

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

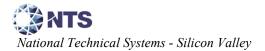
Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 4 / RSS 247 Issue 1 FCC Part 15 Subpart C

Model: H0ME

IC CERTIFICATION #: FCC ID:	10395A-H0ME A4RH0ME
APPLICANT:	Google Inc. 1600 Amphitheatre Pky Mountain View, CA 94043
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-7
REPORT DATE:	September 13, 2016
FINAL TEST DATES:	July 8, 25, and 26 and August 10, 2016
TOTAL NUMBER OF PAGES:	64

PROGRAM MGR / TECHNICAL REVIEWER:


Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	September 13, 2016	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, LESS THAN 75 HOPPING CHANN	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	10
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	11
FILTERS/ATTENUATORS	
ANTENNAS	12
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	14
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	19
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	20
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	64

SCOPE

An electromagnetic emissions test has been performed on the Google Inc. model H0ME, pursuant to the following rules:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently

manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Google Inc. model HOME complied with the requirements of the following regulations:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Google Inc. model H0ME and therefore apply only to the tested sample. The sample was selected and prepared by Dominik Mente of Google Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, Less Than 75 Hopping Channels)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247	RSS 247	20dB Bandwidth	20dB Bandwidth Basic Rate: 985 kHz EDR: 1282 kHz		Complies
(a) (1)	5.1 (1)	Channel Separation	1000 kHz	(minimum 25 kHz)	Complies
15.247 (a) (1) (iii)	RSS 247 5.1 (4) & 5.4 (2)	Number of Channels	Min: 20 Max: 79	15 or more	Complies
15.247 (a) (1) (iii) & (b) (1)	RSS 247 5.1 (4)	Channel Dwell Time (average time of occupancy)	The system uses the Bluetooth algorithm and, therefore, meets all	<0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1)	RSS 247 5.1 (1)	Channel Utilization	requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 247 5.4 (2)	Output Power	Basic Rate: 5.5 dBm (0.0035W) EDR: 5.3 dBm (0.0034W)	0.125 Watts	Complies
15.247(d)	RSS 247 5.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 30MHz – 25GHz	48.8 dBμV/m @ 7205.9 MHz (-5.2 dB)	Refer to the limits section (p19) for restricted bands, all others < -20dBc	Complies
15.247 (a) (1)	RSS 247 5.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antennas are internal	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 3	AC Conducted Emissions	Chicony: 38.6 dBµV @ 0.358 MHz (-10.2 dB) TenPao: 44.4 dBµV @ 0.156 MHz (-21.3 dB)	Refer to page 18	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP-100 RSS-Gen 6.6	Occupied Bandwidth	Basic Rate: 985 kHz EDR: 1282 kHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Redicted omission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Google Inc. HOME is an interactive media streaming device. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 100-240 Volts, 50-60 Hz, 1.1 Amps.

The sample was received on July 8, 2016 and tested on July 8, 25, and 26 and August 10, 2016. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Google	H0ME	Streaming Media	6629AZZB6W	A4RH0ME
		Device (RF conducted)		
Google	HOME	Streaming Media	6629AZZB75	A4RH0ME
		Device (radiated)		
Chicony	W16-033N1A	External power supply	F185081624001224	-
TenPao	S033BU1650200	External power supply	prototype	-

ANTENNA SYSTEM

Two Internal Antennas: 2.7dBi and 3.3dBi max @ 2.4GHz, 5.3dBi and 5.7dBi @ 5GHz. Tx/Rx diversity.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 10 cm in diameter by 14 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop	27175981753	-
-	PA-12FAMILY	Laptop Power Supply	-	-
Google	Chromecast	USB AC/DC Adapter	-	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

EUI				
Port	Connected To		Cable(s)	
TOIL	Connected To	Description	Shielded or Unshielded	Length(m)
DC power	External power supply	2 wire	Unshielded	2
AC in (external supply)	AC mains	Direct plug in	NA	NA
USB	USB splitter	Multiwire	Shielded	0.3

Additional on Support Equipment

Port	Port Connected To		Cable(s)			
TOIL	Connected To	Description	Shielded or Unshielded	Length(m)		
USB charger out	USB splitter	Multiwire	Shielded	0.3		
USB charger, AC in	AC mains	Direct plug in	NA	NA		
USB splitter	USB-serial adaptor cable					

EUT OPERATION

The EUT was configured to transmit continuously at the maximum output power setting. Specifics for the channel and mode are described in the test data.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers		Location
Olio	FCC	Canada	Location
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 7	US0027	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for measurements below 1GHz and 1.5m for measurements above 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

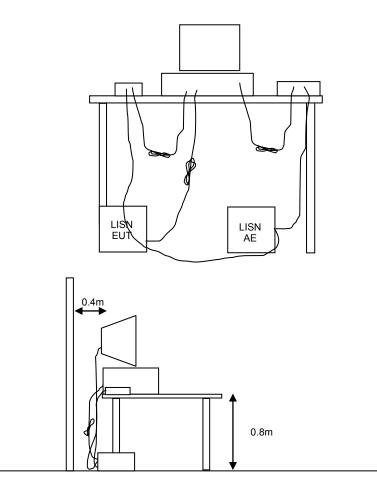
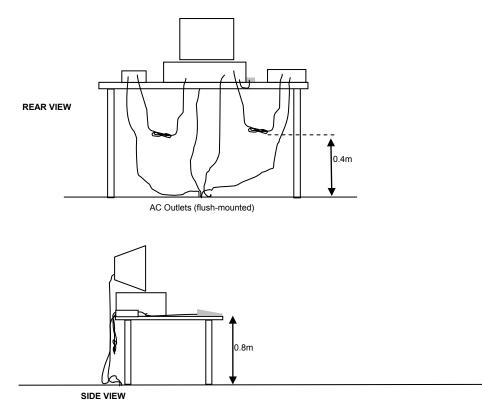
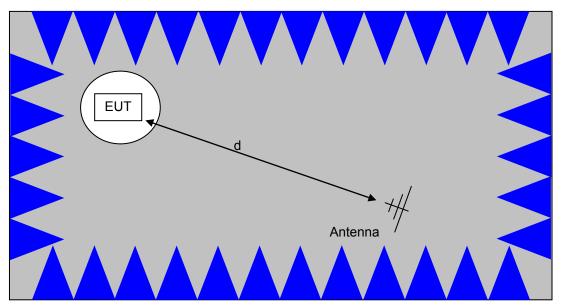


Figure 1 Typical Conducted Emissions Test Configuration

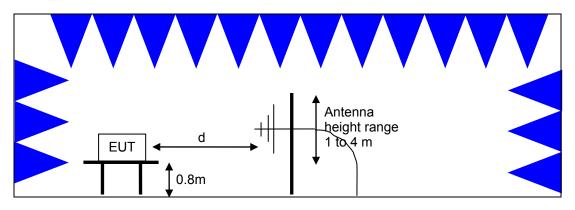
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

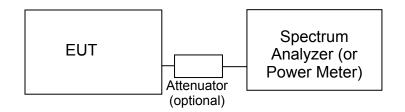

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
2400 - 2483.5	≥15	0.125 Watts (21 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 247. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 6

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

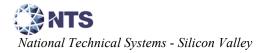
The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_c &=& R_r \,+\, F_d \\ and \\ M &=& R_c \,-\, L_S \\ where: \\ R_r &=& Receiver Reading in dBuV/m \\ F_d &=& Distance Factor in dB \\ R_c &=& Corrected Reading in dBuV/m \\ L_S &=& Specification Limit in dBuV/m \end{array}$$

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:


 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

T101744					
Conducted Emissio	ns - AC Power Ports, 10-Aug-1	6			
Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	Calibrated	<u>Cal Due</u>
NTS	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	8/1/2016	8/1/2017
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	4/26/2016	4/26/2017
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/19/2015	12/19/2016
T102007					
	Emissions, 1000 - 18,000 MHz, 2	25-Jul-16 and 26-J	ul-16		
NTS	NTS EMÍ Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	1/21/2016	1/21/2017
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/17/2015	10/17/2016
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	6/29/2016	6/29/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
HP / Miteq	SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	7/17/2015	8/17/2016
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
Radio Antenna Port Agilent Technologies	(Power and Spurious Emission PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	n s), 26-Jul-16 E4446A	2139	6/24/2016	6/24/2017
	120, 100, 010, 1117,				

Appendix B Test Data

T101744 Pages 24 – 29 T102007 Pages 30 – 63

EMC Test Data

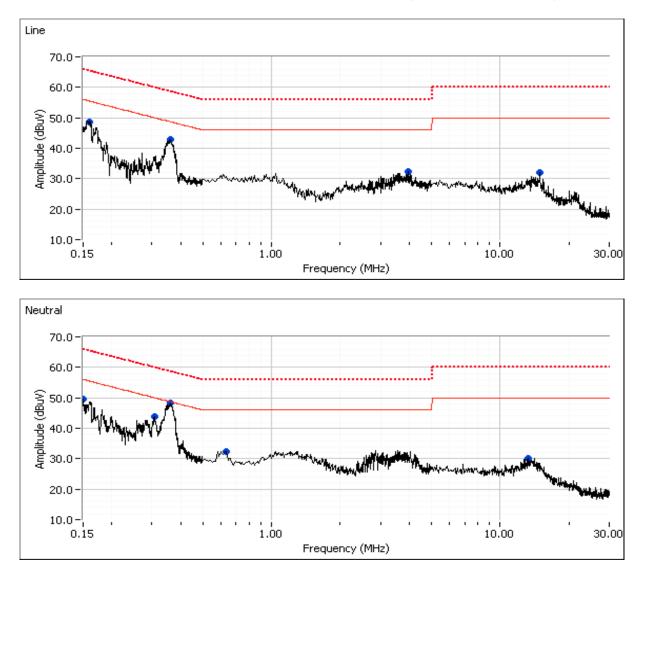
WE ENGINEER S	UCCESS	LI	WC TEST Data
Client:	Google Inc	Job Number:	JD101591
Product	HOME	T-Log Number:	T101744
System Configuration:	-	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247/15.407/RSS-247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Google Inc

Product

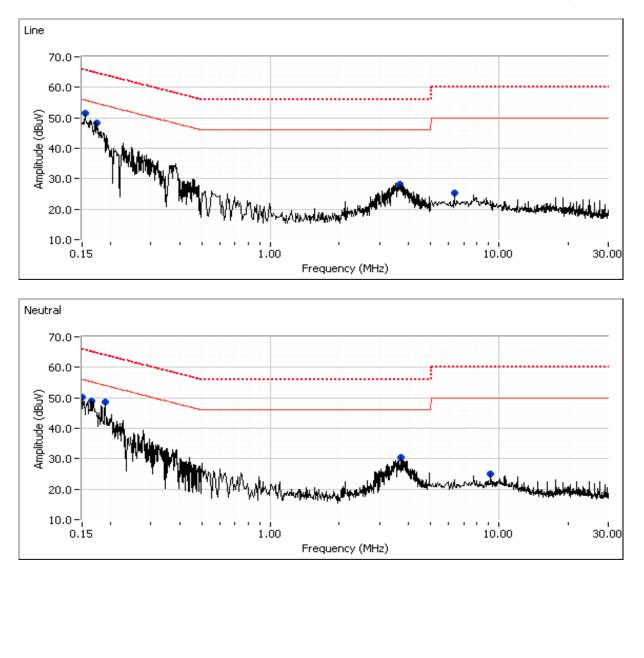

HOME

Date of Last Test: 9/9/2016

	NTS	SUCCESS			EMO	C Test Data
Client:	Google Inc			J	ob Number:	JD101591
Madal	HOME			T-Lo	og Number:	T101744
woder:	HUIVIE			Projec	ct Manager:	Deepa Shetty
	Dominik Mer			Project C	Coordinator:	-
Standard:	FCC 15.247	15.407/RSS-247			Class:	В
			ucted Emissions mont Facility, Semi-Anec	choic Chambe	r)	
Test Spe	cific Detail	S				
	Objective:	The objective of this test session is specification listed above.	to perform final qualification	on testing of the	e EUT with r	espect to the
I	Date of Test:	8/10/2016	Config. Used			
	est Engineer:		Config Change		quipment.	
Te	est Location:	Fremont Chamber #7	EUT Voltage	e: 120V/60Hz		
and 80cm fr	rom the LISN.			noic chamber, 4		
	om the LISN.	: Temperatur Rel. Humidit				
Ambient	Conditions	Rel. Humidit				
Ambient Summary		Rel. Humidit		Result		Margin
Ambient Summary Ru	Conditions	Rel. Humidit	y: 40 %		38.6 d	BµV @ 0.358 MHz (-10.2 dB)
Ambient Summary Ru 2	Conditions / of Result	Rel. Humidit S Test Performed	y: 40 %	Result	38.6 d	BµV @ 0.358 MHz

NTS	EMC Test Data
Google Inc	Job Number: JD101591
	T-Log Number: T101744
	Project Manager: Deepa Shetty
Dominik Mente	Project Coordinator: -
FCC 15.247/15.407/RSS-247	Class: B
	Google Inc HOME Dominik Mente

Run #2a: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz. Chicony W16-033N1A power supply.



