

FCC Test Report

Equipment	:	PQI Power Pad 101
Brand Name	:	PQI
Model No.	:	PB-112
FCC ID	:	A4SPB-112
Standard	:	47 CFR FCC Part 15.209
Operating Band	:	110-205 kHz
FCC Classification	:	DCD (for 110-205kHz only)
Equipment Type	:	Wireless Power Transfer for Consumer Devices
Output power	:	5W (from Each Primary Coil)
Applicant Manufacturer	:	Power Quotient International Co., Ltd. 8F., No.49, Sec. 4, Zhongyang Rd., Tucheng Dist., New Taipei City 23675, Taiwan (R.O.C.)

The product sample received on Dec. 25, 2013 and completely tested on Jan. 21, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

afre

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	
1.3	Support Equipment	6
1.4	Testing Applied Standards	
1.5	Testing Location Information	6
1.6	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	The Worst Case Configuration	8
2.2	The Worst Charger Frequencies Configuration	8
2.3	The Worst Case Measurement Configuration	8
2.4	Test Setup Diagram	9
3	TRANSMITTER TEST RESULT	11
3.1	AC Power-line Conducted Emissions	11
3.2	Transmitter Radiated Emissions	
3.3	Emission Bandwidth	25
4	TEST EQUIPMENT AND CALIBRATION DATA	27

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary	of	Test	Result
---------	----	------	--------

	Conformance Test Specifications						
ReportRef. Std.ClauseDescription		Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]:0.1913990MHz 49.72 (Margin 14.26dB) – QP 40.16 (Margin 13.82dB) – AV	FCC 15.207	Complied		
3.2	15.209	Transmitter Radiated Emissions	[dBuV/m at 3m]:30.000MHz 33.30 (Margin 6.70dB) - PK	FCC 15.209	Complied		
3.3	15.215(c)	Emission Bandwidth	20dB Bandwidth 2.76 [kHz]	N/A	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR3D2529-01	Rev. 01	Initial issue of report	Mar. 20, 2014
FR3D2529-01	Rev. 02	Revise Operating Band to 110-205 kHz	Jul. 14, 2014

1 General Description

1.1 Information

1.1.1 General Information

Wireless Power Transfer General Information					
Frequency Range Modulation Charging Freq. (kHz) Field Strength (dBu					
110-205 kHz	ASK	110-205	79.15		
Power Transfer Method	Output power from each primary coil	Max. coupling surface area	Charging Method		
Magnetic induction and only single primary coil coupling secondary coil5W40 cm²Client directly contact					
Note 1: Field strength performed peak level at 3m.					

1.1.2 Antenna Information

	Antenna Category				
	Equipment placed on the market without antennas				
\boxtimes	Integral antenna (antenna permanently attached)				
	External antenna (dedicated antennas)				

1.1.3 Type of EUT

	Identify EUT				
EU	F Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle			
Operated normally mode for worst duty cycle			
Operated test mode for worst duty cycle			
Test Signal Duty Cycle (x)			
⊠ 100%			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	From System

1.2 Accessories

Accessories Information			
Micro-USB Cable	Signal Line	0.5 meter, shielded cable	

1.3 Support Equipment

	Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5530	DoC			
2	Phone	Samsung S3	GT-19300	DoC			

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009

1.5 Testing Location Information

				Testing	Location				
\square	HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.					
		TEL	:	886-3-327-3456 FA	X : 886-3-327-0973				
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment			
	AC Conduction			CO04-HY	Zeus	23.8°C / 54%			
RF Conducted				TH01-HY	lan	24.8°C / 61%			
I	Radiated Em	nission		03CH02-HY	Hsiao	23.8°C / 54%			

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Test Item		Uncertainty			
AC power-line conducted emissions		±2.26 dB			
Emission bandwidth		±1.42 %			
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB			
	0.15 – 30 MHz	±0.42 dB			
	30 – 1000 MHz	±0.51 dB			
All emissions, radiated	9 – 150 kHz	±2.49 dB			
	0.15 – 30 MHz	±2.28 dB			
	30 – 1000 MHz	±2.56 dB			
Temperature		±0.8 °C			
Humidity		±3 %			
DC and low frequency voltages		±3 %			
Time		±1.42 %			
Duty Cycle		±1.42 %			

