

FCC RADIO TEST REPORT

FCC ID	: A4RG9BQD
Equipment	: Phone
Model Name	: G9BQD
Applicant	: Google LLC
	1600 Amphitheatre Parkway,
	Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Feb. 06, 2023 and testing was performed from Feb. 27, 2023 to May 16, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	8
	1.4	Testing Location	8
	1.5	Applicable Standards	9
2	Test	Configuration of Equipment Under Test	10
	2.1	Carrier Frequency Channel	10
	2.2	Test Mode	12
	2.3	Connection Diagram of Test System	14
	2.4	Support Unit used in test configuration and system	15
	2.5	EUT Operation Test Setup	15
	2.6	Measurement Results Explanation Example	15
3	Test	Result	16
	3.1	6dB and 99% Bandwidth Measurement	16
	3.2	Output Power Measurement	17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	19
	3.5	Radiated Band Edges and Spurious Emission Measurement	20
	3.6	AC Conducted Emission Measurement	24
	3.7	Antenna Requirements	26
4	List o	of Measuring Equipment	27
5	Meas	surement Uncertainty	29
Арј	oendix	A. Conducted Test Results	
Арј	oendix	B. AC Conducted Emission Test Result	
Арј	oendix	c C. Radiated Spurious Emission	
Арј	oendix	CD. Radiated Spurious Emission Plots	
		k E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR2D0208-07B	01	Initial issue of report	Jul. 04, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	6dB Bandwidth Pass	
3.1	2.1049	99% Occupied Bandwidth	99% Occupied Bandwidth Reporting only	
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Dutput Power Pass	
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	
3.5	15.247(d)	Radiated Band Edges and Spurious Emission		
3.6	15.207	AC Conducted Emission	ed Emission Pass	
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen Report Broducer: Cindy Earc

Report Producer: Cindy Fang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Phone			
FCC ID	A4RG9BQD			
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS/ WPT WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11be EHT20/EHT40/EHT80/EHT160 Bluetooth BR/EDR/LE/HR			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

EUT Information List				
S/N	Performed Test Item			
31051FDJH0006A	RF Conducted Measurement			
33251FDJH00035	RF Conducted Measurement			
33241FDJH0004A	Radiated Spurious Emission			
33201FDJH000KR	AC Conducted Emission			

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	Bluetooth – LE: 40		
Number of Channels	Bluetooth HR : 75		
	Bluetooth – LE : 40 Channel		
Carrier Frequency of Each Channel	(37 hopping + 3 advertising channel)		
	Bluetooth HR : 75 Channel		
	<ant. 3=""></ant.>		
	Bluetooth -LE(1Mbps): 19.25 dBm / 0.0841 W		
	Bluetooth -LE (2Mbps): 19.65 dBm / 0.0923 W		
	Bluetooth HR (4Mbps): 20.55 dBm / 0.1135 W		
Maximum Output Power to Antenna	Bluetooth HR (8Mbps): 20.48 dBm / 0.1117 W		
Maximum Output I Ower to Antenna	<ant. 4=""></ant.>		
	Bluetooth -LE (1Mbps): 19.45 dBm / 0.0881 W		
	Bluetooth -LE (2Mbps): 19.75 dBm / 0.0944 W		
	Bluetooth HR (4Mbps): 20.61 dBm / 0.1151 W		
	Bluetooth HR (8Mbps): 20.70 dBm / 0.1175 W		
	MIMO <ant. 3+4=""></ant.>		
Maximum Output Power to Antenna	Bluetooth – LE (1Mbps): 22.41 dBm / 0.1742 W		
<txbf modes=""></txbf>	Bluetooth – LE (2Mbps): 22.76 dBm / 0.1888 W		
	Bluetooth HR (4Mbps): 20.83 dBm / 0.1211 W		
	Bluetooth HR (8Mbps): 20.80 dBm / 0.1202 W		
	<ant. 3=""></ant.>		
	Bluetooth – LE (1Mbps): 1.053 MHz		
	Bluetooth – LE (2Mbps): 2.094 MHz		
	Bluetooth HR (4Mbps): 2.406 MHz		
99% Occupied Bandwidth	Bluetooth HR (8Mbps): 4.715 MHz		
35% Occupied Baildwidth	<ant. 4=""></ant.>		
	Bluetooth – LE (1Mbps): 1.053 MHz		
	Bluetooth – LE (2Mbps): 2.094 MHz		
	Bluetooth HR (4Mbps): 2.406 MHz		
	Bluetooth HR (8Mbps): 4.699 MHz		
	MIMO <ant. 3+4=""></ant.>		
99% Occupied Bandwidth	Bluetooth – LE (1Mbps): 1.053 MHz		
<txbf mode=""></txbf>	Bluetooth – LE (2Mbps): 2.094 MHz		
	Bluetooth HR(4Mbps): 2.406 MHz		
	Bluetooth HR(8Mbps): 4.699 MHz		
Antenna Type / Gain	<ant. 3="">: Loop Antenna with gain -2.20 dBi</ant.>		
	<ant. 4="">: Monopole Antenna with gain -0.60 dBi</ant.>		
Type of Modulation	Bluetooth - LE : GFSK		
	Bluetooth HR: 8PSK		

Product Specification is subject to this standard					
		Ant. 3	Ant. 4		
	Bluetooth - LE	V	V		
Antenna Function Description	Bluetooth- LE TXBF	V	V		
	Bluetooth HR	V	V		
	Bluetooth HR TXBF	V	V		

Remark:

- 1. MIMO Ant. 3+4 Directional Gain is a calculated result from MIMO Ant. 3 and MIMO Ant. 4. The formula used in calculation is documented in section 1.2.1.
- 2. Power of MIMO Ant. 3 + Ant. 4 is a calculated result from sum of the power MIMO Ant. 3 and MIMO Ant. 4.
- 3. The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2.1 Antenna Directional Gain

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)e)i) Directional gain = G_{ANT} + 10 log(N_{ANT}/Nss) dBi, where Nss = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi. (This formula can also be applied when antennas have different gains if the highest antenna gain is substituted for G_{ANT} .)

