

CERTIFICATION TEST REPORT

Report Number : 16U23555-E4V3

- Applicant : Google Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043 U.S.A
 - Model : NC2-6A5-D
 - FCC ID : A4RNC2-6A5-D
 - **IC ID** : 10395A-NC26A5D
- EUT Description : Internet Video Streaming Device
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

Date of Issue: Tuesday, August 16, 2016

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	7/25/2016	Initial Issue	
V2	7/28/2016	Revision to EUT Description	Grace Rincand
V3	8/16/2016	Updated sections 4.2, 4.8 and 5.1	Francisco de Anda

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 74

TABLE OF CONTENTS

REPORT REVISION HISTORY 2
TABLE OF CONTENTS
1. ATTESTATION OF TEST RESULTS
2. SUMMARY OF TESTING
2.1. FACILITIES AND ACCREDITATION
2.2. TEST METHODOLOGY
2.3. CALIBRATION AND UNCERTAINTY 7
2.4. TEST AND MEASUREMENT EQUIPMENT 8
3. EQUIPMENT UNDER TEST
3.1. MAXIMUM OUTPUT POWER
3.2. DESCRIPTION OF AVAILABLE ANTENNAS
3.3. WORST-CASE CONFIGURATION AND MODE9
3.4. DESCRIPTION OF TEST SETUP10
4. ANTENNA PORT TEST RESULTS
4.1. ON TIME AND DUTY CYCLE14
4.2.20 dB AND 99% BANDWIDTH
4.3.HOPPING FREQUENCY SEPARATION
4.4.NUMBER OF HOPPING CHANNELS
4.5. AVERAGE TIME OF OCCUPANCY
4.6. OUTPUT POWER
4.7. AVERAGE POWER
4.8.CONDUCTED SPURIOUS EMISSIONS
5. RADIATED TEST RESULTS44
5.1. TRANSMITTER ABOVE 1 GHz455.1.1. BASIC DATA RATE GFSK MODULATION455.1.2. ENHANCED DATA RATE 8PSK MODULATION55Page 3 of 74

7.	SE	TUP PHOTOS	.72
6.	AC	POWER LINE CONDUCTED EMISSIONS	.69
	5.3.	WORST-CASE 18 GHz – 26 GHz	.67
	5.2.	WORST-CASE BELOW 1 GHz	.65

Page 4 of 74

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Google Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043 U.S.A
EUT DESCRIPTION:	Internet Video Streaming Device
MODEL:	NC2-6A5-D
SERIAL NUMBER:	6520CZZAXW (Radiated); 6520CZZAYG (Conducted)
DATE TESTED:	JULY 1 ST 2016 – AUGUST 16 TH 2016

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart C	Pass			
INDUSTRY CANADA RSS-247 ISSUE 1	Pass			
INDUSTRY CANADA RSS-GEN ISSUE 4	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

somine de luck

Francisco de Anda CONSUMER TECHNOLOGY DIVISION Program Manager UL Verification Services Inc.

Prepared By:

111 ha

Clifford Susa CONSUMER TECHNOLOGY DIVISION Lab Engineer UL Verification Services Inc.

Page 5 of 74

2. SUMMARY OF TESTING

2.1. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)		
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)		
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)		
	Chamber G(IC: 2324B-7)		
	Chamber H(IC: 2324B-8)		

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

2.2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-247 Issue 1.

Page 6 of 74

2.3. CALIBRATION AND UNCERTAINTY

MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Radiated Disturbance,1000 to 18000 MHz	4.32 dB
Radiated Disturbance,18000 to 26000 MHz	4.45 dB
Radiated Disturbance,26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 74

2.4. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	ID Num	Cal Due			
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	T130	09/01/16			
Antenna, Horn, 1-18GHz	ETS Lindgren	3117	T345	03/07/17			
Antenna, Horn, 18-26 GHz	ARA	MWH-1826/B	T449	05/26/17			
RF Preamplifier, 10kHz - 1GHz	HP	8447D	T10	02/01/17			
RF Preamplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-S-42	T493	03/09/17			
RF Preamplifier, 1 - 8GHz	Miteq	AMF-4D-01000800-30-29P	T1156	03/09/17			
RF Preamplifier, 1 - 26GHz	Agilent	8449B	T404	07/05/17			
Spectrum Analyzer, 44 GHz	Keysight	N9030A	T907	01/06/17			
Spectrum Analyzer, 44 GHz	Keysight	E440A	T198	12/12/16			
Spectrum Analyzer, 40 GHz	HP	8564E	T106	08/14/16			
EMI Test Receiver, 9 kHz to 7 GHz	Rohde & Schwarz	ESR	T1436	12/19/16			
Power Meter	Keysight	N1911A	T229	07/30/16			
Power Sensor	Keysight	N1921A	T1223	02/28/17			
LISN, 30 MHz	FCC	FCC-LISN-50/250-25-2-01	T1310	06/08/17			
Low Pass Filter 3GHz	Micro-Tronics	HPM17543	T485	3/9/2017			
Spectrum Analyzer, 44 GHz	Agilent	N9030A	T339	9/14/2016			

Test Software List					
Description	Manufacturer	Model	Version		
Radiated Software	UL	UL EMC	Ver 9.5, June 24, 2015		
Conducted Software	UL	UL EMC	Ver 9.5, May 26, 2015		
CLT Software	UL	UL RF	Ver 1.0, Feb 2, 2015		
Antenna Port Software	UL	UL RF	Ver 3.9, Dec 16, 2015		

Page 8 of 74

3. EQUIPMENT UNDER TEST

3.1. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	Basic GFSK	5.65	3.67
2402 - 2480	Enhanced DQPSK	5.63	3.66
2402 - 2480	Enhanced 8PSK	5.65	3.67

Note: GFSK, DQPSK, 8PSK average and peak power are all investigated, The GFSK & 8PSK power are the worst case. Testing is based on these modes to showing compliance. For average power data refer to section 4.7.

3.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna, with a maximum gain of 4.9 dBi.

3.3. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

GFSK mode: 1-DH5 8PSK mode: 3-DH5

DQPSK has been verified to have the lowest power.

Page 9 of 74

3.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

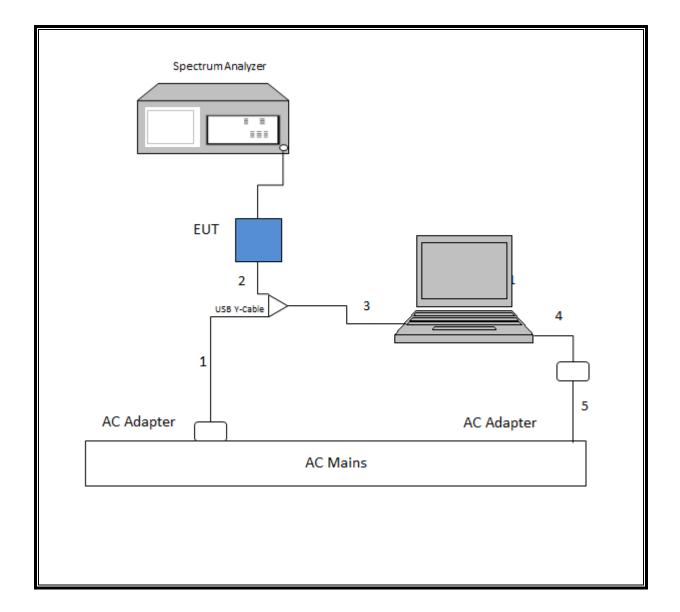
Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
AC Adapter	HP	HSTNN-LA40	WDUV0B3U8HK1Y	DoC		
Laptop	HP	11-d001ax	5CD51643JG	DoC		

I/O CABLES

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	USB	1	Micro USB	unshielded	2			
2	USB	1	Micro USB	unshielded	0.2	Y-cable		
3	USB	1	USB	unshielded	2.5	USB serial cable		
4	DC	1	Barrel	unshielded	1.7			
5	AC	1	3 prong	unshielded	1			

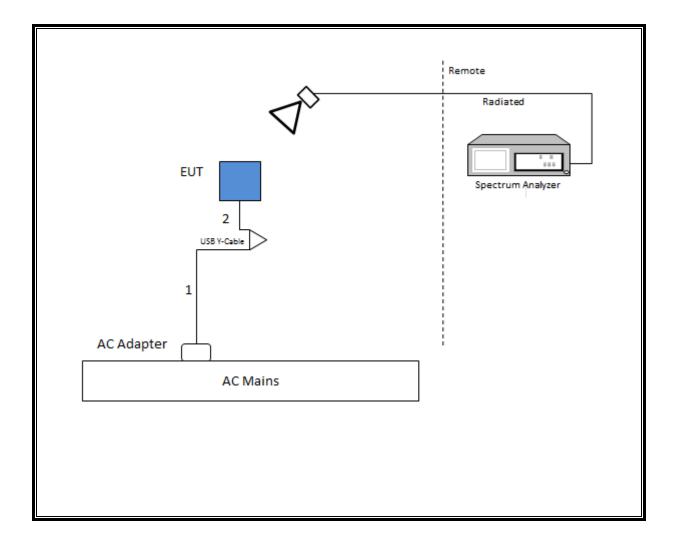
TEST SETUP

The EUT is connected to a test laptop during the tests. Test software exercised the radio card.

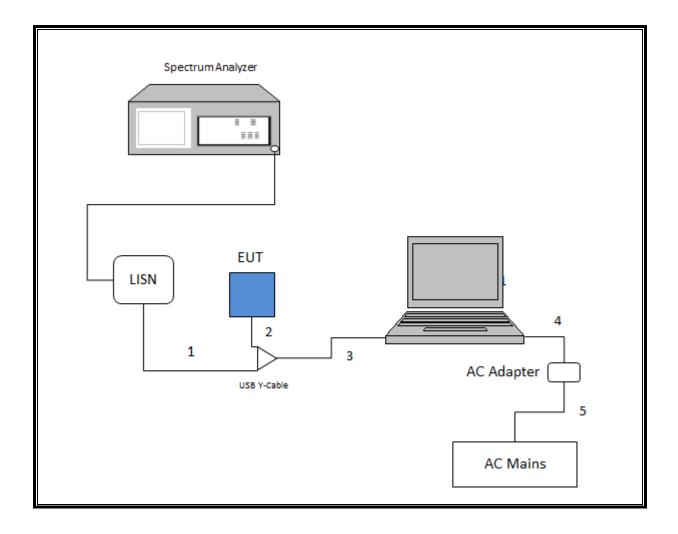

SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 16.80.205.82

The test utility software used during testing was Labtool ver. 1.0.0.82.