100

Client: Google Inc. Job Number: JD101591 Model: H0ME T-Log Number: T01744 Project Manager: Deepa Shelty Project Manager: Deepa Shelty Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Class: B M142 dBµV Line Linit Margin QP/Ave Ontonits 0.161 48.7 Line 55.4 -6.7 Peak Ontonits Margin 0.361 42.9 Line 46.0 -13.6 Peak Ontonits Margin 0.352 49.7 Neutral 50.0 -6.2 Peak Ontonits Margin Margi	Model: H0ME T-Log Number: T101744 Project Manager: Deepa Shelty Project Manager: Deepa Shelty Standard: FCC 15 247/15 407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B 9781 Mag Line Line Margin OP/Ave Comments 0.161 48.7 Line 5.8 Peak			RSUCCESS					EMO	C Test Data
Model: HUML Project Manager: Deepa Shetty Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Comments - - Mtz dBµV Line Line 55.4 -6.7 Peak - - 0.361 42.9 Line 46.0 -13.6 Peak - - - 3.958 32.4 Line 50.0 -6.2 Peak -	Mode: HUME Project Manager: Deepa Shetty Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Frequency Level AC Class B Detector Comments MHz dBµV Line Line 46.0 -13.6 Peak 3.958 32.4 Line 46.0 -13.6 Peak	Client:	Google Inc						Job Number:	JD101591
Project Manager: Deepa Shetty Contact: Dominik Mente Project Coordinator: - Standard: FCC 15.247/15.407/RSS-247 Class: B B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Detector Comments MHz dBµV Line 10 Margin OP/Ave - 0.361 42.9 Line 48.7 -5.8 Peak - - 14.920 32.0 Line 46.0 -13.6 Peak - <td>Project Manager Deepa Shetty Contact: Dominik Mente Project Manager: Deepa Shetty Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class:: B Preleminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class:: B MHz dB_{1k}V Line 55.4 -6.7 Peak </td> <td>Madalı</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T-Log Number:</td> <td>T101744</td>	Project Manager Deepa Shetty Contact: Dominik Mente Project Manager: Deepa Shetty Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class:: B Preleminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class:: B MHz dB _{1k} V Line 55.4 -6.7 Peak	Madalı							T-Log Number:	T101744
Standard: FCC 15.247/15.407/RSS-247 Class: B Class: B Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Detector Comments 0.161 48.7 Line 55.4 -6.7 Peak	Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Detector Comments 0.161 48.7 Line Limit Margin OP/Ave OP/Ave 0.361 42.9 Line 48.7 -5.8 Peak OP/Ave 3.958 32.4 Line 50.0 -78.0 Peak OP/Ave 0.152 49.7 Neutral 56.0 -6.3 Peak OP/Ave 0.358 48.2 Neutral 48.7 -0.5 Peak OP/Ave 0.358 48.2 Neutral 46.0 -13.6 Peak OP/Ave 13.317 30.1 Neutral 46.0 -13.6 Peak OP/Ave Frequency Level AC Class B Detector Comments 0.4635 32.4 Neutral 50.0 -19.9 Peak	woder:	HUIVIE					-	Project Manager:	Deepa Shetty
Standard: FCC 15.247/15.407/RSS-247 Class: B Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Detector Comments 0.161 48.7 Line Linit Margin QP/Ave Comments Comments 0.361 42.9 Line 48.7 -5.8 Peak	Standard: FCC 15.247/15.407/RSS-247 Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class: B Detector Comments 0.161 48.7 Line Limit Margin OP/Ave OP/Ave 0.361 42.9 Line 48.7 -5.8 Peak OP/Ave 3.958 32.4 Line 50.0 -78.0 Peak OP/Ave 0.152 49.7 Neutral 56.0 -6.3 Peak OP/Ave 0.358 48.2 Neutral 48.7 -0.5 Peak OP/Ave 0.358 48.2 Neutral 46.0 -13.6 Peak OP/Ave 13.317 30.1 Neutral 46.0 -13.6 Peak OP/Ave Frequency Level AC Class B Detector Comments 0.4635 32.4 Neutral 50.0 -19.9 Peak	Contact:	Dominik Me	nte					Project Coordinator:	-
Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class B Detector Comments MHz dB _H V Line Line Line OP/Ave 0.361 42.9 Line 48.7 -5.8 Peak 3.958 3.2.4 Line 46.0 -13.6 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.3364 48.2 Neutral 50.0 -7.9 Peak 7.3.317 30.1 Neutral 50.0 -7.9 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 55.4 -28.0 AVG 0.361 40.5<	Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Frequency Level AC Class B Detector Comments MHz dBµV Line Line Limit Margin OP/Ave 0.361 42.9 Line 48.7 -5.8 Peak				-247					
Frequency MHz Level dB _k /V AC Class B Limit Detector Margin Comments 0.161 48.7 Line 55.4 -6.7 Peak 3.958 32.4 Line 48.7 -5.8 Peak 14.920 32.0 Line 46.0 -13.6 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.3364 48.2 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.3358 48.2 Neutral 46.0 -13.6 Peak 0.356 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _L V Line Line 55.4 -28.0 AVG 0.161 27.4 Line 55.4 -28.0 <td>Frequency MHz Level dB_µ/V AC Class B Limit Detector Margin Comments 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -6.3 Peak 0.356 48.2 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.358 48.2 Neutral 48.0 -13.6 Peak 0.355 32.4 Neutral 48.0 -13.6 Peak 0.4635 32.4 Neutral 48.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB_µV Line Linit Margin QP/Av</td> <td>otandara</td> <td></td> <td>11011011100</td> <td>2.17</td> <td></td> <td></td> <td></td> <td>0.0001</td> <td></td>	Frequency MHz Level dB _µ /V AC Class B Limit Detector Margin Comments 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -6.3 Peak 0.356 48.2 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.358 48.2 Neutral 48.0 -13.6 Peak 0.355 32.4 Neutral 48.0 -13.6 Peak 0.4635 32.4 Neutral 48.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line Linit Margin QP/Av	otandara		11011011100	2.17				0.0001	
Frequency MHz Level B _{BL} V AC Class B Limit Detector Margin Comments 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -6.3 Peak 0.152 49.7 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 7.3317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _L V Line Line Margin QP/Ave 0.161 27.4 Line S5.4 -22.4 QP	Frequency MHz Level dB _µ /V AC Class B Limit Detector Margin Comments 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -6.3 Peak 0.356 48.2 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.358 48.2 Neutral 48.0 -13.6 Peak 0.355 32.4 Neutral 48.0 -13.6 Peak 0.4635 32.4 Neutral 48.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line Linit Margin QP/Av	Preliminary	peak readi	ngs captured	d during pre	-scan (peak	readings v	s. average lir	nit)	
MHz dBμV Line Limit Margin QP/Ave 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 46.0 -13.6 Peak 0.357 32.4 Neutral 46.0 -13.6 Peak 0.358 48.2 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dBµV Line 25.4 -28.0 AVG 0.	MHz dBμV Line Limit Margin QP/Ave 0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line Est -28.0 AVG								,	
0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 46.0 -13.6 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 13.317 30.7 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _H V Line Line 55.4 -28.0 AVG 0.161 27.4 Line 55.4 -28.0 AVG 0.361 33.1 Line 48.7 -15.6 AVG 0.361 33.1 Line 56.0 -30.5 OP <td>0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 46.0 -13.6 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB_µV Line 55.4 -28.0 AVG 0.161 27.4 Line 55.4 -28.0 AVG 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Lin</td> <td></td> <td></td> <td>Line</td> <td>Limit</td> <td>Margin</td> <td></td> <td></td> <td></td> <td></td>	0.161 48.7 Line 55.4 -6.7 Peak 0.361 42.9 Line 48.7 -5.8 Peak 3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 46.0 -13.6 Peak 0.353 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 55.4 -28.0 AVG 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Lin			Line	Limit	Margin				
3.958 32.4 Line 46.0 .13.6 Peak 14.920 32.0 Line 50.0 -78.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 0.635 32.4 Neutral 50.0 -19.9 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 56.0 -30.5 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 <	3.958 32.4 Line 46.0 -13.6 Peak 14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.306 43.8 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 33.1 Line 58.7 -18.2 QP 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral	0.161		Line	55.4		Peak			
14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral<	14.920 32.0 Line 50.0 -18.0 Peak 0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line 55.4 -28.0 AVG 0.161 27.4 Line 65.4 -22.4 QP 0.361 33.1 Line 65.4 -22.4 QP 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral </td <td>0.361</td> <td>42.9</td> <td>Line</td> <td>48.7</td> <td>-5.8</td> <td>Peak</td> <td></td> <td></td> <td></td>	0.361	42.9	Line	48.7	-5.8	Peak			
0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments 0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 58.7 -18.2 QP 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral </td <td>0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Linit Margin QP/Ave 0.161 27.4 Line 55.4 -28.0 AVG 0.361 33.1 Line 65.4 -22.4 QP 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 55.9 -28.0 AVG 0.306 31.6 Ne</td> <td>3.958</td> <td>32.4</td> <td>Line</td> <td>46.0</td> <td>-13.6</td> <td>Peak</td> <td></td> <td></td> <td></td>	0.152 49.7 Neutral 56.0 -6.3 Peak 0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Linit Margin QP/Ave 0.161 27.4 Line 55.4 -28.0 AVG 0.361 33.1 Line 65.4 -22.4 QP 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 55.9 -28.0 AVG 0.306 31.6 Ne	3.958	32.4	Line	46.0	-13.6	Peak			
0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Email of the second se	0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin OP/Ave OP/Ave 0.161 27.4 Line 55.4 -28.0 AVG OP 0.361 33.1 Line 65.4 -22.4 QP OP 0.361 40.5 Line 58.7 -18.2 QP OP 3.958 16.2 Line 56.0 -30.5 QP OP 0.152 43.3 Neutral 65.9 -22.6 QP OP 0.152 27.9 Neutral 50.1 -18.5									
0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Line 55.4 -28.0 AVG Comments 0.161 27.4 Line 55.4 -28.0 AVG Comments 0.361 33.1 Line 48.7 -15.6 AVG Comments 0.361 40.5 Line 58.7 -18.2 QP QP 3.958 16.2 Line 46.0 -29.8 AVG QP	0.306 43.8 Neutral 50.0 -6.2 Peak 0.358 48.2 Neutral 48.7 -0.5 Peak 0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin OP/Ave OP/Ave 0.161 27.4 Line 55.4 -28.0 AVG OP 0.361 33.1 Line 65.4 -22.4 QP OP 0.361 40.5 Line 58.7 -18.2 QP OP 3.958 16.2 Line 56.0 -30.5 QP OP 0.152 43.3 Neutral 65.9 -22.6 QP OP 0.152 27.9 Neutral 50.1 -18.5	<u>0</u> .152		Neutral	56.0		Peak			
0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _μ V Line Linit Margin QP/Ave Omments 0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1	0.635 32.4 Neutral 46.0 -13.6 Peak 13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin OP/Ave OP/Ave 0.161 27.4 Line 55.4 -28.0 AVG Omments 0.161 43.0 Line 65.4 -22.4 QP OP 0.361 33.1 Line 48.7 -15.6 AVG OP 0.361 40.5 Line 58.7 -18.2 QP OP 3.958 16.2 Line 56.0 -30.5 QP OP 0.152 43.3 Neutral 65.9 -22.6 QP OP 0.152 27.9 Neutral 50.1 -18.5 AVG OP 0.306 40.4 Neutral 60.1 -19.7	0.306	43.8	Neutral	50.0	-6.2	Peak			
13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave Comments 0.161 27.4 Line 55.4 -28.0 AVG AVG 0.161 43.0 Line 65.4 -22.4 QP QP 0.361 33.1 Line 48.7 -15.6 AVG AVG 0.361 40.5 Line 58.7 -18.2 QP QP 3.958 16.2 Line 46.0 -29.8 AVG AVG 3.958 25.5 Line 56.0 -30.5 QP QP 0.152 43.3 Neutral 65.9 -22.6 QP QP 0.152 27.9 Neutral 50.1 -18.5 AVG QP 0.306 31.6 Neutral	13.317 30.1 Neutral 50.0 -19.9 Peak Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave OP/Ave 0.161 27.4 Line 55.4 -28.0 AVG OP 0.161 43.0 Line 65.4 -22.4 QP OP 0.361 33.1 Line 48.7 -15.6 AVG OP 0.361 40.5 Line 58.7 -18.2 QP OP 3.958 16.2 Line 46.0 -29.8 AVG OP 0.152 43.3 Neutral 65.9 -22.6 QP OP 0.152 27.9 Neutral 50.1 -18.5 AVG OP 0.306 31.6 Neutral 50.1 -18.5 AVG OP 0.306 38.6 Neutral	0.358	48.2	Neutral	48.7	-0.5	Peak			
Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave Comments 0.161 27.4 Line 55.4 -28.0 AVG AVG 0.161 43.0 Line 65.4 -22.4 QP QP 0.361 33.1 Line 48.7 -15.6 AVG AVG 0.361 40.5 Line 58.7 -18.2 QP QP 3.958 16.2 Line 46.0 -29.8 AVG QP 3.958 25.5 Line 56.0 -30.5 QP QP 0.152 43.3 Neutral 65.9 -22.6 QP QP 0.152 27.9 Neutral 55.9 -28.0 AVG QP 0.306 31.6 Neutral 50.1 -18.5 AVG QP 0.358 38.6	Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave AVG 0.161 27.4 Line 55.4 -28.0 AVG AVG 0.161 43.0 Line 65.4 -22.4 QP QP 0.361 33.1 Line 48.7 -15.6 AVG QP 0.361 40.5 Line 58.7 -18.2 QP QP 3.958 16.2 Line 46.0 -29.8 AVG QP 0.152 43.3 Neutral 65.9 -22.6 QP QP 0.152 27.9 Neutral 55.9 -28.0 AVG QP 0.306 31.6 Neutral 50.1 -18.5 AVG QP 0.306 40.4 Neutral 60.1 -19.7 QP QP 0.358 38.6 Neut	0.635	32.4	Neutral	46.0	-13.6	Peak			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13.317	30.1	Neutral	50.0	-19.9	Peak			
MHz dBμV Line Limit Margin QP/Ave 0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 60.1 -19.7 QP 0.358 45.3 Neutral 58.8 -13.5 QP	MHz dBμV Line Limit Margin QP/Ave 0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 60.1 -19.7 QP 0.358 45.3 Neutral 58.8 -13.5 QP					ss B	Detector	Comments		
0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 58.8 -13.5 QP	0.161 27.4 Line 55.4 -28.0 AVG 0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP							Comments		
0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.161 43.0 Line 65.4 -22.4 QP 0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 16.2 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.361 33.1 Line 48.7 -15.6 AVG 0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 58.8 -10.2 AVG									
0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.361 40.5 Line 58.7 -18.2 QP 3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 31.6 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	3.958 16.2 Line 46.0 -29.8 AVG 3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	3.958 25.5 Line 56.0 -30.5 QP 0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.152 43.3 Neutral 65.9 -22.6 QP 0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.152 27.9 Neutral 55.9 -28.0 AVG 0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.306 31.6 Neutral 50.1 -18.5 AVG 0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.306 40.4 Neutral 60.1 -19.7 QP 0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP									
0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP	0.358 38.6 Neutral 48.8 -10.2 AVG 0.358 45.3 Neutral 58.8 -13.5 QP		40.4	Neutral	60.1		QP			
		0.358	38.6	Neutral	48.8	-10.2	AVG			
Note 1: EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.	Note 1: EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.	0.358	45.3	Neutral	58.8	-13.5	QP			
Note 1: EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.	Note 1: EUT transmitting on CH6, power setting = 19 dBm, 11b mode at 1 Mbps.		-							
		Note 1:	EUT transm	itting on CH6	, power setti	ng = 19 dBm	n, 11b mode	at 1 Mbps.		
				5	· 1	5				