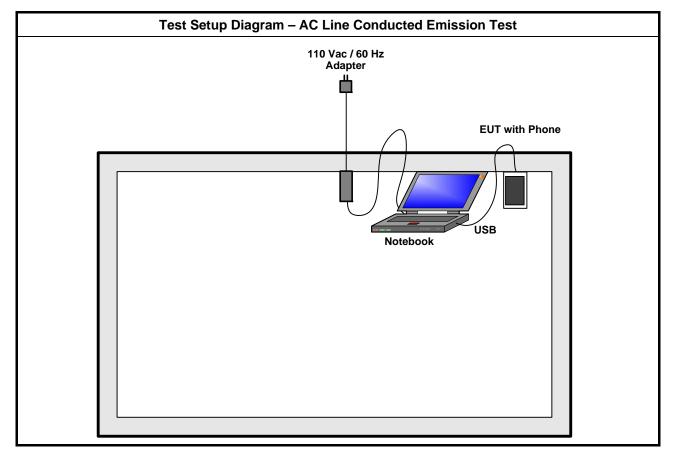
2 Test Configuration of EUT

2.1 The Worst Case Configuration

Modulation Mode	Field Strength (dBuV/m at 3m)
Charging	79.15
Wireless charger were performed all charging con operation, the worst mode is full charging loading.	ditions including variable loading and non-charging

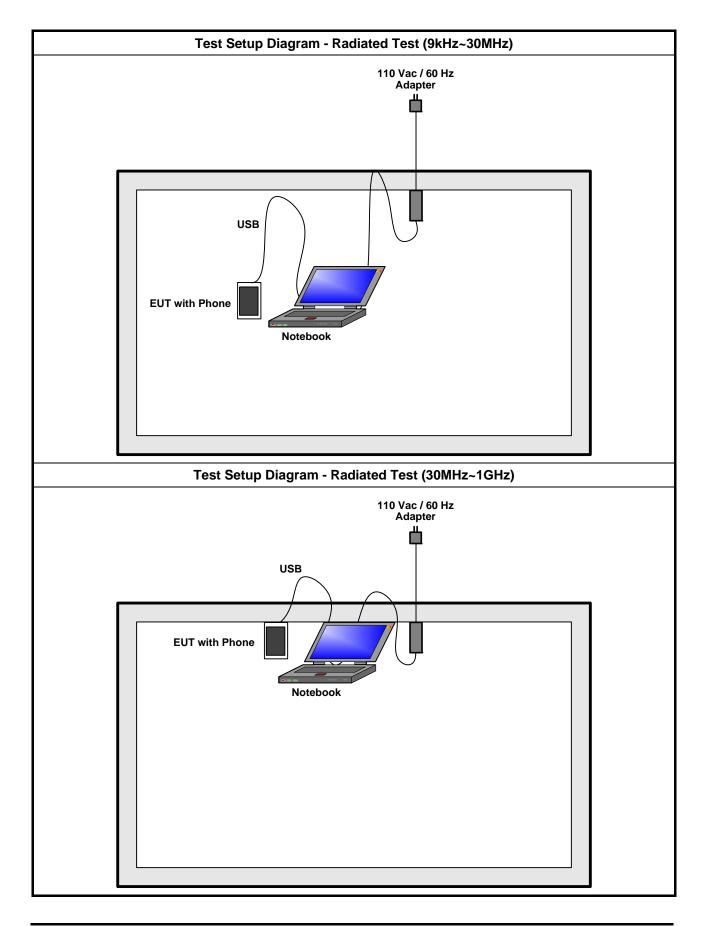
2.2 The Worst Charger Frequencies Configuration

Modulation Mode	Charger Frequencies (kHz)
Charging	131 kHz (F1)
Wireless charger frequencies are variable frequency in The charging frequency is 131 kHz.	range (110-205 kHz) and depend on charging loading.


2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode	Operating Mode Description		
1	EUT via USB Charging		

	The Worst Case Mode for Following Conformance Tests						
Tests Item			Transmitter Radiated Emissions, Emission Bandwidth				
Test Condition		ion	Radiated measurement				
Us	er Positi	on	EUT will be placed in fixed position at X plane.				
X Plane	Y Plane	Z Plane	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.				
			 EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. 				
Operati	Operating Mode < 1GHz		1. EUT via USB Charging				
Modulation Mode		lode	Charging				



2.4 Test Setup Diagram

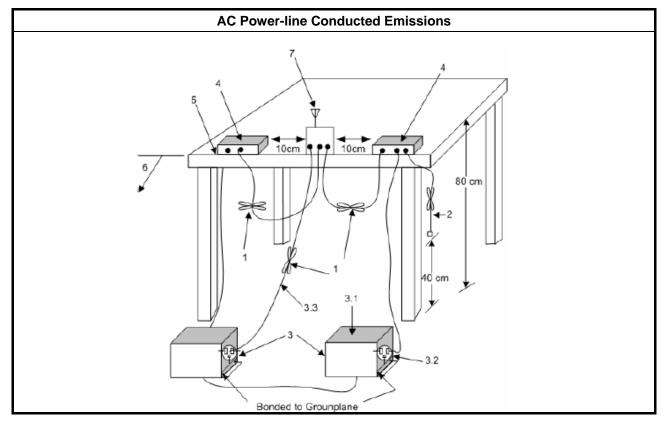
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
5-30 Note 1: * Decreases with the logarithm o		50			