Page 10 of 74

SETUP DIAGRAM FOR CONDUCTED TESTS


Page 11 of 74

SETUP DIAGRAM FOR RADIATED TESTS

Page 12 of 74

SETUP DIAGRAM FOR LINE CONDUCTED TEST

Page 13 of 74

4. ANTENNA PORT TEST RESULTS

4.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Tested by: 39316 CX Date: 7/1/2016- 7/2/2016

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	2.88	3.75	0.769	76.9%	1.14	0.347
Bluetooth 8PSK	2.88	3.75	0.769	76.9%	1.14	0.347

DUTY CYCLE PLOTS

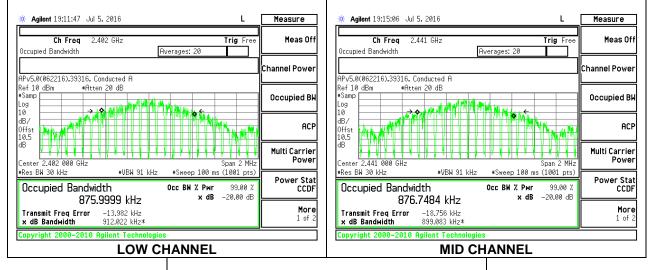
Page 14 of 74

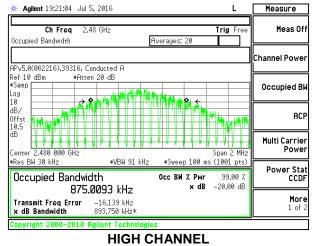
4.2. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

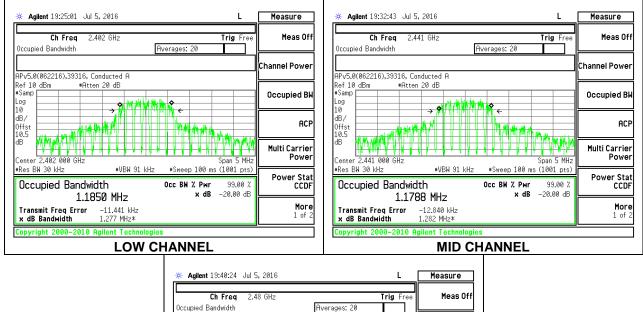

DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

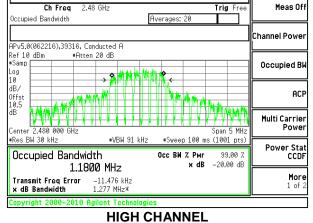

RESULTS

Page 15 of 74

4.2.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(KHz)	(KHz)
Low	2402	912.022	875.9999
Mid	2441	899.083	876.7484
High	2480	893.75	875.0093





Page 16 of 74

4.2.2. ENHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.277	1.185
Mid	2441	1.282	1.178
High	2480	1.277	1.18

Page 17 of 74

4.3. HOPPING FREQUENCY SEPARATION

LIMIT

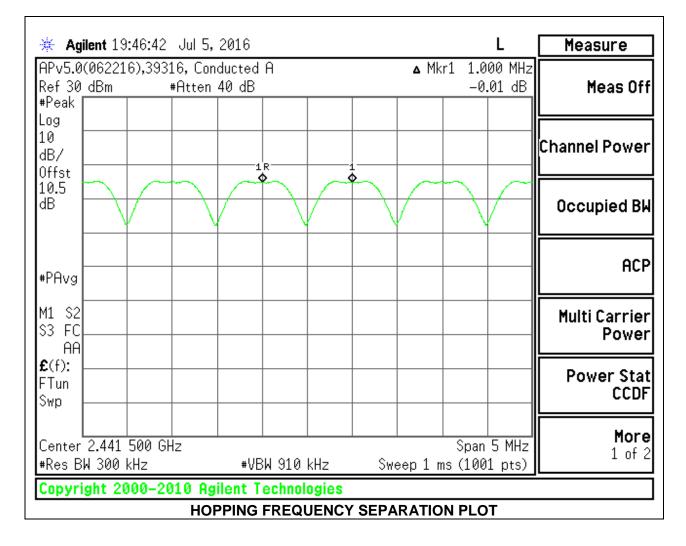
FCC §15.247 (a) (1)

IC RSS-247 5.1.2

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

The EUT's channel separation (1MHz) is greater than the 20 dB BW.

Page 18 of 74

4.3.1. BASIC DATA RATE GFSK MODULATION

Page 19 of 74

🔆 Agilent 20:22:52 Jul 5, 2016 Measure L APv5.0(062216),39316, Conducted A ▲ Mkr1 1.000 MHz Ref 30 dBm #Atten 40 dB 0.21 dB Meas Off #Peak Log 10 Channel Power dB/ 1 R -Offst 10.5 dB Occupied BW ACP #PAvg M1 S2 Multi Carrier \$3 FC Power AAI £(f): Power Stat FTun CCDF Swp. More Center 2.441 500 GHz Span 5 MHz 1 of 2 #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (1001 pts) Copyright 2000-2010 Agilent Technologies HOPPING FREQUENCY SEPARATION PLOT

4.3.2. ENHANCED DATA RATE 8PSK MODULATION

Page 20 of 74

4.4. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

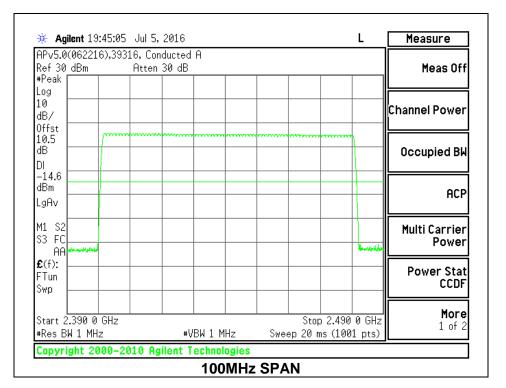
FCC §15.247 (a) (1) (iii)

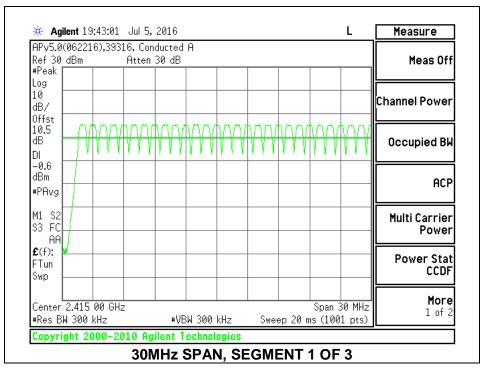
IC RSS-247 5.1.4

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

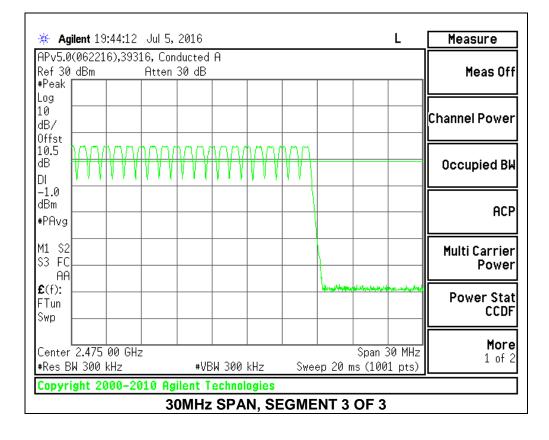
DA 00-705: The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

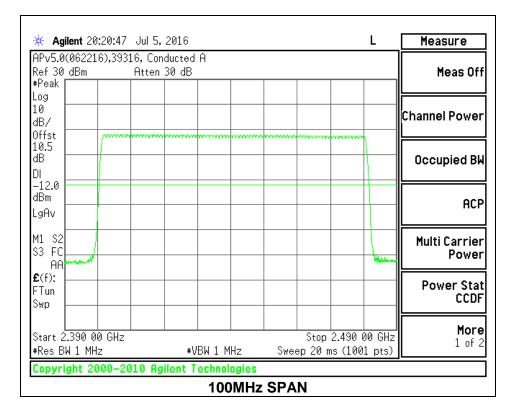

Normal Mode: 79 Channels observed.

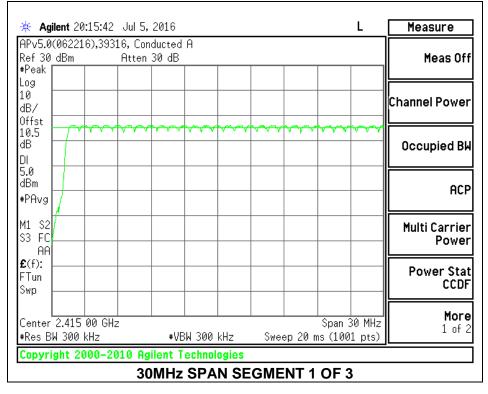
Page 21 of 74

4.4.1. BASIC DATA RATE GFSK MODULATION

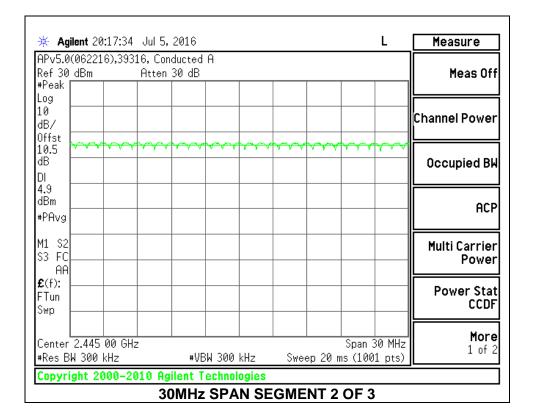

NUMBER OF HOPPING CHANNELS

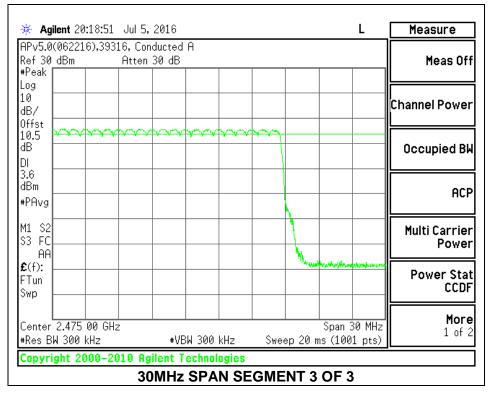
Page 22 of 74


	·		Jul 5,							L	Measure
APv5.0 Ref 30 #Peak		.6),393	16, Con Atten		A						Meas Off
Log 10 dB/											Channel Power
Offst 10.5 dB DI	W	M	W	MY	WY	M	MY	M	W	ŴŶ	Occupied BW
-0.8 dBm #PAvg											ACP
M1 S2 S3 FC AA	<u> </u>										Multi Carrier Power
£ (f): FTun Swp											Power Stat CCDF
Center #Res B		00 GH: kHz	z	 #VE	W 300	kHz	Swe	ep 20 m	Span 3 ns (100		More 1 of 2
Copyr	ight 21	000-20	010 Ag 3(_	GME	NT 2	OF 3		-



