

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 4 / RSS 247 Issue 1 FCC Part 15 Subpart C

Model: H0ME

IC CERTIFICATION #: FCC ID:	10395A-H0ME A4RH0ME
APPLICANT:	Google Inc. 1600 Amphitheatre Pky Mountain View, CA 94043
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-7
REPORT DATE:	September 13, 2016
REISSUE DATE:	September 22, 2016
FINAL TEST DATES:	July 8 thru 26 and August 10, 2016
TOTAL NUMBER OF PAGES:	96

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

ey Project number JD101591 Report Date: September 13, 2016 Reissue Date: September 22, 2016

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	September 13, 2016	First release	
1.0	September 19, 2016	Clarified power vs. data rate and duty cycle information. Clarified BLE Tx spurious emissions testing. Clarified antenna conducted spurious emissions.	MEH
2.0	September 22, 2016	Removed power vs data rate results	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) – BLUETOOTH LOW ENERGY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) – IEEE 802.11BGN	6
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
ANTENNA SYSTEM ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	10
TEST SITE	11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS	12
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	13
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	20
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS.	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	96

SCOPE

An electromagnetic emissions test has been performed on the Google Inc. model H0ME, pursuant to the following rules:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label

indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Google Inc. model HOME complied with the requirements of the following regulations:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Google Inc. model H0ME and therefore apply only to the tested sample. The sample was selected and prepared by Dominik Mente of Google Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) – Bluetooth Low Energy

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 247 5.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 247 5.2 (1)	6dB Bandwidth	0.695 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 247 5.4 (4)	Output Power (multipoint systems)	BLE: 5.6 dBm (3.6mW)	1Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	BLE: -4.1 dBm/10kHz	8dBm/3kHz	Complies
15.247(d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	> 20dB margin	< -20dBc	Complies
15.247(d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 30MHz – 25 GH	65.4 dBμV/m @ 2483.7 MHz (-8.6 dB)	Refer to the limits section (p20) for restricted bands, all others < -20dBc	Complies

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz) - IEEE 802.11bgn

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 247 5.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 247 5.2 (1)	6dB Bandwidth	WiFi: 10.1 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 247 5.4 (4)	Output Power (multipoint systems)	11b: 18.1dBm (64.6mW) 11g: 17.0dBm (50.1mW) n20: 17.2dBm (52.5mW)	1Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	11b: -0.2 dBm/10kHz 11g: -3.3 dBm/10kHz n20: -2.5 dBm/10kHz	8dBm/3kHz	Complies
15.247(d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	> 20dB margin	< -30dBc Note 2	Complies
15.247(d) / 15.209 RSS 247 5.5 Radiated Spurious Emissions 30MHz - 25 GHz 53.7 dBµV/m @ 2487.8 MHz (-0.3 dB) Refer to the limits section (p20) for restricted bands, all others <-30dBc Note 2					
	Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).				

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antennas are internal	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 3	AC Conducted Emissions	Chicony: 38.6 dBµV @ 0.358 MHz (-10.2 dB) TenPao: 44.4 dBµV @ 0.156 MHz (-21.3 dB)	Refer to page 19	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP-100 RSS-Gen 6.6	Occupied Bandwidth	BLE: 1.02MHz b: 13.3MHz g: 16.8MHz n20: 17.7MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (lield strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Google Inc. HOME is an interactive media streaming device. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 100-240 Volts, 50-60 Hz, 1.1 Amps.

The sample was received on July 8, 2016 and tested on July 8 thru 26 and August 10, 2016. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Google	H0ME	Streaming Media	6629AZZB6W	A4RH0ME
		Device (RF conducted)		
Google	HOME	Streaming Media	6629AZZB75	A4RH0ME
		Device (radiated)		
Chicony	W16-033N1A	External power supply	F185081624001224	-
TenPao	S033BU1650200	External power supply	prototype	-

ANTENNA SYSTEM

Two Internal Antennas: 2.7dBi and 3.3dBi max @ 2.4GHz, 5.3dBi and 5.7dBi @ 5GHz. Tx/Rx diversity.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 10 cm in diameter by 14 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop	27175981753	-
-	PA-12FAMILY	Laptop Power Supply	-	-
Google	Chromecast	USB AC/DC Adapter	-	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

	LUI				
Port	Connected To		Cable(s)		
1 OIT	Connected 10	Description	Shielded or Unshielded	Length(m)	
DC power	External power supply	2 wire	Unshielded	2	
AC in (external supply)	AC mains	Direct plug in	NA	NA	
USB	USB splitter	Multiwire	Shielded	0.3	

Additional on Support Equipment

Port	Connected To	Cable(s)			
TOIL	Connected To	Description	Shielded or Unshielded	Length(m)	
USB charger out	USB splitter	Multiwire	Shielded	0.3	
USB charger, AC in	AC mains	Direct plug in	NA	NA	
USB splitter	USB-serial adaptor cable				

EUT OPERATION

The EUT was configured to transmit continuously at the maximum output power setting. Specifics for the channel and mode are described in the test data.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers FCC Canada		Location
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 7	US0027	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for measurements below 1GHz and 1.5m for measurements above 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

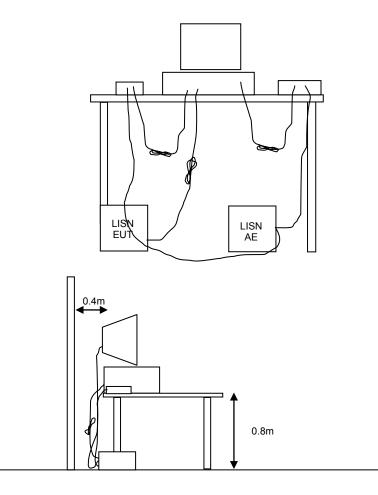
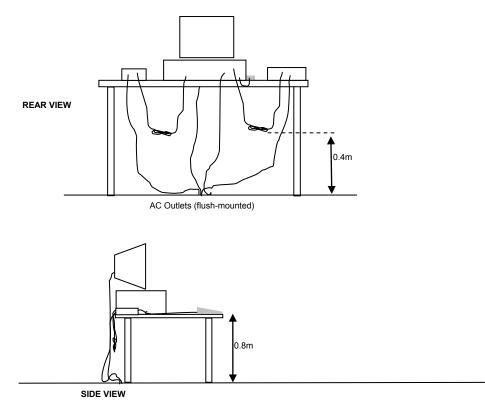
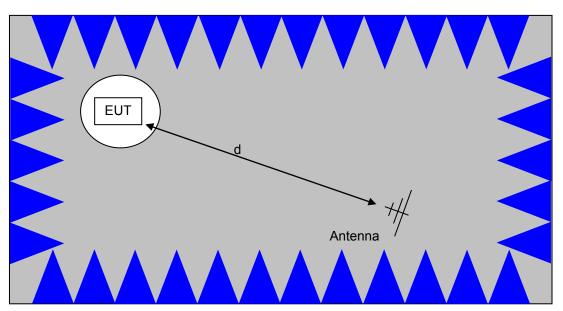


Figure 1 Typical Conducted Emissions Test Configuration


RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

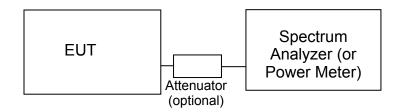

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

Report Date: September 13, 2016

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 247. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 6

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_c &=& R_r \,+\, F_d \\ and \\ M &=& R_c \,-\, L_S \\ where: \\ R_r &=& Receiver Reading in dBuV/m \\ F_d &=& Distance Factor in dB \\ R_c &=& Corrected Reading in dBuV/m \\ L_S &=& Specification Limit in dBuV/m \end{array}$$

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

T101744					
Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
Radiated Emissions Hewlett Packard	, 1000 - 6,500 MHz, 08-Jul-16 Spectrum Analyzer (SA40)	8564E (84125C)	1148	10/17/2015	10/17/2016
newick r dokard	Red 30 Hz -40 GHz	, , , , , , , , , , , , , , , , , , ,	1140		
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
	, 1000 - 25,000 MHz, 12-Jul-16				
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	1/21/2016	1/21/2017
HP / Miteq	SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	7/17/2015	8/17/2016
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	6/29/2016	6/29/2017
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Padiatod Spurious P	Emissions, 1000 - 40,000 MHz, <i>*</i>	12_ lul_16			
NTS	NTS EMI Software (rev 2.10)	N/A	0		N/A
Narda West	High Pass Filter, 8 GHz	HPF 180	821	1/27/2016	1/27/2017
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	1/21/2016	1/21/2017
HP / Miteq	26.5GHz SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	7/17/2015	8/17/2016
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	5/11/2016	5/11/2017
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	9/16/2015	9/16/2016
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	9/16/2015	9/16/2016
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Radiated Emissions	, 1000 - 6,000 MHz, 13-Jul-16				
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/19/2015	12/19/2016
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Radiated Spurious E	Emissions, 1000 - 12,000 MHz, <i>*</i>	15-Jul-16			
NTS .	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	1/21/2016	1/21/2017
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	9/16/2015	9/16/2016
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016

Project number JD101591

	Report Date:	September 13, 2016		Date: Septembe	
<u>Manufacturer</u>	Description	<u>Model</u>	<u>Asset #</u>	Calibrated	Cal Due
Radiated Emissions,	, 1000 - 25,000 MHz, 26-Jul-16				
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	1/21/2016	1/21/2017
HP / Miteq	SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	7/17/2015	8/17/2016
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	1683	6/29/2016	6/29/2017
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Micro-Tronics	Band Reject Filter, 5150-5350	BRC50703-02	2251	9/16/2015	9/16/2016
	MHz	BR030703-02	2201	5/10/2013	3/10/2010
	missions, 12 - 25 GHz, 27-Jul-				
NTS	NTS EMI Software (rev 2.10)	N/A	0		N/A
Narda West	High Pass Filter, 8 GHz	HPF 180	821	1/27/2016	1/27/2017
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	1/21/2016	1/21/2017
HP / Miteq	SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	7/17/2015	8/17/2016
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Conducted Emission	ns - AC Power Ports, 10-Aug-10	c			
Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
NTS	NTS EMI Software (rev 2.10)	N/A	<u>A3501 m</u> ()	Campialeu	N/A
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	8/1/2016	8/1/2017
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	4/26/2016	4/26/2017
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7	ESIB7	1538	12/19/2015	12/19/2016
	GHz		1000	12,10,2010	12/10/2010
T102213					
	Description	Madal	A a a - 1 #	Calibrated	
Manufacturer Radio Antonno Port	Description (Power and Spurious Emission	Model	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Rohde & Schwarz	Power Sensor, 1 uW-100	NRV-Z51	1070	8/3/2015	8/2/2016
	mW, DC-18 GHz, 50ohms	INFX V-201	1070	8/3/2015	8/3/2016
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/22/2016	7/22/2017
Rohde & Schwarz	Signal Analyzer 20 Hz - 26.5 GHz	FSQ26	2327	6/17/2016	6/17/2017
Radio Antenna Port	(Power and Spurious Emission	ns). 26-Jul-16			

Radio Antenna Port	(Power and Spurious Emissio	ns), 26-Jul-16			
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	6/24/2016	6/24/2017
Technologies	(installed options, 111, 115,				
	123, 1DS, B7J, HYX,				

Appendix B Test Data

T101744Pages 26 - 71T102213Pages 72 - 95

EMC Test Data

Client:	Google Inc	Job Number:	JD101591
Product	HOME	T-Log Number:	T101744
System Configuration:	-	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247/15.407/RSS-247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Google Inc

Product

HOME

Date of Last Test: 9/9/2016

EMC Test Data

	VE ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T101744
woder.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

Power vs. Data Rate

An assessment of the output power was done over the supported data rates for each mode of operation, 11b, 11g, and HT20.

Results: The lowest data rates for each mode resulted in the highest output power. All testing was performed at these data rates. 11b - 1Mb/s

11g - 6Mb/s n20 - MSC0

Sample Notes Sample S/N: 6629AZZB75 Driver: 1.21

NTS

Date of Test: 7/8/2016 Test Engineer: Rafael Varelas Test Location: FT Chamber #7

EMC Test Data

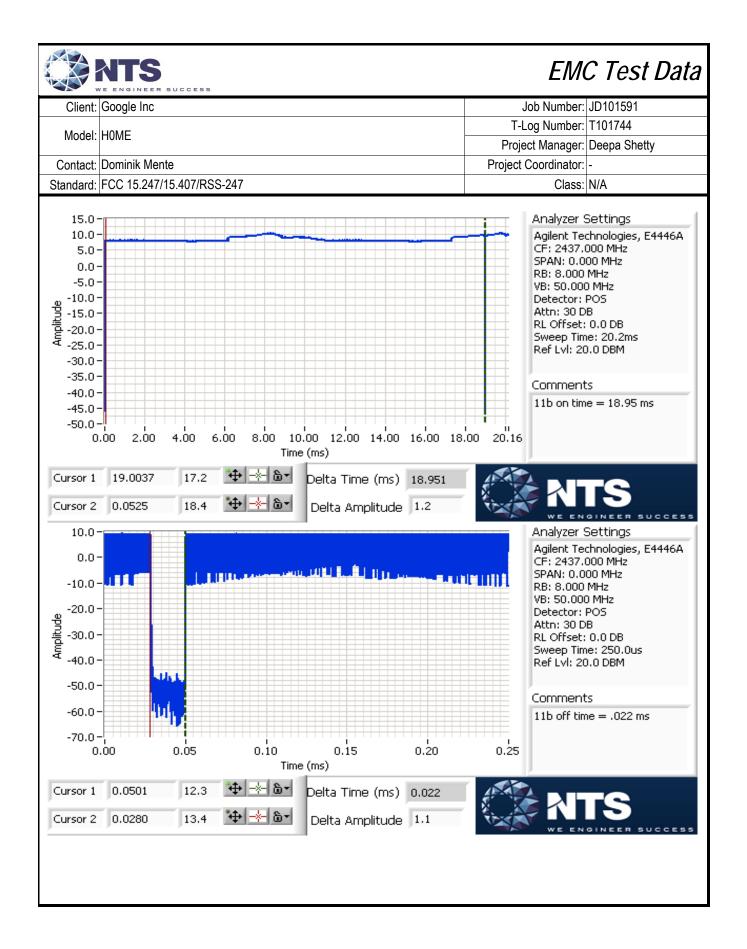
	VE ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T101744
Model.	TIONE	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

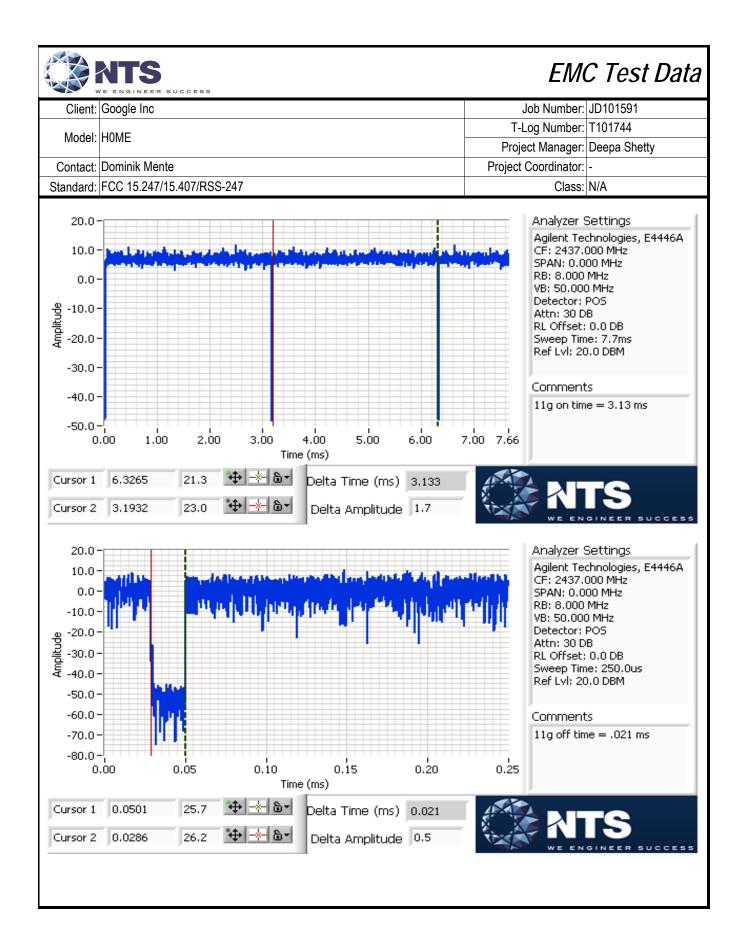
Duty Cycle

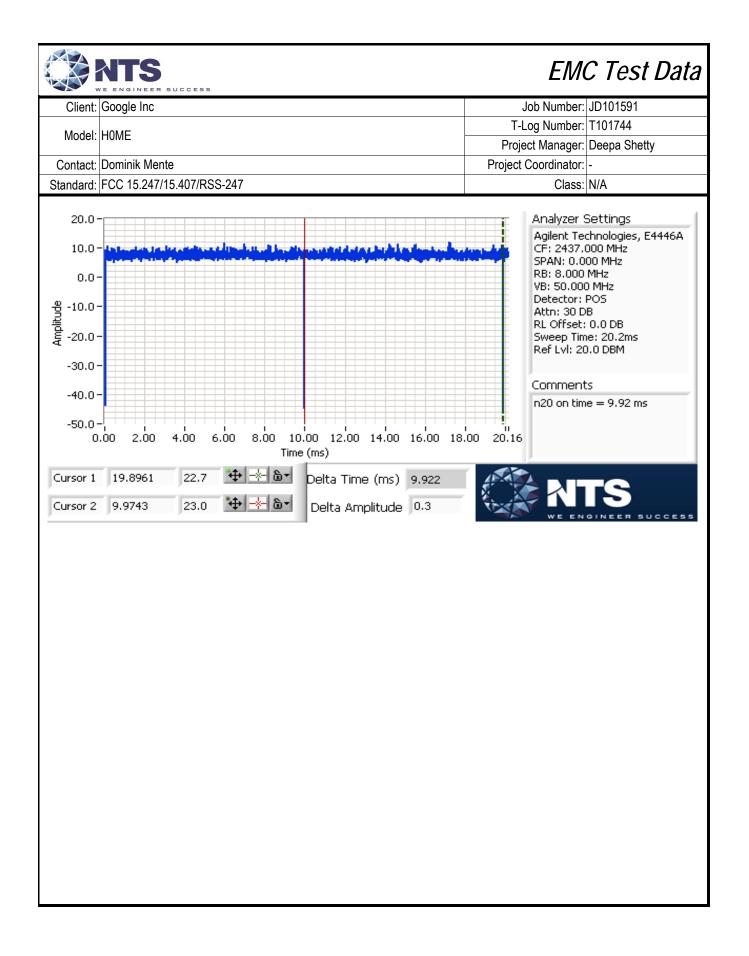
Date of Test: 7/11/2016 Test Engineer: John Caizzi Test Location: Lab 4A