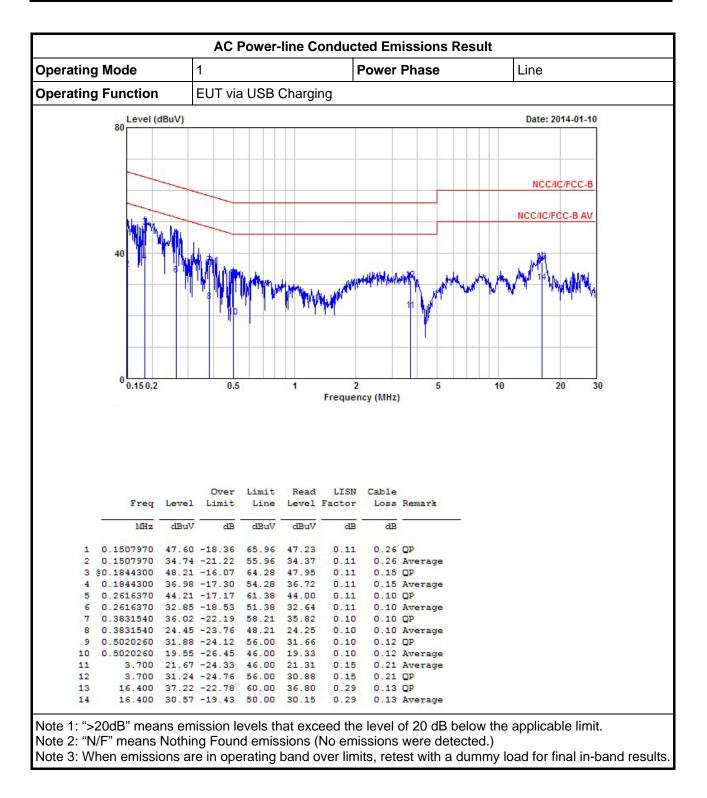
3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band.
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band;