Page 23 of 74


4.4.2. ENHANCED DATA RATE 8PSK MODULATION


NUMBER OF HOPPING CHANNELS

Page 24 of 74

Page 25 of 74

4.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1.4

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

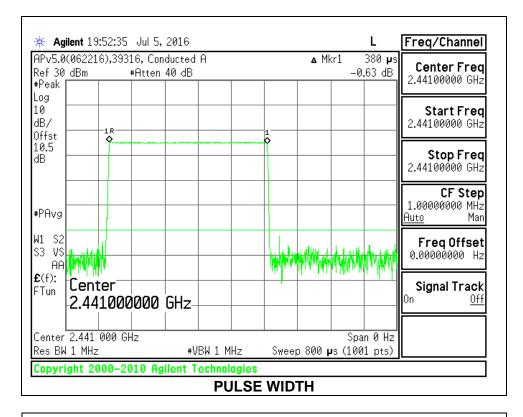
TEST PROCEDURE

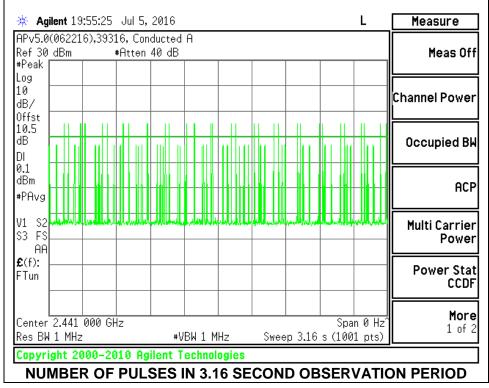
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

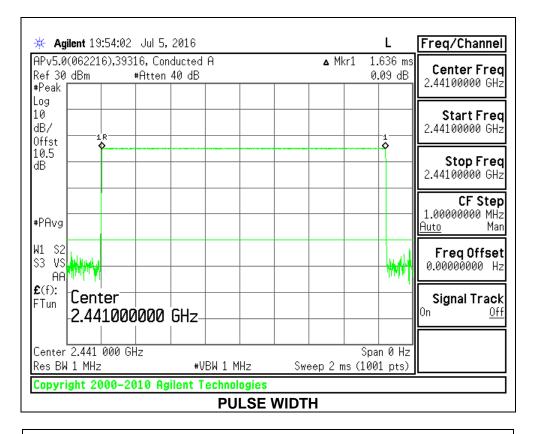
RESULTS

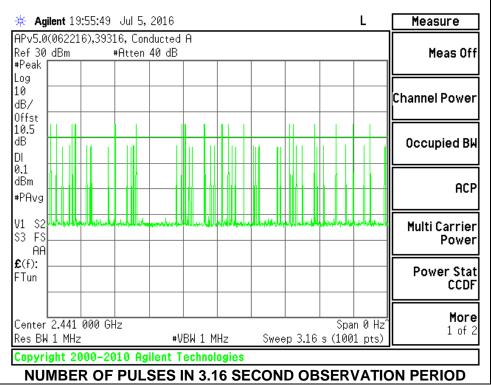

Page 26 of 74


4.5.1. BASIC DATA RATE GFSK MODULATION

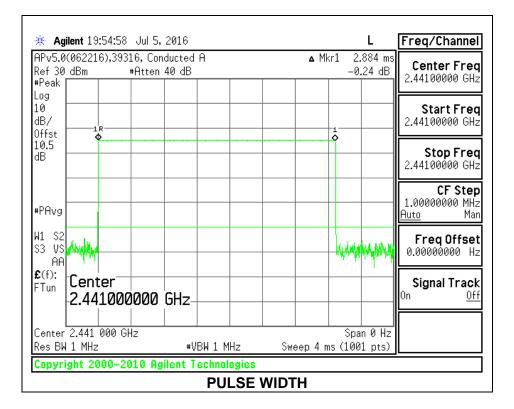
DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	I Mode					
DH1	0.38	32	0.1216	0.4	-0.2784	
DH3	1.636	19	0.3108	0.4	-0.0892	
DH5	2.884	13	0.3749	0.4	-0.0251	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH Mode						
DH1	0.38	8	0.03040	0.4	-0.3696	
DH3	1.636	4.75	0.07771	0.4	-0.3223	
DH5	2.884	3.25	0.09373	0.4	-0.3063	

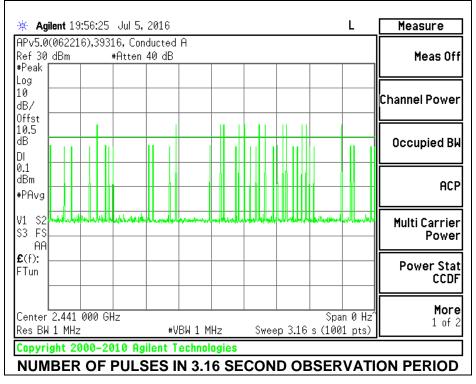
Page 27 of 74


DH1 PLOTS



Page 28 of 74

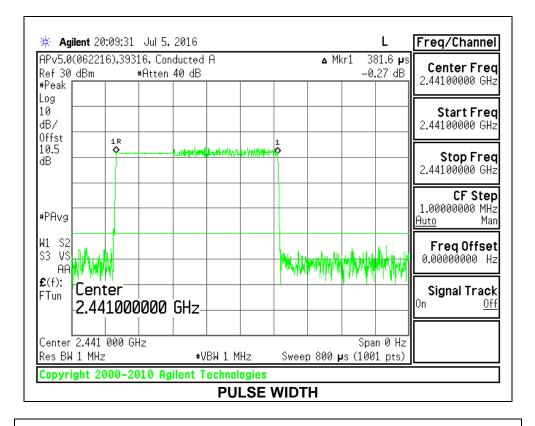

DH3 PLOTS

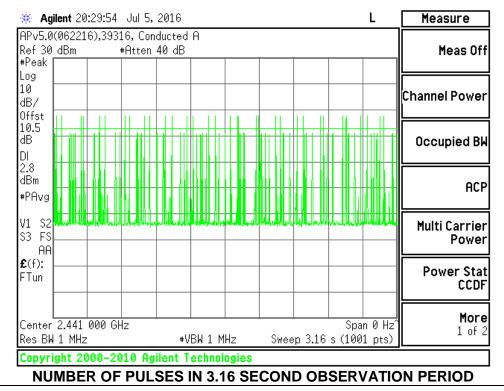


Page 29 of 74

DH5 PLOTS

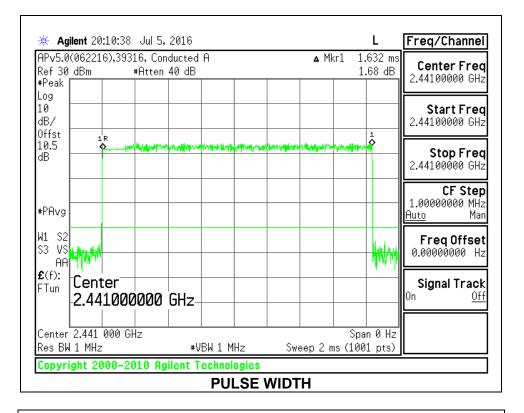
Page 30 of 74

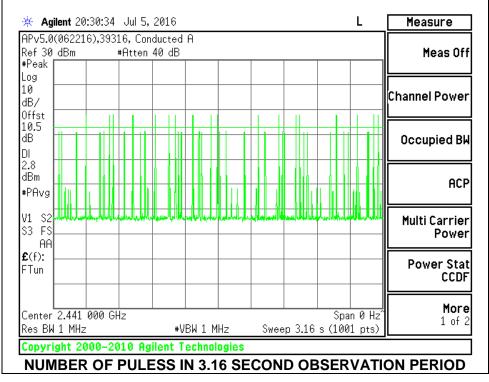

4.5.2. ENHANCED DATA RATE 8PSK MODULATION


DH Packet	Pulse	Number of	Average Time	Limit	Margin			
	Width (msec)	Pulses in 3.16 seconds	of Occupancy (sec)	(sec)	(sec)			
8PSK Normal	8PSK Normal Mode							
DH1	0.3816	32	0.122112	0.4	-0.27789			
DH3	1.632	18	0.29376	0.4	-0.10624			
DH5	2.88	10	0.288	0.4	-0.112			

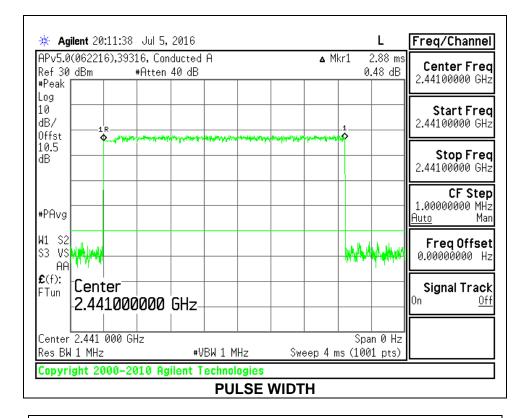
<u>Note:</u> for AFH (8PSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate in section 4.5.1 demonstrates compliance with channel occupancy when AFH is employed.