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 3	Ant 4	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Bluetooth	-2.20	-0.60	-0.60	-0.60	0.00	0.00

Calculation example:

If a device has two antenna, G_{ANT1}= -2.20dBi; G_{ANT2}=-0.60dBi

-0.6 dBi + 10 x log (2 / 2)

= -0.6 dBi

Power and PSD limit reduction = Composite gain - 6dBi, (min = 0)

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Sile NO.	CO05-HY (TAF Code: 1190)
Remark The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory	
Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test One NO.	TH05-HY, 03CH16-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

<Bluetooth - LE>

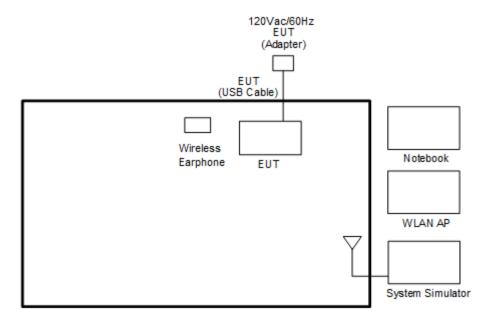
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

<Bluetooth HR>

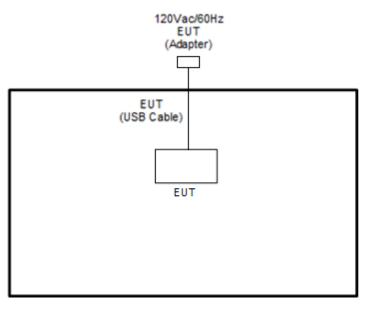
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	2	2404	27	2429	52	2454
	3	2405	28	2430	53	2455
	4	2406	29	2431	54	2456
	5	2407	30	2432	55	2457
	6	2408	31	2433	56	2458
	7	2409	32	2434	57	2459
	8	2410	33	2435	58	2460
	9	2411	34	2436	59	2461
	10	2412	35	2437	60	2462
	11	2413	36	2438	61	2463
	12	2414	37	2439	62	2464
	13	2415	38	2440	63	2465
2400-2483.5 MHz	14	2416	39	2441	64	2466
	15	2417	40	2442	65	2467
	16	2418	41	2443	66	2468
	17	2419	42	2444	67	2469
	18	2420	43	2445	68	2470
	19	2421	44	2446	69	2471
	20	2422	45	2447	70	2472
	21	2423	46	2448	71	2473
	22	2424	47	2449	72	2474
	23	2425	48	2450	73	2475
	24	2426	49	2451	74	2476
	25	2427	50	2452	75	2477
	26	2428	51	2453	76	2478

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and accessory (Adapter or Earphone) and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


	mary table is showing all test modes to demonstrate in compliance with the standard. Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
Conducted	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
Test Cases	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
Test Cases	Mode 7: Bluetooth HR CH02_2404 MHz_4Mbps
	Mode 8: Bluetooth HR CH39_2441 MHz_4Mbps
	Mode 9: Bluetooth HR CH76_2478 MHz_4Mbps
	Mode 10: Bluetooth HR CH02_2404 MHz_8Mbps
	Mode 11: Bluetooth HR CH39_2441 MHz_8Mbps
	Mode 12: Bluetooth HR CH76_2478 MHz_8Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
Radiated	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
Test Cases	Mode 7: Bluetooth HR CH02_2404 MHz_4Mbps
	Mode 8: Bluetooth HR CH39_2441 MHz_4Mbps
	Mode 9: Bluetooth HR CH76_2478 MHz_4Mbps
	Mode 10: Bluetooth HR CH02_2404 MHz_8Mbps
	Mode 11: Bluetooth HR CH39_2441 MHz_8Mbps
	Mode 12: Bluetooth HR CH76_2478 MHz_8Mbps
AC Conducted	Mode 1: GSM 850 Idle + WLAN (2.4G) Link + Bluetooth Link + USB-C Cable 1
Emission	(Charging from Adapter 2)
Remark: 1. For Radiate	d Test Cases, the tests were performed with USB Cable 1.
	preliminary test, both charging modes (Adapter mode and WPT Charging mode)
	d. It is determined that the adaptor mode is the worst case for official test.
	n spurious emission, the modulation and the data rate picked for testing are by the Max. RF conducted power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth- Tx Mode>

TEL : 886-3-327-0868	Page Number	: 14 of 29
FAX : 886-3-327-0855	Issue Date	: Jul. 04, 2023
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	Wireless Earphone	Google	G1007/G1008	A4RG1007/ A4RG1008	N/A	N/A
4.	Notebook	DELL	Latitude3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "cmd 10.0.19042.1526" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

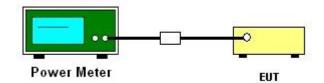
Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- For BT HR modes, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1 Peak power meter method.
- For BLE modes Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 3. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 4. The path loss is compensated to the results for each measurement.
- 5. Set the maximum power setting and enable the EUT to transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

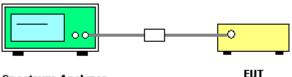
Please refer to Appendix A.

3.2.6 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

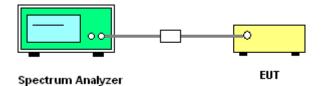
Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

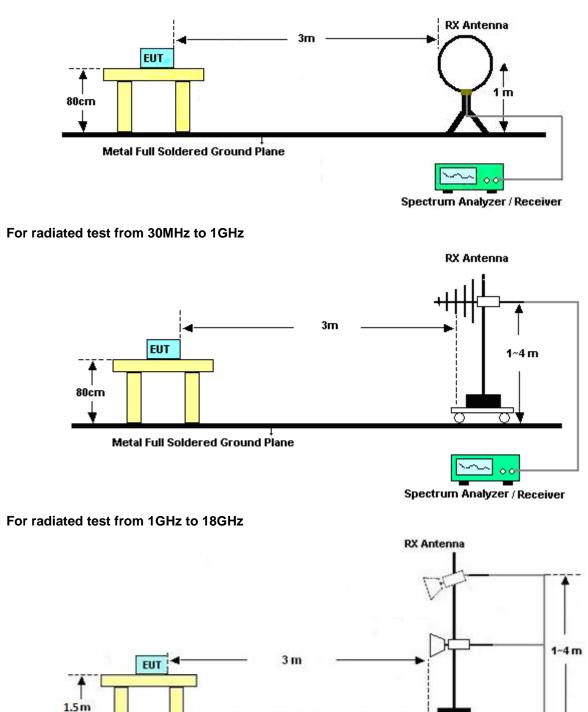
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

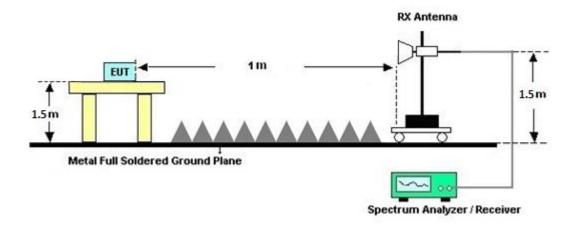
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

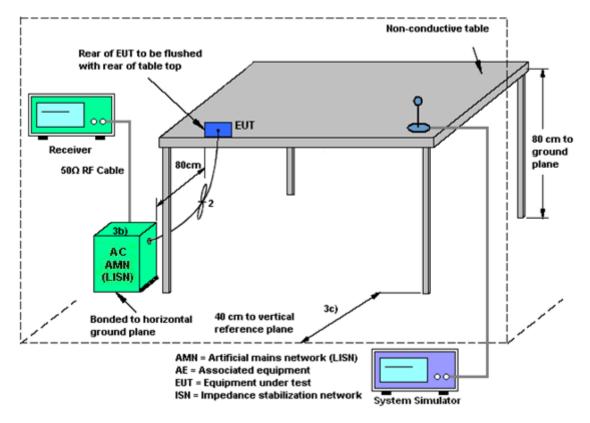
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