EMC Test D							
Client:	Google Inc	Job Number:	JD101591				
Model:	LIOME	T-Log Number:	T101744				
would.	HOME	Project Manager:	Deepa Shetty				
Contact:	Dominik Mente	Project Coordinator:	-				
Standard:	FCC 15.247/15.407/RSS-247	Class:	В				

Run #2b: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz. TenPao S033BU1650200 power supply, sample 2.

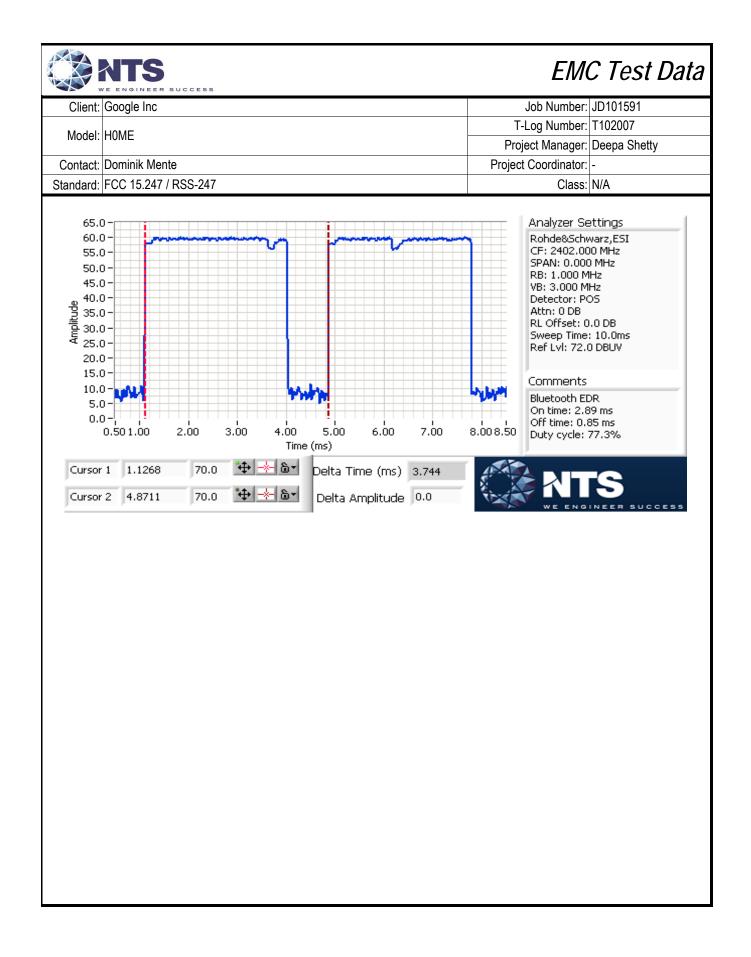
weight the second secon		RSUCCESS					EM	C Test Data
Client:	Google Inc						Job Number:	
Model:	HOME						T-Log Number:	T101744
wouer.	HUIVIE						Project Manager:	Deepa Shetty
Contact:	Dominik Me	nte					Project Coordinator:	-
Standard:	FCC 15.247	/15.407/RSS	-247				Class:	В
Preliminary	peak readi	ngs captured	d during pre	-scan (peak	readings v	vs. average lin	nit)	
Frequency	Level	AC		ss B	Detector	Comments	•	
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.156	51.4	Line	55.7	-4.3	Peak			
0.172	48.4	Line	54.8	-6.4	Peak			
3.630	28.2	Line	46.0	-17.8	Peak			
6.353	25.4	Line	50.0	-24.6	Peak			
0.151	50.1	Neutral	56.0	-5.9	Peak			
0.166	49.0	Neutral	55.2	-6.2	Peak			
0.184	48.5	Neutral	54.1	-5.6	Peak			
3.737	30.4	Neutral	46.0	-15.6	Peak			
9.158	24.9	Neutral	50.0	-25.1	Peak			
inal quasi- Frequency	peak and a Level	verage readi AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.156	26.7	Line	55.7	-29.0	AVG			
0.156	44.4	Line	65.7	-21.3	QP			
0.172	24.5	Line	54.9	-30.4	AVG			
0.172	41.3	Line	64.9	-23.6	QP			
3.630	12.7	Line	46.0	-33.3	AVG			
3.630	23.3	Line	56.0	-32.7	QP			
0.151	25.6	Neutral	55.9	-30.3	AVG			
0.151	44.6	Neutral	65.9	-21.3	QP			
0.166	25.0	Neutral	55.2	-30.2	AVG			
0.166	42.2	Neutral	65.2	-23.0	QP			
0.184	22.3	Neutral	54.3	-32.0	AVG			
0.184	39.2	Neutral	64.3	-25.1	QP			
lote 1:	EUT transm	itting on CH6	, power setti	ng = 19 dBr	n, 11b mode	at 1 Mbps.		
		itting on CH6				at 1 Mbps.		

EMC Test Data

Client:	Google Inc	Job Number:	JD101591
Product	HOME	T-Log Number:	T102007
System Configuration:	-	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247 / RSS-247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Google Inc

Product

HOME

Date of Last Test: 7/27/2016

EMC Test Data EER SUCCESS Client: Google Inc Job Number: JD101591 T-Log Number: T102007 Model: H0ME Project Manager: Deepa Shetty Project Coordinator: Contact: Dominik Mente Standard: FCC 15.247 / RSS-247 Class: N/A **Duty Cycle** Date of Test: 7/25/2016 Test Engineer: Mehran Birgani Test Location: Chamber #7 Duty cycle measurements performed on the worse case data rate for power. Notes: Measurements taken with maximum RBW/VBW settings allowed. Lin Volt Duty Cycle Constant Pwr Cor Min VBW Mode Data Rate T (ms) Cor DC? Factor* for FS (Hz) (x) Factor** Basic 1Mb/s 77.3% 2.89 1.12 2.24 346 yes EDR 3Mb/s 77.3% 2.89 1.12 2.24 346 yes * Correction factor when using RMS/Power averaging - 10*log(1/x) ** Correction factor when using linear voltage average - 20*log(1/x) T = Minimum transmission duration Analyzer Settings 65.0 60.0 Rohde&Schwarz,ESI CF: 2402.000 MHz 55.0 SPAN: 0.000 MHz 50.0 RB: 1.000 MHz 45.0 VB: 3.000 MHz 40.0 Detector: POS 40.0 35.0 30.0 25.0 Attn: 0 DB RL Offset: 0.0 DB Sweep Time: 10.0ms Ref Lvl: 72.0 DBUV 20.0 15.0 Comments 10.0 Bluetooth Basic $5.0 \cdot$ On time: 2.89 ms 0.0-Off time: 0.85 ms 0.Ò0 з.о́о 1.00 2.00 4.00 5.00 6.ÖO 7.00 8.008.50 Duty cycle: 77.3% Time (ms) <u>ه</u>-70.0 ⊕. Cursor 1 4.9485 Delta Time (ms) 3.737 ≁ ծ-+ Cursor 2 1.2113 70.0 Delta Amplitude 0.0

EMC Test Data

Client:	Google Inc					Job Number:	JD101591		
Model:						T-Log Number:	T102007		
woder.				Project Manager:	Deepa Shetty				
Contact:	Dominik Me	nte	Project Coordinator:	-					
Standard:	Standard: FCC 15.247 / RSS-247								
	L								
		RS	S-247 an	d FCC 1	5.247 (FHSS) Mea	surements			
					th and Spurious Emi				
			1 011017	Danama					
Test Sner	cific Detail	s							
Tust Spec			e of this test	session is to	perform final qualification	testing of the EUT with r	respect to the		
	Objective:	specification							
		-p							
General T	est Config	guration							
	•	5	ent were loc	ated on the t	urntable for radiated spuri	ous emissions testing.			
For radiated	emissions te	esting the me	asurement a	intenna was	located 3 meters from the	EUT, unless otherwise n	ioted.		
Ambient	Condition	S:	Т	emperature:	22-26 °C				
			R	el. Humidity:	30-40 %				
				-					
Summary	of Result	s - Device	Operating	g in the 24	100-2483.5 MHz Band	b			
Run #	Mode	Channel	Target	Power	Test Performed	Limit	Result / Margin		
Turi #	MOUE	Charmer	Power	Setting		Linin	Ç.		
			_	6	Restricted Band Edge		33.0 dBµV/m @ 2388.6		
1a		2402			(2390 MHz) Radiated Emissions,		MHz (-21.0 dB) 48.8 dBµV/m @ 7205.9		
			-	6	1 - 26 GHz		46.6 dBµ v/m @ 7205.9 MHz (-5.2 dB)		
	Basic rate				Radiated Emissions,		48.1 dBµV/m @ 7320.0		
1b	1Mb/s	2440	-	6	1 - 26 GHz		MHz (-5.9 dB)		
	1				c	Restricted Band Edge		36.4 dBµV/m @ 2487.6	
1c		2480	-	6	(2483.5 MHz)		MHz (-17.6 dB)		
10		2400	_	6	Radiated Emissions,		45.8 dBµV/m @ 7440.0		
				•	1 - 26 GHz	FCC Part 15.209 /	MHz (-8.2 dB)		
			-	6	Restricted Band Edge	15.247(d)	33.8 dBµV/m @ 2364.4		
2a		2402			(2390 MHz) Radiated Emissions,		MHz (-20.2 dB) 45.0 dBµV/m @ 7205.9		
			- 6	1 - 26 GHz		MHz (-9.0 dB)			
	EDR	DR alla			Radiated Emissions,		44.9 dBµV/m @ 7320.0		
2b	3Mb/s	2440	6	1 - 26 GHz		MHz (-9.1 dB)			
				6	Restricted Band Edge		36.1 dBµV/m @ 2483.5		
2c		2480	-	0	(2483.5 MHz)		MHz (-17.9 dB)		
		2.00	-	6	Radiated Emissions,		40.1 dBµV/m @ 7439.8		
				-	1 - 26 GHz		MHz (-13.9 dB)		

