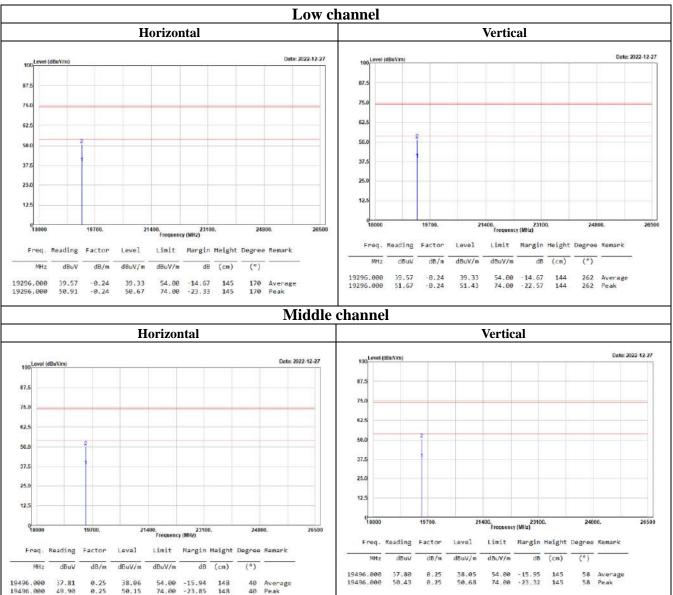
 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

N20 Mode

Power: AC120V/60Hz


1GHz-18GHz:

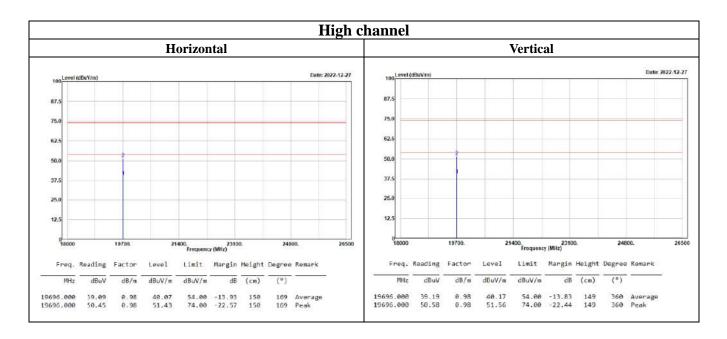
Level = Reading + Factor.


Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

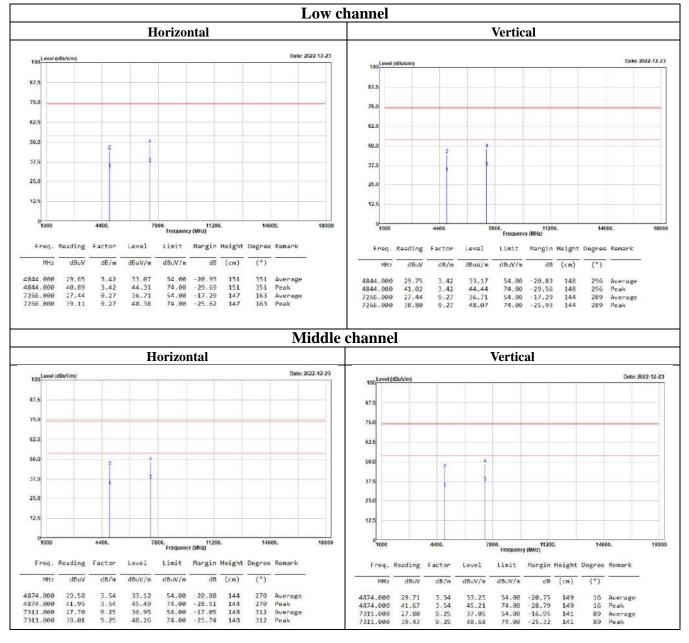


18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level – Limit.

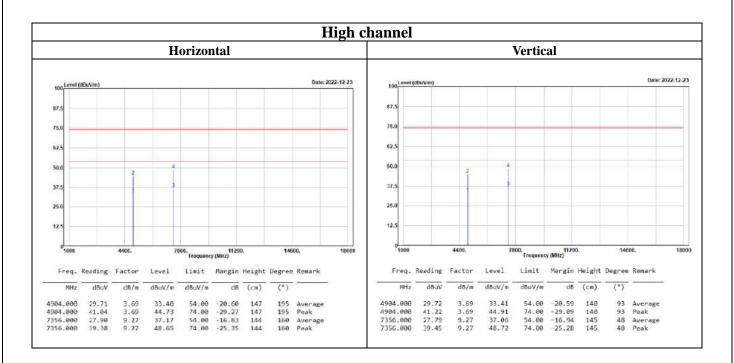
Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Margin = Level – Limit.

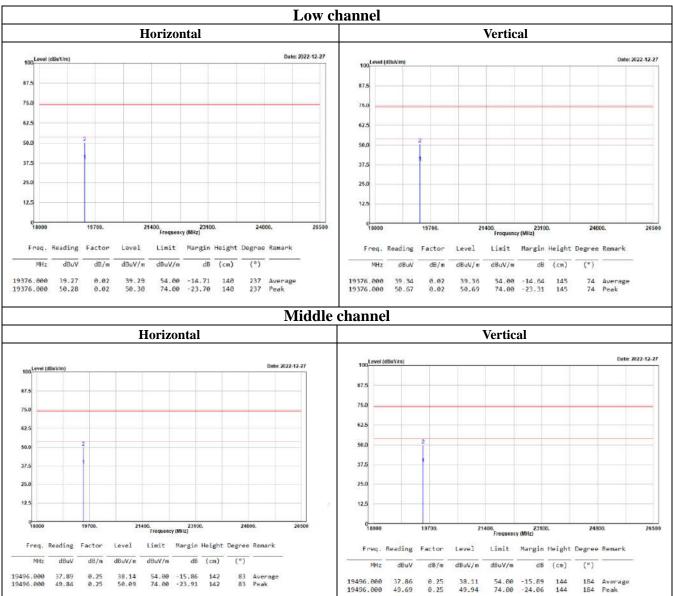
 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

N40 Mode

Power: AC120V/60Hz


1GHz-18GHz:

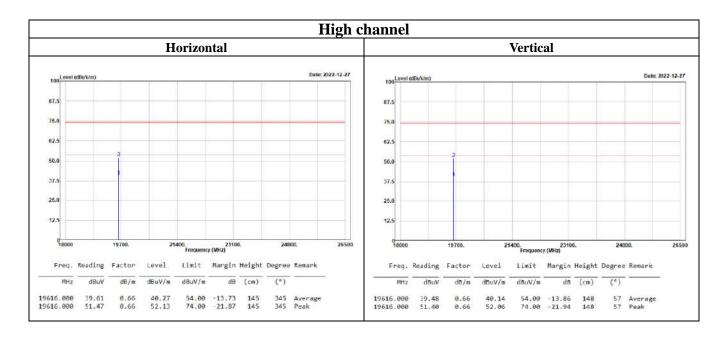
Level = Reading + Factor.


Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

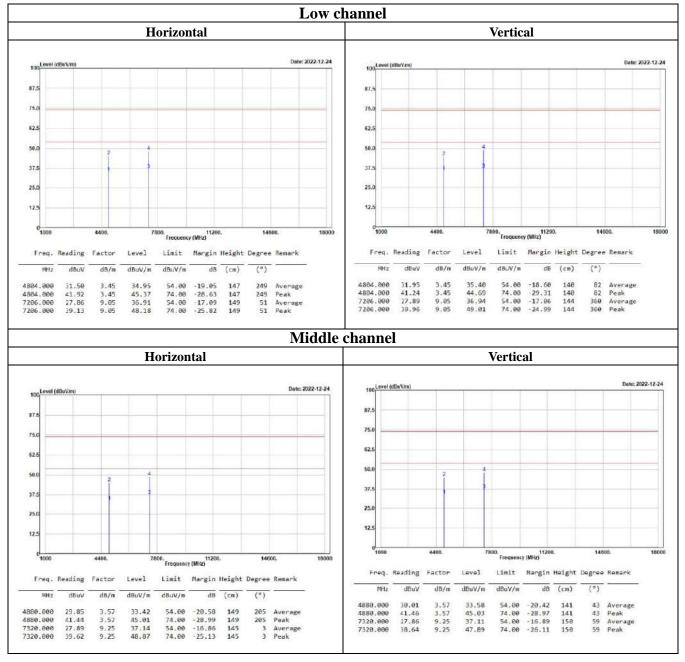


18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level – Limit.

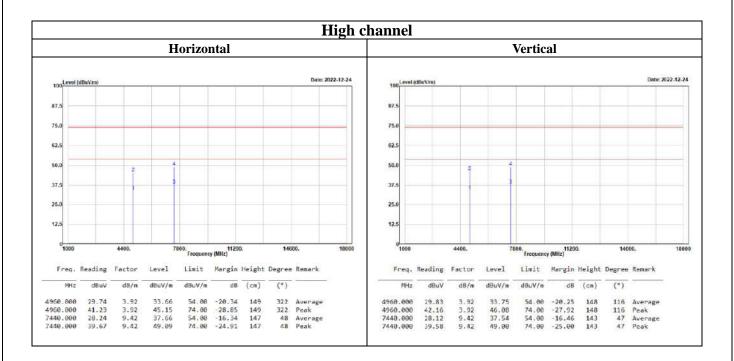
Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Margin = Level – Limit.

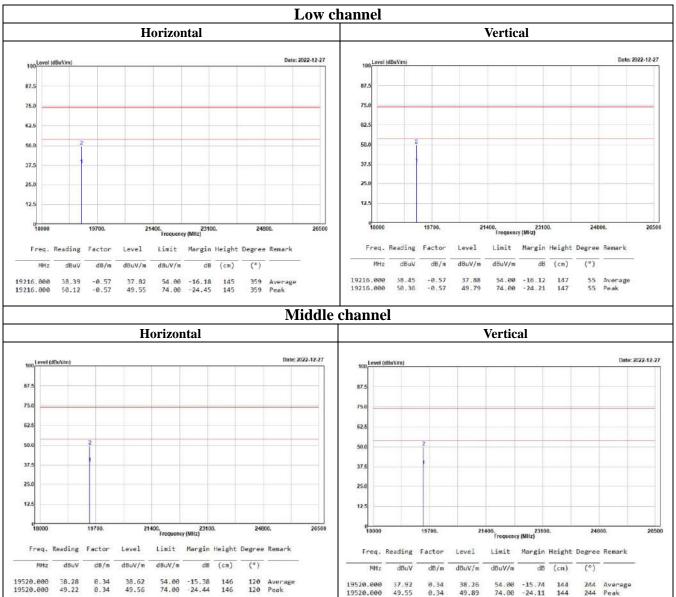
 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

BLE (1M) Mode

Power: AC120V/60Hz


1GHz-18GHz:

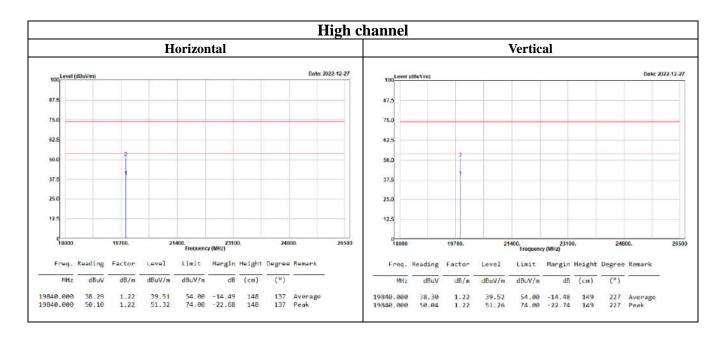
Level = Reading + Factor.


Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

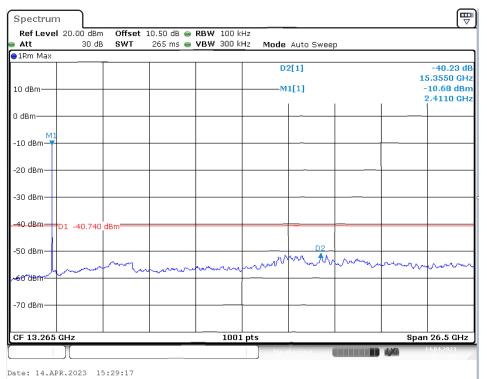


18GHz-26.5GHz:

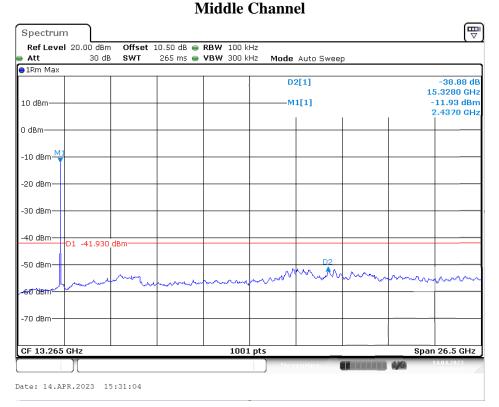
Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.