TEL : 886-3-327-0868	Page Number	: 25 of 29
FAX : 886-3-327-0855	Issue Date	: Jul. 04, 2023
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1GHz~18GHz	Mar. 23, 2023	Apr. 11, 2023~ May 05, 2023	Mar. 22, 2024	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2022	Apr. 11, 2023~ May 05, 2023	Nov. 23, 2023	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz~1GHz	Oct. 08, 2022	Apr. 11, 2023~ May 05, 2023	Oct. 07, 2023	Radiation (03CH16-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Apr. 11, 2023~ May 05, 2023	Sep. 19, 2023	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Apr. 11, 2023~ May 05, 2023	Jun. 27, 2023	Radiation (03CH16-HY)
Preamplifier	EMEC	EM1G18G	060812	1GHz~18GHz	Dec. 26, 2022	Apr. 11, 2023~ May 05, 2023	Dec. 25, 2023	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2022	Apr. 11, 2023~ May 05, 2023	Dec. 08, 2023	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1GHz	Jul. 04, 2022	Apr. 11, 2023~ May 05, 2023	Jul. 03, 2023	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 15, 2022	Apr. 11, 2023~ May 05, 2023	Dec. 14, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	805935/4	N/A	Aug. 09, 2022	Apr. 11, 2023~ May 05, 2023	Aug. 08, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	802434/4	N/A	Aug. 09, 2022	Apr. 11, 2023~ May 05, 2023	Aug. 08, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	N/A	Aug. 09, 2022	Apr. 11, 2023~ May 05, 2023	Aug. 08, 2023	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Apr. 11, 2023~ May 05, 2023	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Apr. 11, 2023~ May 05, 2023	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Apr. 11, 2023~ May 05, 2023	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Apr. 11, 2023~ May 05, 2023	N/A	Radiation (03CH16-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Feb. 27, 2023~	Nov. 16, 2023	Conducted
						May 16, 2023		(TH05-HY)
Power Sensor	DARE	RPR3006W	16100054SNO	10MHz~6GHz	Dec. 13, 2022	Mar. 09, 2023~	Dec. 12, 2023	Conducted
			12 (NO:113)			May 12, 2023	,	(TH05-HY)
Signal	Rohde &	FSV40	101905	10Hz -	Aug. 03, 2022	Feb. 27, 2023~	Aug. 02, 2023	Conducted
Analyzer	Schwarz			40GHz(amp)	U	May 16, 2023	C	(TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 08, 2022	Feb. 27, 2023~ May 16, 2023 Aug	Aug. 07, 2023	Conducted
				11/2	Aug. 00, 2022		7 ag. 07, 2020	(TH05-HY)
Power Sensor	Anritsu	MA2411B	1B 1027253	300MHz~40GHz	Aug. 08, 2022	Feb. 27, 2023~ May 16, 2023	Aug. 07, 2023	Conducted
	, unitod	WIN ZHITB						(TH05-HY)
EMI Test	Rohde &	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Apr. 19, 2023	Nov. 30, 2023	Conduction
Receiver	Schwarz						,	(CO05-HY)
Hygrometer	grometer Testo	608-H1	34913912	N/A	Nov. 17, 2022	Apr. 19, 2023	Nov. 16, 2023	Conduction
								(CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Apr. 19, 2023	Nov. 16, 2023	Conduction (CO05-HY)
	Rohde &							Conduction
Software	Schwarz	EMC32	N/A	N/A	N/A	Apr. 19, 2023	N/A	(CO05-HY)
Pulse Limiter	SCHWARZBE	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Apr. 19, 2023	Jul. 31, 2023	Conduction
	СК		00001				Gui. 01, 2020	(CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Apr. 19, 2023	Dec. 28, 2023	Conduction
					· · · · · · · · · · · · · · · · · · ·	1		(CO05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.50 dB
of 95% (U = 2Uc(y))	3.30 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.50 dB
of 95% (U = 2Uc(y))	0.50 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.60 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.50 dB
of 95% (U = 2Uc(y))	4.50 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.60 dB
of 95% (U = 2Uc(y))	5.00 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer	Junyu Jhou	Temperature:	21~25	°C
Test Date:	2023/02/27-2023/5/16	Relative Humidity:	51~54	%

<bi< th=""><th>E Ant.</th><th>3></th><th></th><th></th><th></th><th></th><th>-</th><th>RESULTS</th><th></th></bi<>	E Ant.	3>					-	RESULTS	
						<u>6dE</u>	3 and 99%	6 Occupie	d Bandwi
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
	BLE	1Mbps	1	0	2402	1.053	0.724	0.50	Pass
	BLE	1Mbps	1	19	2440	1.053	0.726	0.50	Pass
	BLE	1Mbps	1	39	2480	1.053	0.724	0.50	Pass

						RESULTS ge Power				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	19.25	30.00	-2.20	17.05	36.00	Pass
BLE	1Mbps	1	19	2440	19.15	30.00	-2.20	16.95	36.00	Pass
BLE	1Mbps	1	39	2480	18.85	30.00	-2.20	16.65	36.00	Pass

						-	<u>RESULTS</u> Power De			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	18.31	3.45	-2.20	8.00	Pass	
BLE	1Mbps	1	19	2440	17.78	2.95	-2.20	8.00	Pass	
BLE	1Mbps	1	39	2480	17.89	3.10	-2.20	8.00	Pass	

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	19.65	30.00	-2.20	17.45	36.00	Pass
BLE	2Mbps	1	19	2440	18.95	30.00	-2.20	16.75	36.00	Pass
BLE	2Mbps	1	39	2480	19.05	30.00	-2.20	16.85	36.00	Pass

							RESULTS Power De		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	18.57	0.04	-2.20	8.00	Pass
BLE	2Mbps	1	19	2440	18.41	-0.14	-2.20	8.00	Pass
BLE	2Mbps	1	39	2480	18.25	-0.18	-2.20	8.00	Pass

<BLE Ant. 4>

					<u>6dE</u>		RESULTS 6 Occupie	<u>DATA</u> d Bandwi	dth
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.051	0.720	0.50	Pass	
BLE	1Mbps	1	19	2440	1.053	0.726	0.50	Pass	
BLE	1Mbps	1	39	2480	1.053	0.724	0.50	Pass	[