3.1.4 Test Setup



Operating Mode		1			Power Phase				Neutr	al
erating Function	E	UT via	USB (Chargi	ng					
Level (d	IBuV)								Date:	2014-01-10
80										
									NCC	C/IC/FCC-B
-										
a. 8.	Liffer								NCC/IC	FCC-B AV
	(M)						_			
40		the deal		1	1200					
2	1 91 10	I W NA	n iveline	White Here	Mar Link	m.	Attan.	Aug		31
			111			N. H	No. 1	marth	the plant	1 1 10
	리아	TO BUS	9			Man	13		a many m	A MARTIN
						1.11			2.0 3.0	
			100							
0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)	5		10	20 30
0 0.15 0.2		0.5		1	-	cy (MHz)			10	20 30
	level	Over	Limit	Read	Frequen	Cable			10	20 30
Freq		Over Limit	Line	Read Level	LISN Factor	Cable Loss			10	20 30
	Level	Over		Read	Frequen	Cable			10	20 30
Freq MHz 1 0.1556680	dBuV 47.82 -	Over Limit dB	Line dBuV 65.69	Read Level dBuV 47.33	LISN Factor dB 0.24	Cable Loss dB 0.25	Remark		10	20 30
Freq MHz 1 0.1556680 2 0.1556680	dBuV 47.82 - 33.27 -	Over Limit dB -17.87 -22.42	Line dBuV 65.69 55.69	Read Level dBuV 47.33 32.78	LISN Factor dB 0.24 0.24	Cable Loss dB 0.25 0.25	Remark OP Average		10	20 30
Freq MHz 1 0.1556680	dBuV 47.82 - 33.27 -	Over Limit dB -17.87 -22.42 -14.26	Line dBuV 65.69 55.69 63.98	Read Level dBuV 47.33	LISN Factor dB 0.24	Cable Loss dB 0.25 0.25 0.12	Remark OP Average		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 35.73 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78	Line dBuV 65.69 55.69 63.98 53.98 51.51	Read Level dBuV 47.33 32.78 49.37 39.81 35.40	ELISN Factor dB 0.24 0.23 0.23 0.23	Cable Loss dB 0.25 0.25 0.12 0.12 0.12	Remark QP Average QP Average Average		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 00.1913990 4 00.1913990 5 00.2575110 6 0.2575110	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 35.73 - 46.63 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88	Line dBuV 65.69 55.69 63.98 53.98 51.51 61.51	Read Level dBuV 47.33 32.78 49.37 39.81 35.40 46.30	LISN Factor dB 0.24 0.23 0.23 0.23 0.23	Cable Loss dB 0.25 0.12 0.12 0.10 0.10	Remark OP Average OP Average OP	_	10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110 6 @0.2575110 6 @0.2575110 8 0.3771120	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 35.73 - 46.63 - 38.30 - 27.15 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88 -14.88 -20.04 -21.19	Line dBuV 65.69 55.69 63.98 53.98 51.51 61.51 58.34 48.34	Read Level dBuV 47.33 32.78 49.37 39.81 35.40 46.30 37.98 26.83	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.22 0.22	Cable Loss dB 0.25 0.12 0.12 0.10 0.10 0.10	Remark OP Average OP Average OP		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110 6 @0.2575110 7 0.3771120 8 0.3771120 9 0.5947840	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 35.73 - 46.63 - 38.30 - 27.15 - 22.54 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88 -20.04 -21.19 -23.46	Line dBuV 65.69 55.69 63.98 51.51 61.51 58.34 48.34 46.00	Read Level dBuV 47.33 32.78 49.37 39.81 35.40 46.30 37.98 26.83 22.18	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22	Cable Loss dB 0.25 0.12 0.12 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average Average Average		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110 6 @0.2575110 6 @0.2575110 7 0.3771120 8 0.3771120 9 0.5947840 10 0.5947840	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 46.63 - 38.30 - 27.15 - 22.54 - 36.04 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88 -20.04 -21.19 -23.46 -19.96	Line dBuV 65.69 55.69 63.98 51.95 61.51 58.34 48.34 46.00 56.00	Read Level dBuV 47.33 32.78 49.37 35.40 46.30 37.98 26.83 22.18 35.68	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22	Cable Loss dB 0.25 0.12 0.12 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average Average QP		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110 6 @0.2575110 7 0.3771120 8 0.3771120 9 0.5947840 10 0.5947840 11 1.730	dBuV 47.82 - 33.27 - 49.72 - 40.16 - 35.73 - 46.63 - 38.30 - 27.15 - 22.54 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88 -20.04 -21.19 -23.46 -19.96 -18.01	Line dBuV 65.69 55.69 53.98 51.51 61.51 58.34 48.34 46.00 56.00 46.00	Read Level dBuV 47.33 32.78 49.37 39.81 35.40 46.30 37.98 26.83 22.18 35.68 22.16	LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22	Cable Loss dB 0.25 0.12 0.12 0.10 0.10 0.10 0.10 0.14 0.14	Remark QP Average QP Average QP Average QP Average QP Average		10	20 30
Freq MHz 1 0.1556680 2 0.1556680 3 @0.1913990 4 @0.1913990 5 @0.2575110 6 @0.2575110 7 0.3771120 8 0.3771120 9 0.5947840 10 0.5947840 11 1.730 12 1.730 13 3.700	dBuV 47.82 - 33.27 - 49.72 - 35.73 - 46.63 - 38.30 - 27.15 - 22.54 - 36.04 - 27.99 -	Over Limit dB -17.87 -22.42 -14.26 -13.82 -15.78 -14.88 -20.04 -21.19 -23.46 -19.96 -18.01 -16.79 -20.84	Line dBuV 65.69 53.98 51.51 61.51 58.34 48.34 46.00 56.00 46.00 46.00	Read Level dBuV 47.33 32.78 49.37 35.40 46.30 37.98 26.83 22.18 35.68 27.46 38.68 27.46	Frequent LISN Factor dB 0.24 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.22	Cable Loss dB 0.25 0.12 0.12 0.10 0.10 0.10 0.14 0.14 0.28 0.28	Remark OP Average OP Average OP Average OP Average OP Average OP Average		10	20 30

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Transmitter Radiated Emissions

3.2.1 Transmitter Radiated Emissions Limit

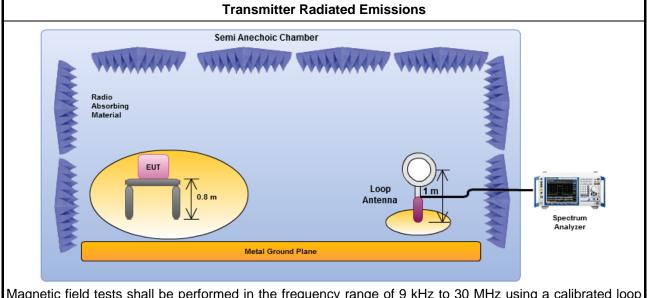
Transmitter Radiated Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