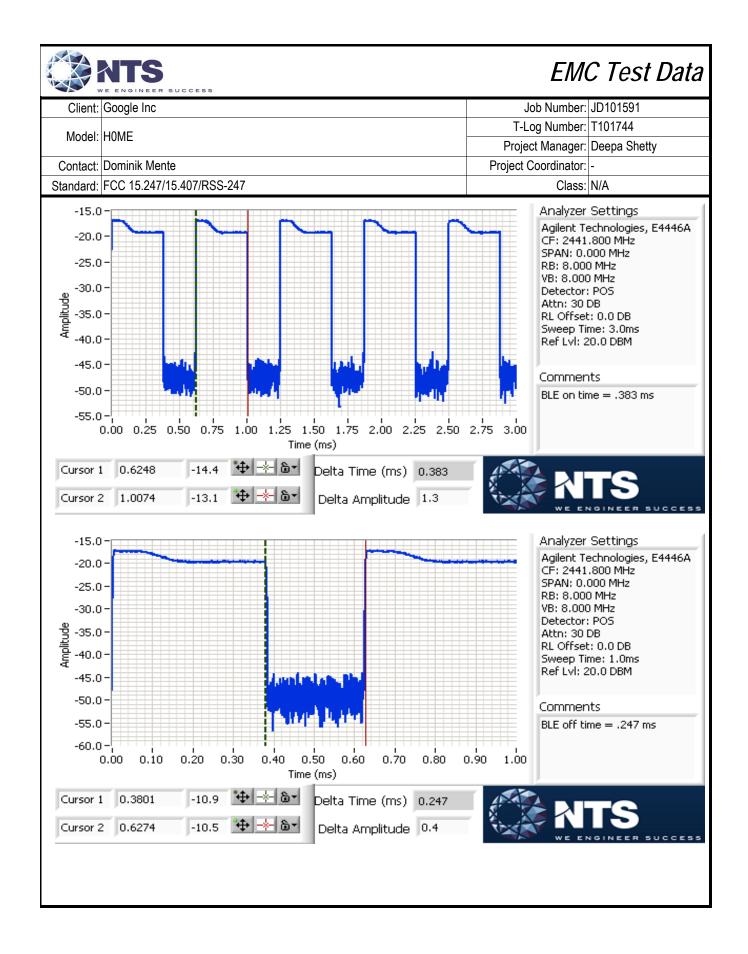
NTS

Duty cycle measurements performed on the worse case data rate for power.

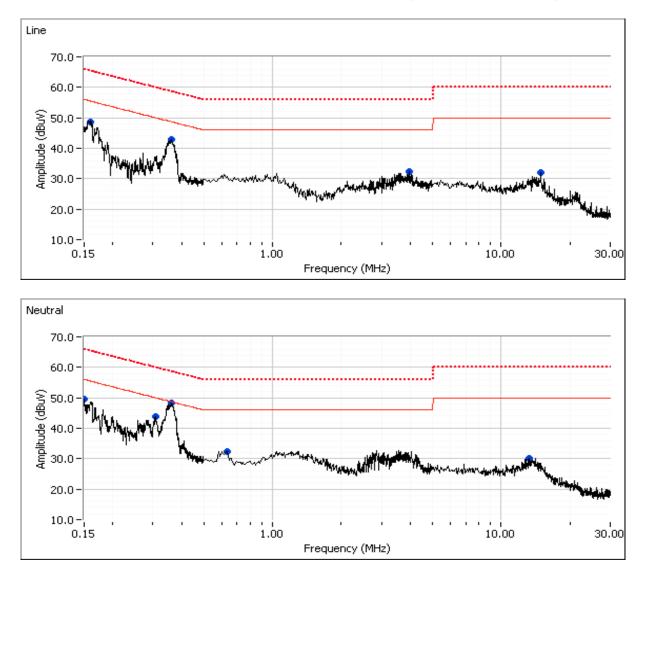

Notes: Measurements taken with maximum RBW/VBW settings allowed.


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	1.00	Yes	18.95	0	0	53
11g	6	0.99	Yes	3.13	0	0	319
n20	MCS0	1.00	Yes	9.92	0	0	101
BLE	1Mbps	0.61	Yes	0.383	2.2	4.3	2611


* Correction factor when using RMS/Power averaging - 10*log(1/x)

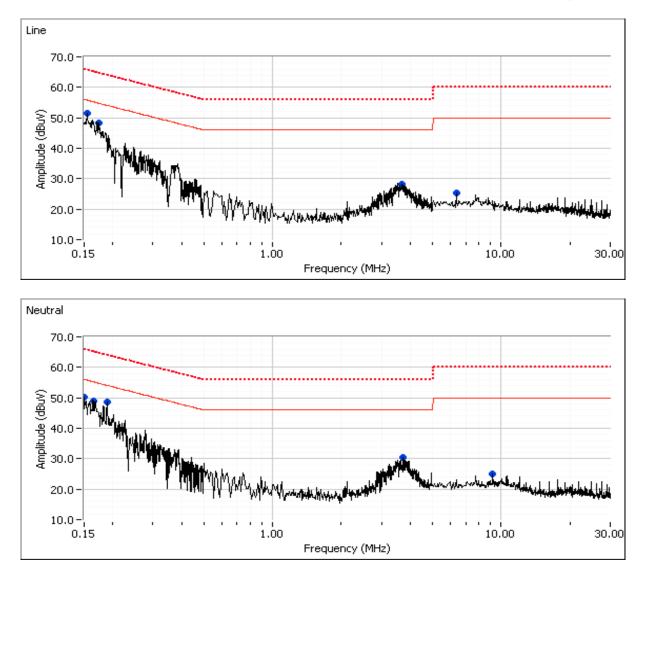

** Correction factor when using linear voltage average - 20*log(1/x)

T = Minimum transmission duration



	WE ENGINEER S	UCCESS			EM	
Client:	Google Inc				b Number:	
Model:	HOME				og Number:	
						Deepa Shetty
	ct: Dominik Mente d: FCC 15.247/15.407/RSS-247			Project C	oordinator:	
Standard:	FUU 15.247/1	0.407/RSS-Z47			Class:	В
		Conduct (NTS Silicon Valley, Fremor	ted Emissions at Facility, Semi-Ane		r)	
Test Spec	cific Details					
	Objective: Th	he objective of this test session is to p pecification listed above.	erform final qualificat	tion testing of the	EUT with r	respect to the
	Date of Test: 8/		Config. Use			
	est Engineer: Jo			ge: No support e	quipment.	
Ie	est Location: Fi	remont Chamber #7	EUT Voltag	ge: 120V/60Hz		
For tabletop and 80cm fr	Test Configu equipment, the om the LISN. Conditions:	e EUT was located on a wooden table Temperature:	23 °C	choic chamber, 4	0 cm from a	a vertical coupling p
For tabletop and 80cm fr Ambient (Summary	equipment, the om the LISN. Conditions: <u>/ of Results</u>	e EUT was located on a wooden table Temperature: Rel. Humidity:	23 °C 40 %	choic chamber, 4	0 cm from a	
For tabletop and 80cm fr Ambient (Summary	equipment, the rom the LISN. Conditions:	e EUT was located on a wooden table Temperature:	23 °C	choic chamber, 4		Margin
For tabletop and 80cm fr Ambient (Summary Ru	equipment, the om the LISN. Conditions: <u>/ of Results</u>	e EUT was located on a wooden table Temperature: Rel. Humidity:	23 °C 40 %		38.6 d	<u>Margin</u> ВµV @ 0.358 MHz (-10.2 dB)
For tabletop and 80cm fr Ambient (Summary Ru 2 2	equipment, the rom the LISN. Conditions: <u>y of Results</u> in # 2a	e EUT was located on a wooden table Temperature: Rel. Humidity: Test Performed	23 °C 40 % Limit	Result	38.6 d	Margin BµV @ 0.358 MHz

EMC Test Data
Job Number: JD101591
T-Log Number: T101744
Project Manager: Deepa Shetty
Project Coordinator: -
Class: B


Run #2a: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz. Chicony W16-033N1A power supply.

	NTS ve engineer	RSUCCESS						C Test Data
Client:	Google Inc						Job Number:	
Model:							T-Log Number:	T101744
MOUEI.							Project Manager:	Deepa Shetty
Contact:	Dominik Me	nte		Project Coordinator:	-			
Standard:	FCC 15.247	/15.407/RSS	-247	Class:	В			
Preliminary	peak readi	nas captured	durina pre	-scan (peak	readinas v	s. average lir	nit)	
Frequency	Level	AC	Clas		Detector	Comments	,	
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.161	48.7	Line	55.4	-6.7	Peak			
0.361	42.9	Line	48.7	-5.8	Peak			
3.958	32.4	Line	46.0	-13.6	Peak			
14.920	32.0	Line	50.0	-18.0	Peak			
0.152	49.7	Neutral	56.0	-6.3	Peak			
0.306	43.8	Neutral	50.0	-6.2	Peak			
0.358	48.2	Neutral	48.7	-0.5	Peak			
0.635	32.4	Neutral	46.0	-13.6	Peak			
13.317	30.1	Neutral	50.0	-19.9	Peak			
		verage readi						
Frequency	Level	AC	Clas		Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.161	27.4	Line	55.4	-28.0	AVG			
0.161	43.0	Line	65.4	-22.4	QP			
0.361	33.1	Line	48.7	-15.6	AVG			
0.361	40.5	Line	58.7	-18.2	QP			
3.958	16.2	Line	46.0	-29.8	AVG QP			
3.958 0.152	25.5 43.3	Line	56.0	-30.5 -22.6	QP QP			
0.152	43.3 27.9	Neutral Neutral	65.9 55.9	-22.0	AVG			
0.152	31.6	Neutral	50.9 50.1	-28.0	AVG			
0.306	40.4	Neutral	60.1	-18.5	QP			
0.358	38.6	Neutral	48.8	-10.2	AVG			
0.358	45.3	Neutral	58.8	-13.5	QP			
0.000	40.0	Neulia	50.0	-10.0	QI			
Note 1:	FUT transm	itting on CH6	nower setti	ng = 19 dBm	11h mode	at 1 Mhns		
1010 1.			, power solu		, 110 11000	at i mopo.		

	NTS	EMC Test Data		
Client:	Google Inc	Job Number:	JD101591	
Model:	HOME	T-Log Number:	T101744	
	NOME	Project Manager:	Deepa Shetty	
Contact:	Dominik Mente	Project Coordinator:	-	
Standard:	FCC 15.247/15.407/RSS-247	Class:	В	

Run #2b: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz. TenPao S033BU1650200 power supply, sample 2.

Client: Google Inc Job Number: JD101591 Model: HOME T-Log Number: Tot1744 Project Manager: Deepa Shetty Deepa Shetty Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) - Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) - Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) - Class: B 0.156 51.4 Line 55.7 -4.3 Peak - 0.172 48.4 Line 55.7 -4.3 Peak - - 0.151 50.1 Neutral 56.0 -5.9 Peak - - 0.151 50.1 Neutral 55.2 -6.2 Peak - - 0.166 49.0 Neutral 46.0 -15.6 <th></th> <th>ATS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>EM</th> <th>C Test Data</th>		ATS						EM	C Test Data
Model: HOME T-Log Number: T101744 Project Manager: Deepa Shetty Contact: Dominik Mente Project Coordinator: Standard: FCC 15.247/15.407/RSS-247 Class: Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Frequency Level AC Class B Detector MHz dBµV Line Line S5.7 -4.3 Peak 0.156 51.4 Line 55.7 -4.3 Peak	Client:		SUCCESS						
Model: HUME Project Manager Deepa Shetty Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class B Detector Comments MHz dBµV Line Line 55.7 -4.3 Peak 0.156 51.4 Line 55.7 -4.3 Peak	Olient.								
Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B MHz dBµV Line Limit Margin QP/Ave Comments 0.156 51.4 Line 55.7 -4.3 Peak - 0.172 48.4 Line 54.8 -6.4 Peak - - 0.156 51.4 Line 56.0 -24.6 Peak - - - 0.151 50.1 Neutral 56.0 -5.9 Peak -	Model:	HOME						=	
Standard: FCC 15.247/15.407/RSS-247 Class: B Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Class: B Detector Comments MHz dB _µ V Line Line Line Class: B Detector Comments 0.156 51.4 Line 55.7 -4.3 Peak								, ,	Deepa Snetty
Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin QP/Ave 0.156 51.4 Line 55.7 -4.3 Peak 0.172 48.4 Line 54.8 -6.4 Peak 3.630 28.2 Line 46.0 -17.8 Peak 6.353 25.4 Line 50.0 -24.6 Peak 0.151 50.1 Neutral 55.2 -6.2 Peak 0.166 49.0 Neutral 54.1 -5.6 Peak 0.164 48.5 Neutral 54.1 -5.6 Peak 9.158 24.9 Neutral 50.0 -25.7 Peak 9.158 24.9 Neutral 50.0 -25.7 Peak 9.156 26.7 Line 55.7 -29.0 AVG 0.156 26.7									-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Standard:	FCC 15.247	/15.407/RSS	-247				Class:	В
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								nit)	
0.156 51.4 Line 55.7 -4.3 Peak 0.172 48.4 Line 54.8 -6.4 Peak 3.630 28.2 Line 46.0 -17.8 Peak 6.353 25.4 Line 50.0 -24.6 Peak 0.151 50.1 Neutral 56.0 -5.9 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.166 49.0 Neutral 54.1 -5.6 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.7 -29.0 AVG O 0.156 44.4 Line 65.7 -21.3 QP O 0.172 24.5 Line 54.9 -30.4 AVG <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Comments</td> <td></td> <td></td>							Comments		
0.172 48.4 Line 54.8 -6.4 Peak 3.630 28.2 Line 46.0 -17.8 Peak 6.353 25.4 Line 50.0 -24.6 Peak 0.151 50.1 Neutral 56.0 -5.9 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Frequency Level AC Class B MHz dB _µ V Line Limit Margin QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG 0.156 24.4 Line 65.7 -21.3 QP 0.172 24.5 Line 54.9 -30.4 AVG 0.172 41.3 Line 64.9 -23.6									
3.630 28.2 Line 46.0 -17.8 Peak 6.353 25.4 Line 50.0 -24.6 Peak 0.151 50.1 Neutral 56.0 -5.9 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Linit Margin QP/Ave QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6									
6.353 25.4 Line 50.0 -24.6 Peak 0.151 50.1 Neutral 56.0 -5.9 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Fraquency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin QP/Ave QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG QP/Ave 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line									
0.151 50.1 Neutral 56.0 -5.9 Peak 0.166 49.0 Neutral 55.2 -6.2 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Frinal quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin QP/Ave Comments 0.156 26.7 Line 55.7 -29.0 AVG Comments 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3									
0.166 49.0 Neutral 55.2 -6.2 Peak 0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Final quasi-peak and average readings									
0.184 48.5 Neutral 54.1 -5.6 Peak 3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave Comments 0.156 26.7 Line 55.7 -29.0 AVG Comments 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line 46.0 -33.3 AVG QP 0.151 25.6 Neutral 55.9 -30.3 AVG QP 0.151 25.6 Neutral 55.9 -30.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
3.737 30.4 Neutral 46.0 -15.6 Peak 9.158 24.9 Neutral 50.0 -25.1 Peak Final quasi-peak and average readings Prequency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG AVG 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line 46.0 -33.3 AVG QP 3.630 23.3 Line 56.0 -32.7 QP QP 0.151 25.6 Neutral 55.9 -30.3 AVG QP									
9.158 24.9 Neutral 50.0 -25.1 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave Comments 0.156 26.7 Line 55.7 -29.0 AVG Comments 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line 46.0 -33.3 AVG AVG 0.151 25.6 Neutral 55.9 -30.3 AVG QP 0.151 44.6 Neutral 65.9 -21.3 QP QP									
Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG QP 0.156 44.4 Line 65.7 -21.3 QP QP 0.172 24.5 Line 54.9 -30.4 AVG QP 0.172 41.3 Line 64.9 -23.6 QP QP 3.630 12.7 Line 46.0 -33.3 AVG QP 0.151 25.6 Neutral 55.9 -30.3 AVG QP 0.151 25.6 Neutral 55.9 -21.3 QP QP									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.158	24.9	Neutral	50.0	-25.1	Peak			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Final quasi	-peak and a	verage readi	ngs					
MHz dBμV Line Limit Margin QP/Ave 0.156 26.7 Line 55.7 -29.0 AVG 0.156 44.4 Line 65.7 -21.3 QP 0.172 24.5 Line 54.9 -30.4 AVG 0.172 41.3 Line 64.9 -23.6 QP 3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP					ss B	Detector	Comments		
0.156 26.7 Line 55.7 -29.0 AVG 0.156 44.4 Line 65.7 -21.3 QP 0.172 24.5 Line 54.9 -30.4 AVG 0.172 41.3 Line 64.9 -23.6 QP 3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP		dBuV	Line	Limit	Margin	QP/Ave			
0.172 24.5 Line 54.9 -30.4 AVG 0.172 41.3 Line 64.9 -23.6 QP 3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP	0.156		Line			AVG			
0.172 41.3 Line 64.9 -23.6 QP 3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP	0.156	44.4	Line	65.7	-21.3	QP			
3.630 12.7 Line 46.0 -33.3 AVG 3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP	0.172	24.5	Line	54.9	-30.4	AVG			
3.630 23.3 Line 56.0 -32.7 QP 0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP	0.172	41.3	Line	64.9	-23.6	QP			
0.151 25.6 Neutral 55.9 -30.3 AVG 0.151 44.6 Neutral 65.9 -21.3 QP	3.630	12.7	Line	46.0	-33.3	AVG			
0.151 44.6 Neutral 65.9 -21.3 QP	3.630	23.3	Line	56.0	-32.7	QP			
	0.151	25.6	Neutral	55.9	-30.3	AVG			
0.166 25.0 Neutral 55.2 -30.2 AVG	0.151	44.6	Neutral	65.9	-21.3	QP			
0.100 23.0 Neutital 33.2 -30.2 AVO	0.166	25.0	Neutral	55.2	-30.2	AVG			
0.166 42.2 Neutral 65.2 -23.0 QP	0.166	42.2	Neutral	65.2	-23.0	QP			
0.184 22.3 Neutral 54.3 -32.0 AVG	0.184	22.3	Neutral	54.3	-32.0	AVG			
0.184 39.2 Neutral 64.3 -25.1 QP	0.184	39.2	Neutral	64.3	-25.1	QP			
		-							
Note 1: EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.	Note 1:	EUT transm	itting on CH6	, power setti	ng = 19 dBm	n, 11b mode	at 1 Mbps.		
Note 1: [EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.	Note 1:	EUT transm	itting on CH6	, power setti	ng = 19 dBm	n, 11b mode	at 1 Mbps.		