Margin = Level – Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

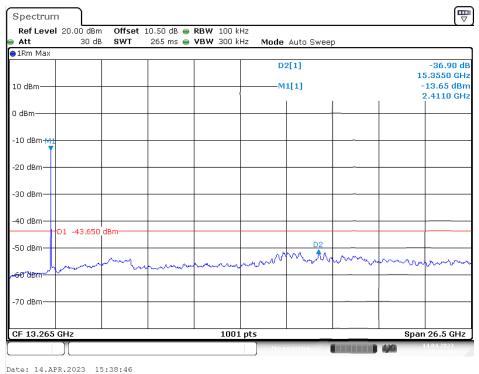

No.: RXZ221220003RF05

Conducted Spurious Emissions:

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result				
B Mode								
Low	2412	40.23	≥ 30	PASS				
Mid	2437	38.88	≥ 30	PASS				
High	2462	39.25	≥ 3 0	PASS				
G Mode								
Low	2412	36.90	≥ 30	PASS				
Mid	2437	36.79	≥ 30	PASS				
High	2462	35.90	≥ 30	PASS				
N20 Mode								
Low	2412	37.10	≥ 30	PASS				
Mid	2437	36.40	≥ 30	PASS				
High	2462	35.56	≥ 30	PASS				
N40 Mode								
Low	2422	35.61	≥ 30	PASS				
Mid	2437	36.36	≥ 30	PASS				
High	2452	34.25	≥ 30	PASS				
BLE(1M) Mode								
Low	2402	34.53	≥ 30	PASS				
Mid	2440	31.62	≥ 30	PASS				
High	2480	31.33	≥ 3 0	PASS				

B Mode Low Channel

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 55 of 92



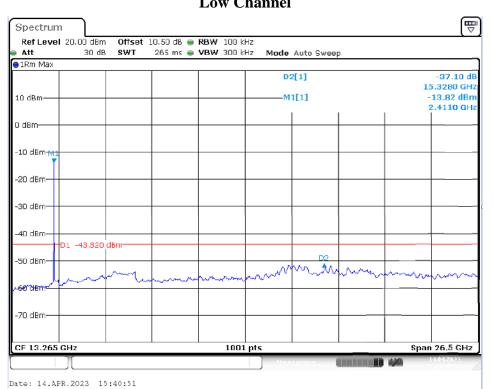
High Channel

Date: 14.APR.2023 15:33:24

G Mode

Low Channel

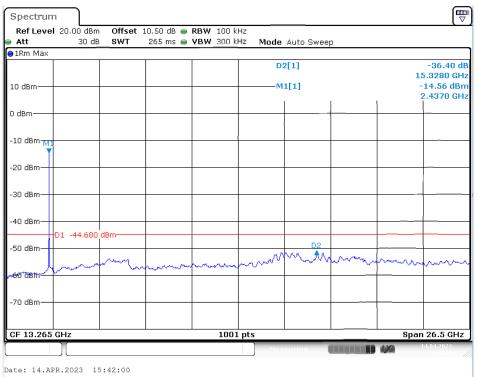
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 56 of 92

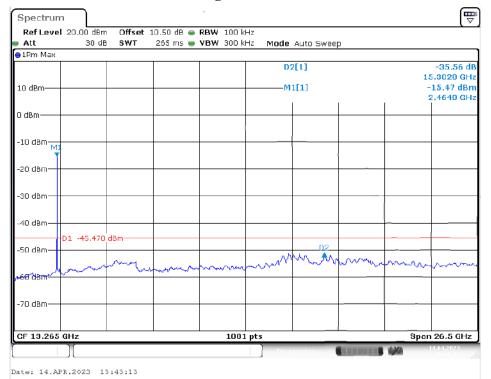

Ref Level 20.00 dBm	Offset 10.50 dB	RBW 100 kHz		(
Att 30 dB			a Auto Sweep	
1Rm Max				
		C)2[1]	-36.79 di 15.3280 GH
10 dBm		- N	41[1]	-14.01 dBn 2.4370 GH
0 dBm				
-10 dBm-141				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm			D2	
-60 dBm	mound	mmm		
-70 dBm			+ +	
CF 13.265 GHz		1001 pts		

Middle Channel

Date: 14.APR.2023 15:37:04

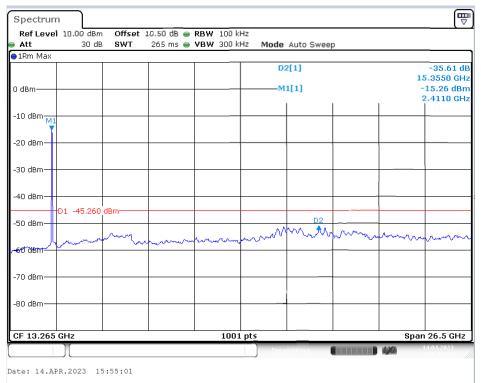
High Channel

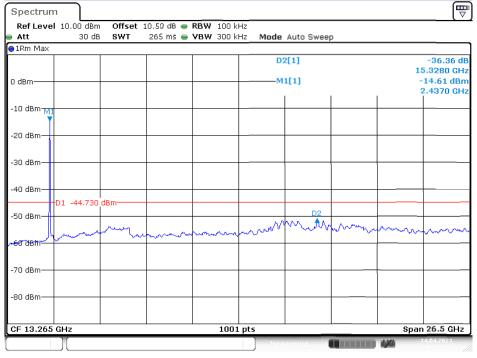

		00 kHz Mode Auto Swee	Υ	
1Rm Max		D2[1]		
		02[1]		15.3030 GH
) dBm		M1[1]		-14.98 dB
			1 1	2.4620 GF
dBm				
.0 dBm		-		
T I				
0 dBm				
0 dBm				
O dBm				
D1 -44.980 dBm		D2		
i0 dBm		month	0.000	
- Annon	monorm	marrie area	hand	www.
o dBm				
in draw				
O dBm				
F 13.265 GHz	1	.001 pts	· ·	Span 26.5 GHz


N20 Mode

Low Channel

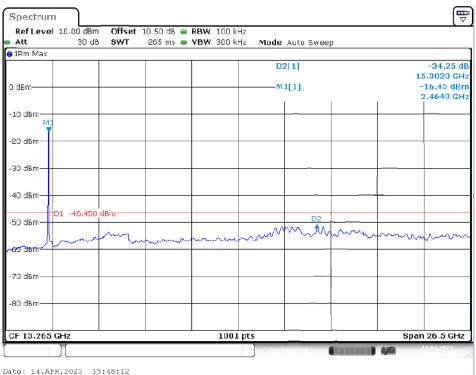
Middle Channel

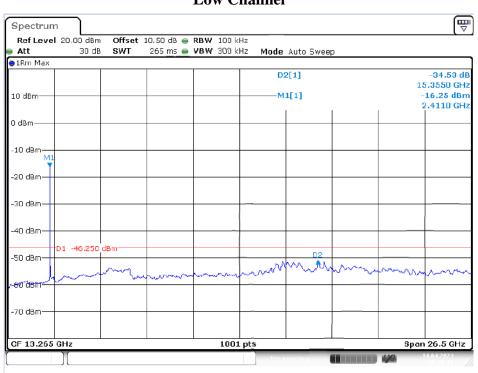

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 58 of 92 (New Taipei Laboratory)