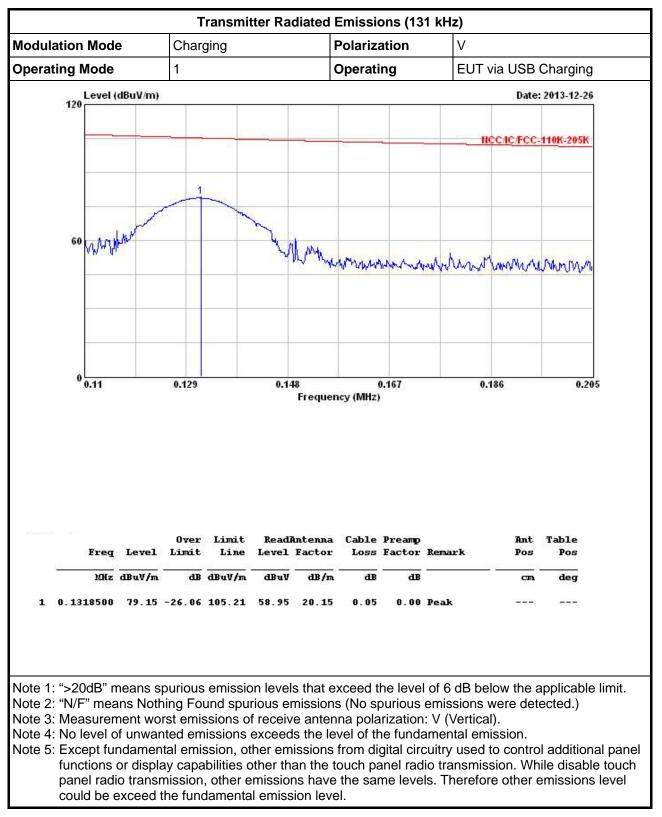
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: the frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 1GHz measurements employing a CISPR quasi-peak detector.