	E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LOWE	T-Log Number:	T101744
MOUEI.	TOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	22.6 °C
Rel. Humidity:	35 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1	BLE	2402MHz	-	6	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	55.3 dBµV/m @ 2388.0 MHz (-18.7 dB)
1	BLE	2480MHz	-	6	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	65.4 dBµV/m @ 2483.7 MHz (-8.6 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

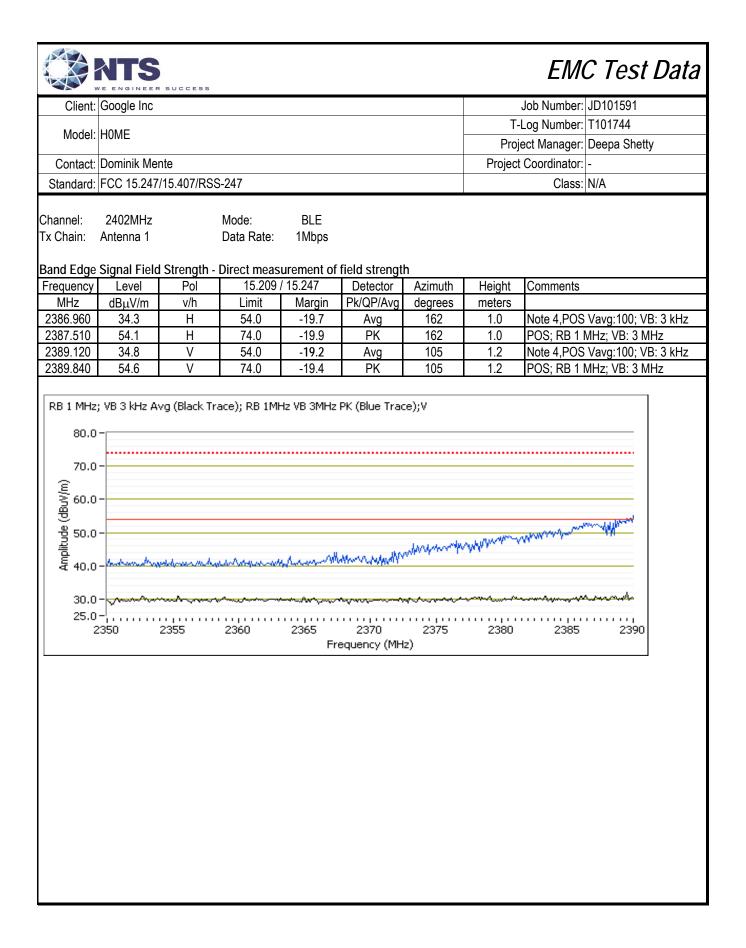
Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal

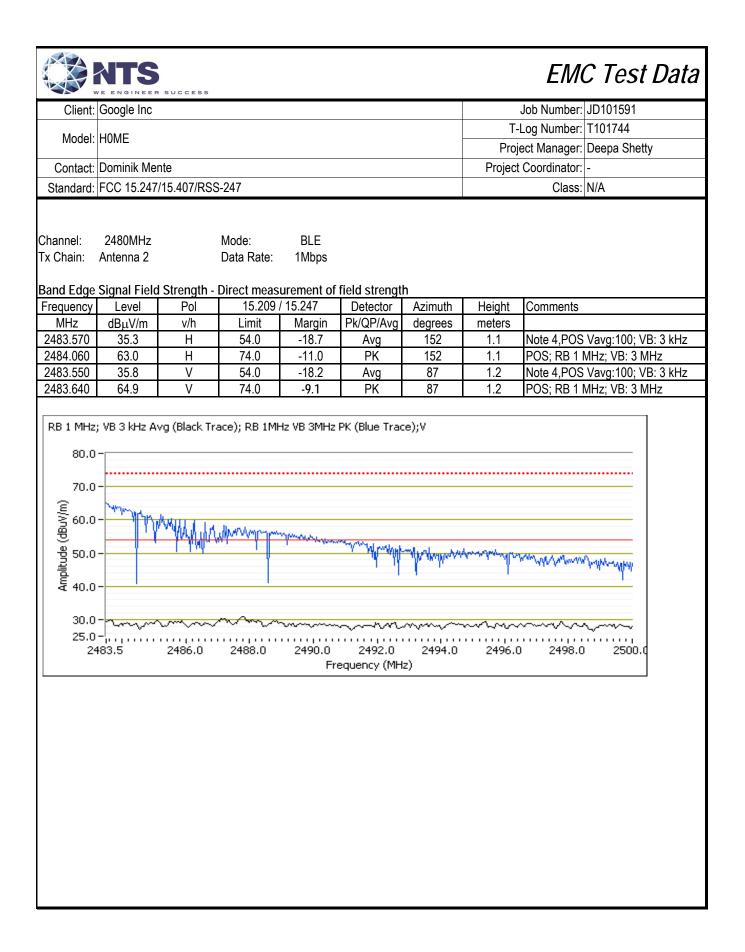
Client:	Google Inc	Job Number:	JD101591
Model:	LOWE	T-Log Number:	T101744
wouer.	TIOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

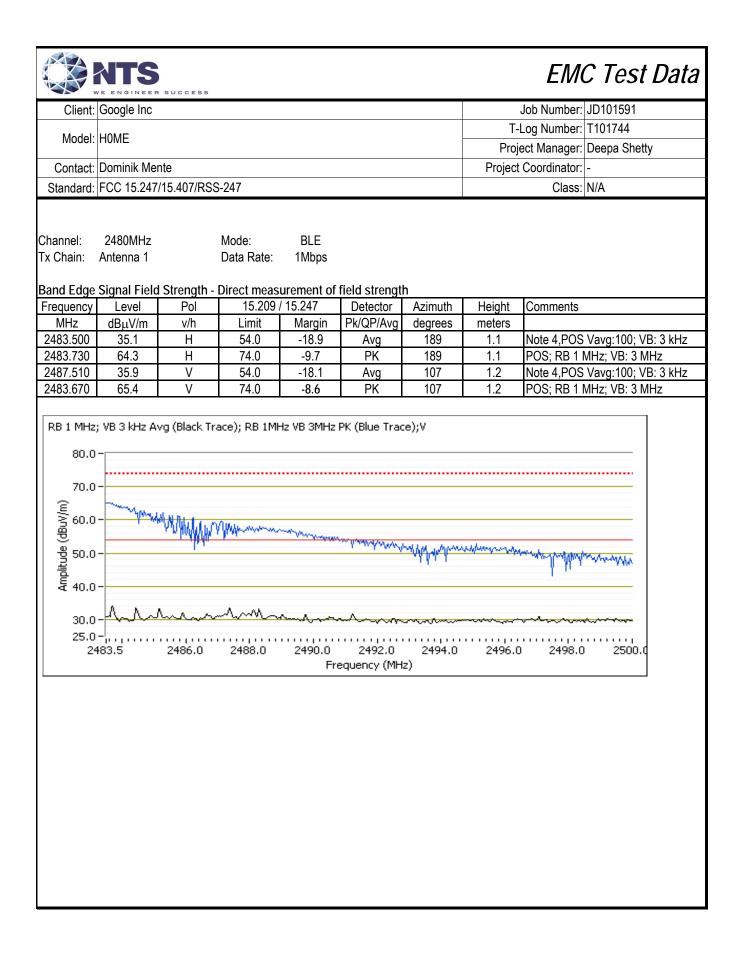
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time


Unless otherwise stated/noted, emission has a duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
BLE	1Mbps	0.61	Yes	0.383	2.2	4.3	2611


Measurement Specific Notes:

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction
	factor
Note 6:	Emission has non constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW> 1/T, peak detector,
Note 6.	linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces
Nata 0	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 8:	measurements.

Client	Google Inc	SUCCESS						Job Number:	ID101591
								Log Number:	
Model:	HOME							-	Deepa Shetty
Contact:	Dominik Mer	nte						Coordinator:	•
Standard:	FCC 15.247	15.407/RS	6-247					Class:	N/A
Te	adiated Band Date of Test: est Engineer: est Location: 2402MHz Antenna 2	7/26/2016 0 Rafael Vare):00 elas	BLE 1Mbps	Con	onfig. Used: fig Change: UT Voltage:	None		
					field strengt		l la ! la t	Commercial	
Frequency MHz	Level	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
2379.270	dBµV/m 34.3	H	54.0	Margin -19.7	Avg	degrees 174	meters 1.0	Note 1 POS	Vavg:100; VB: 3 kHz
2387.960	55.3	H	74.0	-19.7	PK	174	1.0		MHz; VB: 3 MHz
2389.760	34.6	V	54.0	-19.4	Avg	102	1.0	,	Vavg:100; VB: 3 kHz
2383.910	52.1	V	74.0	-21.9	PK	102	1.0		MHz; VB: 3 MHz
80.0								1000 Martin and a state of the state	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(W/N00.0 9 50.0 9 40.0		Kurada Mada Jana Ma	ay-,,	arthemark	n www.	Maren Mar	wiji verster in		
					MMMMMM MMMMM				

	E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LOWE	T-Log Number:	T101744
MOUEI.	TOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	22.6 °C
Rel. Humidity:	35 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

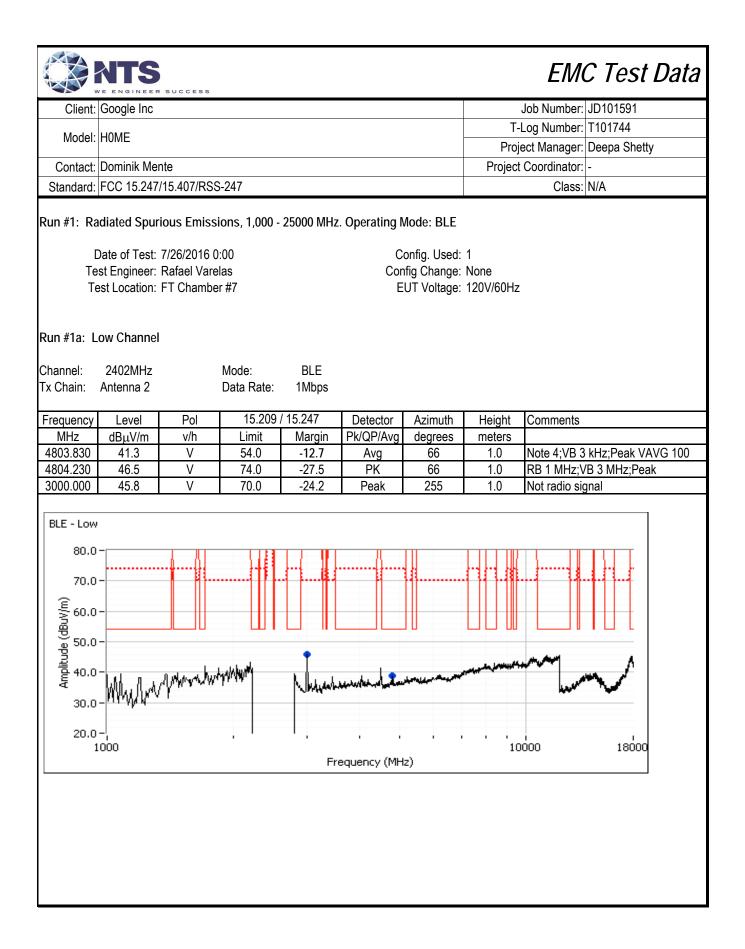
Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	BLE	2402MHz		6	Radiated Emissions,	FCC Part 15.209 /	41.3 dBµV/m @ 4803.8
	DLE			0	1 - 25 GHz	15.247(c)	MHz (-12.7 dB)
1 - Antenna	BLE	2440MHz		6	Radiated Emissions,	FCC Part 15.209 /	40.5 dBµV/m @ 4879.6
2	DLE		-	0	1 - 25 GHz	15.247(c)	MHz (-13.5 dB)
	BLE	2480MHz		e	Radiated Emissions,	FCC Part 15.209 /	41.0 dBµV/m @ 4959.6
	DLE			6	1 - 25 GHz	15.247(c)	MHz (-13.0 dB)

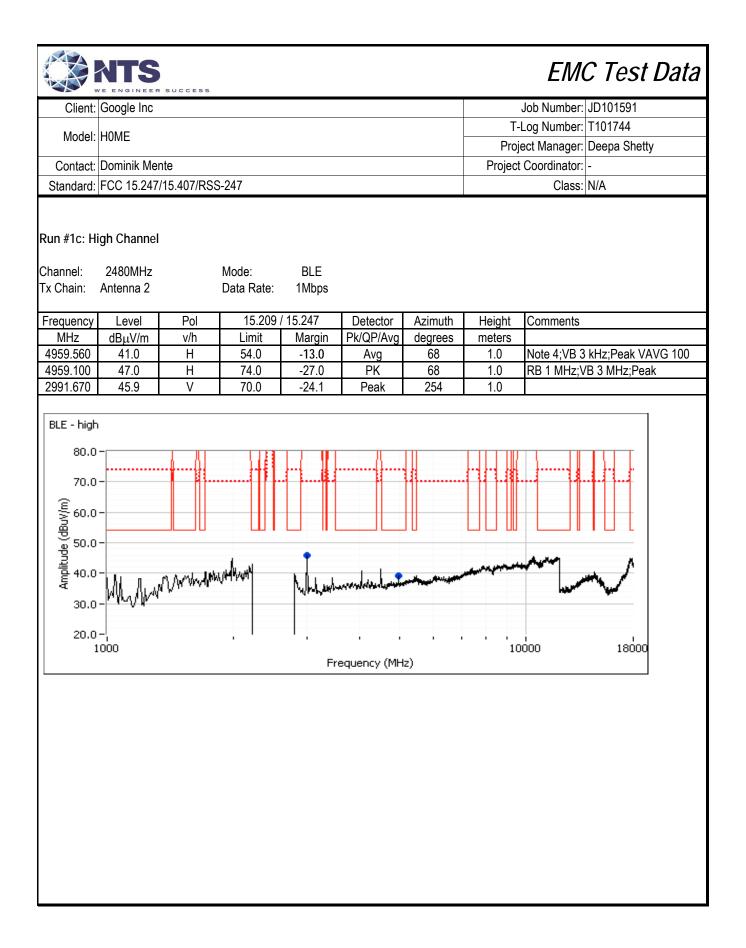
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Sample Notes


Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal

Note: All testing performed on the Antenna 2 port (wifi set to 10 1 1, which forces BT to Antenna 2), as this was worse case from preliminary measurements.