High Channel

N40 Mode

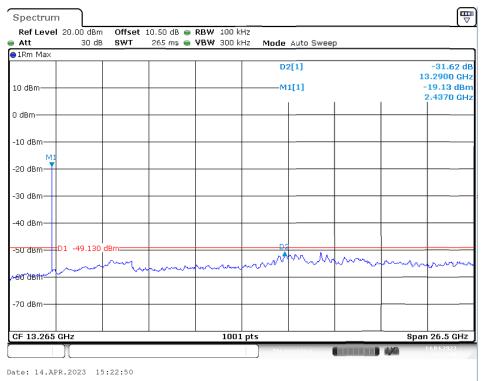
Low Channel


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 59 of 92


Middle Channel

Date: 14.APR.2023 15:53:23

High Channel


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 60 of 92

BLE (1M) Mode Low Channel

Date: 14.APR.2023 15:19:18

Middle Channel

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 61 of 92

Spectrum Ref Level		0#+	10.50 dB 👄	BBUL 100	4.12	_			U U V
Att	20.00 aBm 30 dB	SWT		VBW 300		Auto Swee	n		
1Rm Max	30 40		200 110	1011 300	ine moue	Auto Swee	Ρ		
					D	2[1]			-31.33 di
									5.2750 GH
10 dBm					M	1[1]			-19.32 dBn 2.4900 GH
						1	1	1	2.4900 GH
0 dBm									
							1		
-10 dBm									
MI									
-20 dBm 🕂								<u> </u>	
-30 dBm									———
									1
-40 dBm									
-50 dBm	1 -49.320	dBm==				<u>D2</u>			
 		my			mont	mar	m	mon	mm
-eo dem 4		\sim	m	n					v
-70 dBm									
CF 13.265 (GHz			100	1 pts			Spar	n 26.5 GHz
	Л				Mea	suring		4.764	14.04.2023
	R.2023 15								

High Channel

9 FCC §15.247(a)(2) – 6 dB Emission Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

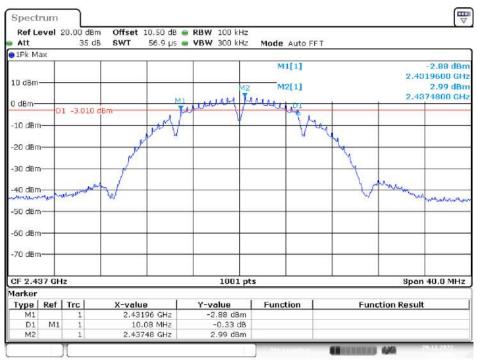
9.2 Test Procedure

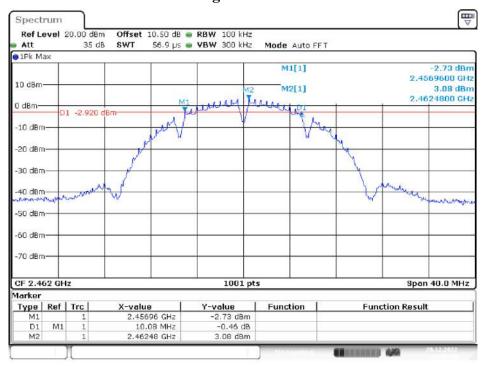

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

9.3 Test Results

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	Result					
B Mode									
Low	2412	10.08	> 500	PASS					
Middle	2437	10.08	> 500	PASS					
High	2462	10.08	> 500	PASS					
G Mode									
Low	2412	16.56	> 500	PASS					
Middle	2437	16.56	> 500	PASS					
High	2462	16.56	> 500	PASS					
N20 Mode									
Low	2412 17.76		> 500	PASS					
Middle	2437	17.76	> 500	PASS					
High	2462	17.76	> 500	PASS					
N40 Mode									
Low	2422	36.32	> 500	PASS					
Middle	2437	36.32	> 500	PASS					
High	2452	36.40	> 500	PASS					
BLE(1M) Mode									
Low	2402	0.504	> 500	PASS					
Middle	2440	0.501	> 500	PASS					
High	2480	0.501	> 500	PASS					