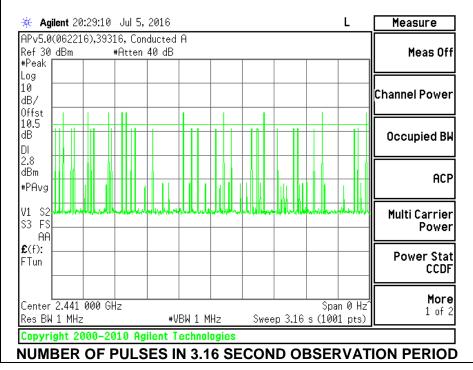
Page 31 of 74


DH1 PLOTS



Page 32 of 74


DH3 PLOTS



Page 33 of 74

DH5 PLOTS

Page 34 of 74

4.6. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-247 5.4.2

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a wideband peak power meter

RESULTS

Tested by:	37699 CS
Date:	7/7/2016

Mode	Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Margin (dB)
	Low	2402	5.65	21	-15.35
GFSK	Middle	2441	5.37	21	-15.63
	High	2480	5.1	21	-15.9
	Low	2402	5.24	21	-15.76
DQPSK	Middle	2441	4.99	21	-16.01
	High	2480	5.63	21	-15.37
	Low	2402	5.33	21	-15.67
8PSK	Middle	2441	5.03	21	-15.97
	High	2480	5.65	21	-15.35

Page 35 of 74

4.7. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Tested By:	39316 CX
Date:	7/1/2016

Mode	Channel	Frequency (MHz)	Average Power (dBm)
	Low	2402	5.6
GFSK	Middle	2441	5.33
	High	2480	5.01
	Low	2402	5.21
DQPSK	Middle	2441	4.94
	High	2480	5.6
	Low	2402	5.26
8PSK	Middle	2441	4.97
	High	2480	5.62

Page 36 of 74

4.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

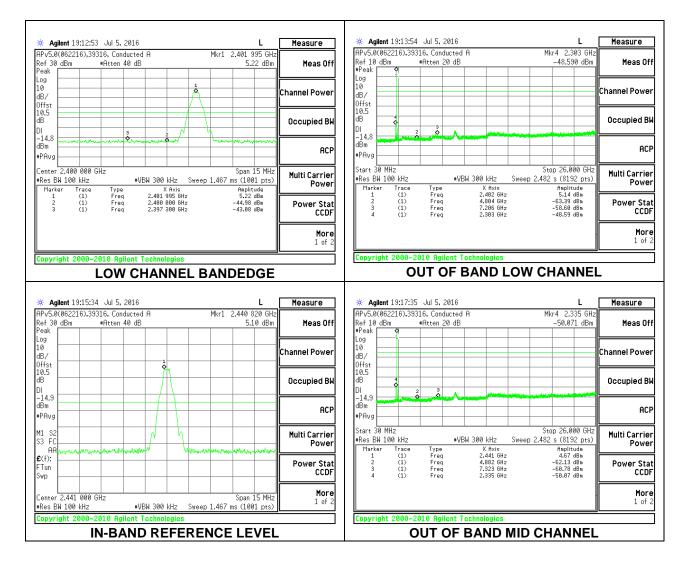
IC RSS-247 5.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

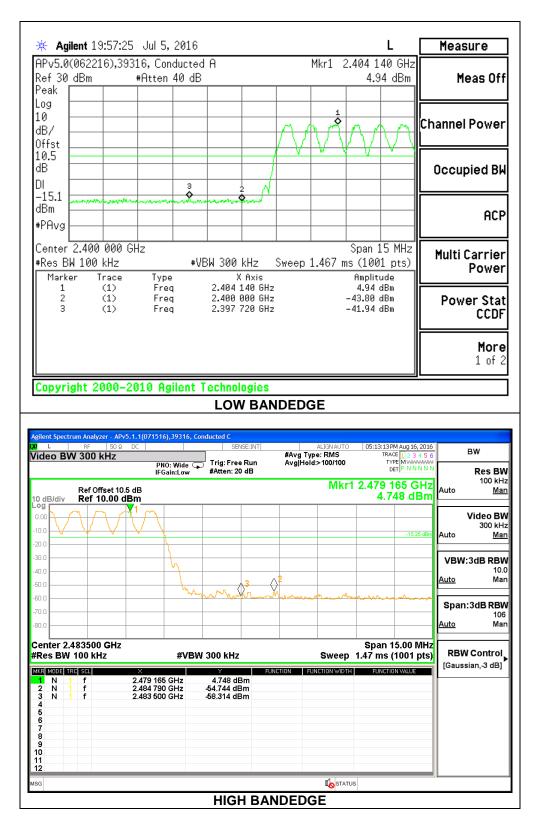

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

Page 37 of 74

4.8.1. BASIC DATA RATE GFSK MODULATION

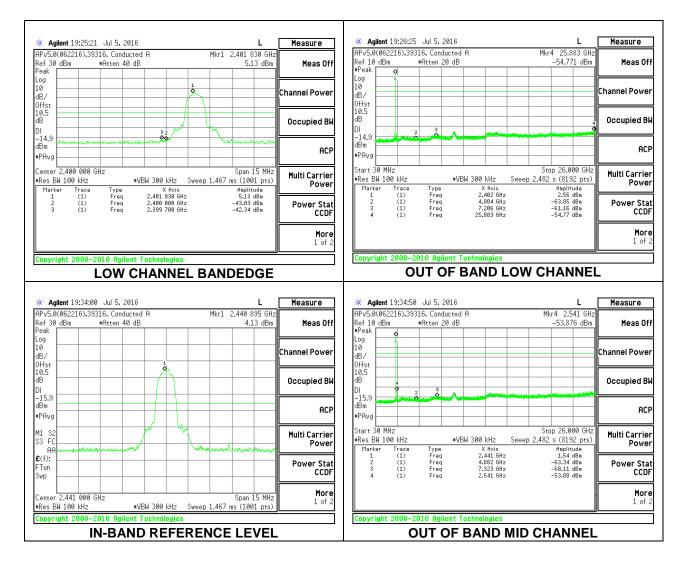
SPURIOUS EMISSIONS, NON HOPPING



Page 38 of 74

🔆 Agilent									L	Measure
APv5.0(062				A			Mkr1		990 GHz	11
Ref 30 dBr	m	#Atten 4	40 dB					4.5	57 dBm	Meas Of
Peak										
Log		1								
10		<u>¢</u>								Channel Powe
dB/		$+ f \chi$								
Offst		+ + +								
10.5										
										0ccupied B
		M	5		3					
-15.4 📈	and some and	'I I	(ma	and the second	a more	and the second sec	and the second s	maria	mond	
										aci
#PAvg —										
Center 2.4	83 500 G	<u> </u>						Snan	15 MHz	
#Res BW 10		112	#UR	W 300	<i>μ</i> μ ₂	Swaan	1 /67	ms (100		Multi Carrie
Marker	Trace	Туре	*00		Axis	ougeh	1.407	Amplit	-	Powe
1 1arker	(1)	Freq			, пхіs 990 GHz			4.57		
2	(1)	Freq			655 GHz			-42.15		Power Sta
3	(1)	Freq		2.483	500 GHz			-45.61	dBm	🛛 ССД
										Mor
										1 of
Copyright	2000-2	010 Aai	lent Te	echnol	naies					
Copyright	2000-2		lent To HIGH			L BAI	NDED	GE		
			HIGH			L BAI	NDED	GE		
🔆 Agilent	t 19:23:20) Jul 5,	HIGH 2016	CHA		LBA			L	Measure
* Agilent APv5.0(06	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA		L BAI		(r4 2.5	- 185 GHz	
★ Agilen APv5.0(06 Ref 10 dB	t 19:23:20 2216),393) Jul 5,	HIGH 2016 ducted	CHA					- 185 GHz	Measure Meas Off
✗ Agilent APv5.0(06 Ref 10 dB #Peak	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	
★ Agilent APv5.0(06 Ref 10 dB #Peak Log	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off
Agilen APv5.0(06 Ref 10 dB #Peak Log 10	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	
※ Agilen APv5.0(06 Ref 10 dB Ref 10 dB HPeak Log 10 dB/ HP	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off
Agilen APv5.0(06 Ref 10 dB #Peak Log 10	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off
★ Agilen APv5.0(06 Ref 10 dB *Peak Log 10 dB/ 0ffst	t 19:23:20 2216),393) Jul 5, 316, Con	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI	t 19:23:20 2216),393) Jul 5, 316, Con #Atten	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off Channel Power
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI -15.4	t 19:23:20 2216),393) Jul 5, 316, Con- *Atten	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off Channel Power
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI	t 19:23:20 2216),393) Jul 5, 316, Con #Atten	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off Channel Power Occupied Bk
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI -15.4	t 19:23:20 2216),393) Jul 5, 316, Con #Atten	HIGH 2016 ducted	CHA				(r4 2.5	- 185 GHz	Meas Off Channel Power
** Agilen: APv5.0(06 Ref 10 dB *Peak	t 19:23:20 2216),393 m 4) Jul 5, 316, Con #Atten	HIGH 2016 ducted	CHA			MI	r4 2.5 -51.08	85 GHz 33 dBm	Meas Off Channel Power Occupied Bk ACP
** Agilen: APv5.0(06 Ref 10 dB #Peak	t 19:23:20 2216),393 m 2) Jul 5, 316, Con #Atten	HIGH 2016 ducted 20 dB	A			Sto	r 4 2.5 -51.08	85 GHz 33 dBm	Meas Off Channel Power Occupied Bk ACF
Agilen: APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst DI -15.4 dBm *PAvg Start 30 N *Res BW 1	t 19:23:20 2216),393 m 4) Jul 5, 316, Con #Atten	HIGH 2016 ducted 20 dB	СНА А	KHz		Sto	r 4 2.5 -51.08	85 GHz 33 dBm 90 GHz 2 pts)	Meas Off Channel Power Occupied Bk ACP
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI -15.4 WBR Start 30 N *Res BW 1 Marker	t 19:23:20 2216),393 m -1 -1 -1 -1 -1 -1 -1 -1 -1 -1) Jul 5, 316, Con #Atten	HIGH 2016 ducted 20 dB	CHA A W 300	kHz kHz	Sweet	Sto	r 4 2.5 -51.08	85 GHz 3 dBm 00 GHz 2 pts) ude	Meas Off Channel Power Occupied Bk ACF Multi Carrier
Agilen: APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst DI -15.4 dBm *PAvg Start 30 N *Res BW 1	t 19:23:20 2216),393 m 4) Jul 5, 316, Con #Atten	HIGH 2016 ducted 20 dB	CHA A W 300	KHz	Sweet	Sto	rr 4 2.5 -51.08 pp 26.01 s (819 Amplit 4.17 -62.28	85 GHz 33 dBm 3 dBm 90 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACF Multi Carrier Power
Agilen: APv5.0(06 Ref 10 dB Peak Log 10 dB/ 0ffst 0B/ DI -15.4 dBm *PAvg Start 30 N *Res BW 1 Marker 1 2 3	t 19:23:20 2216),393 m 4) Jul 5, 316, Con- #Atten 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HIGH 2016 ducted 20 dB	CHA A M 300	KHz (Axis 480 GHz 960 GHz 440 GHz	Sweet	Sto	r 4 2.5 -51.08 pp 26.00 s (819 Amplit 4.17 -62.28 -60.97	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACF Multi Carrier Power Power Stat
Agilen APv5.0(06 Ref 10 dB #Peak Log 10 dB/ 0ffst 10.5 dB DI -15.4 wPAvg Start 30 N #Res BW 1 Marker 1 2	t 19:23:20 2216),393 im 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 5 4 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7) Jul 5, 316, Con- #Atten 2 3 2 3 4 4 7 7 7 Freq Freq Freq	HIGH 2016 ducted 20 dB	CHA A M 300	kHz (Axis 480 6Hz 960 6Hz	Sweet	Sto	rr 4 2.5 -51.08 pp 26.01 s (819 Amplit 4.17 -62.28	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACF Multi Carrier Power
Agilen: APv5.0(06 Ref 10 dB Peak Log 10 dB/ 0ffst 0B/ DI -15.4 dBm *PAvg Start 30 N *Res BW 1 Marker 1 2 3	t 19:23:20 2216),393 m 4) Jul 5, 316, Con- #Atten 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HIGH 2016 ducted 20 dB	CHA A M 300	KHz (Axis 480 GHz 960 GHz 440 GHz	Sweet	Sto	r 4 2.5 -51.08 pp 26.00 s (819 Amplit 4.17 -62.28 -60.97	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACP Multi Carrier Power Power Stat CCDF
Agilen: APv5.0(06 Ref 10 dB Peak Log 10 dB/ 0ffst 0B/ DI -15.4 dBm *PAvg Start 30 N *Res BW 1 Marker 1 2 3	t 19:23:20 2216),393 m 4) Jul 5, 316, Con- #Atten 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HIGH 2016 ducted 20 dB	CHA A M 300	KHz (Axis 480 GHz 960 GHz 440 GHz	Sweet	Sto	r 4 2.5 -51.08 pp 26.00 s (819 Amplit 4.17 -62.28 -60.97	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACF Multi Carrier Power Power Stat CCDF
Agilen: APv5.0(06 Ref 10 dB Peak Log 10 dB/ 0ffst 0B/ DI -15.4 dBm *PAvg Start 30 N *Res BW 1 Marker 1 2 3	t 19:23:20 2216),393 m 4) Jul 5, 316, Con- #Atten 2 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HIGH 2016 ducted 20 dB	CHA A M 300	KHz (Axis 480 GHz 960 GHz 440 GHz	Sweet	Sto	r 4 2.5 -51.08 pp 26.00 s (819 Amplit 4.17 -62.28 -60.97	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACP Multi Carrier Power Power Stat CCDF
Agilen: APv5.0(06 Ref 10 dB Peak Log 10 dB/ 0ffst 0B/ DI -15.4 dBm *PAvg Start 30 N *Res BW 1 Marker 1 2 3	t 19:23:20 2216),393 m 9) Jul 5, 316, Con- #Atten 2 3 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	HIGH 2016 ducted 20 dB	CHA	KHz (Axis 480 GHz 960 GHz 440 GHz 585 GHz	Sweet	Sto	r 4 2.5 -51.08 pp 26.00 s (819 Amplit 4.17 -62.28 -60.97	85 GHz 3 dBm 3 dBm 00 GHz 2 pts) ude dBm dBm dBm	Meas Off Channel Power Occupied Bk ACF Multi Carrier Power Power Stat CCDF