WE ENGINEER SUCCESS

EMC Test Data

Client:	Google Inc	Job Number:	JD101591
Model:	LIOME	T-Log Number:	T102007
wouer.	TIOME	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / RSS-247	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

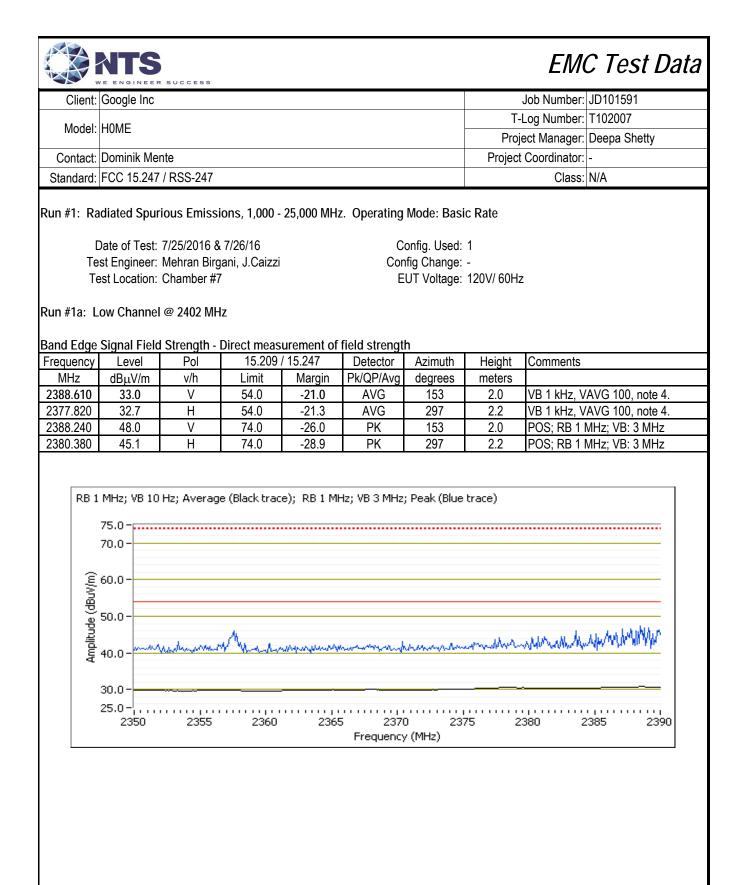
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

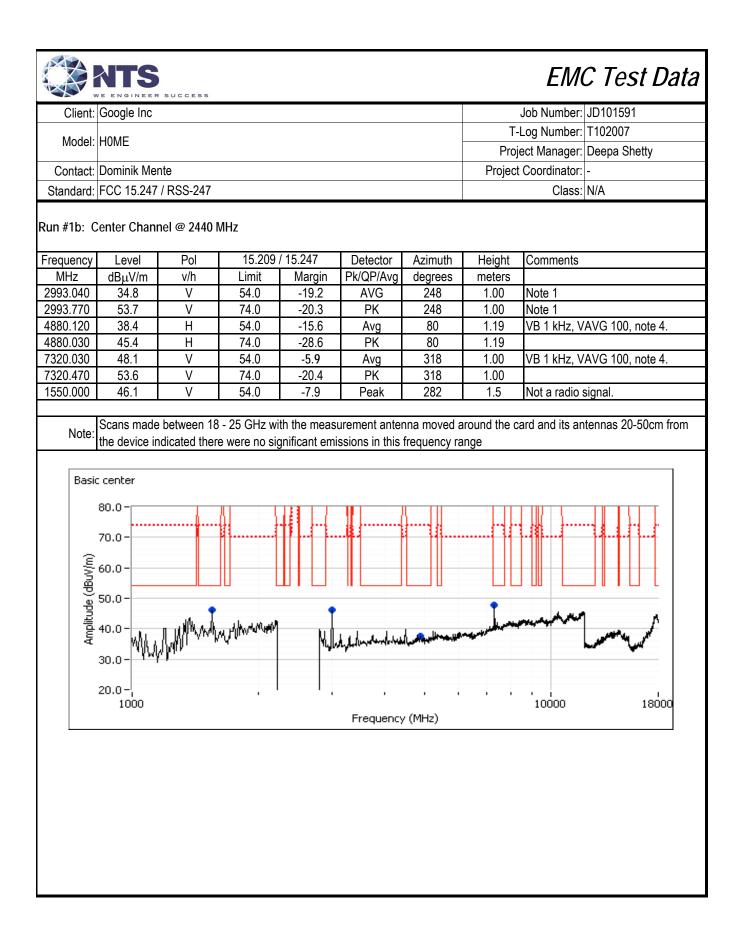
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

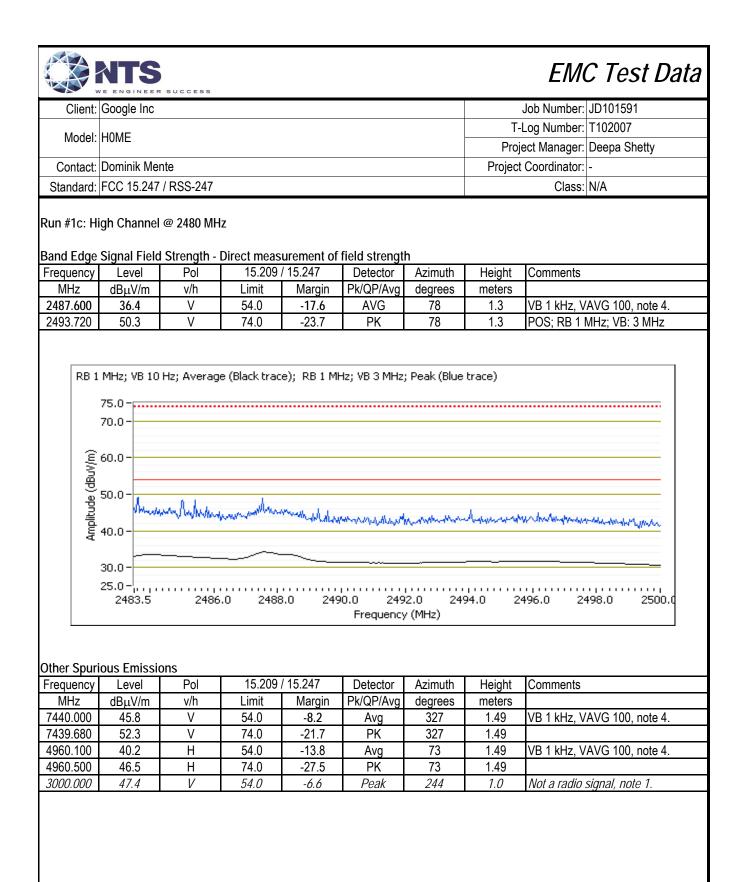
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
Basic	1Mb/s	77.3%	yes	2.89	1.12	2.24	346
EDR	3Mb/s	77.3%	yes	2.89	1.12	2.24	346

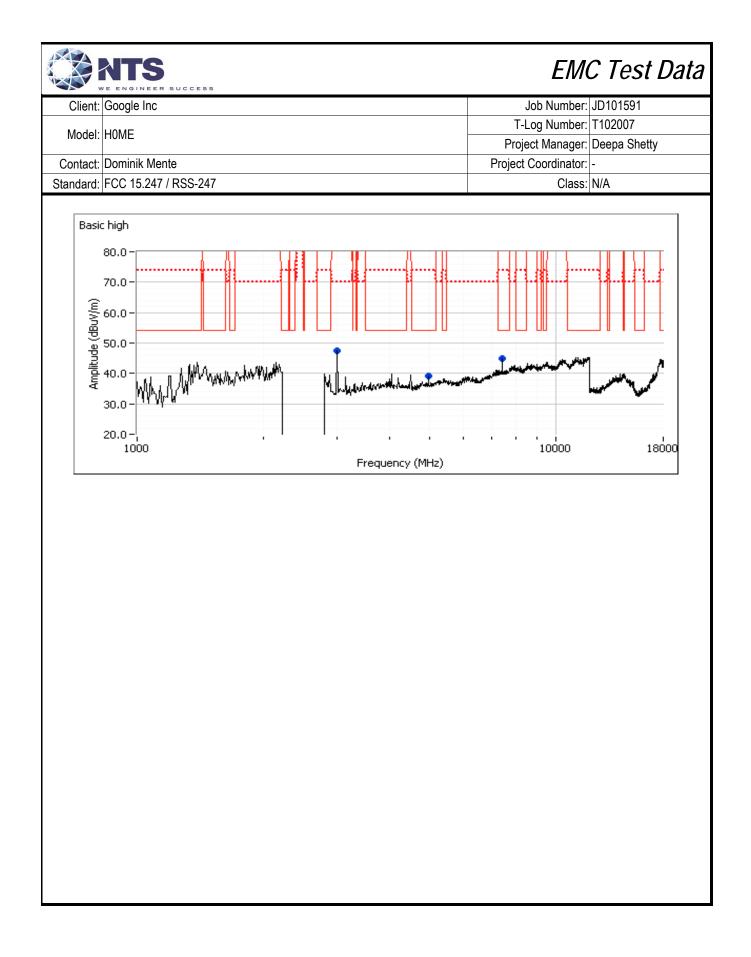
Measurement Specific Notes:

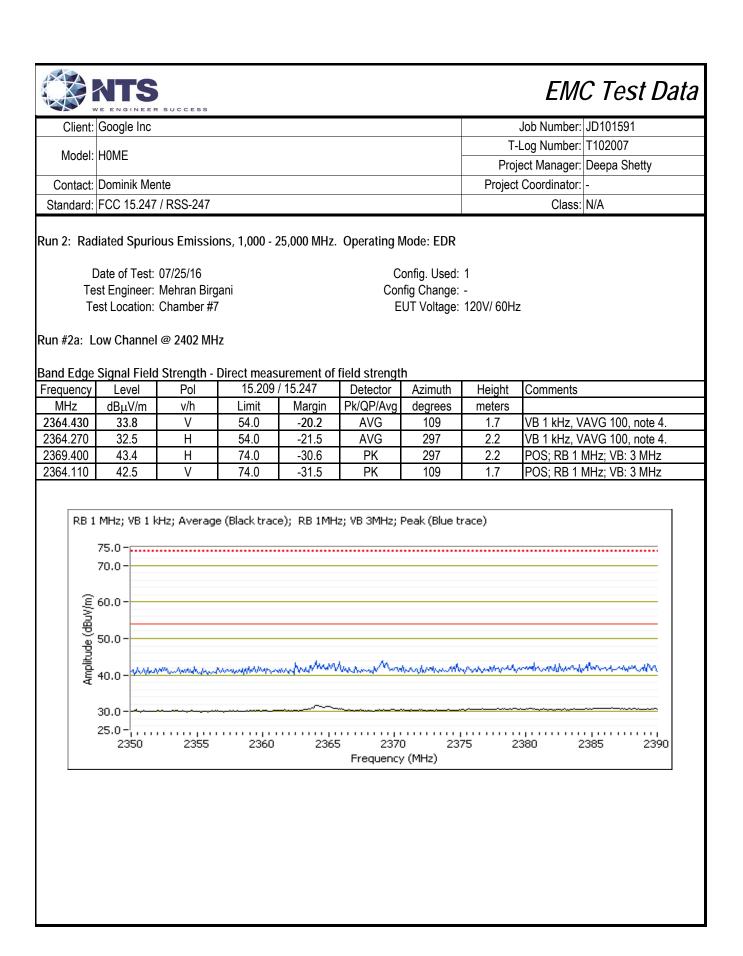

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 20dB below the level of the fundamental and measured in 100kHz.
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction
	factor
Note 6.	Plots of the average bandedge do not account for any duty cycle correction. Refer to the tabluar results for final
	measurements.