TEST RESULTS DATA Average Power Table

Ν	Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
I	BLE	1Mbps	1	0	2402	19.25	30.00	-0.60	18.65	36.00	Pass
I	BLE	1Mbps	1	19	2440	19.45	30.00	-0.60	18.85	36.00	Pass
1	BLE	1Mbps	1	39	2480	18.75	30.00	-0.60	18.15	36.00	Pass

							RESULTS Power De		
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	18.58	3.74	-0.60	8.00	Pass
BLE	1Mbps	1	19	2440	18.82	3.99	-0.60	8.00	Pass
BLE	1Mbps	1	39	2480	17.63	2.83	-0.60	8.00	Pass

					<u>6dE</u>		RESULTS 6 Occupie	<u>DATA</u> d Bandwi
				_	_			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.090	1.256	0.50	Pass
BLE	2Mbps	1	19	2440	2.094	1.260	0.50	Pass
BLE	2Mbps	1	39	2480	2.094	1.264	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	19.65	30.00	-0.60	19.05	36.00	Pass
BLE	2Mbps	1	19	2440	19.75	30.00	-0.60	19.15	36.00	Pass
BLE	2Mbps	1	39	2480	18.95	30.00	-0.60	18.35	36.00	Pass

							RESULTS Power De							
Mod.	Mod. Data Data Data Data NTX CH. Freq. Peak PSD (dBm (dBm (dBm (dBm (dBm)))) (dBm (dBm (dBm)))													
BLE	Rate		-	(MHz)	/100kHz)	/3kHz)	(dBi)	(dBm /3kHz)						
BLE	2Mbps		0 19	2402 2440	18.61	0.40	-0.60	8.00	Pass					
	2Mbps		-	-	18.74	0.25	-0.60	8.00	Pass					
BLE	2Mbps	1	39	2480	17.90	-0.57	-0.60	8.00	Pass					

<HR 4Mbps 8Mbps Ant. 3>

					<u>6dE</u>	<u>TEST </u> 3 and 99%	RESULTS 6 Occupie	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BTHR	4Mbps	1	2	2404	2.406	1.662	0.50	Pass
BTHR	4Mbps	1	39	2441	2.406	1.642	0.50	Pass
BTHR	4Mbps	1	76	2478	2.406	1.650	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BTHR	4Mbps	1	2	2404	20.55	30.00	-2.20	18.35	36.00	Pass
BTHR	4Mbps	1	39	2441	19.97	30.00	-2.20	17.77	36.00	Pass
BTHR	4Mbps	1	76	2478	20.23	30.00	-2.20	18.03	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BTHR	4Mbps	1	2	2404	16.97	1.26	-2.20	8.00	Pass			
BTHR	4Mbps	1	39	2441	16.50	0.74	-2.20	8.00	Pass			
BTHR	4Mbps	1	76	2478	16.72	0.99	-2.20	8.00	Pass			

	<u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandwi</u>													
Mod.	Data Rate	Ντ×	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail						
BTHR	8Mbps	1	2	2404	4.683	0.664	0.50	Pass						
BTHR	8Mbps	1	39	2441	4.699	0.664	0.50	Pass						
BTHR	8Mbps	1	76	2478	4.715	0.664	0.50	Pass						

TEST RESULTS DATA Peak Power Table

_											
N	1od.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
В	THR	8Mbps	1	2	2404	20.48	30.00	-2.20	18.28	36.00	Pass
B	THR	8Mbps	1	39	2441	20.09	30.00	-2.20	17.89	36.00	Pass
В	THR	8Mbps	1	76	2478	20.34	30.00	-2.20	18.14	36.00	Pass

							RESULTS Power De							
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail					
BTHR	8Mbps	1	2	2404	16.75	1.97	-2.20	8.00	Pass					
BTHR	8Mbps	1	39	2441	16.24	1.48	-2.20	8.00	Pass					
BTHR	8Mbps	1	76	2478	16.50	1.76	-2.20	8.00	Pass					

<HR 4Mbps 8Mbps Ant. 4>

						<u>6dE</u>	-	RESULTS 6 Occupie	
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
E	BTHR	4Mbps	1	2	2404	2.406	1.604	0.50	Pass
E	BTHR	4Mbps	1	39	2441	2.406	1.659	0.50	Pass
E	BTHR	4Mbps	1	76	2478	2.406	1.654	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BTHR	4Mbps	1	2	2404	20.61	30.00	-0.60	20.01	36.00	Pass
BTHR	4Mbps	1	39	2441	19.99	30.00	-0.60	19.39	36.00	Pass
BTHR	4Mbps	1	76	2478	19.66	30.00	-0.60	19.06	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>													
Mod.	Data Rate	Nтx	СН.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail					
BTHR	4Mbps	1	2	2404	17.11	1.38	-0.60	8.00	Pass	l .				
BTHR	4Mbps	1	39	2441	16.30	0.72	-0.60	8.00	Pass	1				
BTHR	4Mbps	1	76	2478	16.06	0.41	-0.60	8.00	Pass	1				

					<u>6dE</u>		RESULTS 6 Occupie	
Mod.	Data Rate	Ντ×	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BTHR	8Mbps	1	2	2404	4.683	0.664	0.50	Pass
BTHR	8Mbps	1	39	2441	4.699	0.664	0.50	Pass
BTHR	8Mbps	1	76	2478	4.683	0.684	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BTHR	8Mbps	1	2	2404	20.70	30.00	-0.60	20.10	36.00	Pass
BTHR	8Mbps	1	39	2441	19.94	30.00	-0.60	19.34	36.00	Pass
BTHR	8Mbps	1	76	2478	19.59	30.00	-0.60	18.99	36.00	Pass

							RESULTS Power De		
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BTHR	8Mbps	1	2	2404	16.69	1.93	-0.60	8.00	Pass
BTHR	8Mbps	1	39	2441	16.12	1.40	-0.60	8.00	Pass
BTHR	8Mbps	1	76	2478	15.75	1.00	-0.60	8.00	Pass

<TXBF BLE Ant. 3+4>

					<u>6dE</u>		RESULTS 6 Occupie	<u>DATA</u> d Bandwi	<u>dth</u>
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	2	0	2402	1.051	0.722	0.50	Pass	
BLE	1Mbps	2	19	2440	1.053	0.724	0.50	Pass	
BLE	1Mbps	2	39	2480	1.053	0.724	0.50	Pass	

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power Ant 4 (dBm)	Average Conducted Power Ant 3 (dBm)	Total Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	Total EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	2	0	2402	19.35	19.35	22.36	30.00	-0.60	21.76	36.00	Pass
BLE	1Mbps	2	19	2440	19.25	19.55	22.41	30.00	-0.60	21.81	36.00	Pass
BLE	1Mbps	2	39	2480	19.35	18.85	22.12	30.00	-0.60	21.52	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	Peak PSD Worst +3.01 (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	2	0	2402	17.56	2.71	5.72	-0.60	8.00	Pass			
BLE	1Mbps	2	19	2440	18.36	3.51	6.52	-0.60	8.00	Pass			
BLE	1Mbps	2	39	2480	17.33	2.52	5.53	-0.60	8.00	Pass			