Google Inc							Job Number:	JD101591
HOME						T-	Log Number:	T101744
						Proje	ect Manager:	Deepa Shetty
Dominik Me	nte					Project	Coordinator:	-
FCC 15.247	7/15.407/RSS	-247					Class:	N/A
nts performe irements per rwise stated/ de, auto swe	ed in accordar rformed with: /noted, emiss eep time, max	RBW=1MHz ion has duty	, VBW=3MH	z, peak dete				iz, peak detector, linear
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1Mbps	0.61	Yes	0.383	2.2	4.3	2611	
Emission ha sweep, trac Emission ha	as a duty cycl e average 10 as constant d	$e \ge 98\%$, ave 0 traces uty cycle < 98	rage measur 3%, average	rement perfo measureme	rrmed: RBW= nt performed	=1MHz, VBW : RBW=1MH	/=3MHz, RM Iz, VBW>1/T	S, Power averaging, aut but not less than 10Hz,
	H0ME Dominik Me FCC 15.247 e Comme nts performe urements per rwise stated/ de, auto swee d reject filter Mode BLE ment Spec Emission in Emission ha sweep, trac Emission ha peak detect	H0ME Dominik Mente FCC 15.247/15.407/RSS e Comments: nts performed in accordat urements performed with: rwise stated/noted, emiss de, auto sweep time, max d reject filter used Mode Data Rate BLE 1Mbps ment Specific Notes Emission in non-restricte Emission in non-restricte Emission has a duty cycl sweep, trace average 10 Emission has constant d peak detector, linear ave	H0ME Dominik Mente FCC 15.247/15.407/RSS-247 e Comments: nts performed in accordance with FCC urements performed with: RBW=1MHz rwise stated/noted, emission has duty de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle (x) BLE 1Mbps 0.61 ment Specific Notes: Emission in non-restricted band, but li Emission has a duty cycle ≥ 98%, ave sweep, trace average 100 traces Emission has constant duty cycle < 98	H0ME Dominik Mente FCC 15.247/15.407/RSS-247 e Comments: nts performed in accordance with FCC KDB 55807- urements performed with: RBW=1MHz, VBW=3MH rwise stated/noted, emission has duty cycle \geq 98% de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant DC? BLE 1Mbps 0.61 Yes ment Specific Notes: Emission in non-restricted band, but limit of 15.209 Emission has a duty cycle \geq 98%, average measures sweep, trace average 100 traces Emission has constant duty cycle < 98%, average	H0ME Dominik Mente FCC 15.247/15.407/RSS-247 e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak deterwise stated/noted, emission has duty cycle \geq 98% and was mede, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant T (ms) BLE 1Mbps 0.61 Yes 0.383 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission has a duty cycle \geq 98%, average measurement perforsweep, trace average 100 traces Emission has constant duty cycle < 98%, average measurement perforsweep, trace average 100 traces	HOME Dominik Mente FCC 15.247/15.407/RSS-247 e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hor rwise stated/noted, emission has duty cycle ≥ 98% and was measured using de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* BLE 1Mbps 0.61 Yes 0.383 2.2 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission has a duty cycle ≥ 98%, average measurement performed: RBW= sweep, trace average 100 traces Emission has constant duty cycle < 98%, average measurement performed; RBW= sweep, trace average 100 traces Emission has constant duty cycle < 98%, average measurement performed peak detector, linear averaging, auto sweep, trace average 100 traces, measurement performed peak detector, linear averaging, auto sweep, trace average 100 traces, measurement performed	H0ME T- Project Project FCC 15.247/15.407/RSS-247 Project e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto swee wise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHde, auto sweep time, max hold. T (ms) Mode Data Rate Duty Cycle (x) Constant DC? T (ms) Pwr Cor Factor* Lin Volt Cor Factor* BLE 1Mbps 0.61 Yes 0.383 2.2 4.3 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission in non-restricted band, but limit was set 30dB below the level of the fundament Emission has a duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW sweep, trace average 100 traces Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW sweep, trace average 100 traces	T-Log Number: T-Log Number: Project Manager: Dominik Mente Project Coordinator: FCC 15.247/15.407/RSS-247 Class: e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time wise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10H de, auto sweep time, max hold. de reject filter used Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW BLE 1Mbps 0.61 Yes 0.383 2.2 4.3 2611 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission in non-restricted band, but limit was set 30dB below the level of the fundamental and meas Emission has a duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMs

	E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LOME	T-Log Number:	T101744
	TOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	23.4 °C
Rel. Humidity:	35 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

	-	-		<u> </u>			
Run #	Mode	Channel	Target Power (dBm)	Passing Power Setting	Test Performed	Limit	Result / Margin
	b	1 -	_	17	Restricted Band Edge	FCC Part 15.209 /	53.2 dBµV/m @ 2386.3
1	U	2412MHz	-	17	(2390 MHz)	15.247(c)	MHz (-0.8 dB)
1	h 11 -			18	Restricted Band Edge	FCC Part 15.209 /	53.7 dBµV/m @ 2487.8
	b	2462MHz	-	10	(2483.5 MHz)	15.247(c)	MHz (-0.3 dB)
	~	1 -		15	Restricted Band Edge	FCC Part 15.209 /	53.3 dBµV/m @ 2390.0
2	g	2412MHz	-	15	(2390 MHz)	15.247(c)	MHz (-0.7 dB)
2	~	11 -		40	Restricted Band Edge	FCC Part 15.209 /	53.1 dBµV/m @ 2483.5
	g	2462MHz	-	16	(2483.5 MHz)	15.247(c)	MHz (-0.9 dB)
	-00	1 -		14	Restricted Band Edge	FCC Part 15.209 /	52.7 dBµV/m @ 2390.0
2	n20	2412MHz	-	14	(2390 MHz)	15.247(c)	MHz (-1.3 dB)
3	-20	11 -		17	Restricted Band Edge	FCC Part 15.209 /	53.0 dBµV/m @ 2483.5
	n20	2462MHz	-	17	(2483.5 MHz)	15.247(c)	MHz (-1.0 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	NTS VE ENGINEER SUCCESS	EMO	C Test Data
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T101744
Model.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

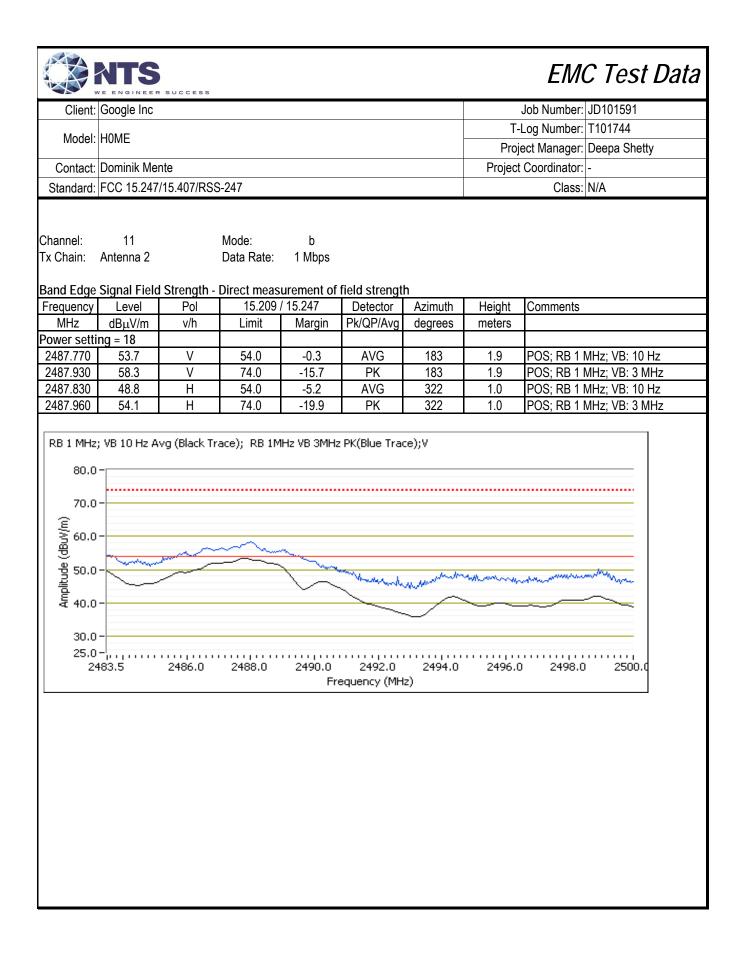
Sample Notes

Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal

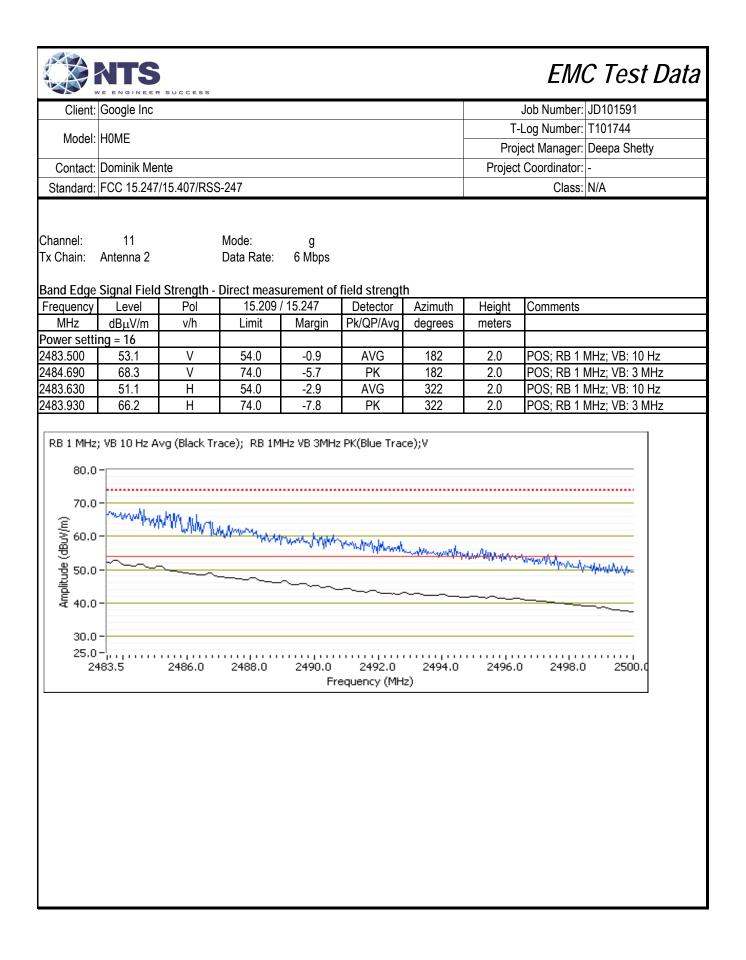
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

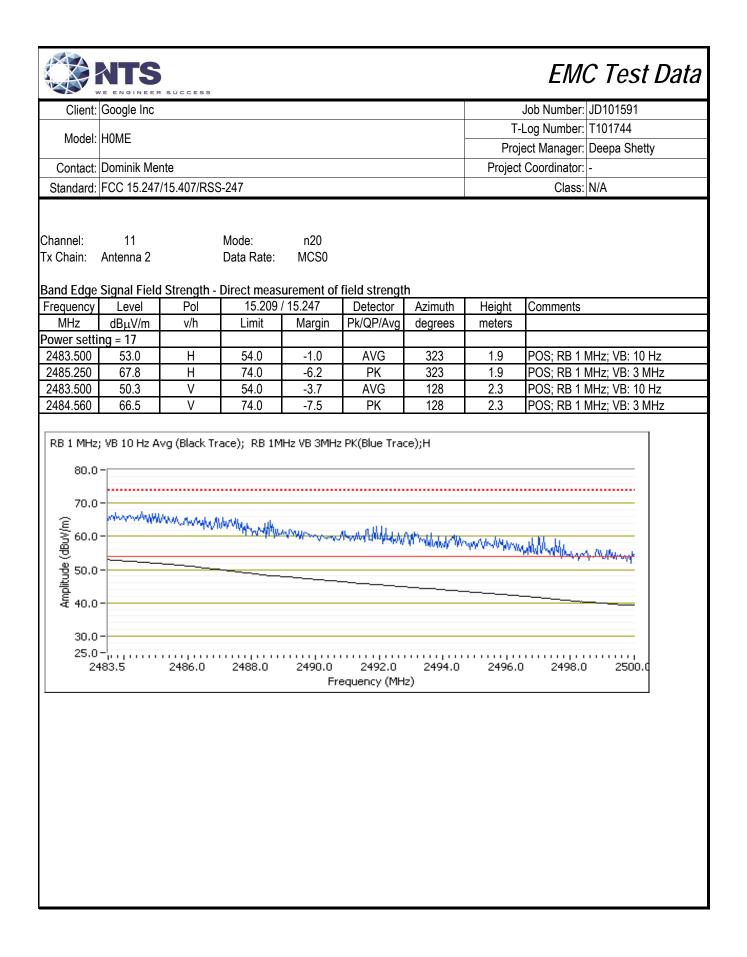
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has a duty cycle \geq 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mbps	1.00	Yes	18.95	0	0	53
11g	6 Mbps	0.99	Yes	3.13	0	0	319
n20	MCS0	1.00	Yes	9.92	0	0	101

Measurement Specific Notes:


Emission in non-restricted band, but limit of 15.209 used. Note 1: Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz. Note 2:

Note: All testing performed on the Antenna 2 port (wifi set to 10 2 2), as this was worse case from preliminary measurements.


Client:	Google Inc							Job Number:	JD101591
Model:							T-	Log Number:	T101744
MOUEI.							Proj	ect Manager:	Deepa Shetty
Contact:	Dominik Mer	nte					Project	Coordinator:	-
Standard:	FCC 15.247/	/15.407/RS	6-247					Class:	N/A
)un #1∙ Da	diated Band	lodgo Moas	uromonts						
	Date of Test:				С	onfig. Used:	1		
Te	st Engineer:	Rafael Vare	las		Cor	fig Change:	none		
Te	est Location:	Chamber 7			E	UT Voltage:	120V / 60H	z	
Channel:	1		Mode:	b					
	Antenna 2		Data Rate:	1 Mbps					
					field strengt				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz Power setti	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2386.270	ng = 17 53.2	V	54.0	-0.8	AVG	188	2.1		
2386.030	58.1	V	74.0	-15.9	PK	188	2.1		
2386.250	52.2	Н	54.0	-1.8	AVG	204	1.1		
2386.070	57.2	Н	74.0	-16.8	PK	204	1.1		
80.0 70.0 (m/ and (ggn/ m) 50.0 40.0 40.0 30.0	- - - - - - - - - - - - - - - - - - -			~~~	net bland an and bland	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second sec	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20.0	2350 2	2355	2360	2365	2370 equency (MH	2375	2380	2385	2390

		SUCCESS						EM	C Test Da	ta
Client:	Google Inc						Job Number: JD101591			
							T-	Log Number:	T101744	
Model:	HUME						Proj	ect Manager:	Deepa Shetty	
Contact:	Dominik Mer	nte						Coordinator:		
	FCC 15.247		5-247				-,	Class:		
Run #2: Radiated Bandedge Measurements Date of Test: 7/12/2016 0:00Config. Used: Config Change: Test Engineer: Rafael VarelasTest Location: Chamber 7EUT Voltage:										
Channel:	1		Mode:	g						
Tx Chain:	Antenna 2		Data Rate:	6 Mbps						
					field strengt			T -		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Power setti 2390.000	ng = 15 53.3	Н	54.0	-0.7	AVG	180	1.3			
2390.000	55.5 70.2	<u>н</u> Н	54.0 74.0	-0.7 -3.8	PK	180	1.3			
2390.000	50.0	V	54.0	-4.0	AVG	83	1.0			
2389.760	63.4	V	74.0	-10.6	PK	83	1.0			
80.0 70.0 (w)/ngp 60.0 9pnjijdwy 40.0 30.0 25.0		MHUMAMM		2365	PK(Blue Trad	2375				

		SUCCESS						EM	C Test Data
Client:	Google Inc						Job Number: JD101591		
M							T-	Log Number:	T101744
Model:	HUME						Proj	ect Manager:	Deepa Shetty
Contact:	Dominik Me	nte					Project	Coordinator:	-
Standard:	FCC 15.247	/15.407/RSS	6-247					Class:	N/A
	I						1		
[Te	Run #3: Radiated Bandedge Measurements Date of Test: 7/12/2016 0:00 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Test Location: Chamber 7 EUT Voltage: 120V / 60Hz								
Channel:	1		Mode:	n20					
Tx Chain:	Antenna 2		Data Rate:	MCS0					
					field strengt			1-	
Frequency MHz	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
Power setti	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2390.000	52.7	Н	54.0	-1.3	AVG	179	1.0	POS' RB 1	MHz; VB: 10 Hz
2389.840	67.9	H	74.0	-6.1	PK	179	1.0	1	MHz; VB: 3 MHz
2390.000	51.6	V	54.0	-2.4	AVG	84	1.5		MHz; VB: 10 Hz
2388.720	65.2	V	74.0	-8.8	PK	84	1.5		MHz; VB: 3 MHz
80.0 70.0 (w/\ngp) 60.0 9001 9001 40.0 30.0 25.0	- - - - - - -	mining and	hturdpisterbiljes		PK(Blue Trac	2375			

	/E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LOWE	T-Log Number:	T101744
	TIOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:22.8 °CRel. Humidity:37 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Gainina	0110501	Doned	oporating	9 11 110 2	DO E 100:0 MILLE DUIN	и	
Run #	Mode	Channel	Target Power (dBm)	Passing Power Setting	Test Performed	Limit	Result / Margin
	b	1 - 2412MHz	·	18			49.7 dBµV/m @ 7235.3 MHz (-4.3 dB)
1	b	6 - 2437MHz	-	18	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	47.1 dBµV/m @ 7310.2 MHz (-6.9 dB)
	b	11 - 2462MHz		18			46.9 dBµV/m @ 4924.0 MHz (-7.1 dB)
Scans on ce	enter channe	l in both OFD	M modes to	determine th	e worse case mode.		
	g	6 - 2437MHz	-	17	Radiated Emissions,	FCC Part 15.209 /	43.5 dBµV/m @ 7310.2 MHz (-10.5 dB)
2	n20	6 - 2437MHz	-	17	1 - 25 GHz	15.247(c)	43.1 dBµV/m @ 7308.8 MHz (-10.9 dB)
Measureme	nts on low ar	nd high chani	nels in worst	-case OFDM	mode.		
	g	1 - 2412MHz	-	17	Radiated Emissions,	FCC Part 15.209 /	45.3 dBµV/m @ 7232.1 MHz (-8.7 dB)
3	g	11 - 2462MHz	-	17	1 - 25 GHz	15.247(c)	42.8 dBµV/m @ 7385.5 MHz (-11.2 dB)
Modifications Made During Testing No modifications were made to the EUT during testing							

Deviations From The Standard

No deviations were made from the requirements of the standard.