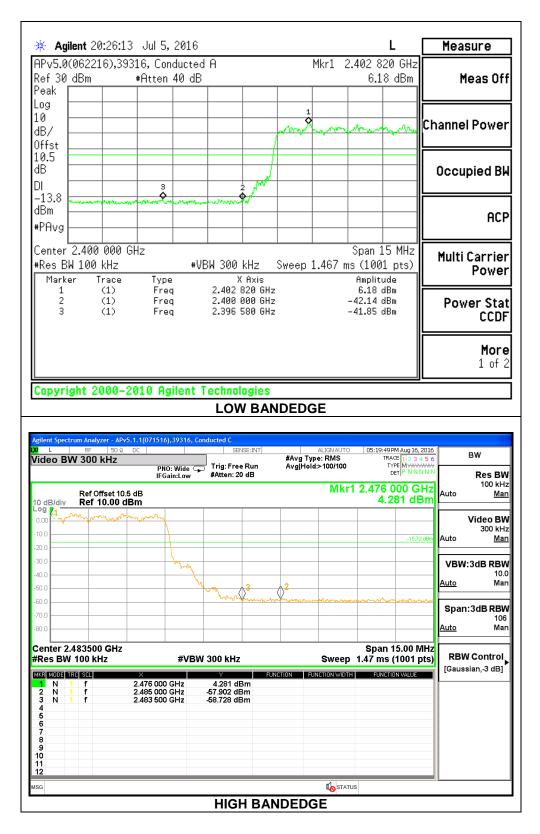
Page 39 of 74


SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 40 of 74

4.8.2. ENHANCED DATA RATE 8PSK MODULATION

SPURIOUS EMISSIONS, NON HOPPING


Page 41 of 74

/5.0(062216),39 30 dBm k	7 Jul 5, 2016		L	Measure
	316, Conducted A	Mk	r1 2.479 990 G	
K I	#Atten 40 dB		5.18 dE	Bm Meas Of
	1			
/	<u>_</u>			Channel Powe
st 📃	17 1			
5				
				Occupied B
	× Va			
.8		3		
				AC AC
/g				
er 2.483 500:	=		Span 15 M	n muutu arrie
; BW 100 kHz	#VBW 300		167 ms (1001 pt	s) Powe
arker Trace	Type	X Axis	Amplitude	
1 (1) 2 (1)		3 990 GHz 3 835 GHz	5.18 dBm -41.95 dBm	Power Sta
3 (1)		8 500 GHz	-43.78 dBm	
				Mor
				1 of
	010 Agilent Techno			
Agilent 19:38:5) Jul 5, 2016 316, Conducted A		L Mkr4 2.582 G	Measure
10 dBm	#Atten 20 dB		-52.747 dE	
			-J2.747 GE	
" ├── ¥──				
				Channel Powe
:				
1 II				
				Occupied B
		and the second second second	and the second second	<u> </u>
8				AC
	+ + +			
g			Stop 26.000 G	
g	#VBW 300) kHz Sweep 2	Stop 26.000 G .482 s (8192 pt	្រព្រះពេលដោយ
g : 30 MHz BW 100 kHz	#VBW 300	0 kHz Sweep 2 X Axis	Stop 26.000 G .482 s (8192 pt Amplitude	Hz s) Multi Carrie Powe
8 yg t 30 MHz BW 100 kHz arker Trace 1 (1)	Type Freq 2	X Axis 2.480 GHz	.482 s (8192 pt Amplitude 2.46 dBm	s) Powe
8 9 4 5 5 6 7 7 8 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Type Freq 2 Freq 4	X Axis 2.480 GHz 4.960 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm	s) Power Sta
g 30 MHz BW 100 kHz rker Trace 1 (1) 2 (1) 3 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz	.482 s (8192 pt Amplitude 2.46 dBm	s) Powe
g 30 MHz BW 100 kHz rker Trace 1 (1) 2 (1) 3 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz 4.960 GHz 7.440 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm -60.52 dBm	s) Power Sta
g 30 MHz BW 100 kHz rker Trace 1 (1) 2 (1) 3 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz 4.960 GHz 7.440 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm -60.52 dBm	s) Power Sta CCD
g 30 MHz BW 100 kHz rker Trace 1 (1) 2 (1) 3 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz 4.960 GHz 7.440 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm -60.52 dBm	s) Power Sta CCD
8 yg t 30 MHz BW 100 kHz arker Trace 1 (1) 2 (1) 3 (1) 4 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz 4.960 GHz 7.440 GHz 2.582 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm -60.52 dBm	s) Power Sta CCD
1 (1) 2 (1) 3 (1)	Type Freq 2 Freq 4 Freq 7	X Axis 2.480 GHz 4.960 GHz 7.440 GHz	.482 s (8192 pt Amplitude 2.46 dBm -61.99 dBm -60.52 dBm	s) Power S

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 42 of 74

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 43 of 74

5. RADIATED TEST RESULTS

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

IC RSS-GEN Clause 7 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

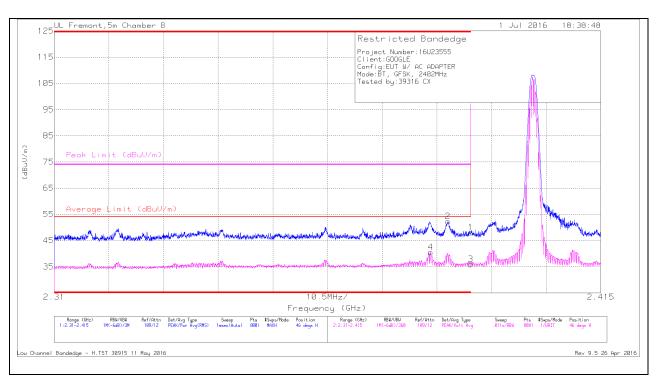
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T (360 Hz) video bandwidth with peak detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

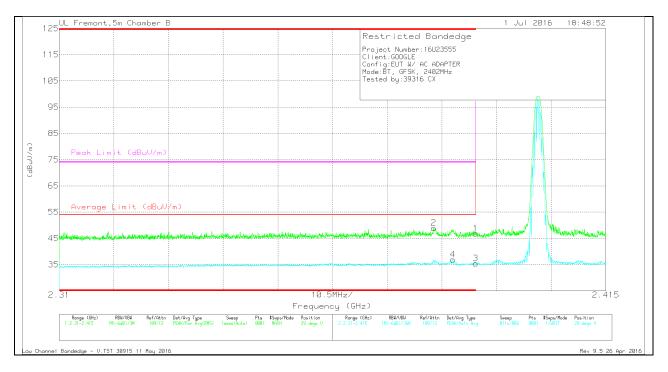
Page 44 of 74

5.1. TRANSMITTER ABOVE 1 GHz

5.1.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULTS

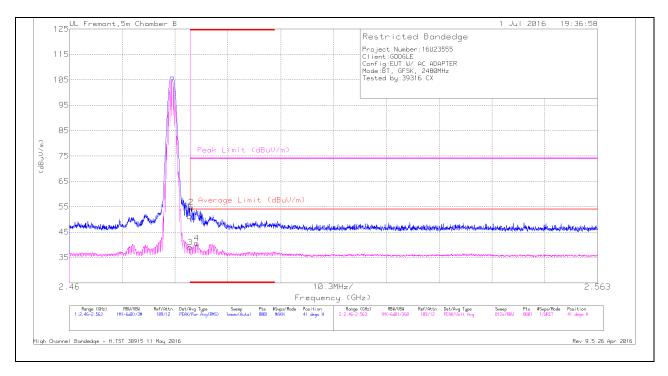

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	38.2	Pk	32.1	-22.3	48	-	-	74	-26	46	103	Н
2	* 2.386	42.48	Pk	32.1	-22.3	52.28	-	-	74	-21.72	46	103	Н
3	* 2.39	26.04	VA1T	32.1	-22.3	35.84	54	-18.16	-	-	46	103	Н
4	* 2.382	30.78	VA1T	32.1	-22.4	40.48	54	-13.52	-	-	46	103	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.382	39.23	Pk	32.1	-22.4	48.93	-	-	74	-25.07	29	339	V
4	* 2.386	27.1	VA1T	32.1	-22.3	36.9	54	-17.1	-	-	29	339	V
1	* 2.39	36.98	Pk	32.1	-22.3	46.78	-	-	74	-27.22	29	339	V
3	* 2.39	25.57	VA1T	32.1	-22.3	35.37	54	-18.63	-	-	29	339	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