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power Ant 4 (dBm)	Average Conducted Power Ant 3 (dBm)	Total Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	Total EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	2	0	2402	19.75	19.75	22.76	30.00	-0.60	22.16	36.00	Pass
BLE	2Mbps	2	19	2440	19.45	19.85	22.66	30.00	-0.60	22.06	36.00	Pass
BLE	2Mbps	2	39	2480	19.55	19.05	22.32	30.00	-0.60	21.72	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	Peak PSD Worst +3.01 (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	2Mbps	2	0	2402	18.56	0.03	3.04	-0.60	8.00	Pass			
BLE	2Mbps	2	19	2440	18.33	-0.17	2.84	-0.60	8.00	Pass			
BLE	2Mbps	2	39	2480	18.33	-0.09	2.92	-0.60	8.00	Pass			

<TXBF HR 4Mbps 8Mbps Ant. 3+4>

					<u>6dE</u>	-	RESULTS 6 Occupie	<u>DATA</u> d Bandwi	i <u>dth</u>
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BTHR	4Mbps		2	2404	2.406	1.606	0.50	Pass	
BTHR	4Mbps	2	39	2441	2.406	1.660	0.50	Pass	
BTHR	4Mbps	2	76	2478	2.406	1.651	0.50	Pass	

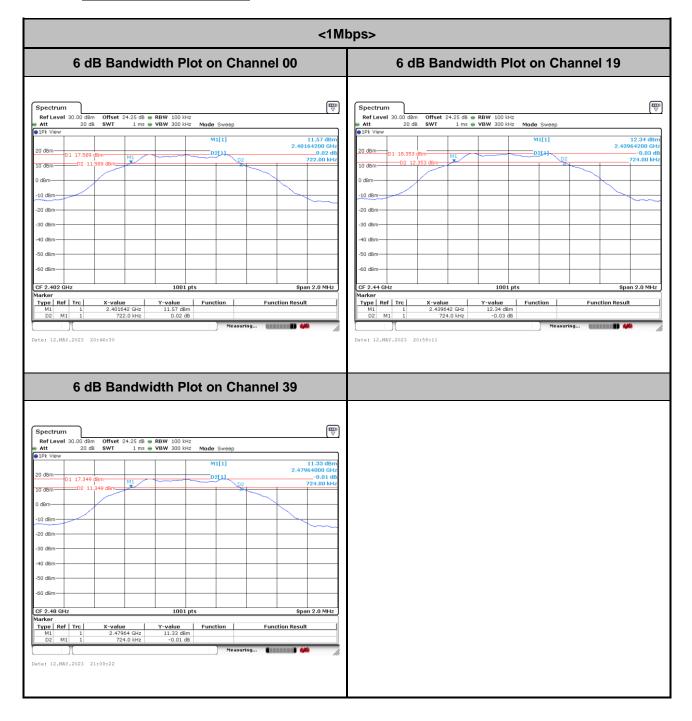
TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power Ant 4 (dBm)	Peak Conducted Power Ant 3 (dBm)	Total Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	Total EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BTHR	4Mbps	2	2	2404	17.78	17.85	20.83	30.00	-0.60	20.23	36.00	Pass
BTHR	4Mbps	2	39	2441	17.40	17.35	20.39	30.00	-0.60	19.79	36.00	Pass
BTHR	4Mbps	2	76	2478	16.83	17.54	20.21	30.00	-0.60	19.61	36.00	Pass

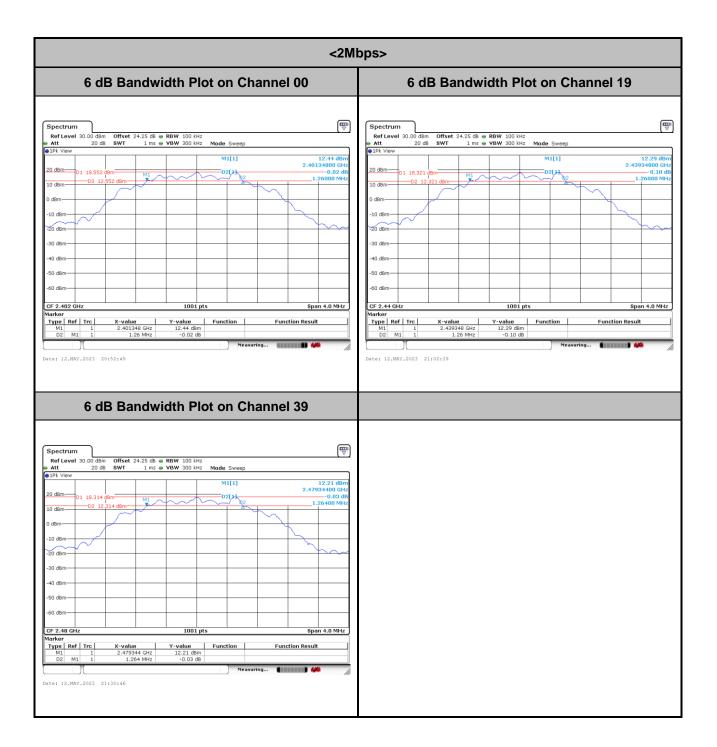
	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	Peak PSD Worst +3.01 (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BTHR	4Mbps	2	2	2404	14.19	-1.56	1.45	-0.60	8.00	Pass		
BTHR	4Mbps	2	39	2441	13.85	-1.87	1.14	-0.60	8.00	Pass		
BTHR	4Mbps	2	76	2478	13.30	-2.45	0.56	-0.60	8.00	Pass		

	<u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandw</u>							
Mod.	Data Rate	Ντ×	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BTHR	8Mbps	2	2	2404	4.699	0.980	0.50	Pass
BTHR	8Mbps	2	39	2441	4.683	0.664	0.50	Pass
BTHR	8Mbps	2	76	2478	4.699	0.664	0.50	Pass