NTS	
WE ENGINEER	SUCCESS

Olianti	Caagla Ina	lah Numbar	10101501
Client:	Google Inc	Job Number:	10101291
Model:	HOME	T-Log Number:	T101744
		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

Sample Notes

Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

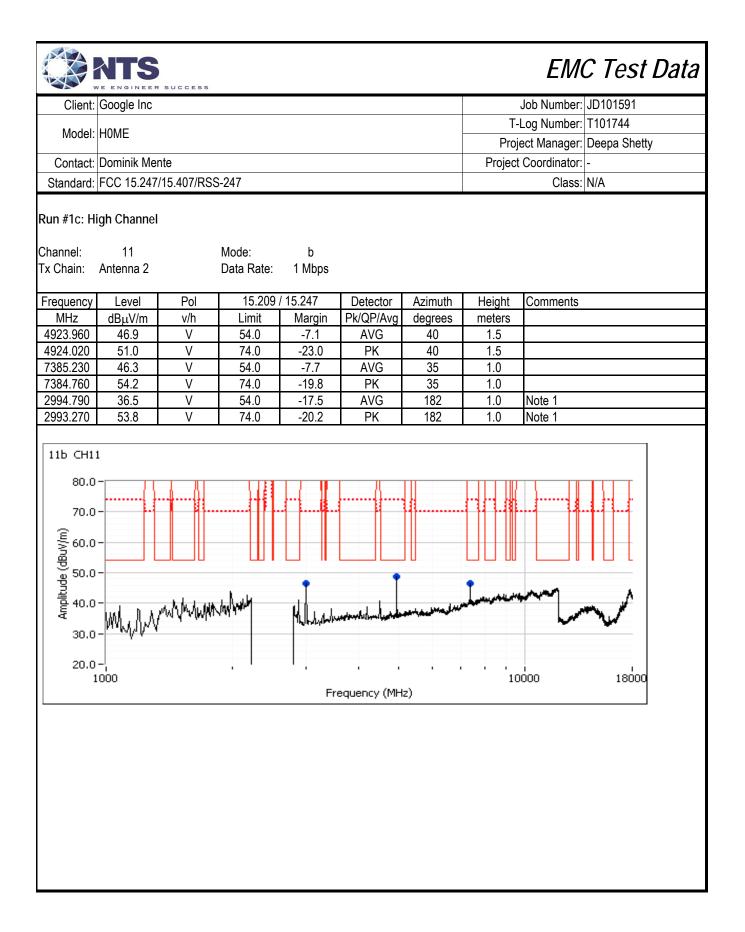
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

2.4GHz band reject filter used

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mbps	1.00	Yes	18.95	0	0	53
11g	6 Mbps	0.99	Yes	3.13	0	0	319
n20	MCS0	1.00	Yes	9.92	0	0	101

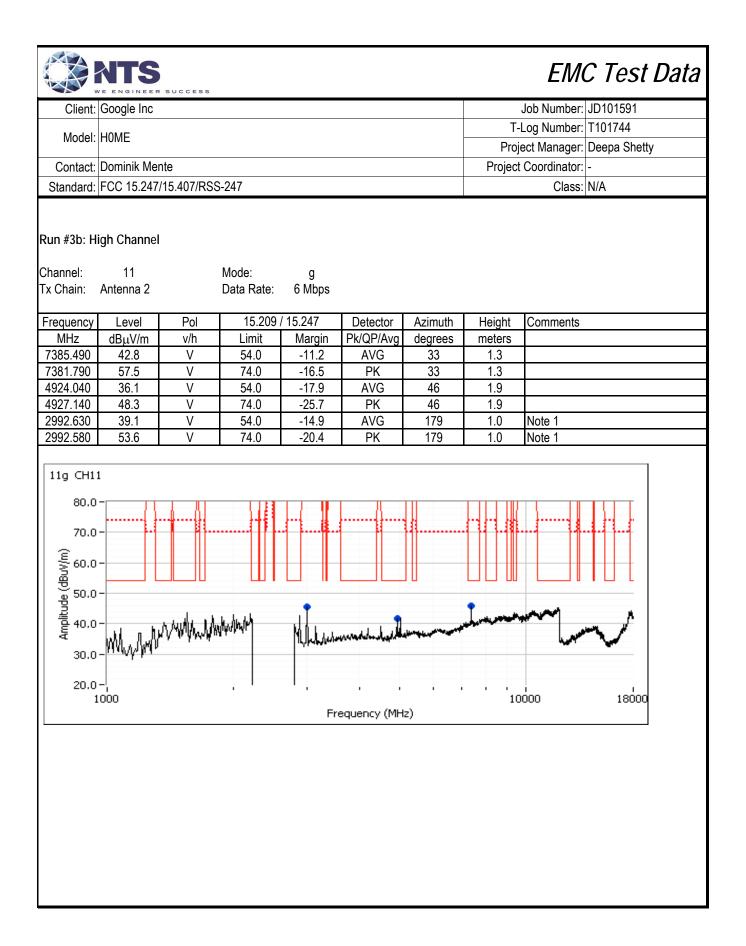
Measurement Specific Notes:


Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note: All testing performed on the Antenna 2 port (wifi set to 10 2 2), as this was worse case from preliminary measurements.

Preliminary measurement demonstrated no spurious emissions below 1GHz.

Client: C	ENGINEER	SUCCESS						EMC Test Data	
Gient. O	Google Inc						Job Number: JD101591		
					T-I	Log Number: T101744			
Model: H	IOME							ect Manager: Deepa Shetty	
Contact: D	ominik Mer	nte					-	Coordinator: -	
Standard: F			-247		,	Class: N/A			
Test	ite of Test: Engineer:	7/11/2016 0 Rafael Vare	:00	25000 MHz	C Cor	onfig. Used: ifig Change:	1 none		
Test	t Location:	Chamber 7			E	UT Voltage:	120V / 60Hz	Z	
Run #1a: Lov									
Channel: Tx Chain: A	1 Intenna 2		Mode: Data Rate:	b 1 Mbps					
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7235.260	49.7	V	54.0	-4.3	AVG	51	1.0	Note 1	
7234.960	55.5	V	74.0	-18.5	PK	51	1.0	Note 1	
3019.440	30.4	V	54.0	-23.6	AVG	178	1.8	Note 1	
3016.770	42.1	V	74.0	-31.9	PK	178		Note 1	
4824.020	45.3	V V	54.0	-8.7	AVG	54	1.0		
4824.040	49.5	V	74.0	-24.5	PK	54	1.0		
11b CH1 80.0 - 70.0 - (m, A0.0 - Mgp) 50.0 - 10 - 10 - 10 -									
97 11 40.0 - 4 30.0 -	WAAN	halanar	halfmiller	NJuliana	warden for the second	nan sharan ta	-		
20.0-	00			, Fr	equency (MH	, , z)	10	000 18000	


		SUCCESS						EMO	C Test Data
Client:	Google Inc						Job Number: JD101591		
							T-Log Number: T101744		
Model:	HOME					Proj	ect Manager:	Deepa Shetty	
Contact:	Dominik Me	nte					-	Coordinator:	-
	FCC 15.247		5-247					Class:	N/A
Run #1b: C Channel: Tx Chain:	Center Chan 6 Antenna 2	nel	Mode: Data Rate:	b 1 Mbps					
	Level	Del	15 200	16 017	Detector	A —i.ee th	Llaisht	Commonto	
Frequency MHz	Level	Pol v/h	15.209 / Limit		Detector Pk/QP/Avg	Azimuth	Height	Comments	
7310.230	dBµV/m 47.1	V	54.0	Margin -6.9	AVG	degrees 36	meters 1.27		
7309.530	53.7	V	74.0	-20.3	PK	36	1.27		
3000.000	41.3	V	54.0	-12.7	Peak	193	1.5	Note 1, pk m	neasurement vs avg limit
4874.020	45.9	V	54.0	-8.1	AVG	72	1.99		
4873.980	50.1	V	74.0	-23.9	PK	72	1.99		
11b CH6 80.0 70.0 (m/Magn/40.0 50.0 50.0 40.0									
0.00 ge	-				•		•		
je 40.0		بال بليان	ulla Ma	ฟ โ.เ.	سوريار بالالمرين	ليحاديك ومشارك والمستحاد	a second second		\sim
30.0	-WWW	UL ANNIA ANIAN UL ANNIA ANIAN	M.M.I.	1,14,44,44	for a sub-stand by a			ų.	\checkmark
20.0	_								1
1	.000			Fr	equency (MH	z)	10	000	18000

		SUCCESS							C Test Data
Client:	Google Inc				Job Number:				
Model:	HOME			T-Log Number: T101744					
					-		Deepa Shetty		
Contact:	Dominik Mer	nte					Project	Coordinator:	-
Standard:	FCC 15.247	/15.407/RSS	5-247					Class:	N/A
I Te	adiated Spur Date of Test: est Engineer: est Location:	7/11/2016 0 John Caizzi	:00	25000 MHz	Con	onfig. Used: ifig Change:	1	7	
Run #2a: C Channel:	Center Chanr 6 Antenna 2	nel	Mode: Data Rate:	g 6 Mbps	E	UT VORAGE.	1200 / 000.	2	
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commente	
7310.220	43.5	V	54.0	-10.5	AVG	40	1.2		
7312.020	58.3	V	74.0	-15.7	PK	40	1.2		
2997.930	30.3	V	54.0	-23.7	AVG	172	1.0	Note 1	
2998.030	41.8	V	74.0	-32.2	PK	172	1.0	Note 1	
4874.110	36.0	V	54.0	-18.0	AVG	132	1.6		
4870.650	47.3	V	74.0	-26.7	PK	132	1.6		
Note: 11g CH6 80.0 70.0 (W, Ang) 50.0 950.0 40.0	the device in				urement anter issions in this			ard and its an	tennas 20-50cm from

		SUCCESS						EMC Test Data	
Client:	Google Inc			Job Number: JD101591					
Model:							T-Log Number: T101744		
woder:	HUIVIE						Proj	ect Manager: Deepa Shetty	
Contact:	Dominik Mer	nte					Project	Coordinator: -	
Standard:	FCC 15.247/	15.407/RSS	5-247					Class: N/A	
Channel:	Center Chanr 6 Antenna 2	nel	Mode: Data Rate:	n20 MCS0					
Frequency	Level	Pol	15.209/	15 247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7308.750	43.1	V	54.0	-10.9	AVG	40	1.0	1	
7305.050	58.2	V	74.0	-15.8	PK	40	1.0		
4873.820	35.9	V	54.0	-18.1	AVG	38	1.5		
4868.320	48.3	V	74.0	-25.7	PK	38	1.5		
2996.800	30.2	V	54.0	-23.8	AVG	178	1.1	Note 1	
2998.380	42.2	V	74.0	-31.8	PK	178	1.1	Note 1	
n20 CH6 80.0 70.0 (Jan 60.0 (Jan 60.0 (Jan 60.0 (Jan 60.0 (Jan 60.0 (Jan 60.0) (Jan 70.0) (Jan 70.0	-				ssions in this				
90.0 111 40.0 4 30.0	Mart	1. Maria	and where	M. Instatutor		محلور والفرور والمع ^ا ليور	hornor		
20.0	000			 	equency (MH	z)	10	000 18000	
[-yuonicy (r™	~ <u>,</u>			

		SUCCESS						EMO	C Test Data
Client:	Google Inc							Job Number:	JD101591
							T-	Log Number:	T101744
Model:	HOME			Proje	ect Manager:	Deepa Shetty			
Contact:	Dominik Mer	nte			Coordinator:				
	FCC 15.247		6-247		,	Class:			
	adiated Spur Date of Test:			25000 MHz	. Operating N	Node: Wors		n Run #2	
	est Engineer:					ifig Change:			
	est Location:						120V / 60H	Z	
	ow Channel					-			
Channel: Tx Chain:	1 Antenna 2		Mode: Data Rate:	g 6 Mbps					
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7232.120	45.3	V	54.0	-8.7	AVG	48	1.0	Note 1	
7232.590	60.3	V	74.0	-13.7	PK	48	1.0	Note 1	
4823.950	35.8	V	54.0	-18.2	AVG	45	1.1		
4823.680 2998.160	47.6 30.3	V	74.0 54.0	-26.4 -23.7	PK AVG	45 180	1.1 1.0	Note 1	
3000.510	42.2	V	74.0	-23.7	PK	180	1.0	Note 1	
11g CH1 80.0 70.0 (W/Angp) 60.0 appnjidww 40.0 30.0 20.0) -) -) -) - , - , - WWWWW			NJAHawa I	equency (MH				18000

	VE ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T101744
Model.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	22.6 °C
Rel. Humidity:	35 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

L	J							
	Run #	Mode	Channel	Target Power (dBm)	Passing Power Setting	Test Performed	Limit	Result / Margin
				(udili)	Setting			
ſ		BLE + 11b	2402MHz		6	Radiated Emissions,	FCC Part 15.209 /	49.4 dBµV/m @ 4924.0
	1	DLE + 110	2462MHz	-	18	1 - 25 GHz	15.247(c)	MHz (-4.6 dB)
		BLE + 11a	2480MHz		6	Radiated Emissions,	FCC Part 15.209 /	46.5 dBµV/m @
			5200MHz	-	19	1 - 25 GHz	15.247(c)	20800.1 MHz (-7.5 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal

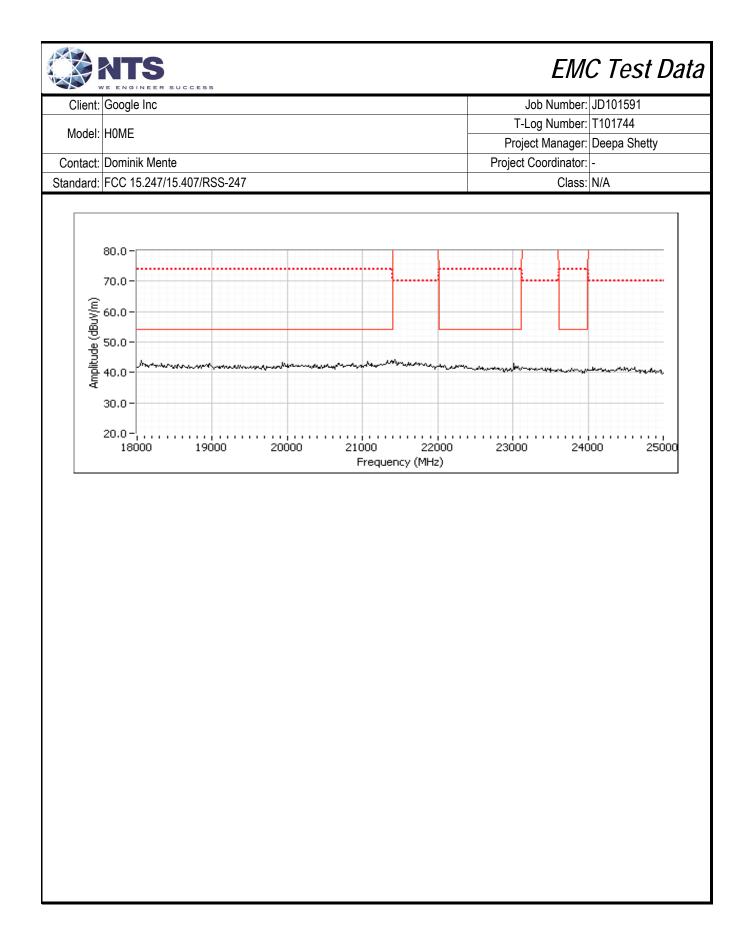
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T101744
MOUEI.	TIONE	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

Procedure Comments:

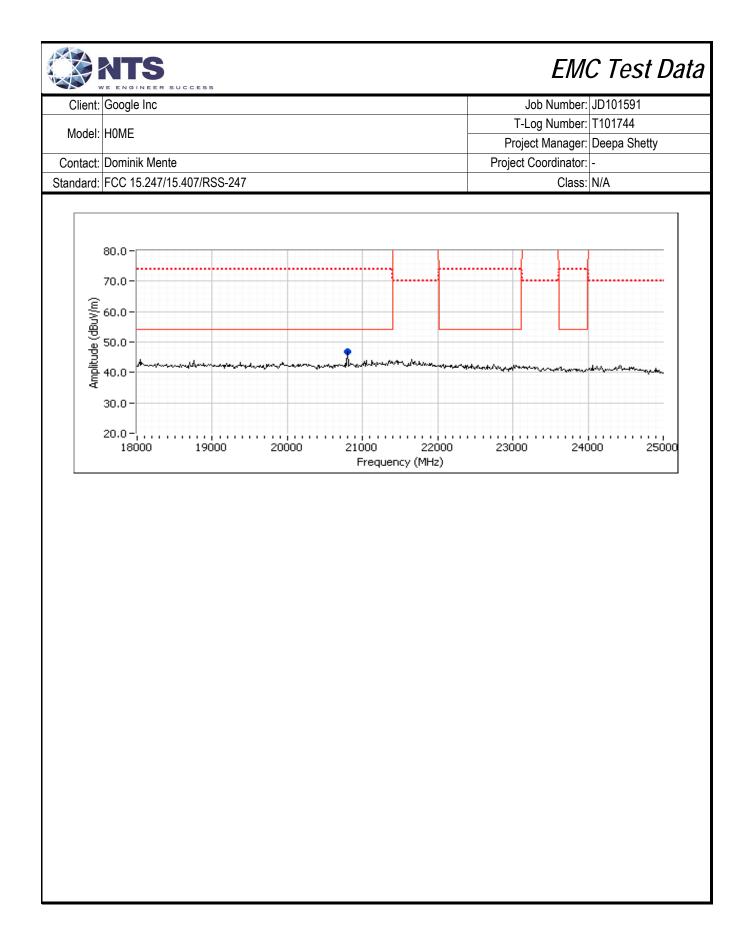
Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.