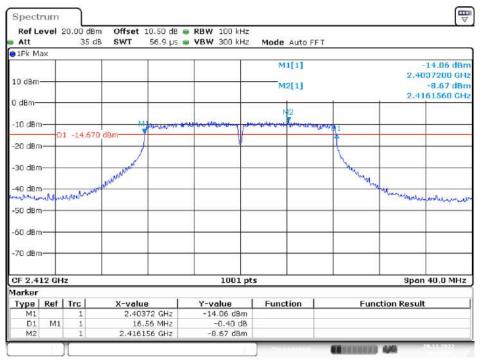

Please refer to the following plots


B Mode Low Channel

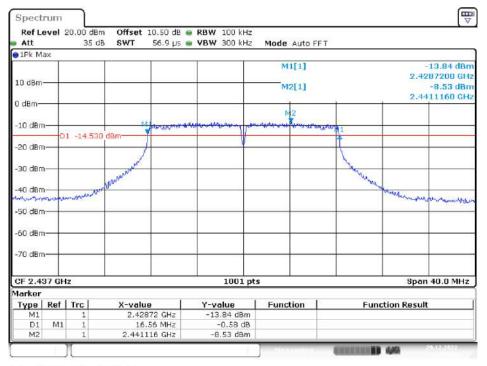
Date: 29.DEC.2022 13:36:19

Middle Channel

Date: 29.DEC.2022 13:39:02

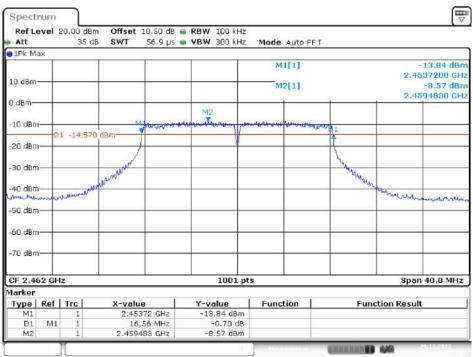


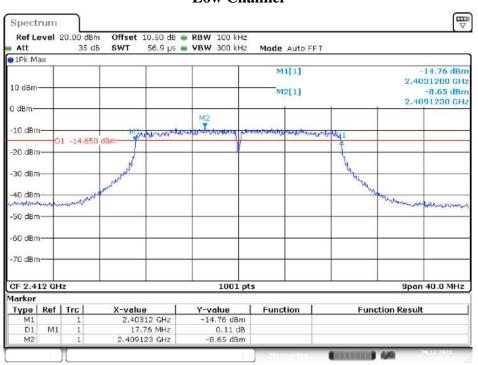
High Channel


Date: 29.DEC.2022 13:40:47

G Mode

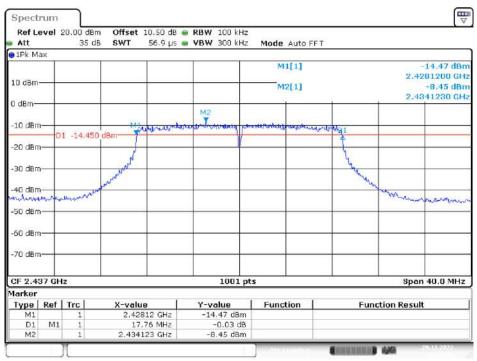
Low Channel

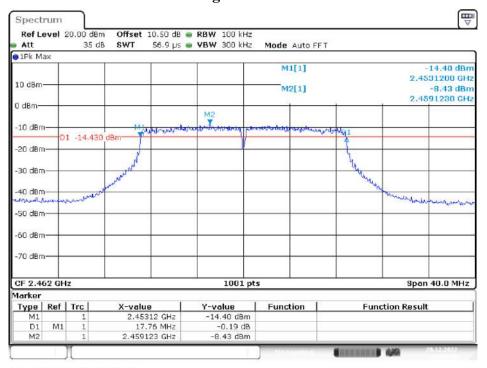

Date: 29.DEC.2022 13:25:31


Middle Channel

Date: 29.DEC.2022 13:28:09

High Channel

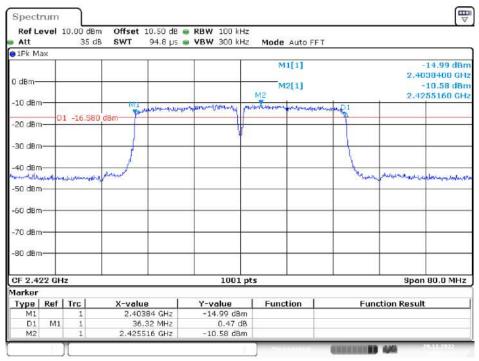

Date: 29.DEC.2022 13:29:54


N20 Mode Low Channel

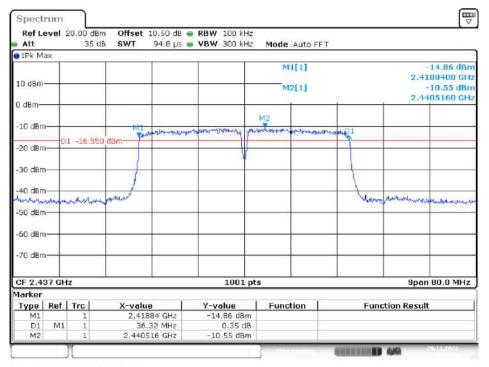
Date: 29.DEC.2022 13:46:11

Middle Channel

Date: 29.DEC.2022 13:48:34

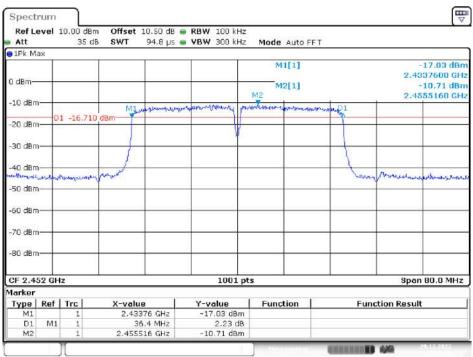


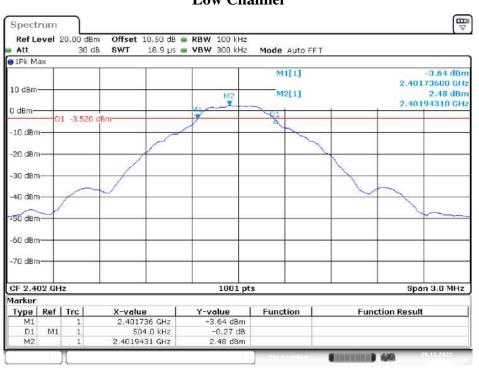
High Channel


Date: 29.DEC.2022 13:50:40

N40 Mode

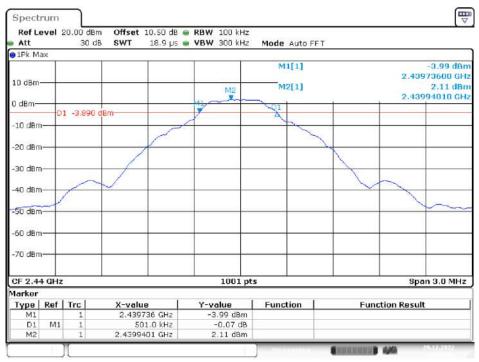
Low Channel

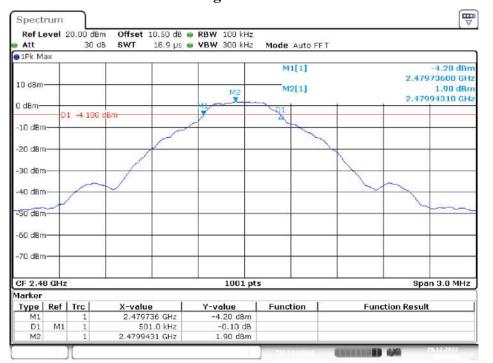

Date: 29.DEC.2022 14:01:15


Middle Channel

Date: 29.DEC.2022 14:04:00

High Channel


Date: 29.DEC.2022 14:06:10


BLE (1M) Mode Low Channel

Date: 29.DEC.2022 14:33:46

Middle Channel

Date: 29.DEC.2022 14:35:35

High Channel

Date: 29.DEC.2022 14:37:55

10 FCC §15.247(b)(3) – Maximum Output Power

10.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

10.2 Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

10.3 Test Results

Channel	Frequency (MHz)	Power (dBm)	Power (W)	Limit (W)	Result			
	802.11b Mode							
Low	2412	12.75	0.036	1	Compliance			
Middle	2437	13.42	0.039	1	Compliance			
High	2462	12.89	0.037	1	Compliance			
	802.11g Mode							
Low	2412	5.83	0.030	1	Compliance			
Middle	2437	5.81	0.030	1	Compliance			
High	2462	5.65	0.029	1	Compliance			
	802.11n HT20 Mode							
Low	2412	5.15	0.023	1	Compliance			
Middle	2437	5.25	0.024	1	Compliance			
High	2462	5.01	0.022	1	Compliance			
		802.11n H	T40 Mode					
Low	2422	6.09	0.023	1	Compliance			
Middle	2437	6.07	0.021	1	Compliance			
High	2452	6.08	0.022	1	Compliance			
BLE(1M) Mode								
Low	2402	2.87	0.002	1	Compliance			
Middle	2440	2.51	0.002	1	Compliance			
High	2480	2.14	0.002	1	Compliance			