TEST RESULTS DATA Peak Power Table

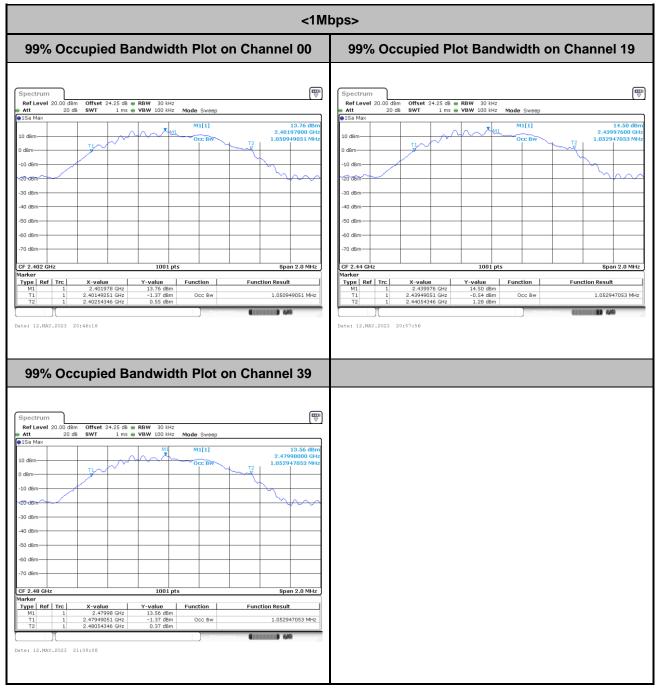

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power Ant 4 (dBm)	Peak Conducted Power Ant 3 (dBm)	Total Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	Total EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BTHR	8Mbps	2	2	2404	17.77	17.80	20.80	30.00	-0.60	20.20	36.00	Pass
BTHR	8Mbps	2	39	2441	17.39	17.33	20.37	30.00	-0.60	19.77	36.00	Pass
BTHR	8Mbps	2	76	2478	16.93	17.64	20.31	30.00	-0.60	19.71	36.00	Pass

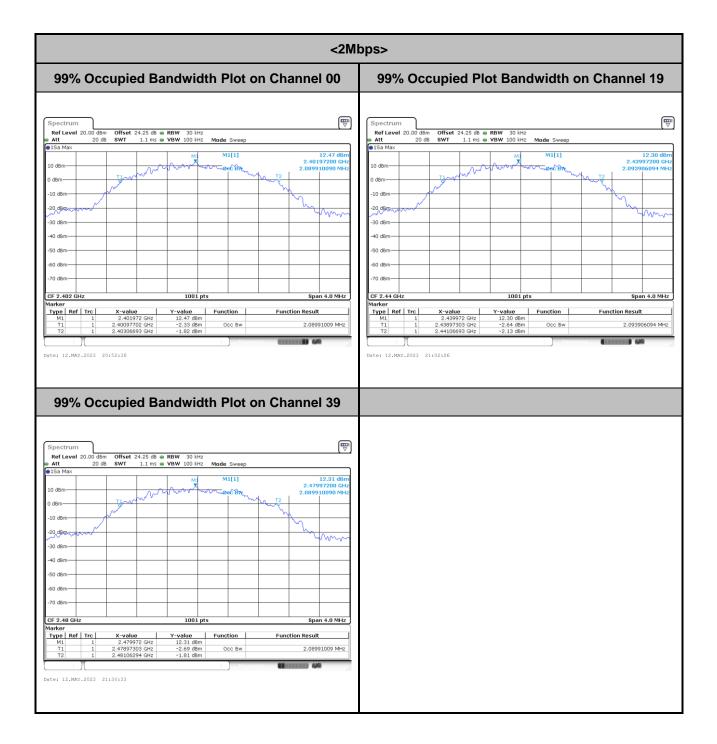
<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	Peak PSD Worst +3.01 (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BTHR	8Mbps	2	2	2404	14.13	-0.77	2.24	-0.60	8.00	Pass
BTHR	8Mbps	2	39	2441	13.88	-1.18	1.83	-0.60	8.00	Pass
BTHR	8Mbps	2	76	2478	13.54	-1.64	1.37	-0.60	8.00	Pass