Band reject filter used

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
BLE	1Mbps	0.61	Yes	0.383	2.2	4.3	2611
11b	1 Mbps	1.00	Yes	18.95	0	0	53
11g/a	6 Mbps	0.99	Yes	3.13	0	0	319


Measurement Specific Notes:

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
Note 4:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz, peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction factor
Note 6:	Emission has non constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW> 1/T, peak detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces
1	

	VE ENGINEER	SUCCESS						LIVI	C Test Data
Client:	Google Inc			Job Number:		JD101591			
				T-Log Number:		T101744			
Model:	HUME			Project Manager:		Deepa Shetty			
Contact:	Dominik Mer	nte		Project Coordinator: -					
	FCC 15.247		5-247				Class: N/A		
I Te Te	adiated Spuri Date of Test: est Engineer: est Location: Radiated Spu	7/26/2016 8 Rafael Vare FT Chambe	& 7/27/16 Ias & John C Ir #7		C Con	onfig. Used: fig Change: UT Voltage:	None		
	aulateu Spu	nous emis	510115						
Channel: Tx Chain:	2402MHz Aux		Mode: Data Rate:	BLE 1Mbps					
Channel: Tx Chain:	2462 MHz Aux		Mode: Data Rate:	b 1Mbps					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7385.180	46.3	V	54.0	-7.7	AVG	32	1.0	RB 1 MHz;V	'B 10 Hz;Peak
7384.840	53.9	V	74.0	-20.1	PK	32	1.0	RB 1 MHz;V	'B 3 MHz;Peak
4924.010	49.4	V	54.0	-4.6	AVG	33	1.6	RB 1 MHz;V	'B 10 Hz;Peak
4924.150	53.0	V	74.0	-21.0	PK	33	1.6		'B 3 MHz;Peak
7205.460	47.3	V	54.0	-6.7	Avg	334	1.6		3 3 kHz;Peak VAVG 10
7206.670	52.5	V	74.0	-21.5	PK	334	1.6		'B 3 MHz;Peak
2991.670	45.9	V	-	-	Peak	254	1.0	Not radio sig	jnal
dBuV/m)	2402 MHz & ' 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	WIFI 802.11	ь 2462 MHz		hall-barrend dae				
	20.0-¦ 1000				, Frequency	, , , , , , , , , , , , , , , , , , ,		10000	18000

		SUCCESS						EM	C Test Data
Client:	Google Inc							Job Number:	JD101591
Madalı	· · ·							Log Number:	T101744
Model:	HUME						Proj	ect Manager:	Deepa Shetty
Contact:	Dominik Men	te					Project	Coordinator:	-
Standard:	FCC 15.247/	15.407/RS	S-247					Class:	N/A
Run #1b: R	adiated Spur	ious Emis	sions						
Channel:	2480MHz		Mode:	BLE					
Tx Chain:	Aux		Data Rate:	1Mbps					
				- 1					
Channel:	5200 MHz		Mode:	11a					
Tx Chain:	Aux		Data Rate:	6 Mbps					
Frequency	Level	Pol	15.209	15 247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
2996.160	45.9	V	-	-	Peak	244	1.0	Not radio sig	nal
4973.200	43.9	V	54.0	-10.1	Avg	254	1.9		kHz;Peak VAVG 100
4973.470	51.8	V	74.0	-22.2	PK	254	1.9		/B 3 MHz;Peak
10406.440	57.4	Н	68.3	-10.9	PK	94	1.1	RB 1 MHz;V	'B 3 MHz;Peak
15600.130	42.8	V	54.0	-11.2	AVG	55	1.8		
15602.800	54.8	V	74.0	-19.2	PK	55	1.8		
20800.120	46.5	Н	54.0	-7.5	AVG	266	1.6		
20800.070	52.9	Н	74.0	-21.1	PK	266	1.6		
	2480 MHz & V 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		1a 5200 MHz		uli ju			10000	18000
					Frequency	/ (MH2)			

WE ENGINEER S	UCCESS	EIVIC TEST Data			
Client:	Google Inc	Job Number:	JD101591		
Product	HOME	T-Log Number:	T102213		
System Configuration:	-	Project Manager:	Deepa Shetty		
Contact:	Dominik Mente	Project Coordinator:	-		
Emissions Standard(s):	FCC 15.247/15.407/RSS-247	Class:	В		
Immunity Standard(s):	-	Environment:	-		

EMC Test Data

For The

Google Inc

Product

H0ME

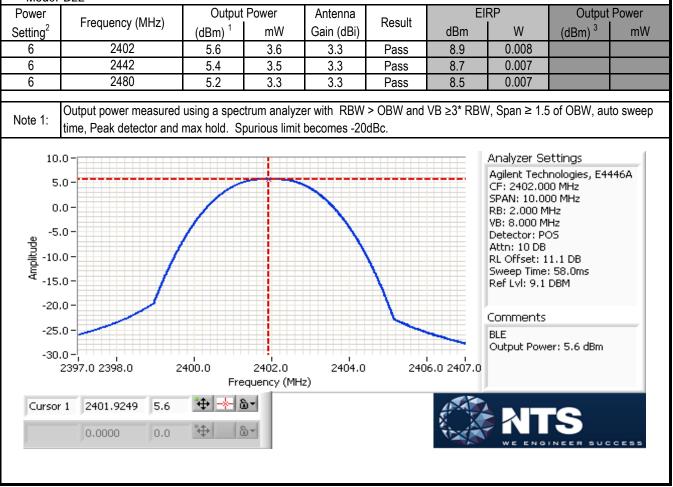
Date of Last Test: 8/1/2016

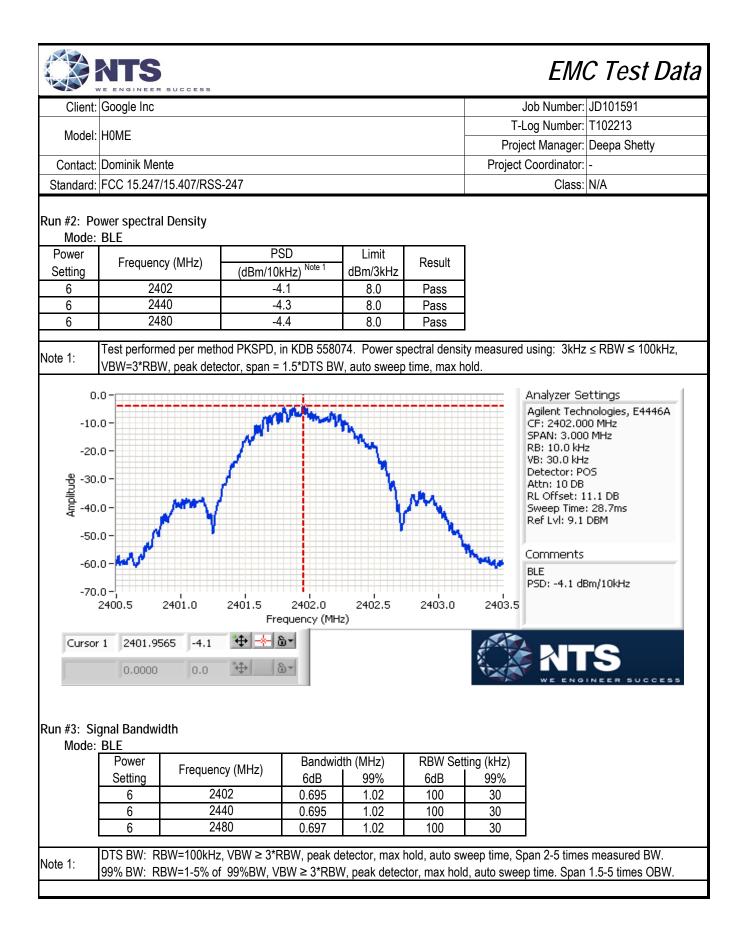
	NE ENGINEER SUCCESS			ЕМС	C Test Data
Client:	Google Inc			Job Number: J	ID101591
Model	HOME			T-Log Number:	Г102213
woder.			F	Project Manager:	Deepa Shetty
Contact:	Dominik Mente		Proj	ect Coordinator: -	
Standard:	FCC 15.247/15.407/RSS	-247		Class: N	N/A
		and FCC 15.247 (DTS) Ante Power, PSD, Bandwidth and Sp			
Test Spe		e of this test session is to perform final c listed above.	ualification testing	of the EUT with re	spect to the
Те	Date of Test: 7/26/2016 est Engineer: Mehran Birg est Location: Lab 4	ani Confi	ifig. Used: Conduct g Change: - T Voltage: 120V/ 60		
The EUT chain.		ctrum analyzer or power meter via a sui		ll measurements v	vere made on a single
	Conditions:	Temperature:20-22 °(Rel. Humidity:35-40 %			
Summary	of Results	Test Performed	Limit	Pass / Fail	Result / Margin
				E 0 3 3 / 1 0 1	
Run #		Output Power			Ţ.
Run #	6 6	Output Power Power spectral Density (PSD)	15.247(b)	Pass	5.6 dBm (3.6mW) -4.1 dBm/10kHz
	6	Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth			5.6 dBm (3.6mW)
Run # 1 2	6 6	Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth	15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass Pass	5.6 dBm (3.6mW) -4.1 dBm/10kHz 0.695 MHz 1.02 MHz
Run # 1 2 3	6 6 6	Power spectral Density (PSD) Minimum 6dB Bandwidth	15.247(b) 15.247(d) 15.247(a)	Pass Pass	5.6 dBm (3.6mW) -4.1 dBm/10kHz 0.695 MHz

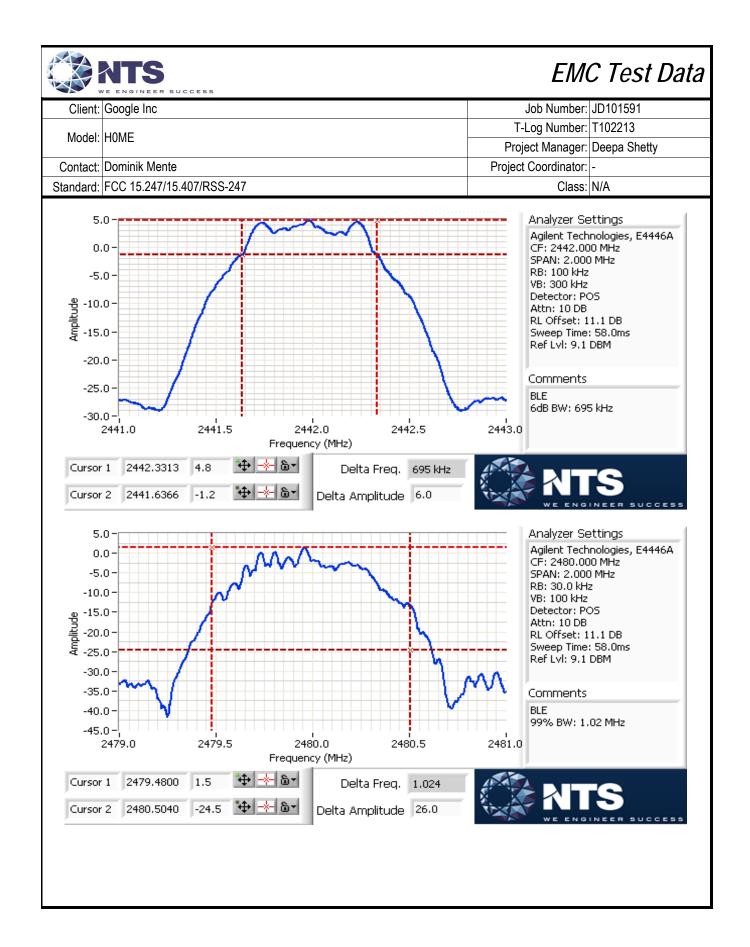
٦

	NTS	EMO	C Test Data
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T102213
wouer.	TIOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

Procedure Comments:


Measurements performed in accordance with FCC KDB 558074

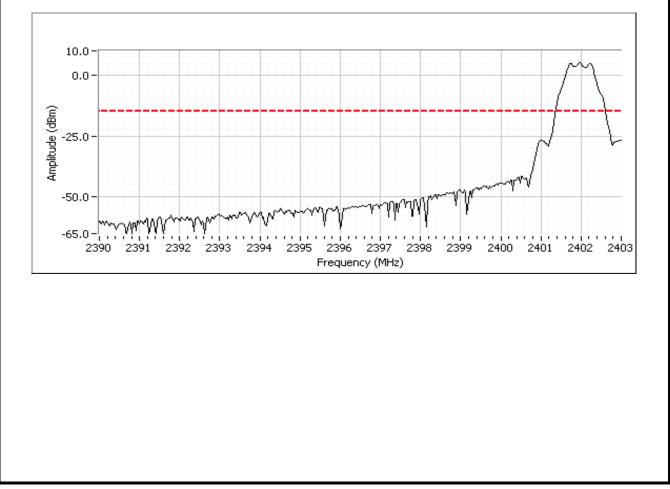

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
BLE	1Mbps	0.61	Yes	0.383	2.2	4.3	2611

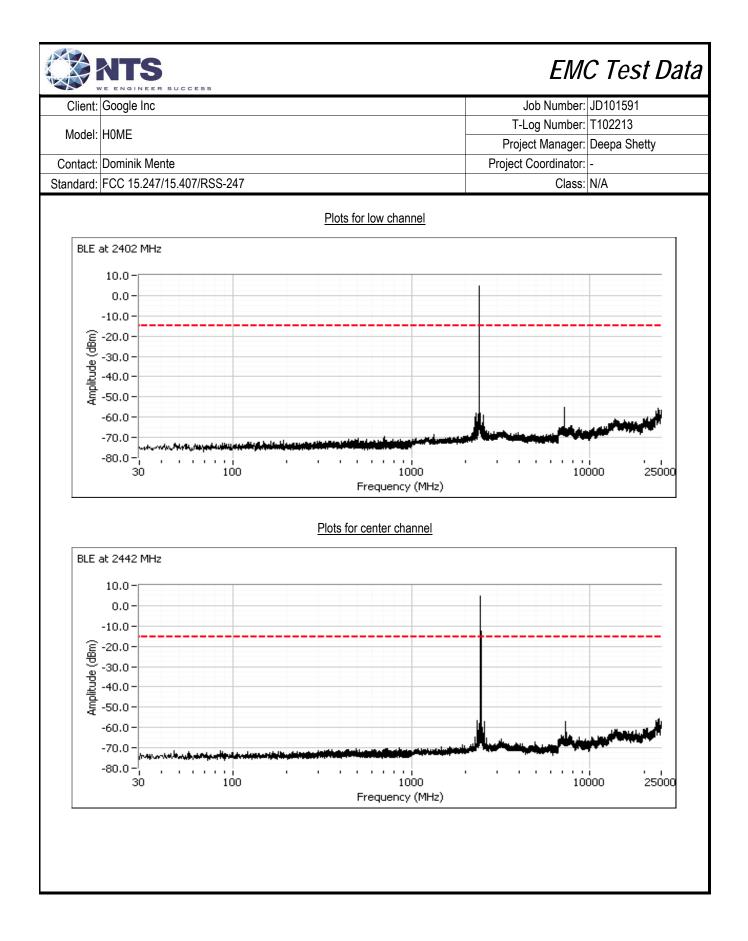

Note: Only plots of the worse case results are provided

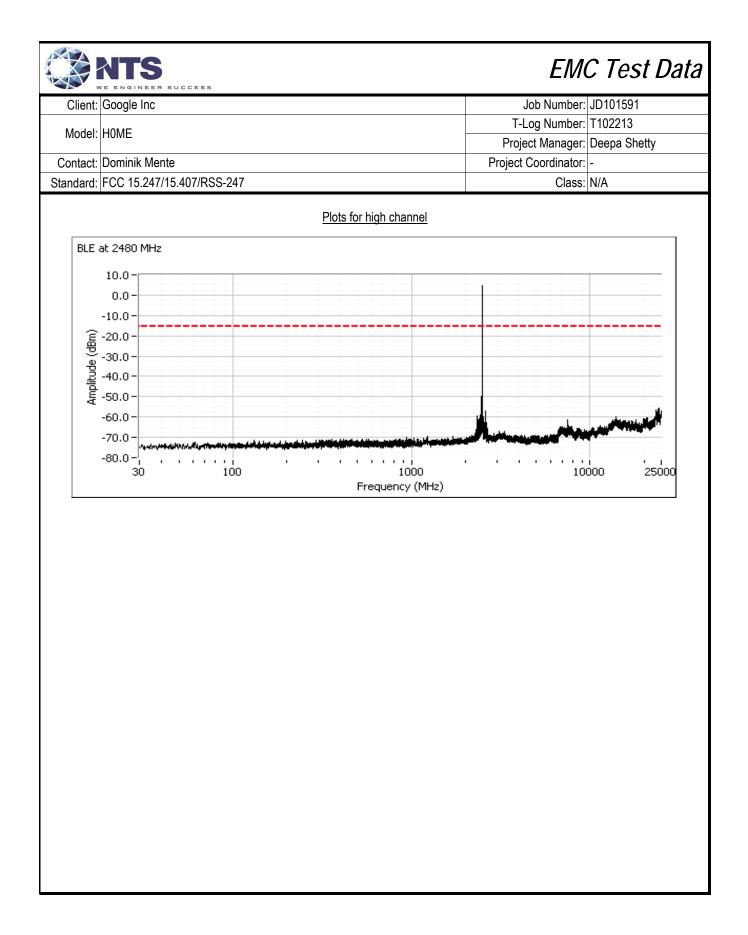
Run #1: Output Power

Mode: BLE

	NTS UCCESS	EMO	C Test Data
Client:	Google Inc	Job Number:	JD101591
Model:	HOME	T-Log Number:	T102213
woder.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A