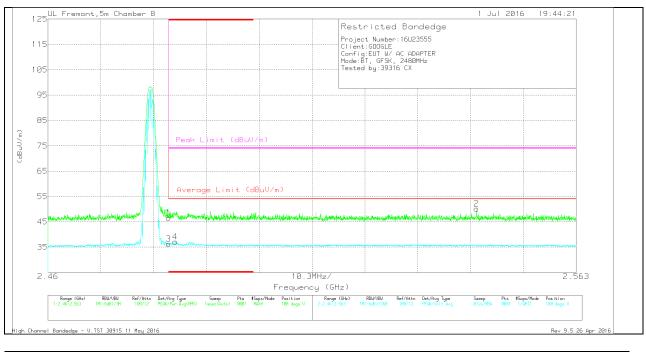
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 46 of 74

AUTHORIZED BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	41.43	Pk	32.3	-22.3	51.43	-	-	74	-22.57	41	308	Н
2	* 2.484	44.76	Pk	32.3	-22.3	54.76	-	-	74	-19.24	41	308	Н
3	* 2.484	29.02	VA1T	32.3	-22.3	39.02	54	-14.98	-	-	41	308	Н
4	* 2.485	30.53	VA1T	32.3	-22.2	40.63	54	-13.37	-	-	41	308	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

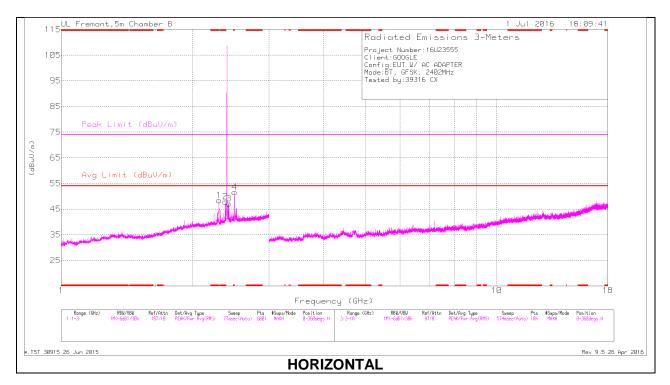
Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

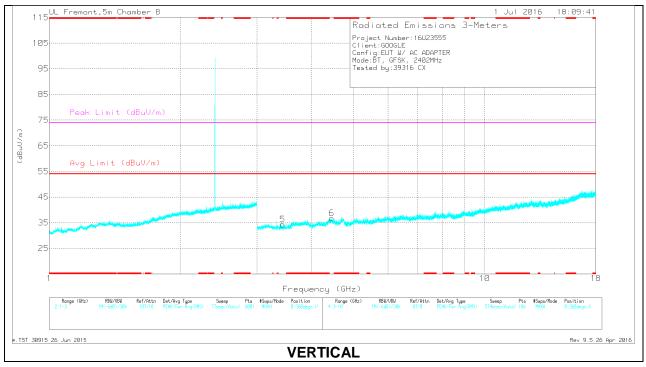
Page 47 of 74

VERTICAL RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	36.57	Pk	32.3	-22.3	46.57	-	-	74	-27.43	108	311	V
3	* 2.484	26.3	VA1T	32.3	-22.3	36.3	54	-17.7	-	-	108	310	V
4	* 2.485	27.04	VA1T	32.3	-22.2	37.14	54	-16.86	-	-	108	310	V
2	2.544	40.03	Pk	32.3	-22.2	50.13	-	-	74	-23.87	108	311	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

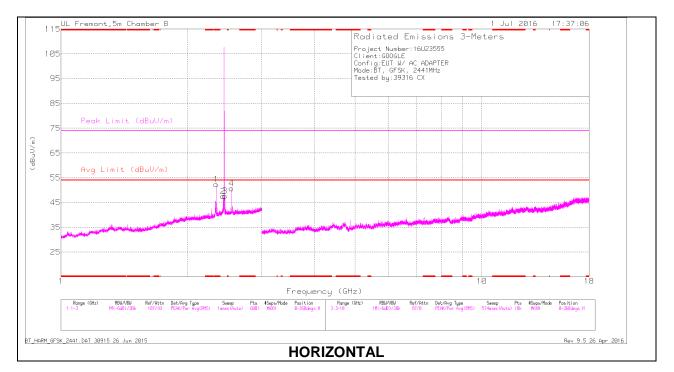
Page 48 of 74

HARMONICS AND SPURIOUS EMISSIONS

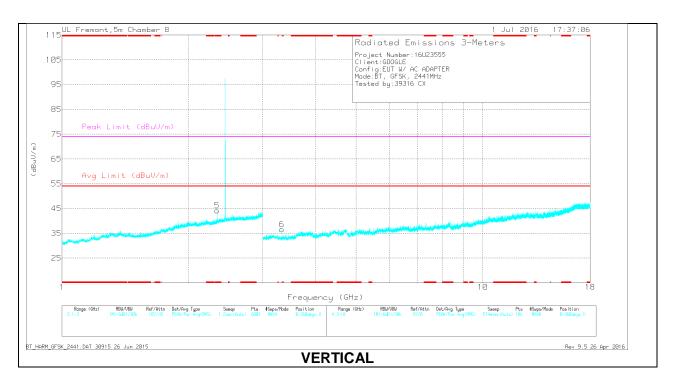
LOW CHANNEL RESULTS

Page 49 of 74

LOW CHANNEL DATA


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.386	40.55	PKFH	32.1	-22.3	50.35	-	-	74	-23.65	37	161	Н
	* 2.386	29.07	VA1T	32.1	-22.3	38.87	54	-15.13	-	-	37	161	Н
1	2.301	39.21	Pk	31.5	-22.3	48.41	-	-	-	-	0-360	101	Н
3	2.426	37.25	Pk	32.2	-22.3	47.15	-	-	-	-	0-360	199	Н
4	2.502	41.58	Pk	32.3	-22.3	51.58	-	-	-	-	0-360	101	Н
5	3.437	34.71	Pk	32.8	-33.2	34.31	-	-	-	-	0-360	101	V
6	4.453	33.58	Pk	34	-30.9	36.68	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

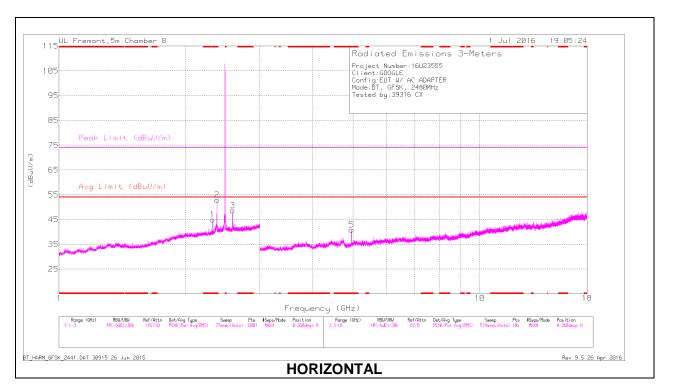
Page 50 of 74

MID CHANNEL RESULTS

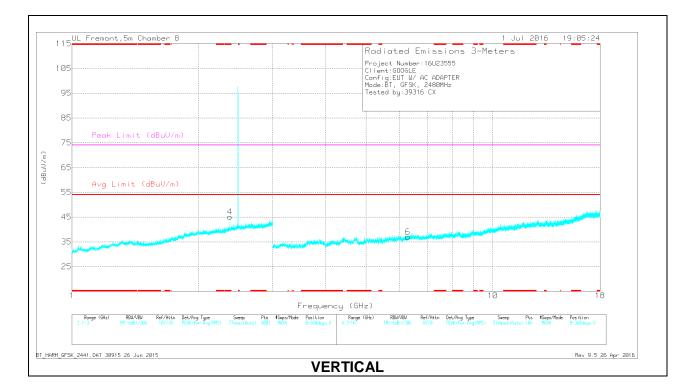
Page 51 of 74

MID CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.339	45.03	PKFH	31.8	-22.3	54.53	-	-	74	-19.47	37	176	Н
	* 2.337	34.14	VA1T	31.7	-22.4	43.44	54	-10.56	-	-	37	176	Н
5	* 2.339	41.4	PKFH	31.8	-22.3	50.9	-	-	74	-23.1	357	345	V
	* 2.339	29.79	VA1T	31.8	-22.3	39.29	54	-14.71	-	-	357	345	V
6	* 3.333	41.9	PKFH	32.6	-32.8	41.7	-	-	74	-32.3	154	297	V
	* 3.333	32.69	VA1T	32.6	-32.8	32.49	54	-21.51	-	-	154	297	V
2	2.428	37.67	Pk	32.2	-22.4	47.47	-	-	-	-	0-360	225	Н
3	2.454	37.77	Pk	32.2	-22.3	47.67	-	-	-	-	0-360	225	Н
4	2.544	40.61	Pk	32.3	-22.2	50.71	-	-	-	-	0-360	101	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH - FHSS: RB=1MHz VB=3 x RB, Peak


VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 52 of 74

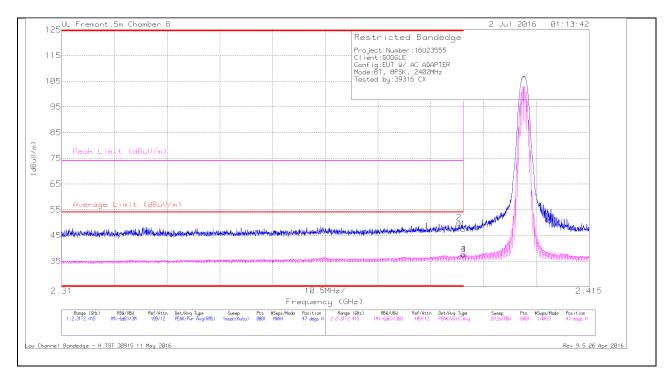
HIGH CHANNEL RESULTS

Page 53 of 74

HIGH CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.32	40.77	PKFH	31.6	-22.4	49.97	-	-	74	-24.03	41	140	Н
	* 2.32	24.04	VA1T	31.6	-22.4	33.24	54	-20.76	-	-	41	140	Н
2	* 2.375	45.6	PKFH	32	-22.3	55.3	-	-	74	-18.7	39	136	Н
	* 2.374	36.19	VA1T	32	-22.2	45.99	54	-8.01	-	-	39	136	Н
4	* 2.374	41.09	PKFH	32	-22.2	50.89	-	-	74	-23.11	0	344	V
	* 2.374	30	VA1T	32	-22.2	39.8	54	-14.2	-	-	0	344	V
5	* 4.96	44.42	PKFH	34	-32.2	46.22	-	-	74	-27.78	116	115	Н
	* 4.96	38.13	VA1T	34	-32.2	39.93	54	-14.07	-	-	116	115	н
3	2.586	38.6	Pk	32.2	-22.2	48.6	-	-	-	-	0-360	101	Н
6	6.278	32.46	Pk	35.5	-31	36.96	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

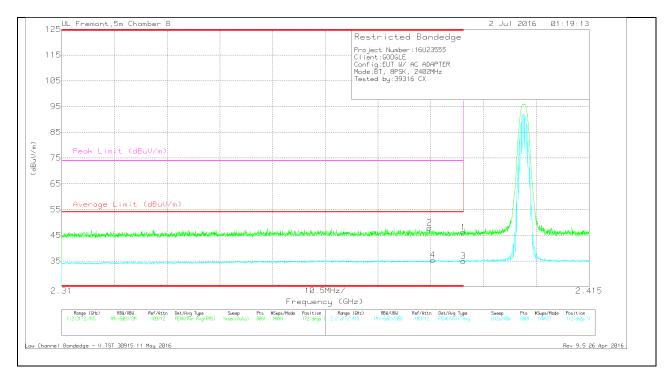
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 54 of 74

5.1.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULTS


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	37.57	Pk	32.1	-22.3	47.37	-	-	74	-26.63	47	264	Н
2	* 2.389	40.12	Pk	32.1	-22.3	49.92	-	-	74	-24.08	47	264	Н
3	* 2.39	27.78	VA1T	32.1	-22.3	37.58	54	-16.42	-	-	47	264	Н
4	* 2.39	27.82	VA1T	32.1	-22.3	37.62	54	-16.38	-	-	47	264	Н

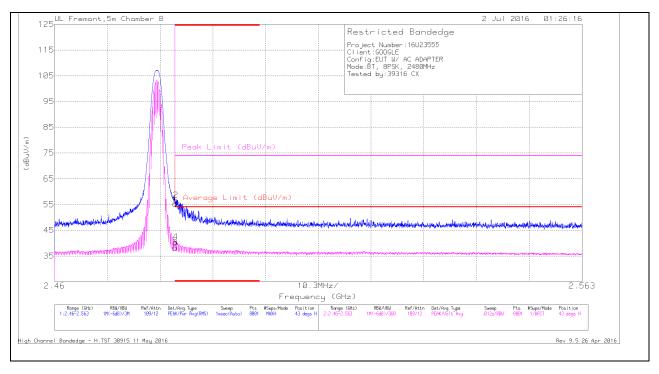
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 55 of 74

VERTICAL RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	36.29	Pk	32.1	-22.3	46.09	-	-	74	-27.91	172	309	V
2	* 2.383	38.13	Pk	32.1	-22.4	47.83	-	-	74	-26.17	172	309	V
3	* 2.39	25.17	VA1T	32.1	-22.3	34.97	54	-19.03	-	-	172	309	V
4	* 2.384	25.54	VA1T	32.1	-22.3	35.34	54	-18.66	-	-	172	309	V

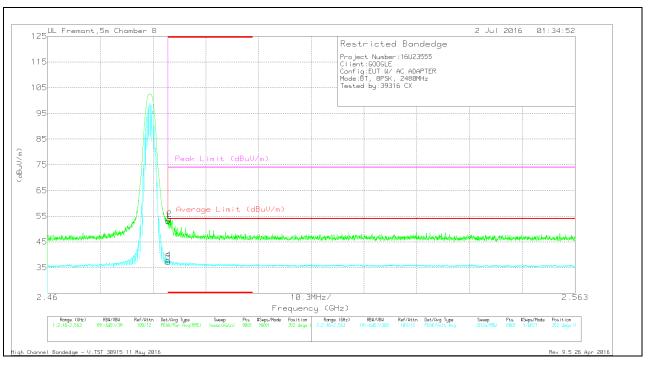

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 56 of 74

AUTHORIZED BANDEDGE (HIGH CHANNEL)


HORIZONTAL RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	45.27	Pk	32.3	-22.3	55.27	-	-	74	-18.73	43	311	Н
2	* 2.484	46.69	Pk	32.3	-22.3	56.69	-	-	74	-17.31	43	311	Н
3	* 2.484	28.18	VA1T	32.3	-22.3	38.18	54	-15.82	-	-	43	311	Н
4	* 2.484	30.46	VA1T	32.3	-22.3	40.46	54	-13.54	-	-	43	311	Н

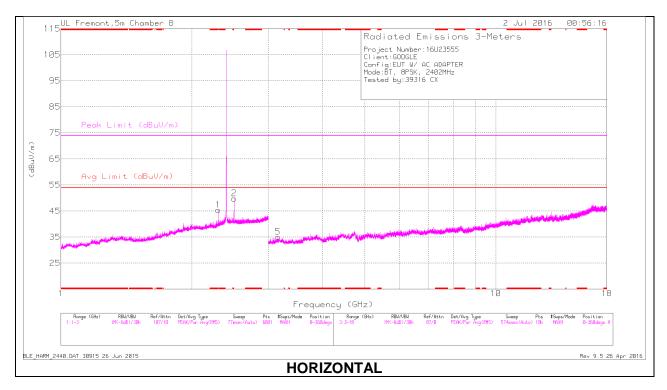
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

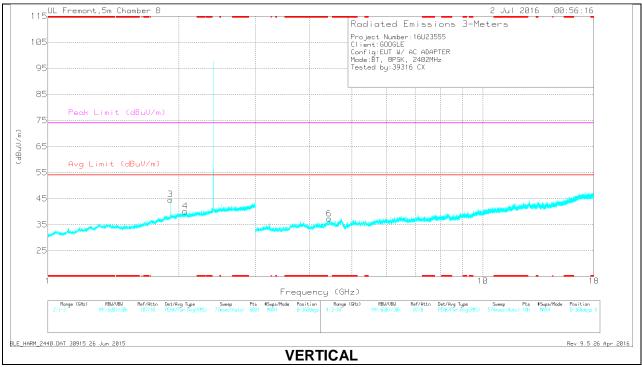
Page 57 of 74

VERTICAL RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	43.18	Pk	32.3	-22.3	53.18	-	-	74	-20.82	352	391	V
2	* 2.484	43.85	Pk	32.3	-22.3	53.85	-	-	74	-20.15	352	391	V
3	* 2.484	27.17	VA1T	32.3	-22.3	37.17	54	-16.83	-	-	352	391	V
4	* 2.484	27.9	VA1T	32.3	-22.3	37.9	54	-16.1	-	-	352	391	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

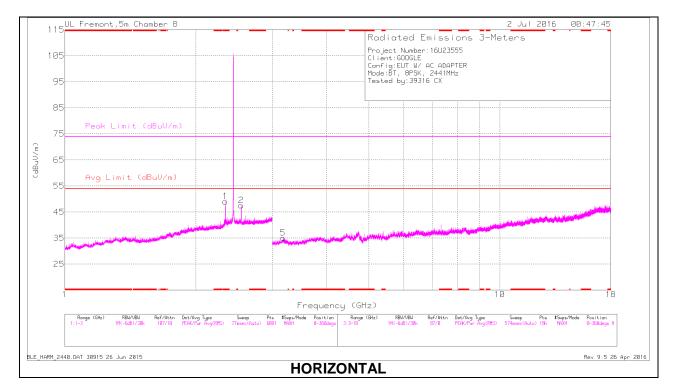

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 58 of 74

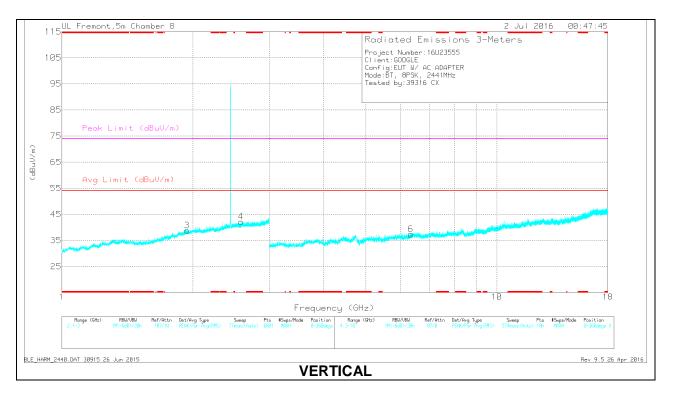
HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

Page 59 of 74


LOW CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	1.914	35.79	Pk	30.9	-22.1	44.59	-	-		-	0-360	199	V
4	2.07	31.1	Pk	31.3	-22.3	40.1	-	-	-	-	0-360	199	V
1	2.301	36.2	Pk	31.5	-22.3	45.4	-	-	-	-	0-360	199	Н
2	2.503	39.8	Pk	32.3	-22.3	49.8	-	-	-	-	0-360	199	Н
5	3.157	34.47	Pk	32.9	-32.3	35.07	-	-	-	-	0-360	199	Н
6	4.436	33.97	Pk	34.1	-30.8	37.27	-	-	-	-	0-360	199	V