< TXBF BLE Ant. 3>

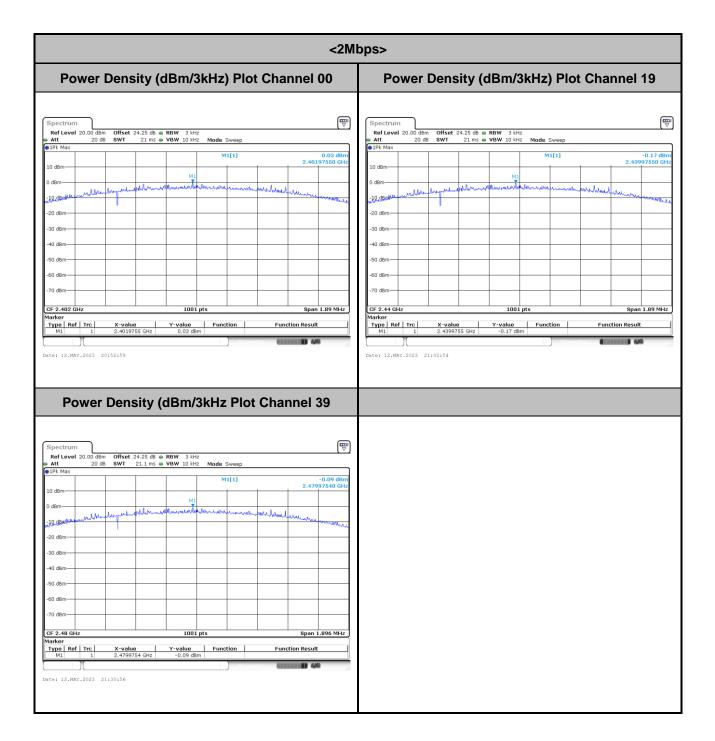
6dB Bandwidth



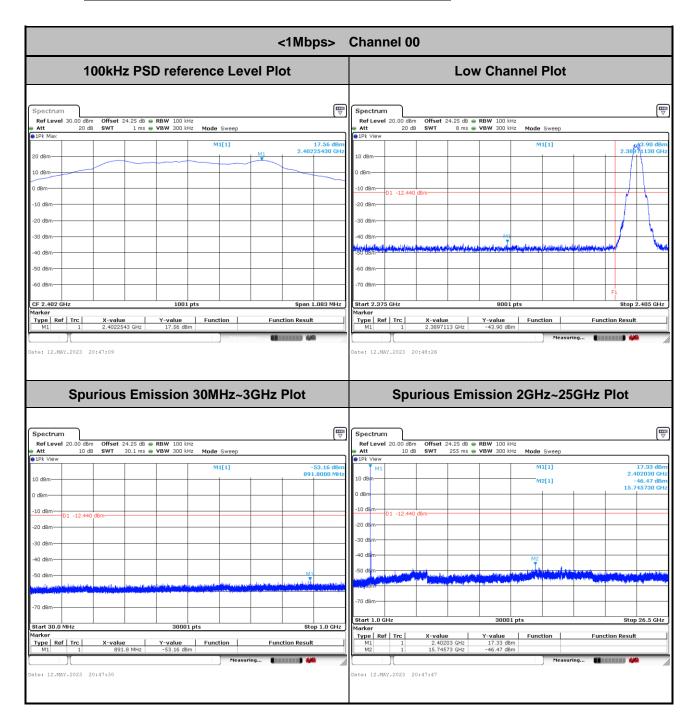


99% Occupied Bandwidth

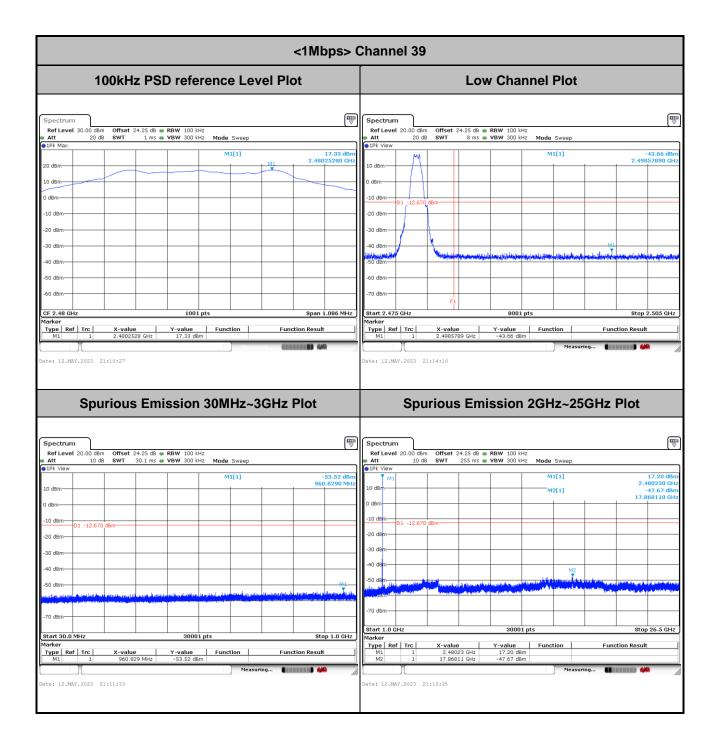
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

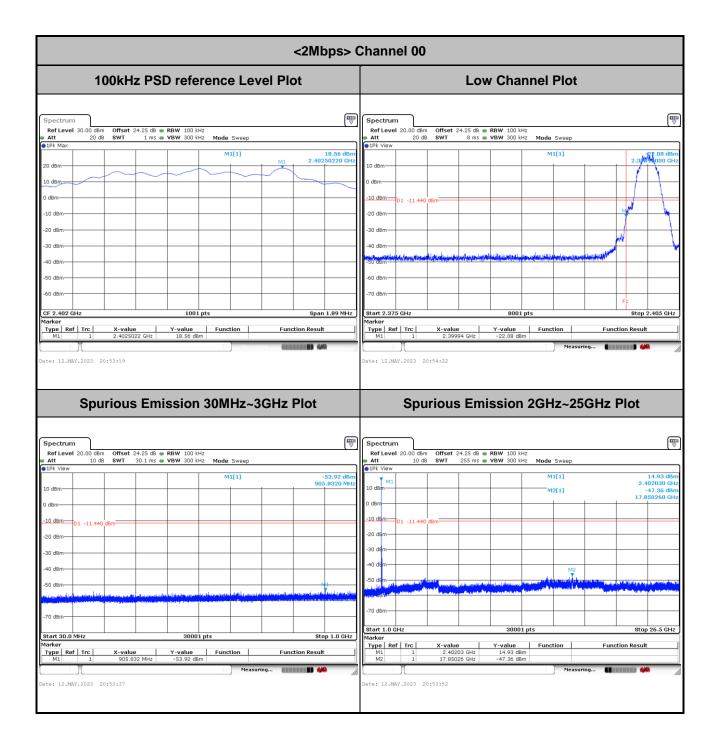


Power Spectral Density (dBm/3kHz)

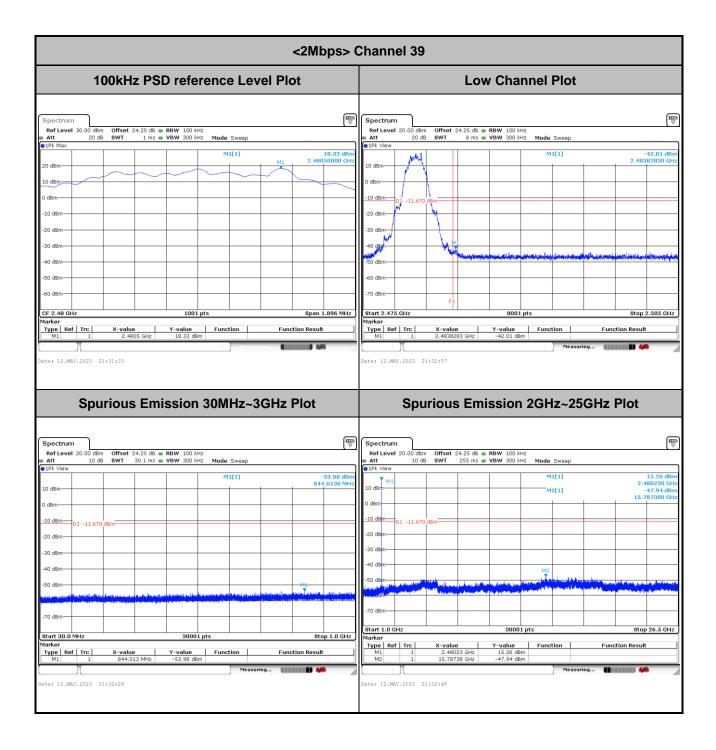

<1M	bps>			
Power Density (dBm/3kHz) Plot Channel 00	Power Density (dBm/3kHz) Plot Channel 19			
Spectrum Spectrum 100 mm Offset 24.25 mm NMM NMM Spectrum 2.440 smpore 2.74 dmm MMM MMM 2.74 dmm MMM MMM	Spectrum Description 20.0 00.0 00.00			