Run #4a: Out of Band Spurious Emissions


Frequency (MHz)	Power Setting	Mode	Limit	Result
2402	6	BLE	-20dBc	Pass
2440	6	BLE	-20dBc	Pass
2480	6	BLE	-20dBc	Pass


RBW = 100 kHz and VBW = 300 kHz for all plots.

Plots for low channel

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

		SUCCESS				
Client	: Google Inc				Job Number:	JD101591
Model	: HOME				T-Log Number:	T102213
					roject Manager:	1 2
Contact	: Dominik Mer	nte		Proje	ect Coordinator:	-
Standard	: FCC 15.247/	15.407/RSS-	247		Class:	N/A
	R		and FCC 15.247 (DTS) Ant Power, PSD, Bandwidth and S			S
Test Spe			e of this test session is to perform final listed above.	qualification testing c	of the EUT with r	respect to the
Т	Date of Test: est Engineer: est Location:	Rafael Varela	as Conf	nfig. Used: 1 g Change: None T Voltage: 120V/60	Hz	
	Test Config			bla attonuator All m		
hain. Il measure		een correcte : Te	um analyzer or power meter via a suita d to allow for the external attenuators u emperature: 22.4 °C el. Humidity: 33 %		ieasurements w	ere made on a single
hain. All measure Ambient Summar	ements have b Conditions y of Result	een correcte S: Te Re	d to allow for the external attenuators u emperature: 22.4 °C el. Humidity: 33 %	ised.		_
hain. All measure Ambient	ements have b Conditions	een correcte : Te Re	d to allow for the external attenuators u emperature: 22.4 °C		Pass / Fail Pass	Result / Margin 11b: 18.1dBm (64.6mW) 11g: 17.0dBm (50.1mW) n20: 17.2dBm (52.5mW)
hain. Il measure Ambient Summar Run #	ements have b Conditions y of Result	een correcte S: Te Re	d to allow for the external attenuators u emperature: 22.4 °C el. Humidity: 33 %	ised.	Pass / Fail	Result / Margin 11b: 18.1dBm (64.6mW) 11g: 17.0dBm (50.1mW) n20: 17.2dBm
hain. Il measure Ambient Gummar Run #	ements have b Conditions y of Result	een correcte S: Te Re	d to allow for the external attenuators u emperature: 22.4 °C el. Humidity: 33 % Test Performed Output Power	Limit 15.247(b)	Pass / Fail Pass	Result / Margin 11b: 18.1dBm (64.6mW) 11g: 17.0dBm (50.1mW) n20: 17.2dBm (52.5mW) 11b: -0.2 dBm/10kH: 11g: -3.3 dBm/10kH: n20: -2.5 dBm/10kH: 10.1 MHz
hain. Il measure Ambient Summar Run # 1	ements have b Conditions y of Result	een correcte S: Te Re S Avg Pwr	d to allow for the external attenuators u emperature: 22.4 °C el. Humidity: 33 % Test Performed Output Power Power spectral Density (PSD)	Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 11b: 18.1dBm (64.6mW) 11g: 17.0dBm (50.1mW) n20: 17.2dBm (52.5mW) 11b: -0.2 dBm/10kHz 11g: -3.3 dBm/10kHz n20: -2.5 dBm/10kHz

EMC Test Data

	E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LOME	T-Log Number:	T102213
wouer.	TIOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

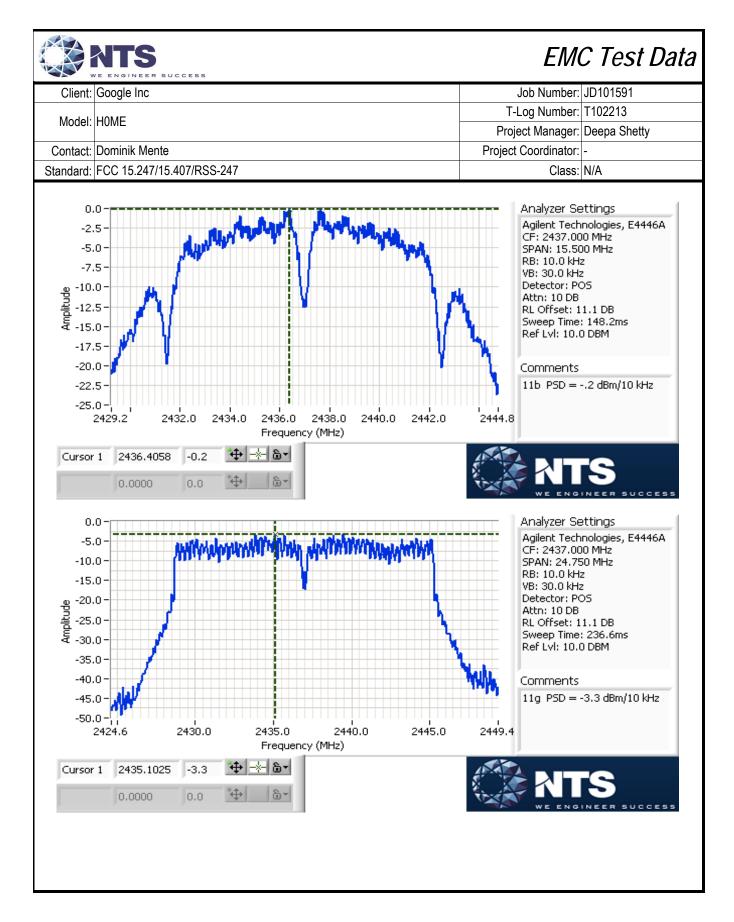
Procedure Comments:

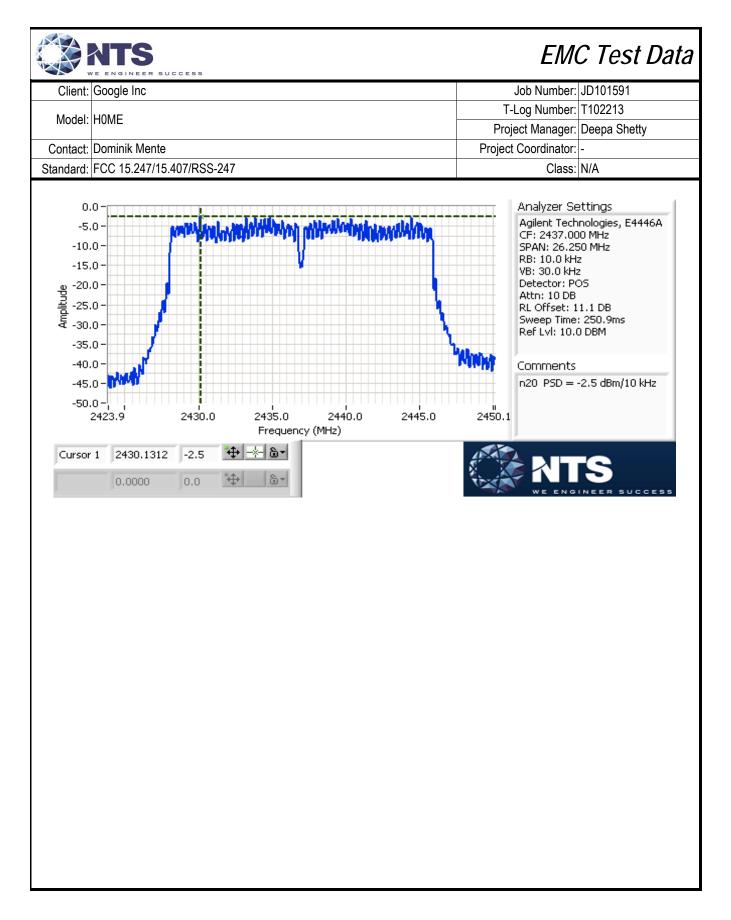
Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mbps	1.00	Yes	18.95	0	0	53
11g	6 Mbps	0.99	Yes	3.13	0	0	319
n20	MCS0	1.00	Yes	9.92	0	0	101

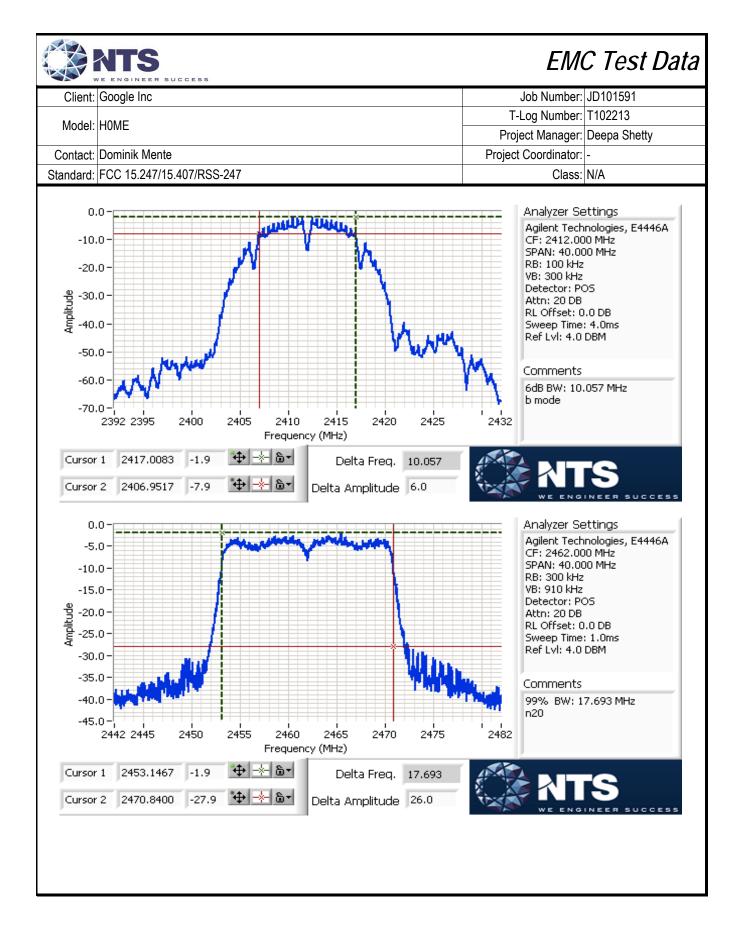
Sample Notes

Sample S/N: 6629AZZB6W

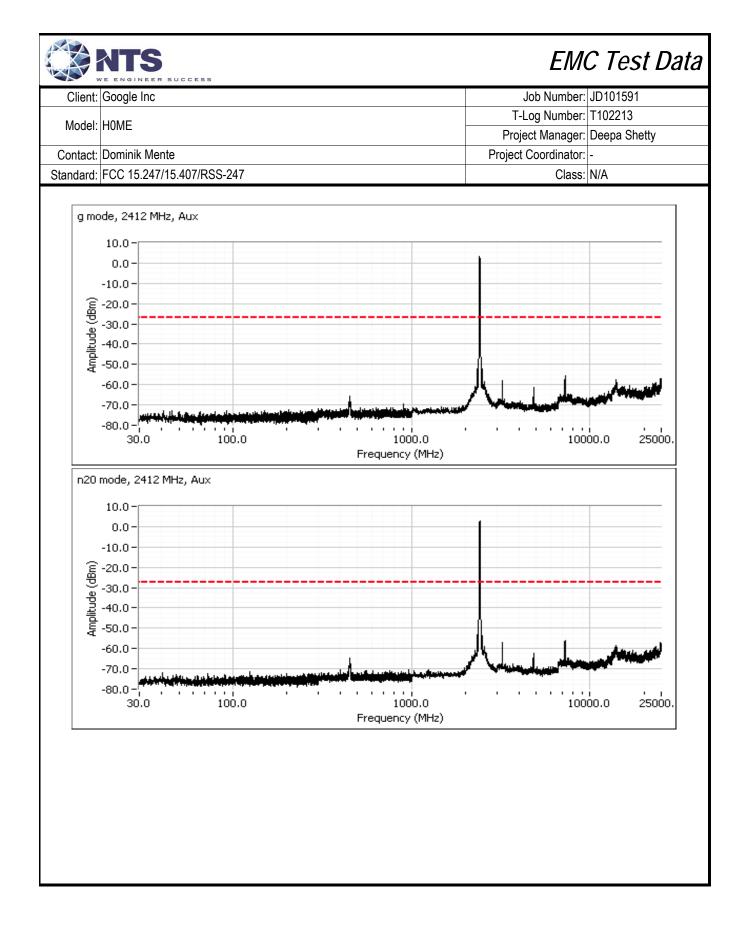

Driver: 1.21


Measurements performed on the worse case output (Aux) based on preliminary measurements. All calculations using the highest antenna gain.