Conducted	Average	Output	Power	(DrivePro	Body 70)
Conducted	i i ci age	Juipui	100001		Doug TU)

Conducted Average Output Power (DrivePro Body 60)

Channel	Frequency (MHz)	Power (dBm)	Power (W)	Limit (W)	Result			
	802.11b Mode							
Low	2412	12.55	0.036	1	Compliance			
Middle	2437	13.18	0.039	1	Compliance			
High	2462	12.55	0.037	1	Compliance			
	802.11g Mode							
Low	2412	5.83	0.030	1	Compliance			
Middle	2437	5.72	0.030	1	Compliance			
High	2462	5.55	0.029	1	Compliance			
	802.11n HT20 Mode							
Low	2412	4.66	0.023	1	Compliance			
Middle	2437	4.59	0.024	1	Compliance			
High	2462	4.45	0.022	1	Compliance			
	802.11n HT40 Mode							
Low	2422	5.45	0.023	1	Compliance			
Middle	2437	5.61	0.021	1	Compliance			
High	2452	5.46	0.022	1	Compliance			
BLE(1M) Mode								
Low	2402	2.61	0.002	1	Compliance			
Middle	2440	2.35	0.002	1	Compliance			
High	2480	2.01	0.002	1	Compliance			

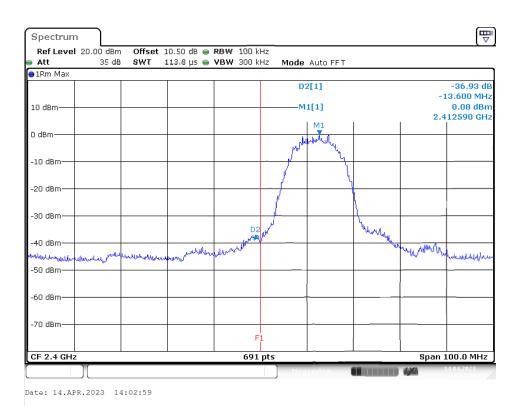
11 FCC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

11.1 Applicable Standard

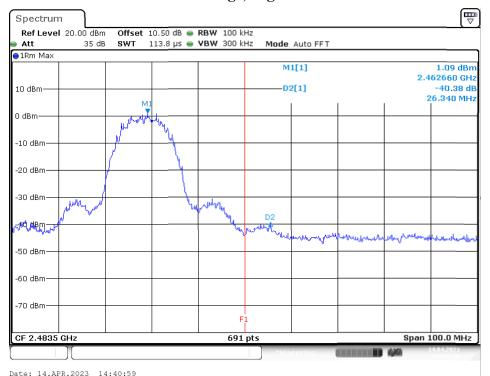
According to FCC §15.247(d).

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 Test Procedure

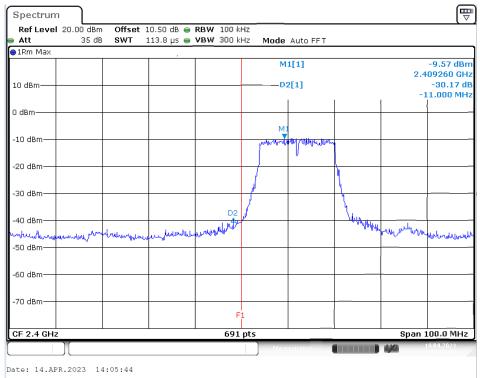

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

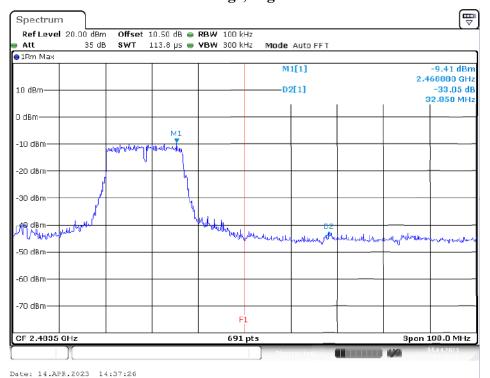
11.3 Test Results


Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result			
B Mode							
Low	2412	36.93	≥ 30	PASS			
High	2462	40.38	≥ 30	PASS			
	G Mode						
Low	2412	30.17	≥ 30	PASS			
High	2462	33.05	≥ 30	PASS			
N20 Mode							
Low	2412	30.92	≥ 30	PASS			
High	2462	34.08	≥ 30	PASS			
N40 Mode							
Low	2422	38.45	≥ 30	PASS			
High	2452	30.56	≥ 30	PASS			
BLE(1M) Mode							
Low	2402	44.49	≥ 30	PASS			
High	2480	42.01	≥ 30	PASS			

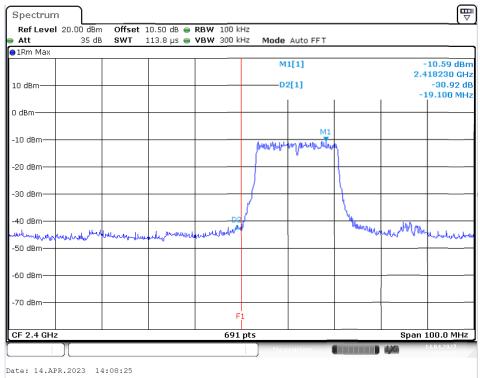
Please refer to the following plots.