3.2.2 Measuring Instruments

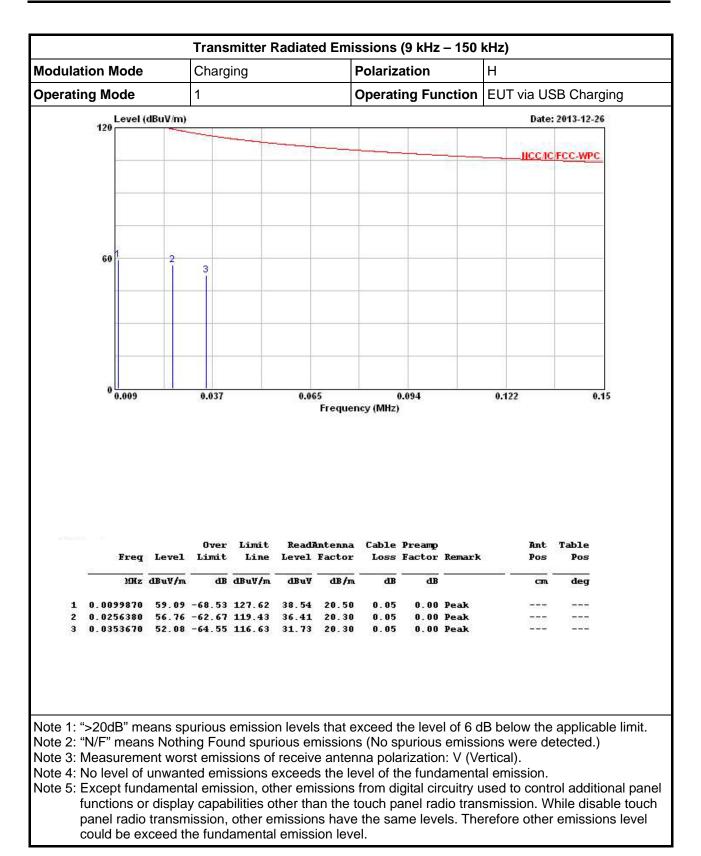

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

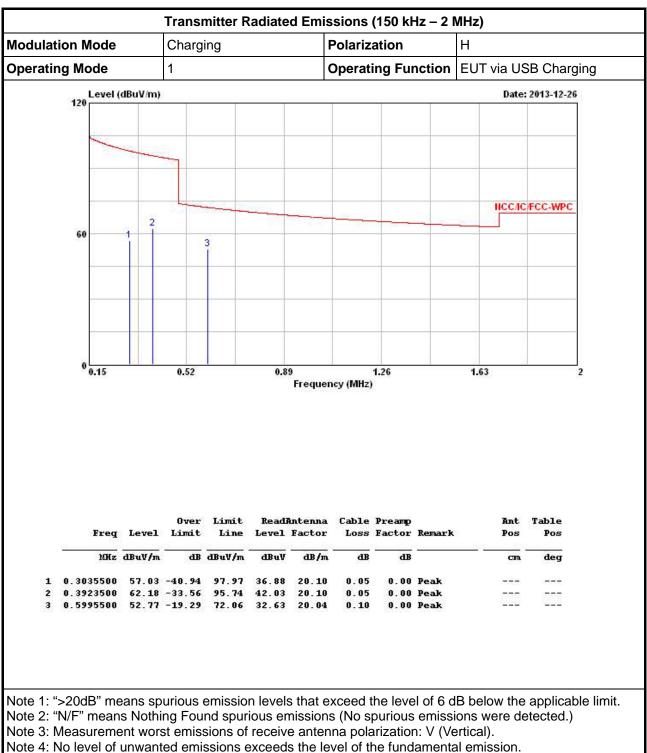

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz the frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 30MHz measurements employing a CISPR quasi-peak detector. Test distance is 3m.
\boxtimes	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\boxtimes	The any unwanted emissions level shall not exceed the fundamental emission level.
\square	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

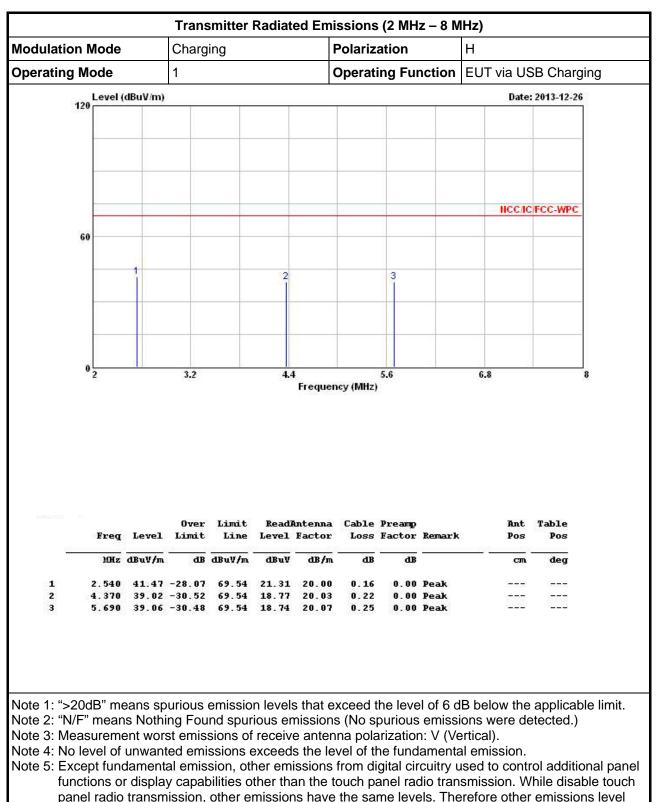
3.2.4 Test Setup

Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. The center of the loop shall be 1 m above the ground. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna. the antenna height shall be varied from 1 m to 4 m.