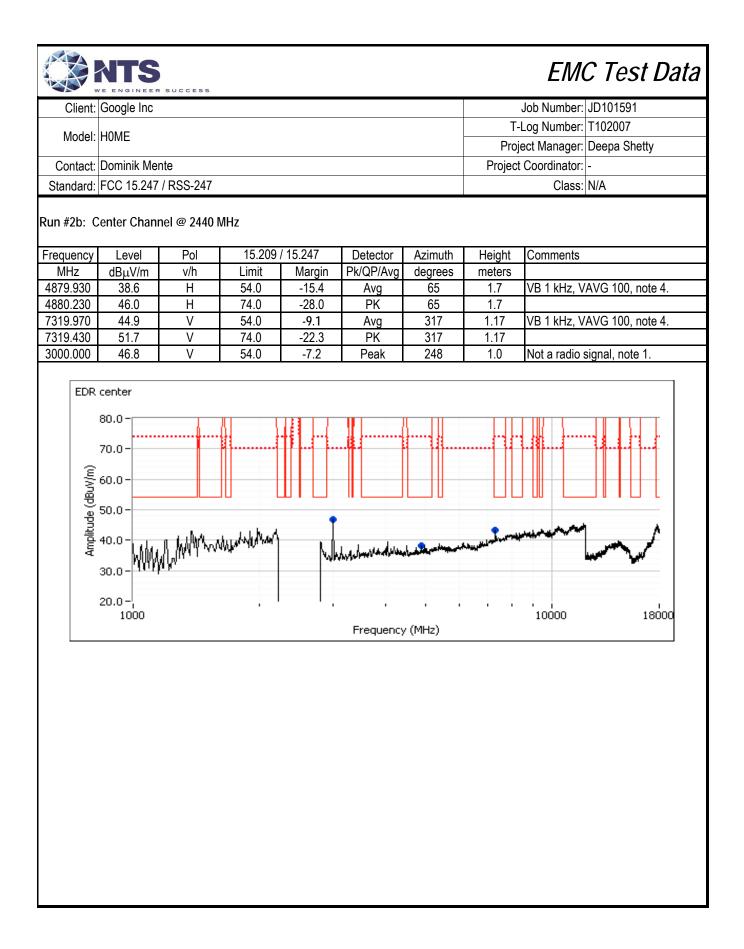
Sample Notes

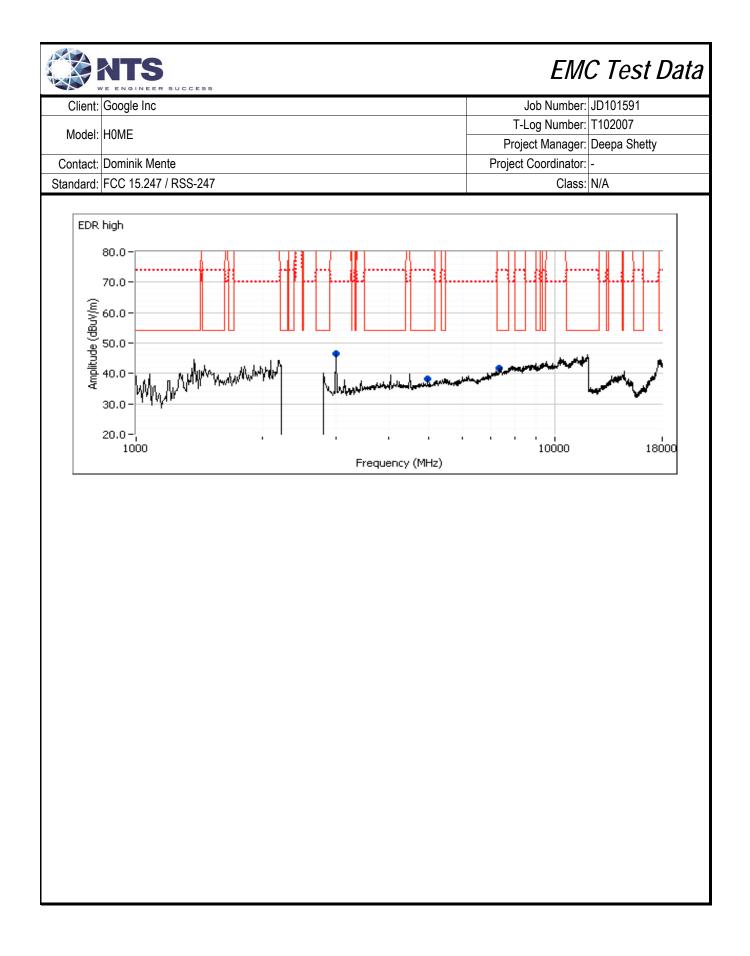

Sample S/N: 6629AZZB75 Driver: 1.21 Antenna: Internal


Note: All testing performed on the Antenna 2 port (wifi set to 10 1 1, which forces BT to Antenna 2), as this was worse case from preliminary measurements.


Preliminary measurement demonstrated no spurious emissions below 1GHz. Evaluation of simultanenous BT and Wifi operation is addressed in the DTS and UNII test reports.




Client:	Google Inc						Job Number: JD101591		
							T-Log Number: T102007		
Model:	HOME						Project Manager: Deepa Shetty		1
Contact:	Dominik Mente						Project Coordinator: -		
Standard:	FCC 15.247 / RSS-247						Class: N/A		
thar Couri	ious Emissia	n 0							
requency	ious Emissio Level	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
803.970	38.4	H	54.0	-15.6	Avg	138	1.00	VB 1 kHz, VAVG 100, not	e 4.
803.650	46.0	Н	74.0	-28.0	PK	138	1.00		
205.930	48.8	V	54.0	-5.2	Avg	343	1.86	VB 1 kHz, VAVG 100, not	e 1, 4.
206.220	53.8	V	74.0	-20.2	PK	343	1.86	, , ,	
358.330	45.1	V	54.0	-8.9	Peak	267	1.0	Not a radio signal.	
991.670	46.7	V	70.0	-23.3	Peak	249	1.0	Not a radio signal.	
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -		1 		dige lines red steen				₽ ₽
	20.0 - 1000				, Frequency	(MHz)		10000 18	вооо



	WE ENGINEER	SUCCESS							C Test Da
Client:	: Google Inc							Job Number:	JD101591
Model	Model: H0ME						T-Log Number:		
Model.	Model: HUME					-		Deepa Shetty	
Contact:	: Dominik Mer	nte					Project	Coordinator:	-
Standard: FCC 15.247 / RSS-247						Class:	N/A		
	ligh Channel e Signal Field			urement of	field strengt	h			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	36.1	V	54.0	-17.9	AVG	101	1.2		AVG 100, note 4.
2483.530	51.5	V	74.0	-22.5	PK	101	1.2	POS; RB 1	MHz; VB: 3 MHz
	75.0 -	Hz; Averag	e (Black trac	e); RB 1 MH	Hz; VB 3 MHz	; Peak (Blue	trace)		
Amplitude (dBuV/m)	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	hunneleyed	en den al au	m	www.www.hw	Marana	unterte ante		y. Madya Maran Ar
	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	hunneleyed	malan way			1/mmmmml/mm 1/2.0 249	understrate		••••••••••••••••••••••••••••••••••••••
Amplitude (dBuV/m)	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 -	[*] ////////////////////////////////////	malan way		۸۰۰۰۸۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	1/mmmmml/mm 1/2.0 249	understrate		
(W/Angp) aphilidme	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 2483.5	**************************************		3.0 249 / 15.247	0.0 249 Frequency	1/mmmmml/mm 1/2.0 249	understrate		
(///mg) ther Spur Frequency MHz	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 	۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		15.247 Margin	0.0 249 Frequency Detector	Manana Aam 2.0 249 7 (MHz) Azimuth degrees	Height meters	496.0 24	
(///ngp) ther Spur Frequency MHz 4959.930	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 	**************************************		/ 15.247 Margin -17.1	0.0 249 Frequency Detector Pk/QP/Avg Avg	May 249 22.0 249 20 249 20 249 249 249 249 249 249 249 249	Height 1.71	496.0 24	
Other Spur Frequency MHz 4959.930 4959.480	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 25.0 - 2483.5 rious Emissio Level dBμV/m 36.9 46.0		15.209 Limit 54.0 74.0	/ 15.247 Margin -17.1 -28.0	Detector Pk/QP/Avg PK	Azimuth degrees 212 212	Height 1.71 1.71	Comments	498.0 2500.0 /AVG 100, note 4.
0ther Spur Frequency MHz 4959.930 7439.800	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 2483.5 rious Emission Level dBμV/m 36.9 46.0 40.1	**************************************	15.209 Limit 54.0 74.0 54.0	/ 15.247 Margin -17.1 -28.0 -13.9	Detector Pk/QP/Avg PK Avg	Manual Manu Manual Manual Manu	Height 1.71 1.71 1.97	Comments	
Other Spur Frequency MHz 4959.930 4959.480	75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 25.0 - 2483.5 rious Emissio Level dBμV/m 36.9 46.0		15.209 Limit 54.0 74.0	/ 15.247 Margin -17.1 -28.0	Detector Pk/QP/Avg PK	Azimuth degrees 212 212	Height 1.71 1.71	Comments VB 1 kHz, V	498.0 2500.0

EMC Test Data

	LENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model	НОМЕ	T-Log Number:	T102007
woder.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / RSS-247	Class:	N/A

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions:	Temperature:	20-22 °C
	Rel. Humidity:	35-40 %