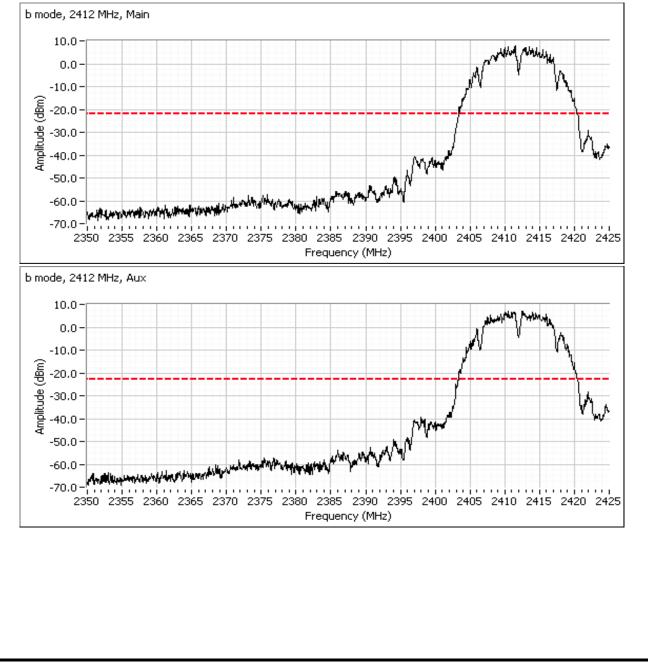
Note: Only plots of the worse case results are provided

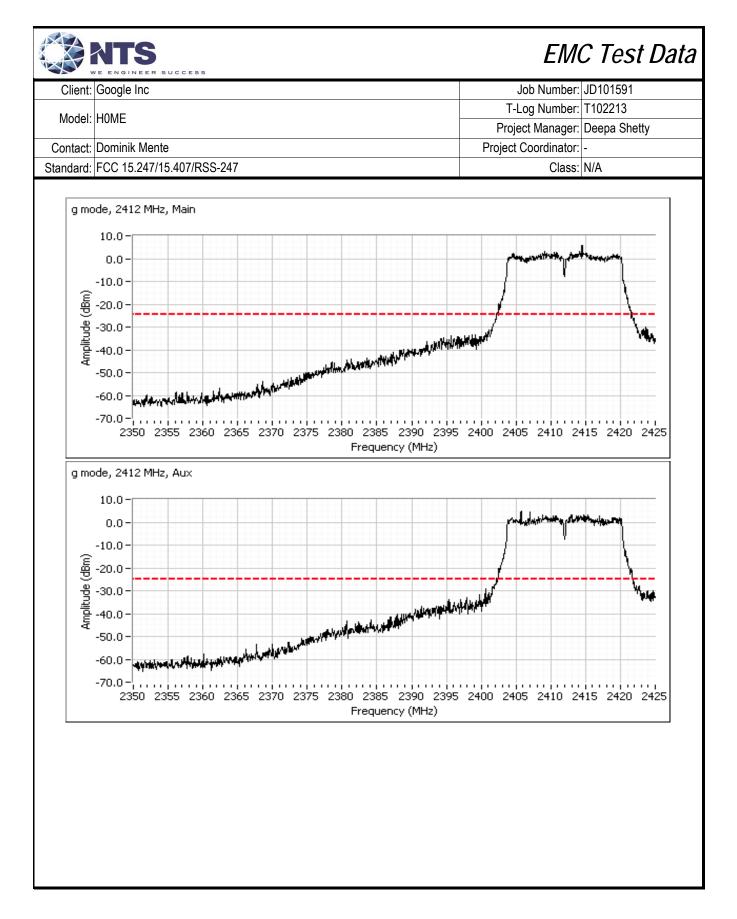

	ATS						EM	C Test	t Data
Client:	Google Inc					,	Job Number:	JD101591	
Model:						T-L	og Number:	T102213	
woder.						Proje	ect Manager:	Deepa Shet	ty
Contact:	Dominik Mente					Project	Coordinator:	-	
Standard:	FCC 15.247/15.407/RSS	6-247					Class:	N/A	
Run #1: Ou Mode:	Itput Power								
Power	מוו	Output	Power	Antenna		FI	RP	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm)	mW
17	2412	17.1	51.3	3.3	Pass	20.4	0.110	(abiii)	
18	2437	18.1	64.6	3.3	Pass	21.4	0.138		
18	2462	17.8	60.3	3.3	Pass	21.1	0.129		
Mode: Power	11g Frequency (MHz)	Output	1	Antenna	Result	EI			Power
Setting ²	,	(dBm) ¹	mW	Gain (dBi)		dBm	W	(dBm)	mW
15	2412	15.2	33.1	3.3	Pass	18.5	0.071		
17 16	2437 2462	17.0 16.0	50.1 39.8	3.3 3.3	Pass Pass	20.3 19.3	0.107		
Mode: Power	n20 Frequency (MHz)		Power	Antenna	Result	EI	RP	Output	Power
Setting ²	,	(dBm) ¹	mW	Gain (dBi)		dBm	W	(dBm)	mW
14	2412	14.4	27.5	3.3	Pass	17.7	0.059		
17 17	2437 2462	17.2 17.1	52.5 51.3	3.3 3.3	Pass Pass	20.5 20.4	0.112		
17	2402	17.1	51.5	ა.ა	Pass	20.4	0.110		
Note 1:	Power measured using a	average powe	er meter						
Note 2:	Power setting - the softw	are power se	etting used o	luring testing,	included for	reference or	ıly.		

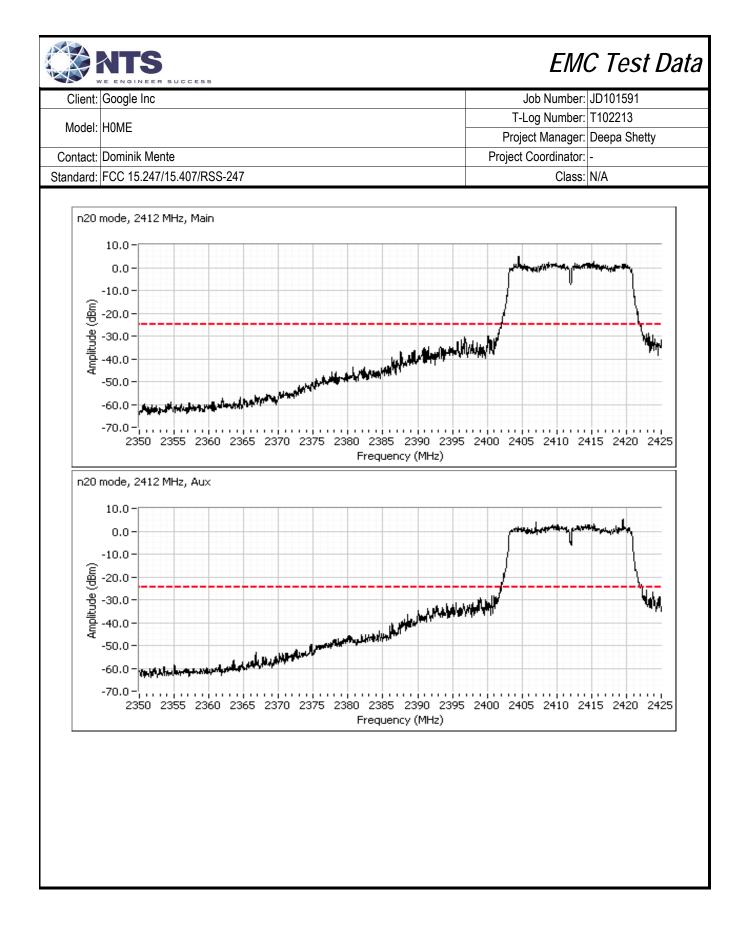
	NTS				EMC Test Dat
Client:	Google Inc				Job Number: JD101591
					T-Log Number: T102213
Model:	HUME			-	Project Manager: Deepa Shetty
Contact:	Dominik Mente				Project Coordinator: -
	FCC 15.247/15.407/RSS	-247			Class: N/A
otandara.					
Run #2: Po	ower spectral Density				
	i j				
Mode:	11b				
Power	Frequency (MHz)	PSD	Limit	Result	
Setting		(dBm/10kHz) ^{Note 1}	dBm/3kHz	_	
17	2412	-1.1	8.0	Pass	
18	2437	-0.2	8.0	Pass	
18	2462	-0.4	8.0	Pass	
Mode:	11g				
Power		PSD	Limit	Result	
Setting	Frequency (MHz)	(dBm/10kHz) Note 1	dBm/3kHz		
15	2412	-4.8	8.0	Pass	
17	2437	-3.3	8.0	Pass	
16	2462	-4.2	8.0	Pass	
	n20				
Power	Frequency (MHz)	PSD	Limit	Result	
Setting		(dBm/10kHz) ^{Note 1}	dBm/3kHz	_	
14	2412	-5.2	8.0	Pass	
17 17	2437 2462	-2.5 -2.8	8.0 8.0	Pass	
17	2402	-2.0	0.0	Pass	
	Test performed per meth	od PKSPD, in KDB 5580	74. Power so	ectral densit	y measured using: $3kHz \le RBW \le 100kHz$,
Note 1:	VBW=3*RBW, peak dete				
,J	, · · · · · · · · · · · · · · · · · · ·		,	, -	

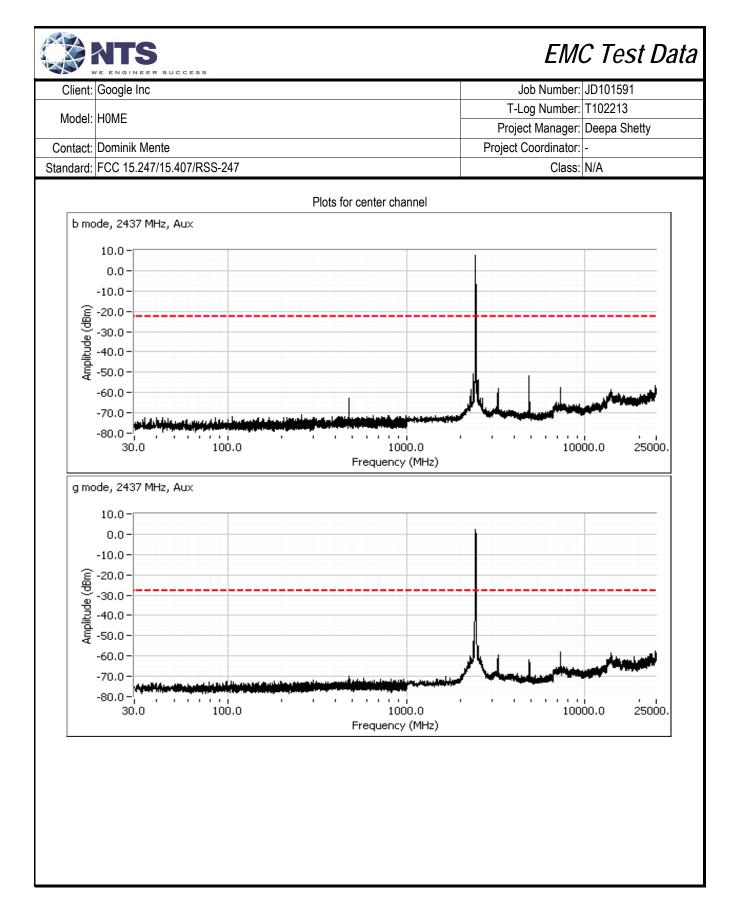


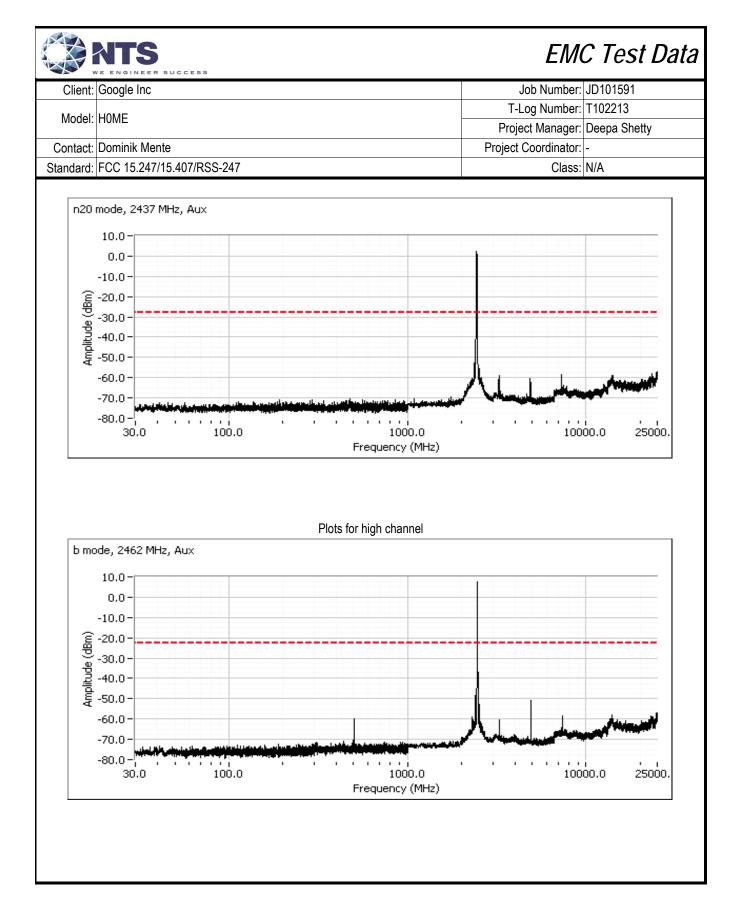
Client	: Google Inc					J	ob Number:	JD101591
							og Number:	
Model	HOME						_	Deepa Shetty
Contact	: Dominik Mei	nte				Project (Coordinator:	-
Standard	FCC 15.247	/15.407/RSS-247					Class:	N/A
	1					I		
Run #3: S	ignal Bandwi	dth (Aux Port)						
Mode:	11b							
	Power	Frequency (MHz)		lth (MHz)		ting (kHz)		
	Setting		6dB	99%	6dB	99%		
	18	2412	10.1	13.3	100	300		
	18 18	2437 2462	10.1	13.3 13.3	100 100	300		
	IÕ	2402	10.1	13.3	100	300		
lode:	11g							
	Power	Frequency (MHz)		lth (MHz)		ting (kHz)		
	Setting		6dB	99%	6dB	99%		
	17	2412 2437	16.3	16.8	100	300		
	17 17	2462	16.4 16.3	16.8 16.8	100 100	300 300		
		2102	10.0	10.0	100	000		
lode:	n20	ſ						
	Power	Frequency (MHz)		lth (MHz)		ting (kHz)		
	Setting 17	2412	6dB 17.5	99% 17.7	6dB 100	99% 300		
	17	2437	17.5	17.7	100	300		
	17	2462 BW=100kHz, VBW ≥ 3*R	17.5 BW peak de	17.7	100	300	an 2-5 times	measured F
Note 1:								
	199% BW: R	BW=1-5% of 99%BW, VE	3VV ≥ 3°RBV\	v, deak dere	ctor, max hol	d, auto sweer	o time, Span	1.5-5 times (

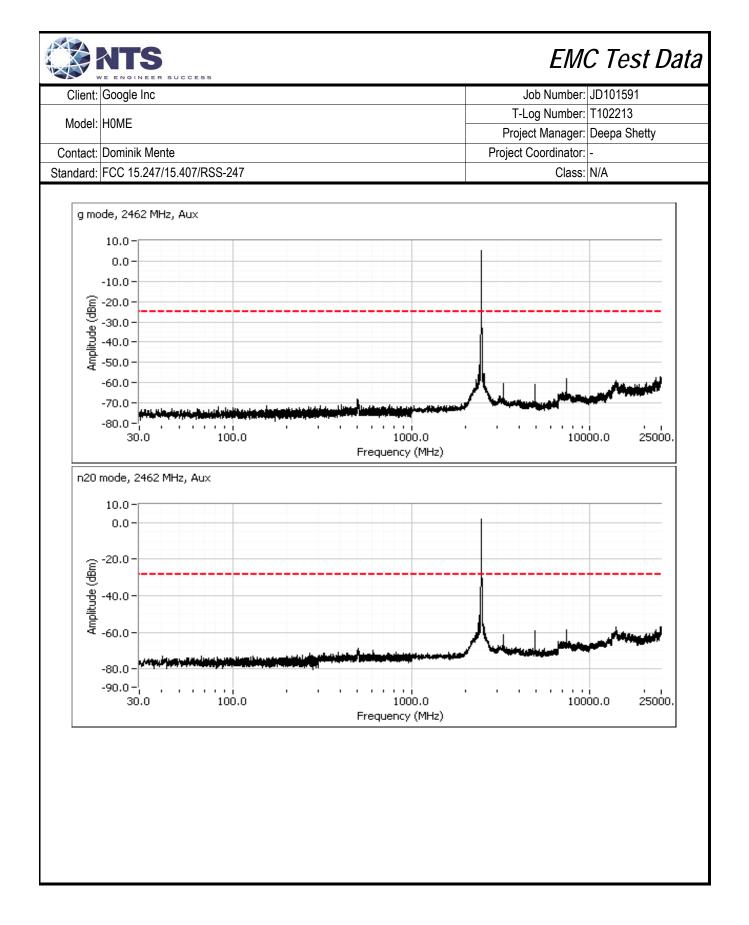



	Google Inc				Job Number	
Model [.]	HOME				T-Log Number	
					Project Manager	
	Dominik Mente				Project Coordinator	: -
indard:	FCC 15.247/15.407/RS	S-247			Class	: N/A
#4a: C	Out of Band Spurious E	missions				
	Frequency (MHz)	Power Setting	Mode	Limit	Result]
	2412	18	b	-30dBc	Pass	
	2437	18	b	-30dBc	Pass	4
	2462	18	b	-30dBc	Pass	4
	2412	17	g	-30dBc	Pass	-
	2437 2462	17	g	-30dBc -30dBc	Pass Pass	-
	2402	17 17	g n20	-30dBc	Pass	-
	2437	17	n20	-30dBc	Pass	-
	2462	17	n20	-30dBc	Pass	1
: All m	kHz and VBW = 300 kH easurements performed for the low channel to sho	on Aux port a			ary measurements. Additio the Main port.	nal measurements
: All m	easurements performed	on Aux port a	e with the restric		-	nal measurements
: All m rmed f	easurements performed	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	easurements performed for the low channel to sho	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	ode, 2412 MHz, Aux	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	or the low channel to sho ode, 2412 MHz, Aux	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	or the low channel to sho	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	or the low channel to sho	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	or the low channel to sho	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	easurements performed for the low channel to sho ode, 2412 MHz, Aux 10.0 - 0.0 - 20.0 -	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
All m rmed f	or the low channel to sho	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	easurements performed for the low channel to sho ode, 2412 MHz, Aux 10.0 - 0.0 - -20.0 - -40.0 - -60.0 -	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	easurements performed for the low channel to sho ode, 2412 MHz, Aux 10.0 - 0.0 - 20.0 -	on Aux port a	e with the restric	tion at 2400MHz on	-	nal measurements
: All m rmed f	easurements performed for the low channel to sho ode, 2412 MHz, Aux 10.0 - 0.0 - -20.0 - -40.0 - -60.0 - -80.0 -	on Aux port a ow compliance	e with the restric	tion at 2400MHz on	the Main port.	
: All m rmed f	easurements performed for the low channel to sho ode, 2412 MHz, Aux 10.0 - 0.0 - -20.0 - -40.0 - -60.0 - -80.0 -	on Aux port a ow compliance	e with the restric Plots fo	tion at 2400MHz on	the Main port.	




WE ENGINEER SUCCESS		EMC Test Data	
Client:	Google Inc	Job Number:	JD101591
Model:	НОМЕ	T-Log Number:	T102213
		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247/15.407/RSS-247	Class:	N/A


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.



End of Report

This page is intentionally blank and marks the last page of this test report.