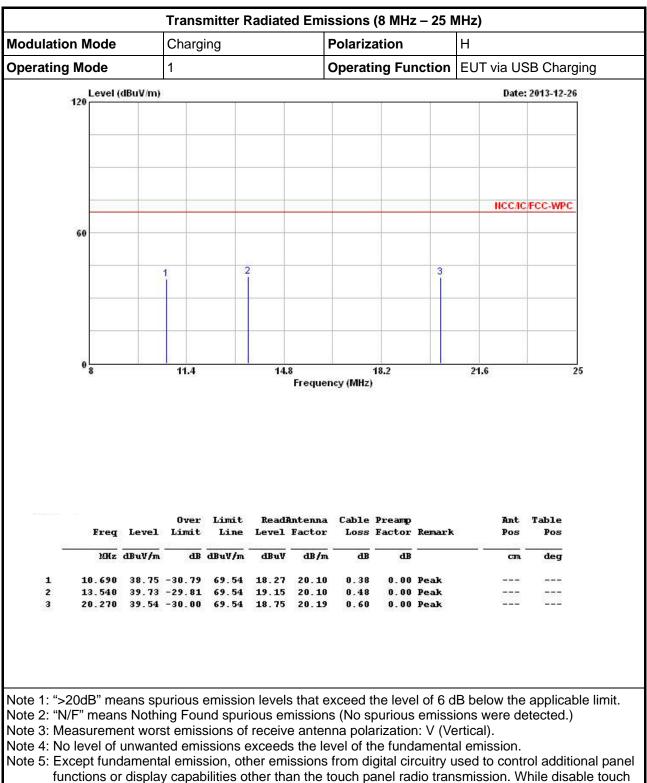


3.2.5 Transmitter Radiated Emissions (Below 30MHz)

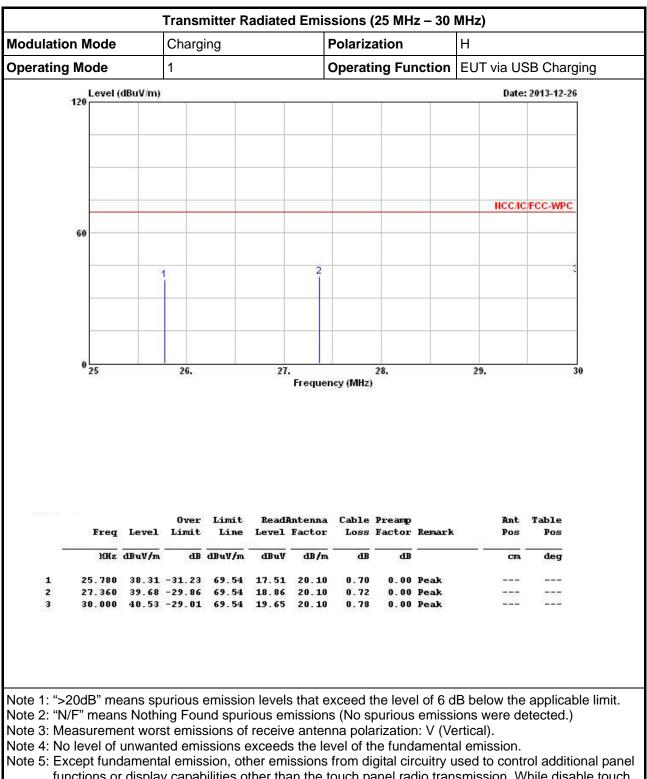




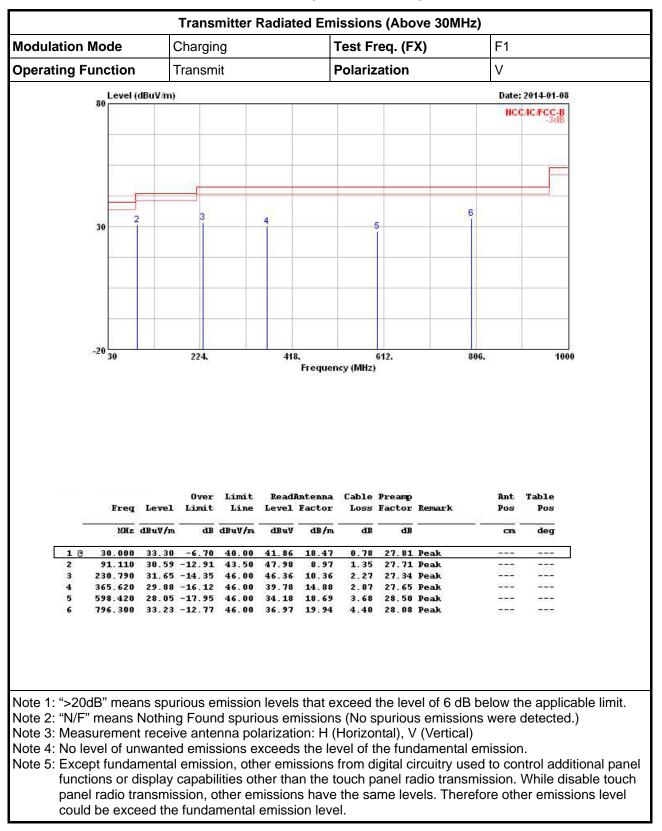
Note 5: Except fundamental emissions other emissions from digital circuitry used to control additional panel functions or display capabilities other than the touch panel radio transmission. While disable touch panel radio transmission, other emissions have the same levels. Therefore other emissions level could be exceed the fundamental emission level.