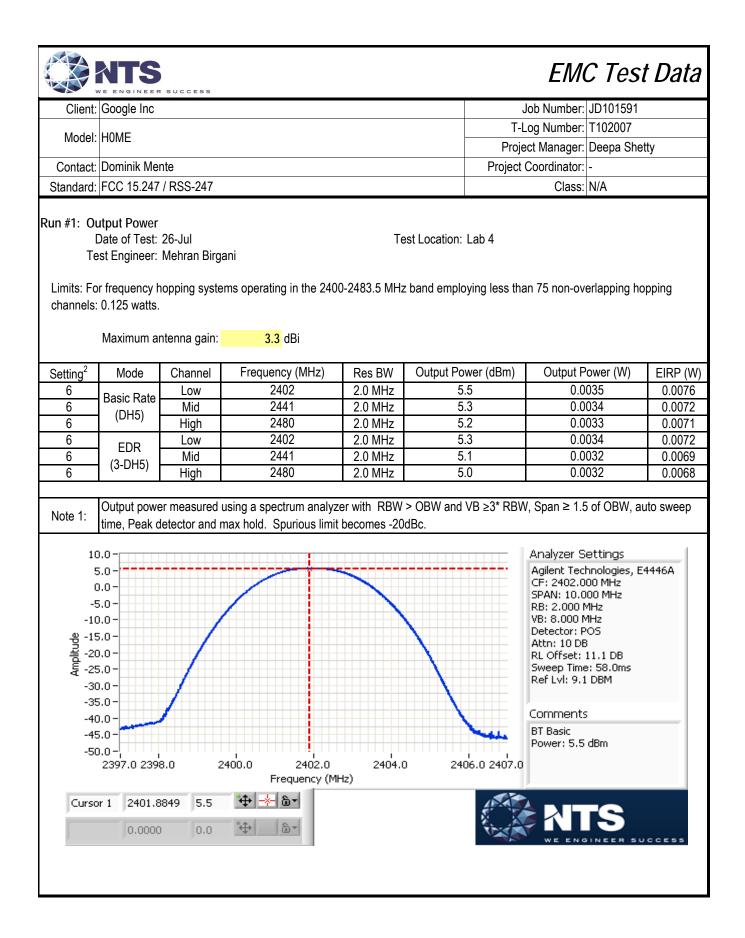
Summary of Results

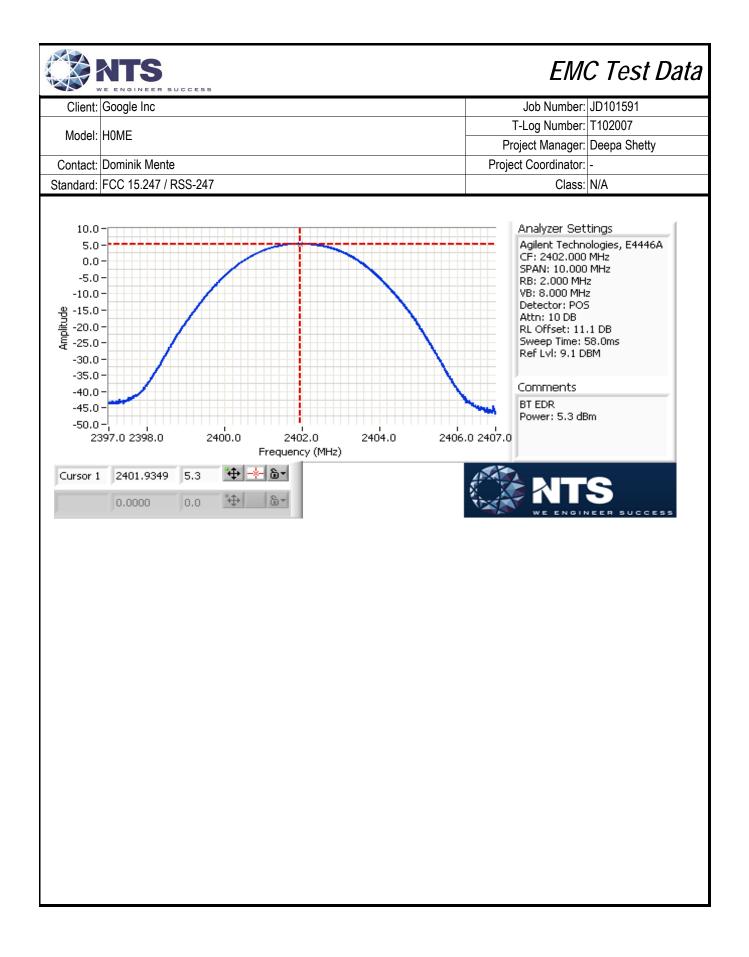
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	Basic Rate: 5.5 dBm (0.0035W) EDR: 5.3 dBm (0.0034W)
2	20dB Bandwidth	15.247(a)	Pass	Basic Rate: 985 kHz EDR: 1282 kHz
2	Channel Occupancy	15.247(a)	Pass	Device complies with the Bluetooth specifications with a minimum of 20
2	Number of Channels	15.247(a)	Pass	hopping channels
4	30 - 25,000 MHz - Transmitter Conducted Spurious Emissions	15.247(c)	Pass	All emissions below -20dBc

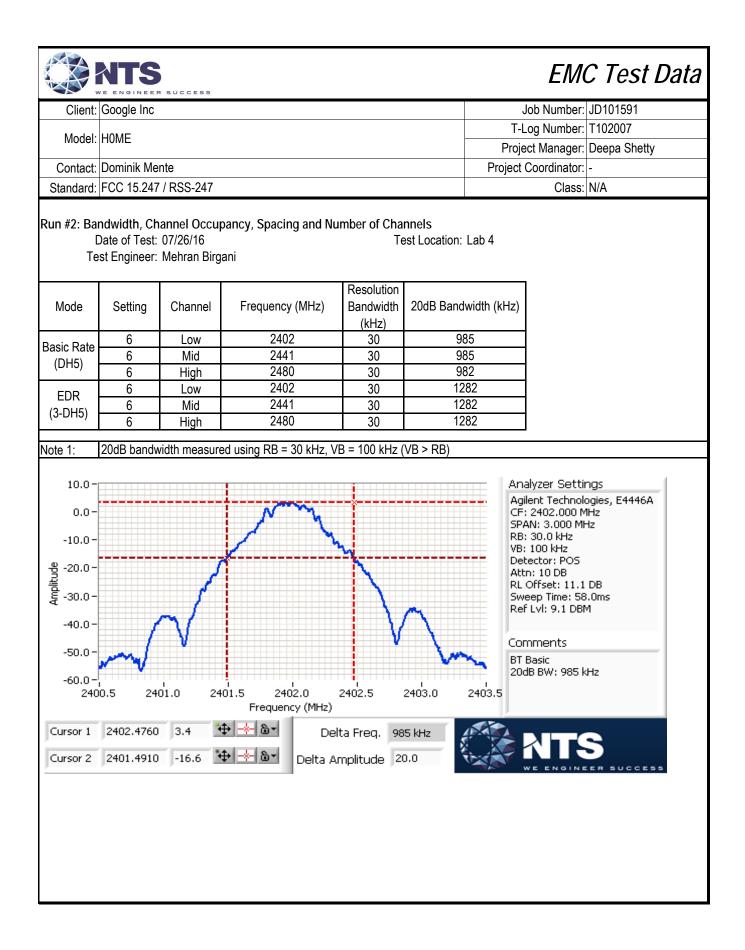
Modifications Made During Testing:

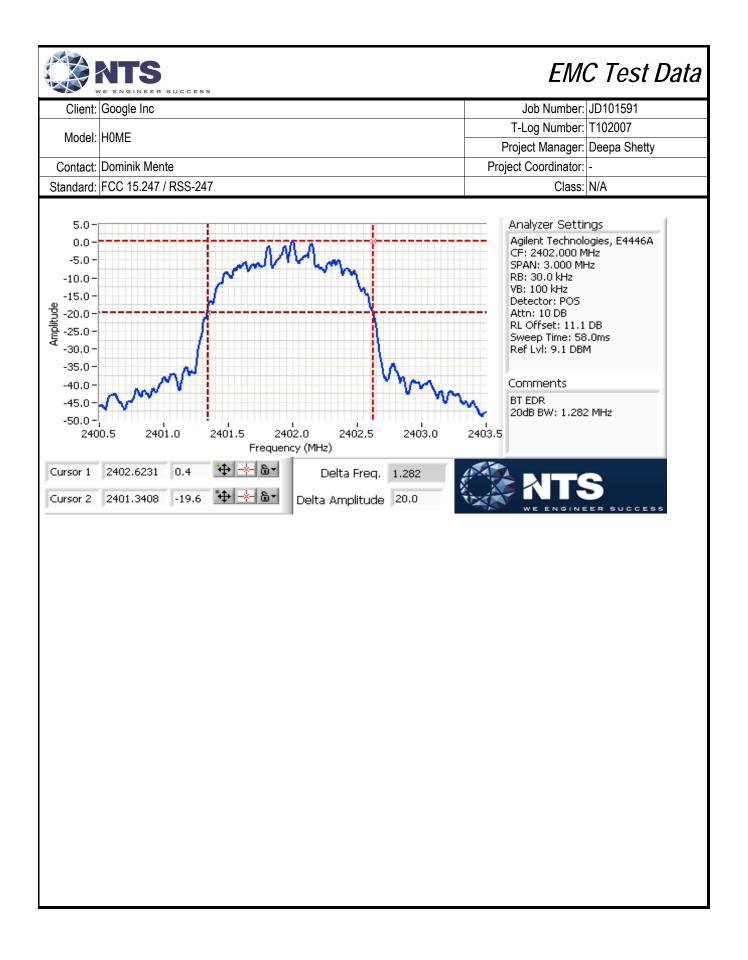
No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.


Sample Notes


Sample S/N: 6629AZZB6W


Driver: 1.21

Measurements performed on the worse case output (Antenna 2) based on preliminary measurements. All calculations using the highest antenna gain.

v V	E ENGINEER SUCCESS		
Client:	Google Inc	Job Number:	JD101591
Model:	LIOME	T-Log Number:	T102007
woder.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / RSS-247	Class:	N/A

Requirment: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)

The device complies with the Bluetooth protocol and employs a minimum of 20 of the available 79 hopping channels when employing adaptove frequency hopping and all 79 channels when not. Channels are selected in a speudo random manner to ensure, on average, all channels are used equally.

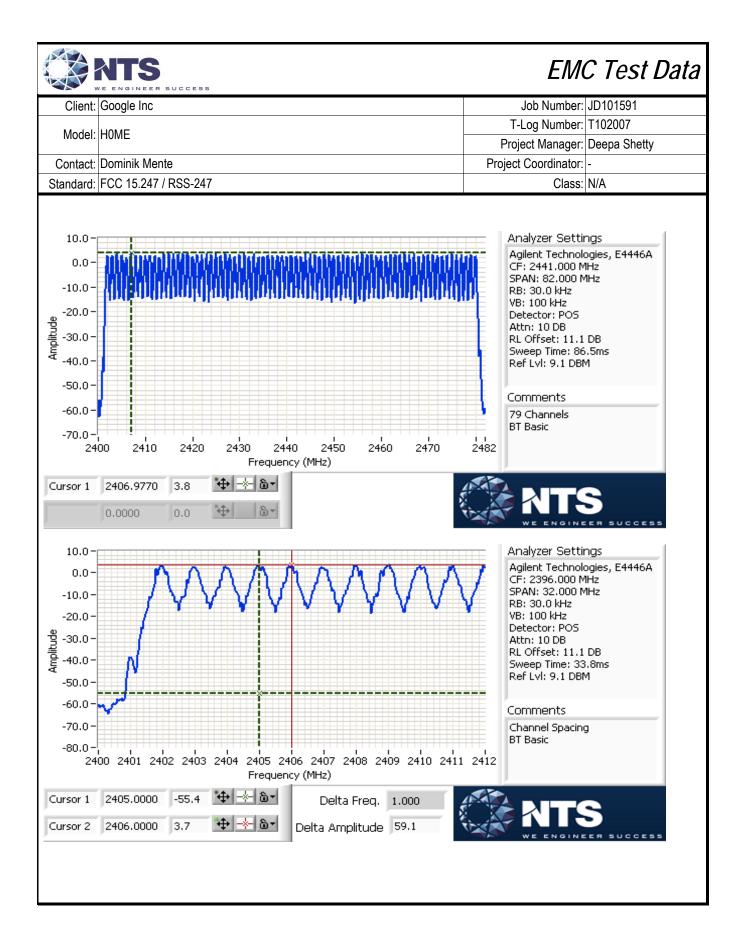
The hopping rate is 1600 hops per second although any new channel may be used for a single hop slot, 3 hop slots or 5 hop slots. The dwell time per channel is, therefore either 0.625ms (single slot), 1.875ms (three slot) or 3.125ms (five slot). The average time of occupancy will not exceed 0.4s in any time interval of 0.4s multiplied by the number of channels being used.

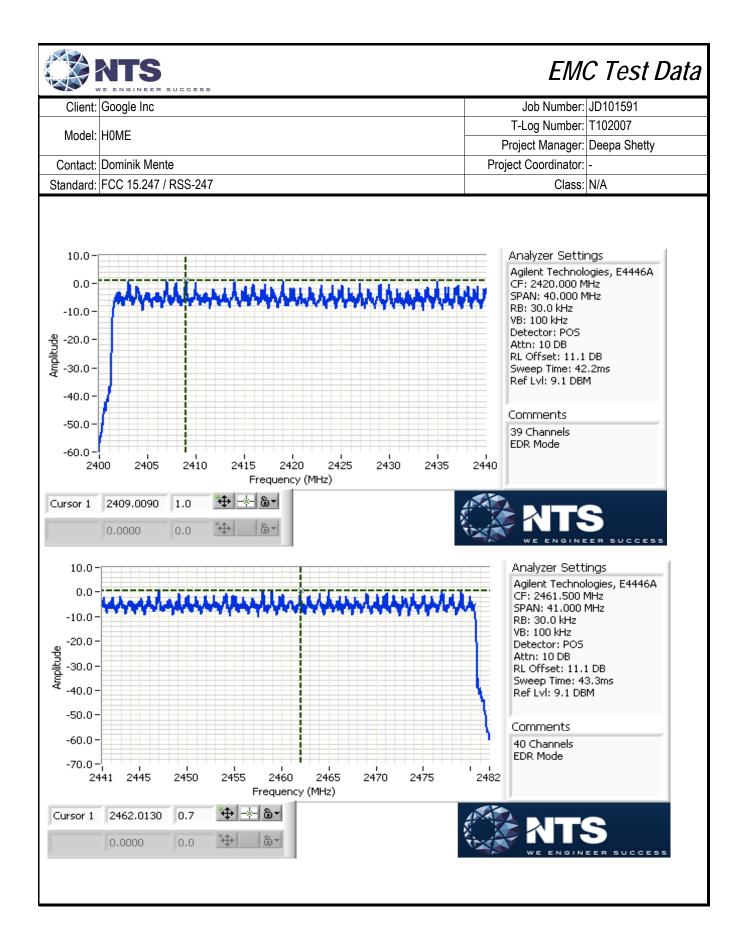
Channel Spacing:	<u>1000 kHz</u>		2/3 of 20dB BW	
20dB Bandwidth:	<u>985</u> <u>kHz</u>	Basic	656.7 kHz	Basic
20dB Bandwidth:	<u>1282 kHz</u>	EDR	854.7 kHz	EDR