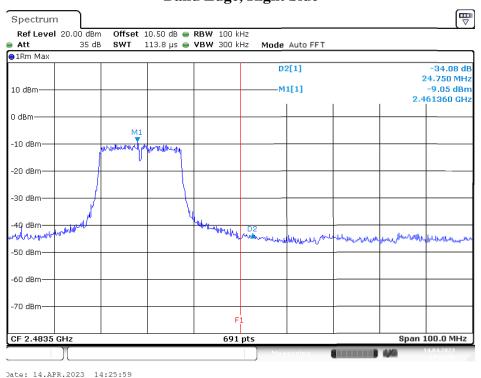
B Mode Band Edge, Left Side



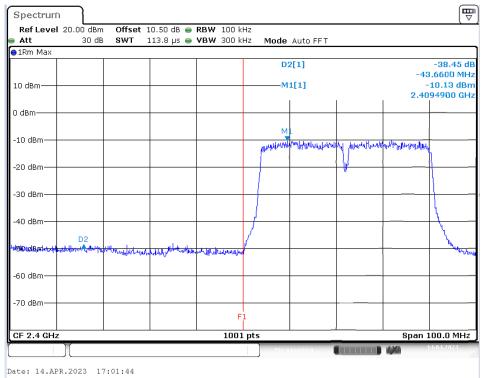

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 77 of 92

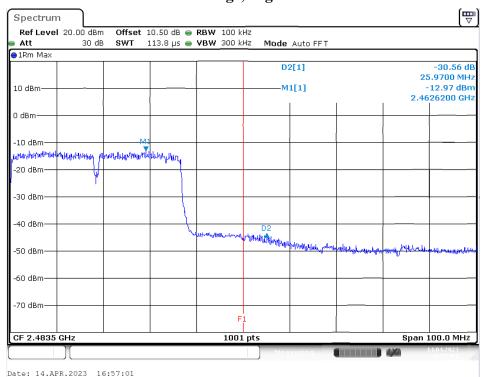
G Mode


Band Edge, Left Side

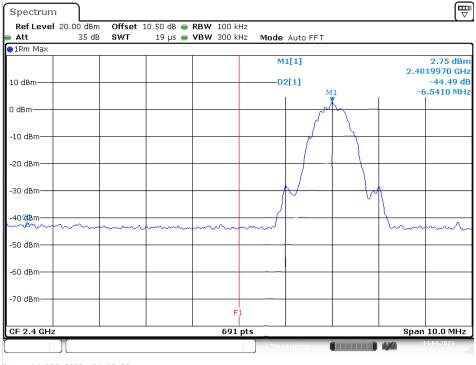


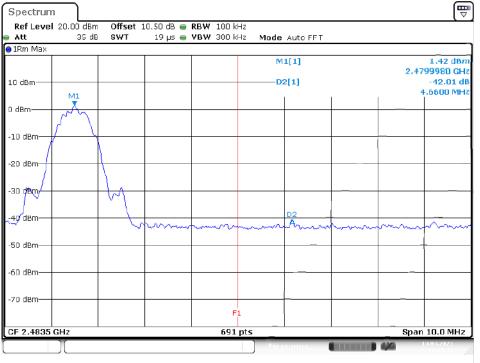
N20 Mode


Band Edge, Left Side



N40 Mode


Band Edge, Left Side



BLE (1M) Mode

Band Edge, Low Channel

Band Edge, High Channel

Date: 14.APR.2023 14:18:43

12 FCC §15.247(e) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

12.2 Test Procedure

a) Set instrument center frequency to DTS channel center frequency.

b) Set span to at least 1.5 times the OBW.

c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.

d) Set VBW \geq [3 × RBW].

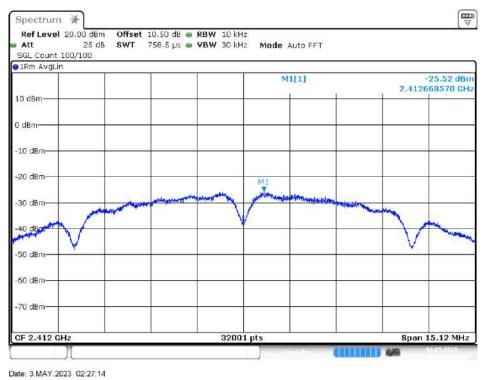
e) Detector = power averaging (rms) or sample detector (when rms not available).

f) Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}]$.

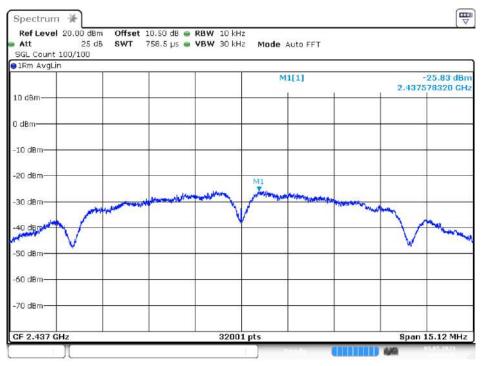
g) Sweep time = auto couple.

h) Employ trace averaging (rms) mode over a minimum of 100 traces.

i) Use the peak marker function to determine the maximum amplitude level.


j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

12.3 Test Results

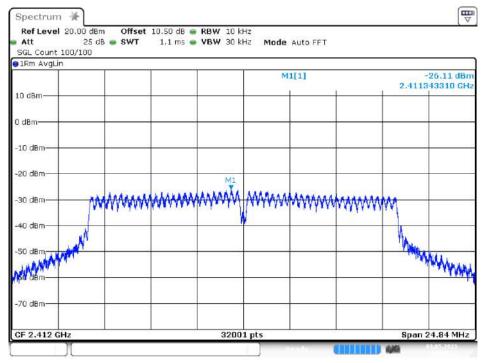

Channel	Frequency (MHz)	Power Spectral Density (dBm/10 kHz)	Limit (dBm/3 kHz)	Result				
B Mode								
Low	2412	-25.52	8	PASS				
Middle	2437	-25.83	8	PASS				
High	2462	-25.59	8	PASS				
	•	G Mode						
Low	2412	-26.11	8	PASS				
Middle	2437	-26.66	8	PASS				
High	2462	-26.84	8	PASS				
	N20 Mode							
Low	2412	-26.80	8	PASS				
Middle	2437	-26.86	8	PASS				
High	2462	-26.93	8	PASS				
	N40 Mode							
Low	2422	-29.42	8	PASS				
Middle	2437	-29.32	8	PASS				
High	2452	-29.68	8	PASS				
Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result				
BLE(1M) Mode								
Low	2402	-11.42	8	PASS				
Middle	2440	-11.22	8	PASS				
High	2480	-10.46	8	PASS				