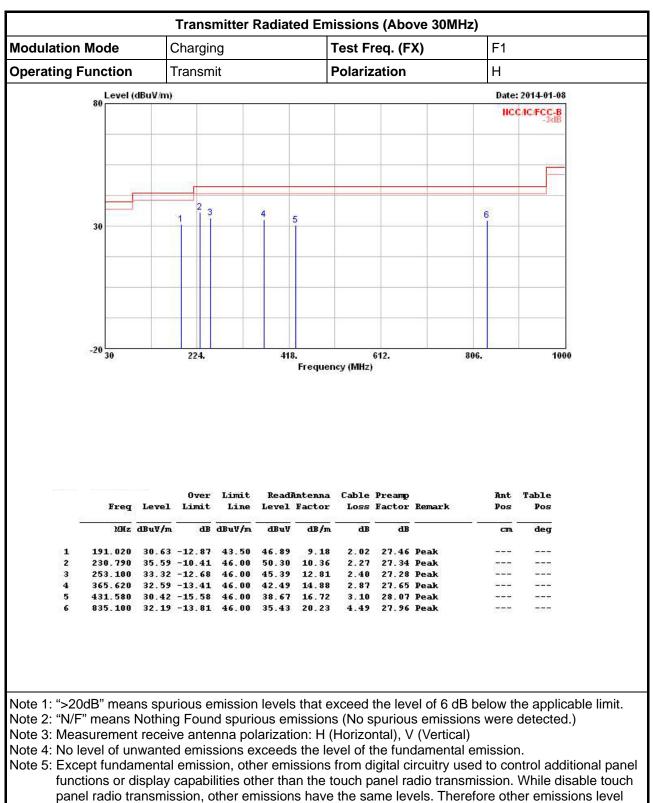


could be exceed the fundamental emission level.



functions or display capabilities other than the touch panel radio transmission. While disable touch panel radio transmission, other emissions have the same levels. Therefore other emissions level could be exceed the fundamental emission level.




functions or display capabilities other than the touch panel radio transmission. While disable touch panel radio transmission, other emissions have the same levels. Therefore other emissions level could be exceed the fundamental emission level.

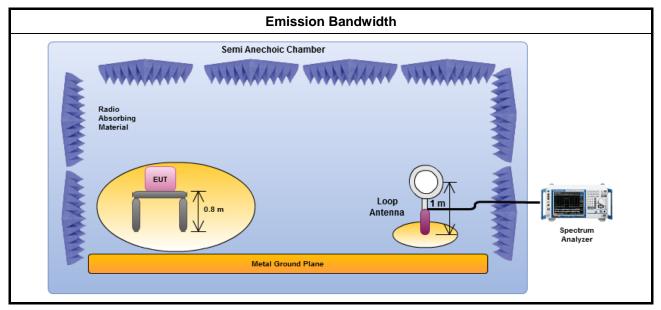
3.2.6 Transmitter Radiated Emissions (Above 30MHz)

3.3 Emission Bandwidth

3.3.1 Emission Bandwidth Limit

Emission Bandwidth Limit

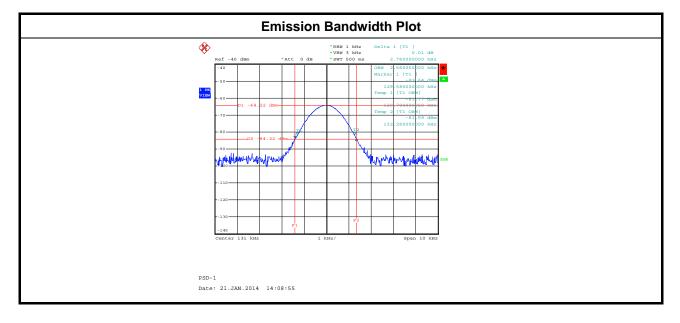
N/A


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
\triangleright	For the emission bandwidth refer ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
Þ	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.


3.3.4 Test Setup

3.3.5 Test Result of Emission Bandwidth

Occupied Channel Bandwidth Result						
Modulation Frequency Mode (kHz)		20dB Bandwidth (kHz)	F _∟ at 20dB BW (kHz)	F _H at 20dB BW (kHz)	99% Bandwidth (kHz)	
Charging	110-205	2.76	129.58	132.34	2.56	
Limit		N/A	N/A	N/A	N/A	
Result		Complied				

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 25, 2014	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 11, 2013	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	Jul. 18, 2013	Radiation (03CH02-HY)
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Oct. 03, 2013	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 10, 2013	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 09, 2013	Radiation (03CH02-HY)
Turn Table	Chaintek Instruments	3000	MF7802058	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	MF	MF7802	MF780208205	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz - 30 MHz	Dec. 02, 2012	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.