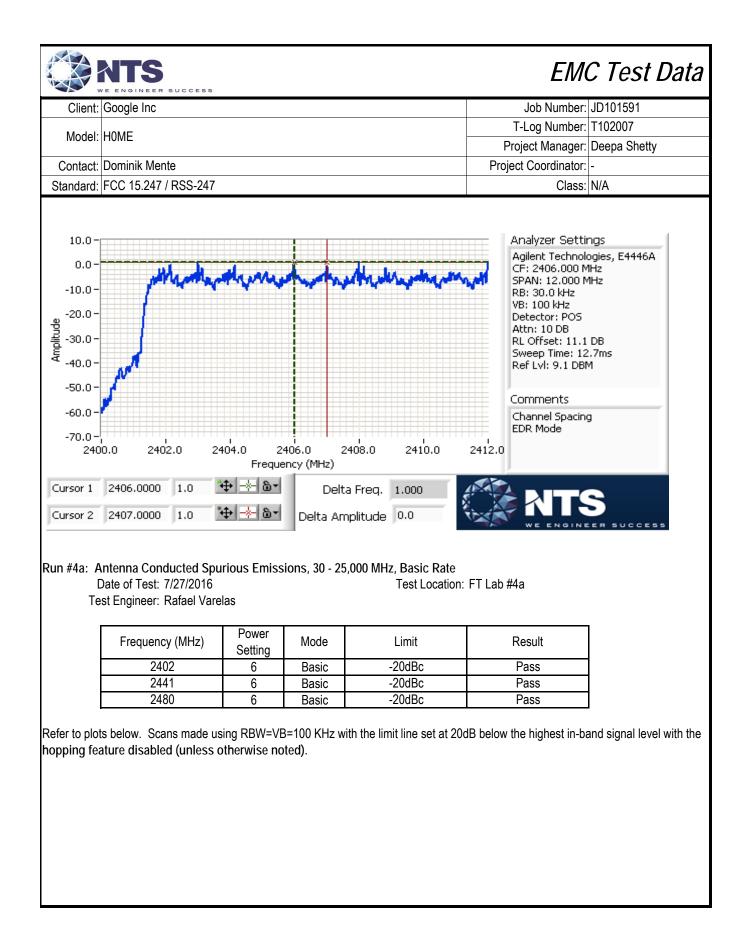
The channel spacing was measured in Basic rate mode with hopping enabled - see plot below showing channel spacing.

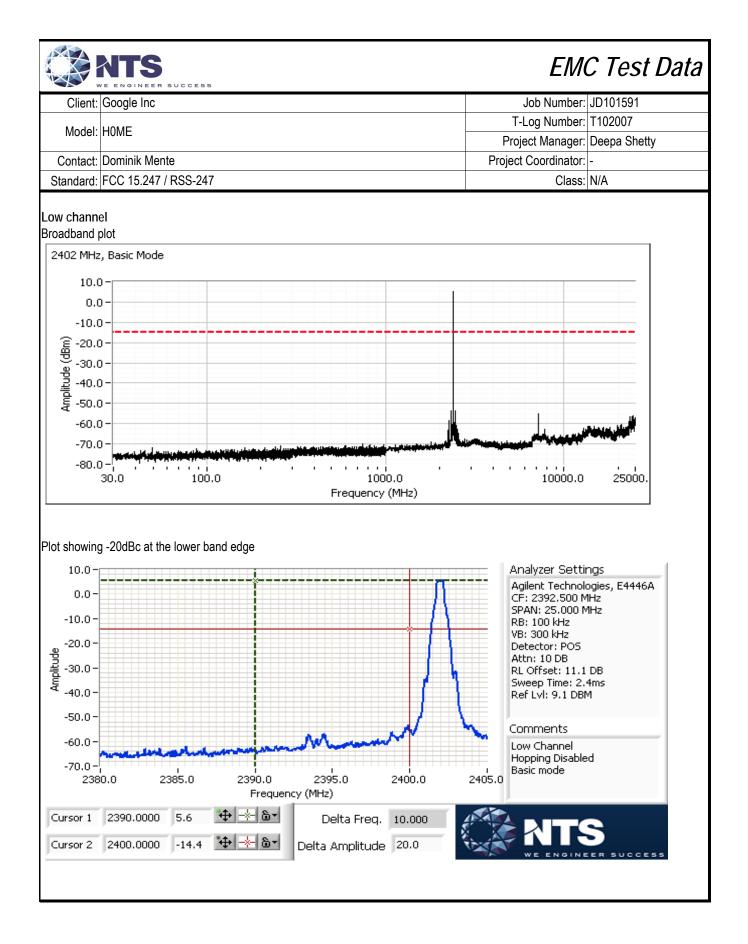
Requirement: The channel spacing shall be greater than 2/3 of the highest 20dB bandwidth as the ouput power is < 0.125 W.

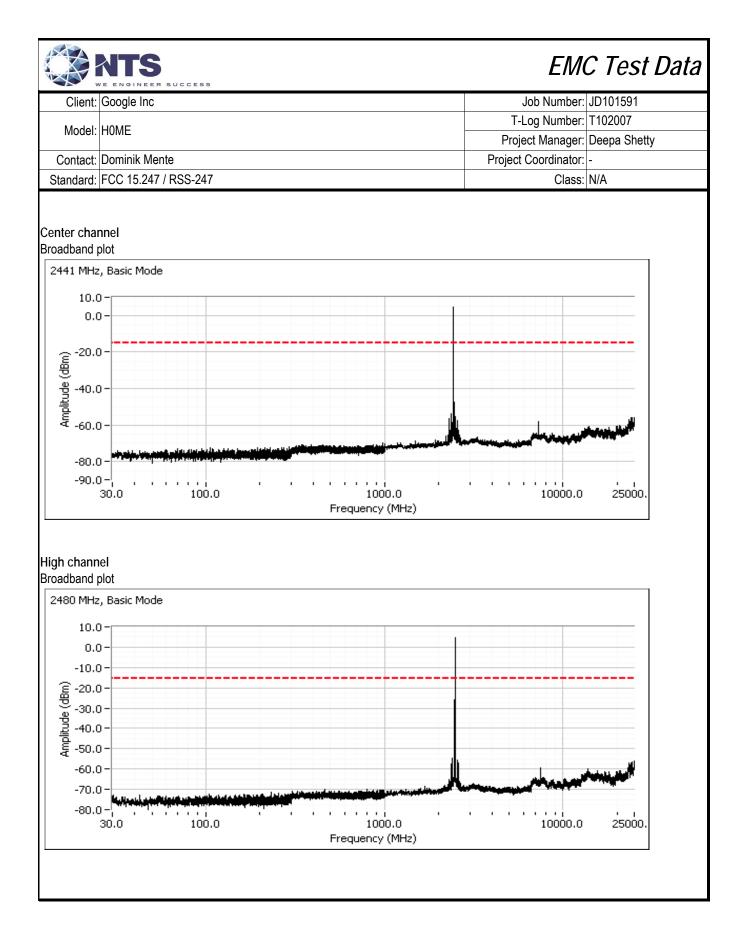
The number of channels was measured in Basic rate mode with hopping enabled with both the maximum (all) channels enabled and with the minimum number of channels enabled. The system shall employ a minimum of 15 hopping channels.

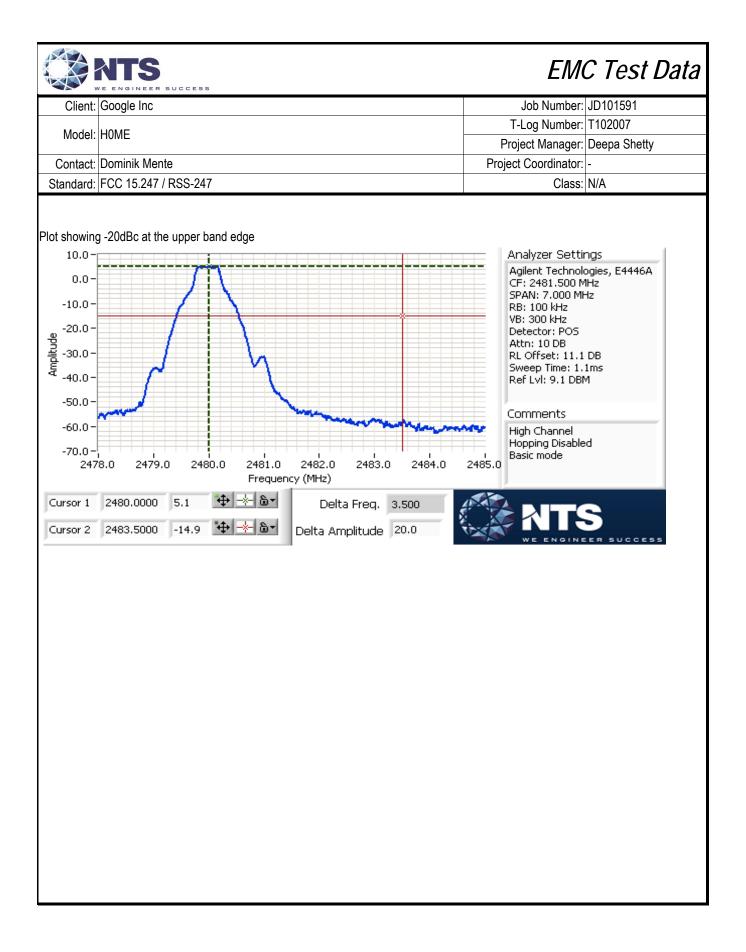

Requirement: The system shall employ a minimum of 15 hopping channels.

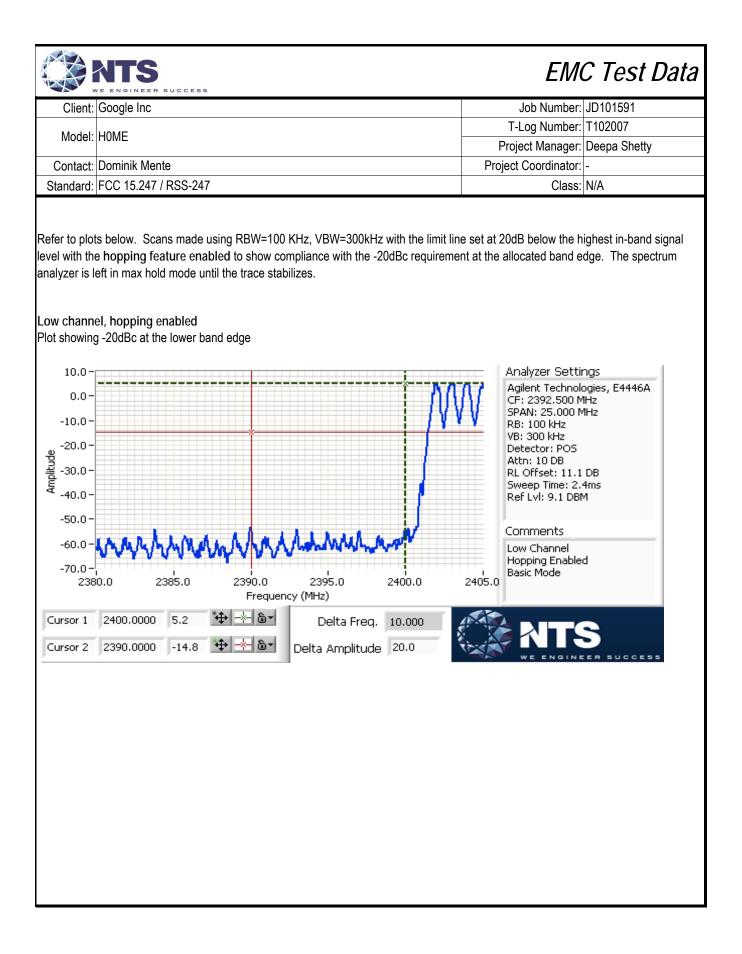

Number of channels:

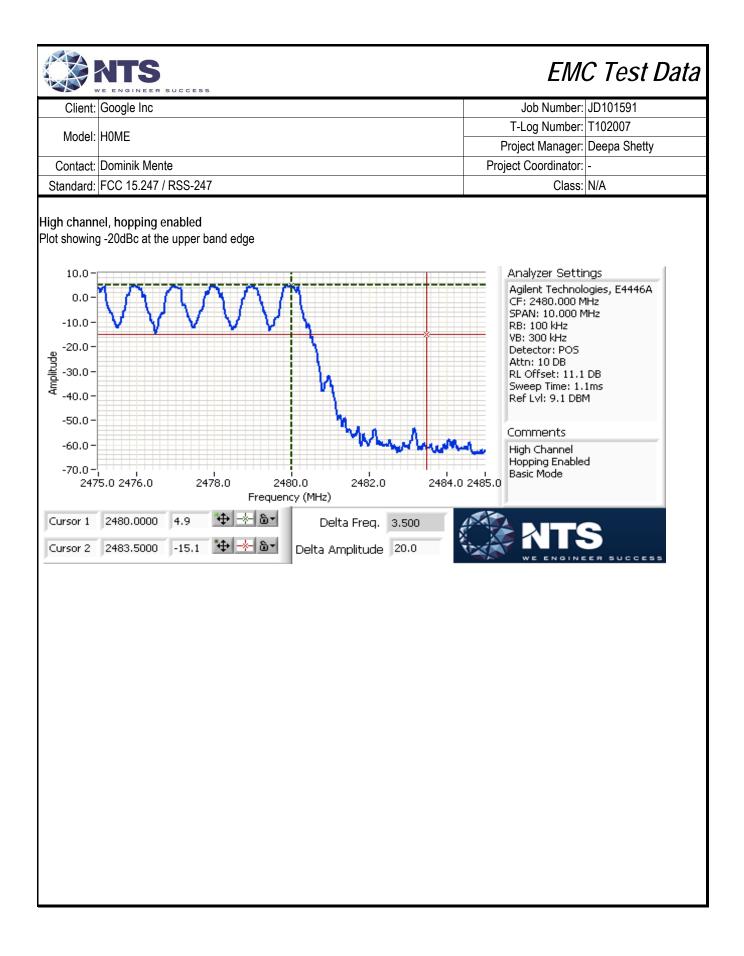

NTS

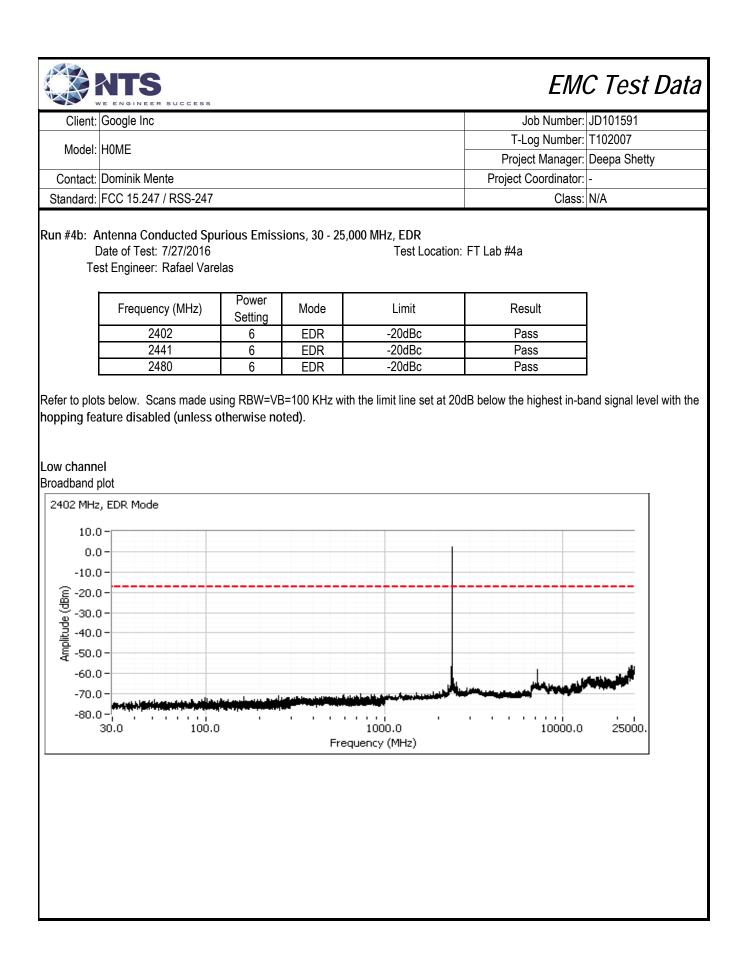

<u>79</u> Max

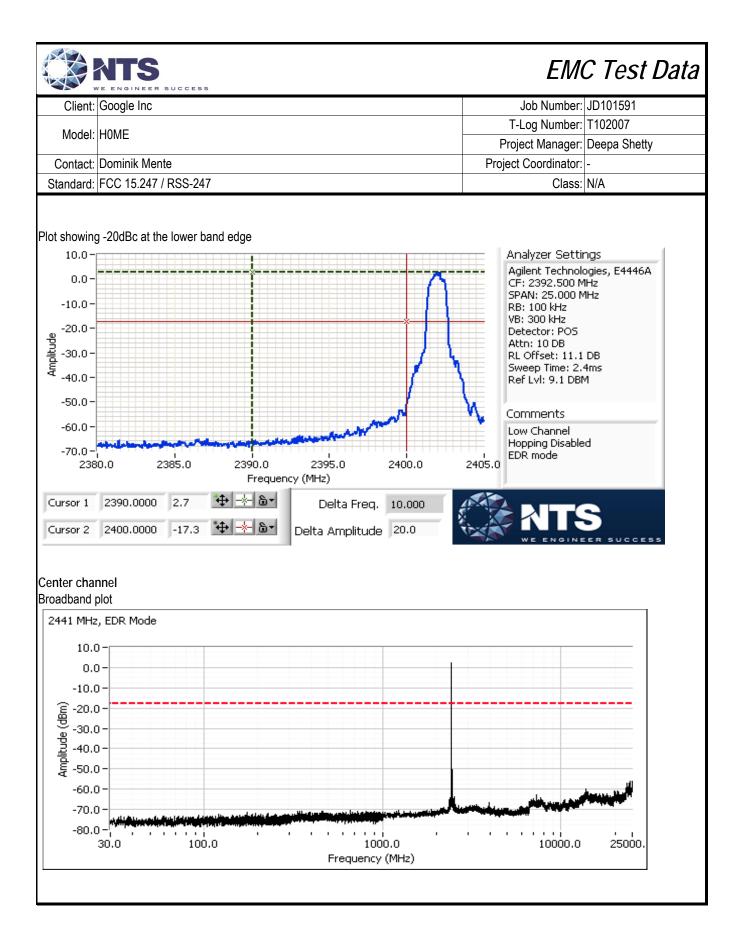

20 Min (AFH enabled)

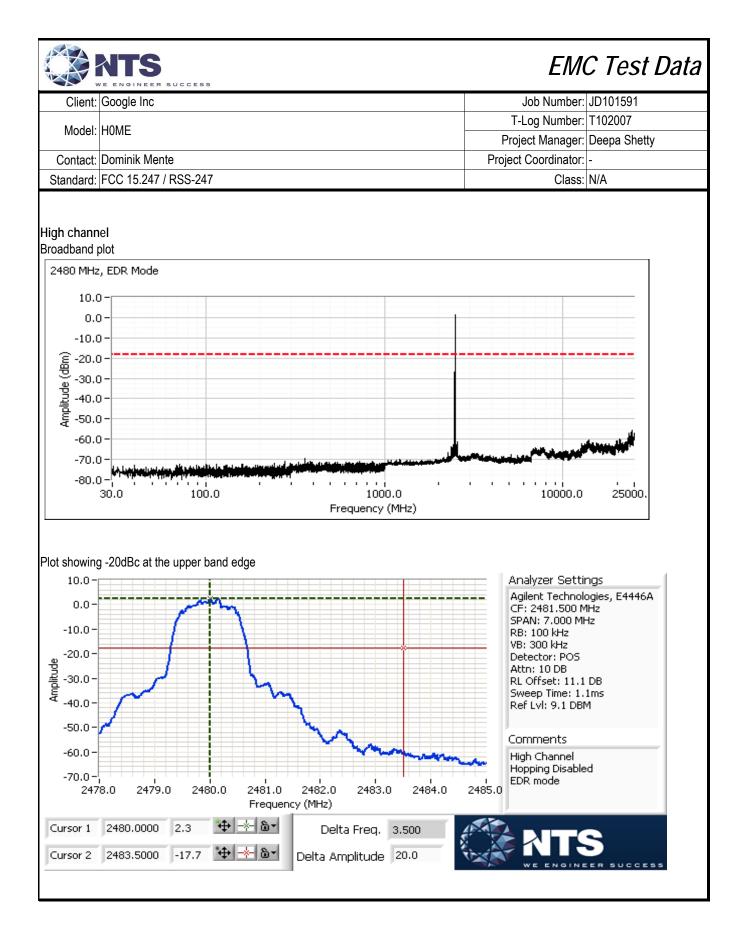


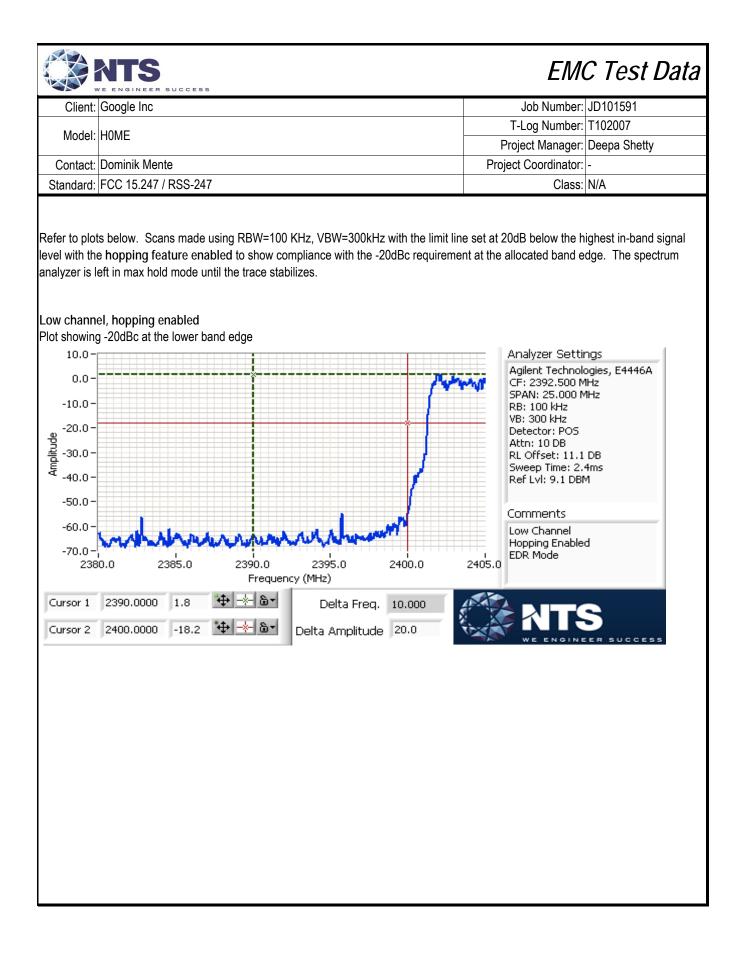


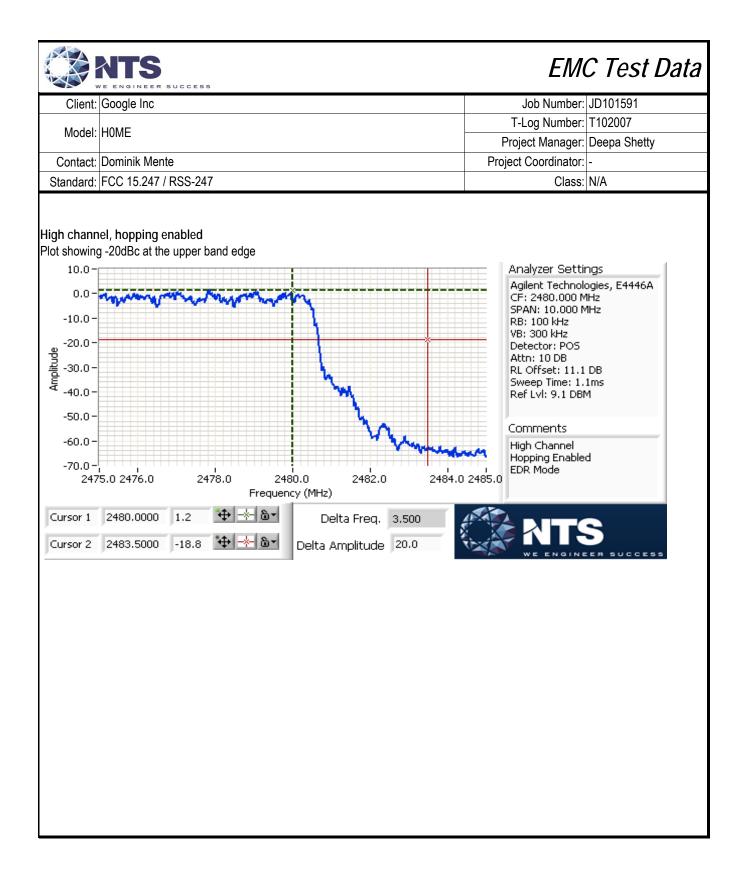












End of Report

This page is intentionally blank and marks the last page of this test report.