Pk - Peak detector

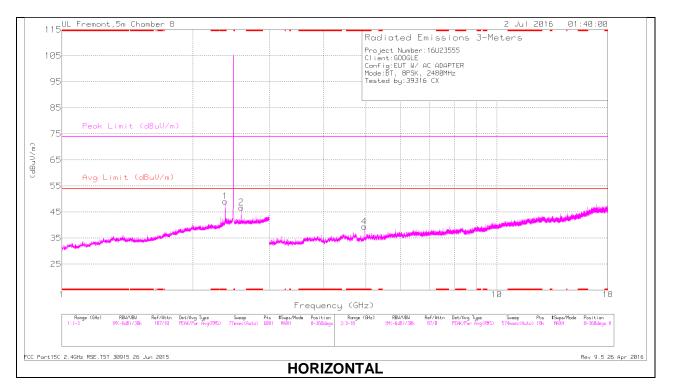
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 60 of 74

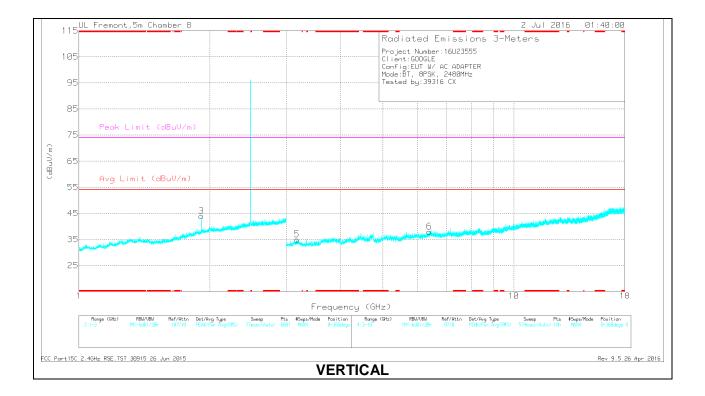
MID CHANNEL RESULTS

Page 61 of 74

MID CHANNEL DATA


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pa d (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.338	43.19	PKFH	31.7	-22.4	52.49	-	-	74	-21.51	40	134	Н
	* 2.338	28.72	VA1T	31.7	-22.4	38.02	54	-15.98	-	-	40	134	Н
3	1.94	29.55	Pk	31.1	-21.9	38.75	-	-	-	-	0-360	199	V
2	2.544	37.39	Pk	32.3	-22.2	47.49	-	-	-	-	0-360	101	Н
4	2.584	32.08	Pk	32.2	-22.1	42.18	-	-	-	-	0-360	199	V
5	3.177	34.32	Pk	32.9	-32.2	35.02	-	-	-	-	0-360	101	Н
6	6.338	33.16	Pk	35.5	-31.3	37.36	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

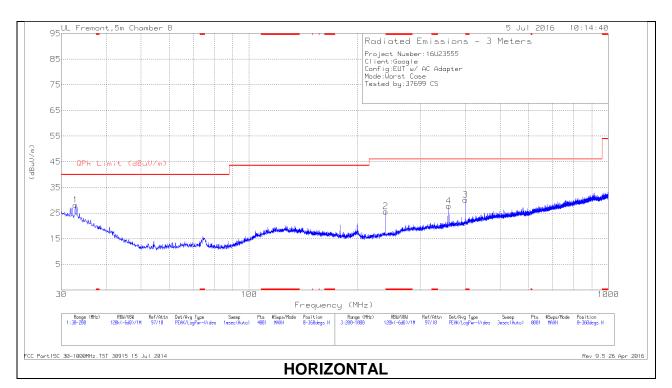
Page 62 of 74

Page 63 of 74

HIGH CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.373	45.64	PKFH	32	-22.3	55.34	-	-	74	-18.66	47	235	н
	* 2.374	29.13	VA1T	32	-22.2	38.93	54	-15.07	-	-	47	235	Н
4	* 4.959	43.29	PKFH	34	-32.2	45.09	-	-	74	-28.91	117	139	Н
	* 4.96	35.52	VA1T	34	-32.2	37.32	54	-16.68	-	-	117	139	Н
3	1.914	35.13	Pk	30.9	-22.1	43.93	-	-	-	-	0-360	101	V
2	2.587	36.69	Pk	32.2	-22.2	46.69	-	-	-	-	0-360	290	Н
5	3.175	34.26	Pk	32.9	-32.2	34.96	-	-	-	-	0-360	199	V
6	6.392	33.96	Pk	35.6	-31.6	37.96	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 64 of 74

5.2. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

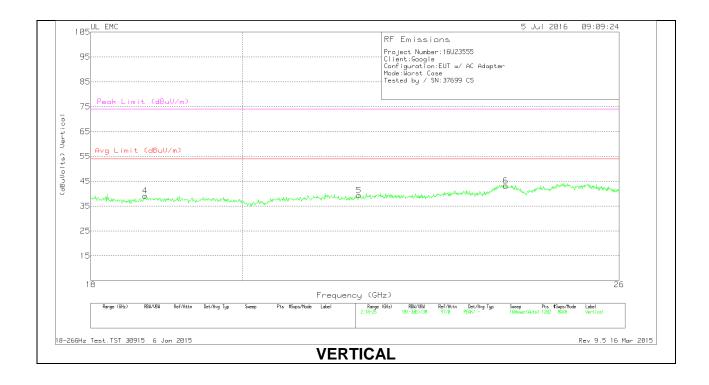
95 UL Fremont,5m Chamber B 5 Jul 2016 10:14:40 Radiated Emissions - 3 Meters Project Number:16U23555 Client:Google Config:EUT w/ AC Adapter Mode:Worst Case Tested by:37699 CS 85 75 65 55 dBuU/ 45 QPk Limit (dBuV/m) 35 5 25 6 15 draw 100 1000 37 Frequency (MHz) Range (MHz) 2:38-288 RBN/VBN 128k(-6dB)/1M Ref/Attn Det/Avg Type Sweep 97/18 PEAK/LogPur-Video Insec(Auto) Pia #Supp:/Mode Position Range (MHz) RBU/UBU Ref/Attn Det/Avg Type Sweep Pia #Sup:/Mode Position 4081 MAXH 8-368degs U 4:208-1090 128k/-6dB)/1M 97/10 PErK/LogPar-Video 3msec(Auto) 8801 MAXH 8-368degs U FCC Part15C 30-1000MHz.TST 30915 15 Jul 2014 Rev 9.5 26 Apr 2016 VERTICAL

Page 65 of 74

Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
6	* 74.54	36.18	Pk	11.9	-28.4	19.68	40	-20.32	0-360	100	V
3	* 400	37	Pk	19.5	-26.3	30.2	46.02	-15.82	0-360	100	Н
1	32.8475	33.77	Pk	23.2	-28.8	28.17	40	-11.83	0-360	100	Н
5	32.8475	38.67	Pk	23.2	-28.8	33.07	40	-6.93	0-360	100	V
2	240	36.86	Pk	15.5	-26.7	25.66	46.02	-20.36	0-360	100	H
4	360	35.13	Pk	18.7	-26.1	27.73	46.02	-18.29	0-360	100	Н

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

Page 66 of 74

5.3. WORST-CASE 18 GHz – 26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

105 UL EMC	5 Jul 2016 09:09:24
	RF Emissions Project Number:16U23555
95	Client:Google Configuration:EUT w/ AC Adapter Mode:Worst Cose
75	
65	
55 Avg Limit (dBuU/m)	
45	3
35 marken and an and and	and the second and the se
25	
15	
18	26
	Frequency (GHz)
Range (GHz) RBU/UBU Ref/Attn Det/Avg Typ 1:18-25 1H(-3dB)/3M 97/8 PEAK/ -	Sueep Pts #Supo/Mode Lobel Range (8Hz) RBU/J&U Ref/Rttn Det/Avg Typ Sueep Pts #Supo/Mode Lobel 168heec(Auto) 1282 H8XH Horizontal
GHz Test.TST 38915 6 Jan 2015	
	HORIZONTAL

Page 67 of 74

Data

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T449 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	18.679	39.7	Pk	32.4	-24.6	-9.5	38	54	-16	74	-36
2	21.697	40.07	Pk	33.2	-24.6	-9.5	39.17	54	-14.83	74	-34.83
3	23.975	43.53	Pk	34	-24.2	-9.5	43.83	54	-10.17	74	-30.17
4	18.693	40.47	Pk	32.4	-24.2	-9.5	39.17	54	-14.83	74	-34.83
5	21.694	40.23	Pk	33.2	-24.6	-9.5	39.33	54	-14.67	74	-34.67
6	24.025	42.77	Pk	34	-24.1	-9.5	43.17	54	-10.83	74	-30.83

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 68 of 74

6. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

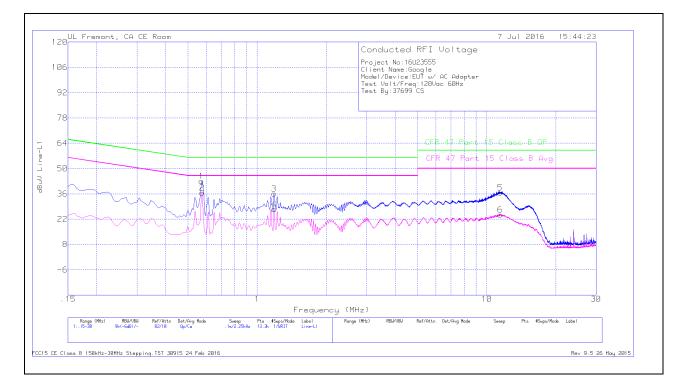
RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56 *	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10-2013.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 69 of 74

WORST EMISSIONS


Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter (dB)	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			1&3		Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
1	.573	32.94	Qp	0	0	10.1	43.04	56	-12.96	-	-
2	.57525	26.59	Ca	0	0	10.1	36.69	-	-	46	-9.31
3	1.185	25.85	Qp	0	.1	10.1	36.05	56	-19.95	-	-
4	1.18725	17.24	Ca	0	.1	10.1	27.44	-	-	46	-18.56
5	11.463	26.27	Qp	0	.2	10.2	36.67	60	-23.33	-	-
6	11.4585	13.99	Ca	0	.2	10.2	24.39	-	-	50	-25.61

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 70 of 74

LINE 2 RESULTS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables 2&3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
7	.57525	28.18	Qp	0	0	10.1	38.28	56	-17.72	-	-
8	.57525	18.71	Ca	0	0	10.1	28.81	-	-	46	-17.19
9	1.18725	20.46	Qp	0	.1	10.1	30.66	56	-25.34	-	-
10	1.18725	10.27	Ca	0	.1	10.1	20.47	•	-	46	-25.53
11	11.46975	21.4	Qp	0	.2	10.2	31.8	60	-28.2	-	
12	11.4675	6.93	Ca	0	.2	10.2	17.33	-	-	50	-32.67

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 71 of 74