Please refer to the following plots

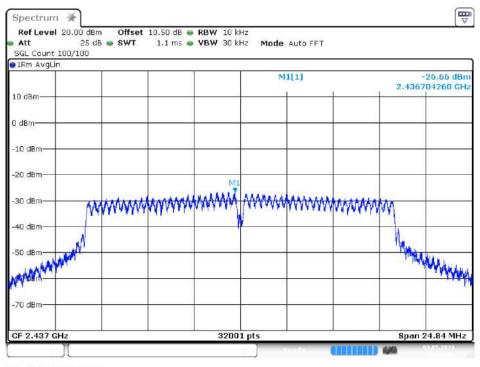

B Mode Low Channel

Middle Channel

Date: 3.MAY.2023 02:27:46

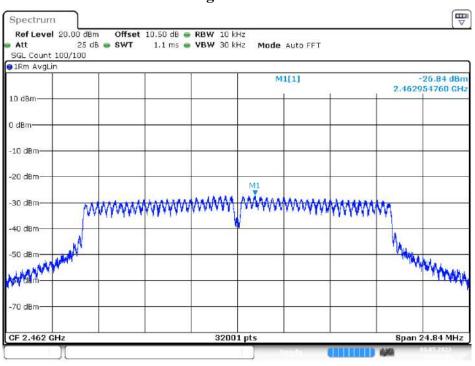


High Channel


Date: 3.MAY.2023 02:28:18

$G \ Mode$

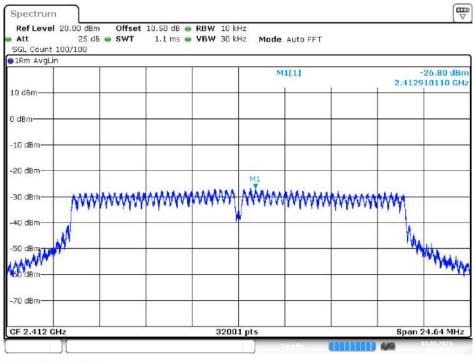
Low Channel



Date: 3.MAY.2023 02:36:21

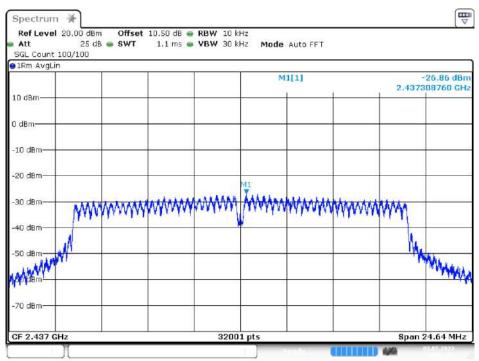
Middle Channel

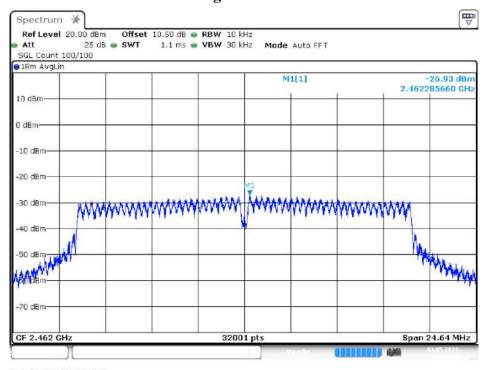
Date: 3.MAY.2023 02:34:10



High Channel

Date: 3.MAY.2023 02:31:48

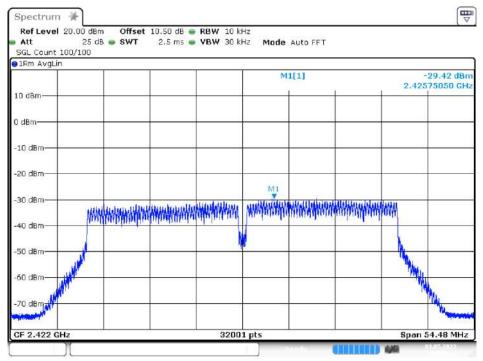

N20 Mode



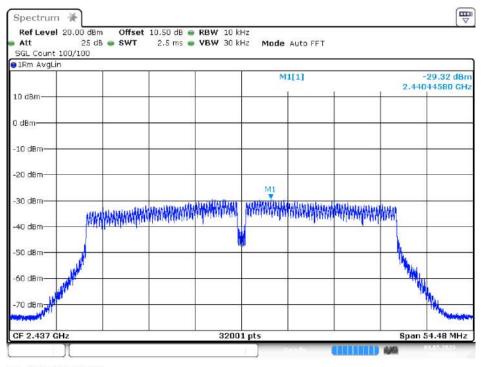
Date: 3.MAY.2023 02:38:43

Middle Channel

Date: 3.MAY.2023 02:41:09

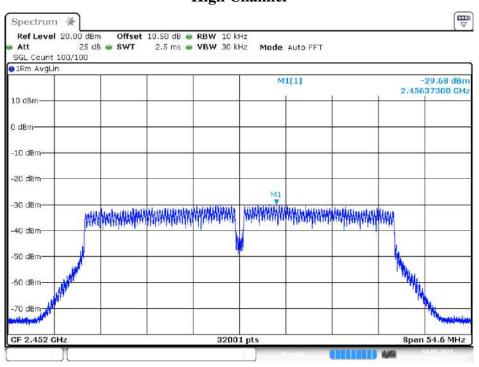


High Channel


Date: 3.MAY.2023 02:42:53

N40 Mode

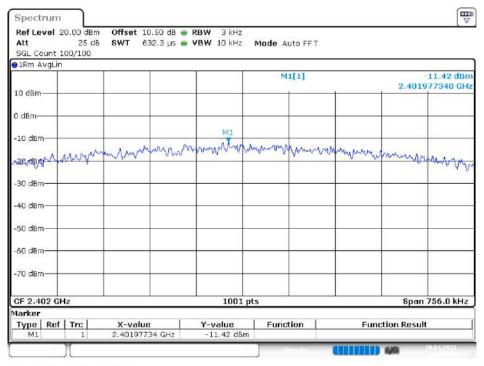
Low Channel



Date: 3.MAY.2023 02:45:14

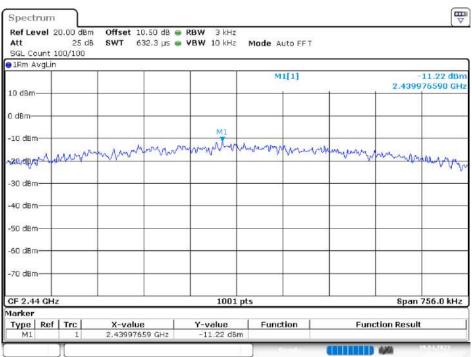
Middle Channel

Date: 3.MAY.2023 02:47:09

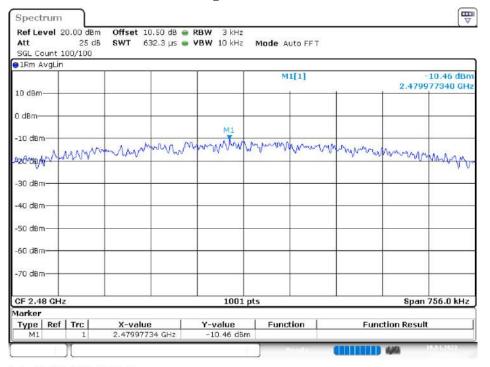


High Channel

Date: 3.MAY.2023 02:49:17


BLE (1M) Mode

Low Channel



Date: 19.APR.2023 16:06:40

Middle Channel

Date: 19.APR.2023 16:07:37

High Channel

Date: 19.APR.2023 16:08:15

***** END OF REPORT *****

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 92 of 92