Band Edge and Spurious Emission

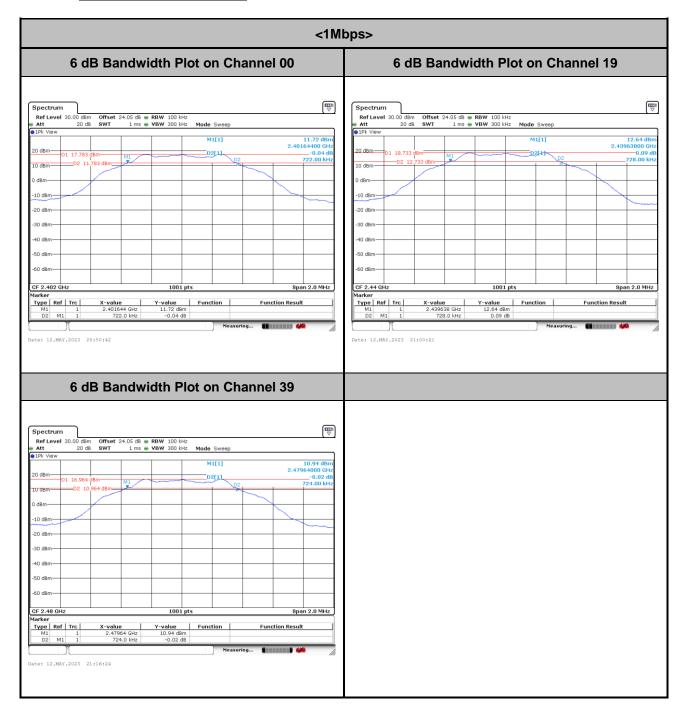


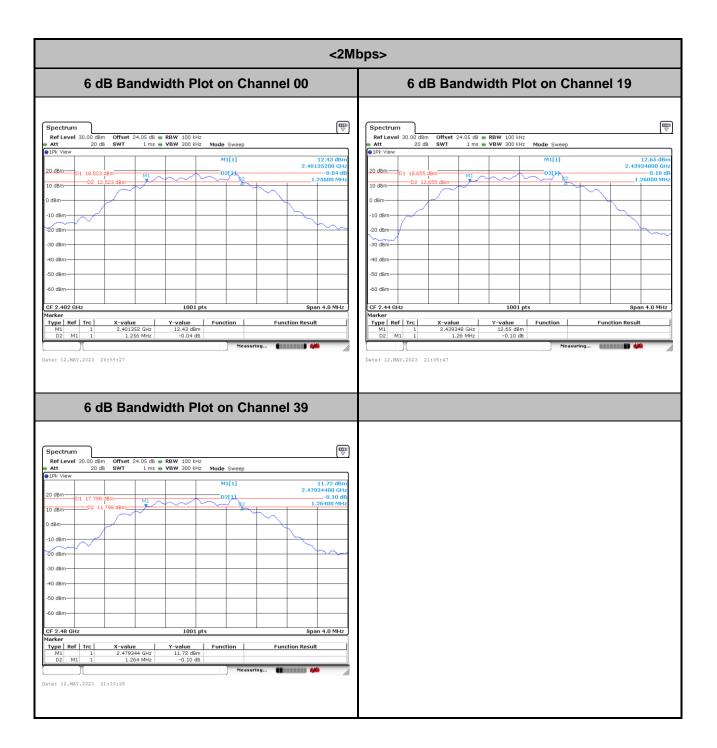


<1Mbps> Channel 19							
100kHz PSD reference Level Plot	Low Channel Plot						
Spectrum Image: Constraint of the system Image: Constand of the system							
M1[1] 18.36 dBm 20 dBm M1 2.44025280 GHz 10 dBm 0 0							
-10 dBm							
-50 d8m							
Type Ref Trc. X-value Y-value Function Function Function Function Result M1 1 2.4402528 GHz 18.36 dBm							
Spurious Emission 30MHz~3GHz Plot	Spurious Emission 2GHz~25GHz Plot						
Spectrum Image: Constraint of the sector of t	Spectrum Image: Constraint of the second secon						
	19k View 10 dBm 0 dBm						
-10 dBm 01 -11.640 dBm	-10.d8m 01 -11.640 d8m						
-40 dBm	-50 dBm						
Start 30.0 MHz 30001 pts Stop 1.0 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 960.132 MHz -53.87 dBm Function Function Result	Start 1.0 GHz 30001 pts Stop 26.5 GHz Marker						
Date: 12.MAY.2023 20:59:03	Date: 12.MAY.2023 20:59:20						



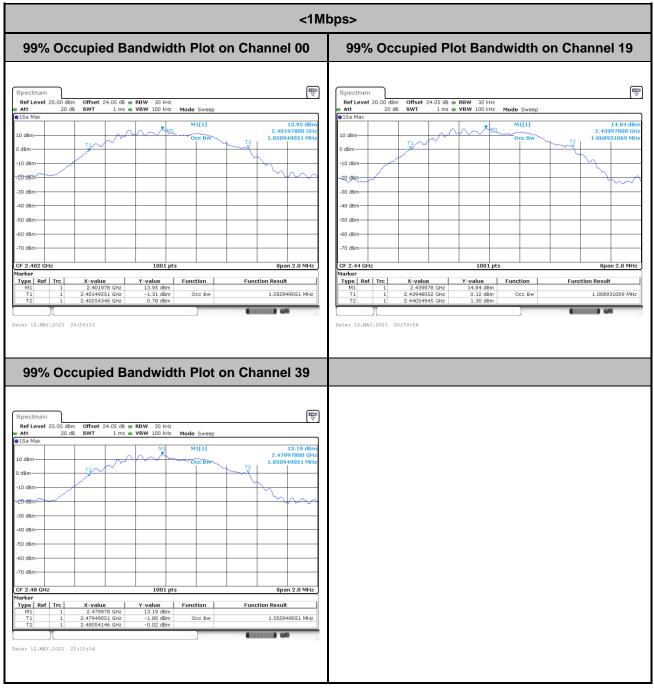
<2Mbps> Channel 19							
100kHz PSD reference Level Plot	Low Channel Plot						
Spectrum Image: Construction of the constructi							
Spurious Emission 30MHz~3GHz Plot	Spurious Emission 2GHz~25GHz Plot						
Spectrum Image: Construction of the second sec	Spectrum						
e 1Pk View	19k View 15.69.dBm						
10 dBm	M1 2.440280 GHz 10 dBm M2[1] -47.91 dBm						
0 dBm	0 dBm						
	-10 dBm 01 -11.670 dBm						
01 -11.070 dbin	-20 dBm						
-20 dBm							
-30 dBm	-30 dBm						
-40 dBm-	-40 d8m M2						
-50 dBm							
	-70 dBm						
-70 dBm							
	Start 1.0 GHz 30001 pts Stop 26.5 GHz						
Start 30.0 MHz 30001 pts Stop 1.0 GHz Marker	Marker Type Ref Trc X-value Y-value Function Function Result						
Type Ref Trc X-value Y-value Function Function Result M1 1 971.758 MHz -53.50 dBm -53.50 dBm <td< td=""><td>M1 1 2.44028 GHz 15.68 dBm 15.68 dBm M2 1 17.83666 GHz -47.91 dBm</td></td<>	M1 1 2.44028 GHz 15.68 dBm 15.68 dBm M2 1 17.83666 GHz -47.91 dBm						
Measuring	Measuring						
Date: 12.MAY.2023 21:04:06	Date: 12.MAY.2023 21:04:26						
Date: 12.MAY.2023 21:04:06	Date: 12.MAY.2023 21:04:26						





<TXBF BLE Ant. 4>

6dB Bandwidth

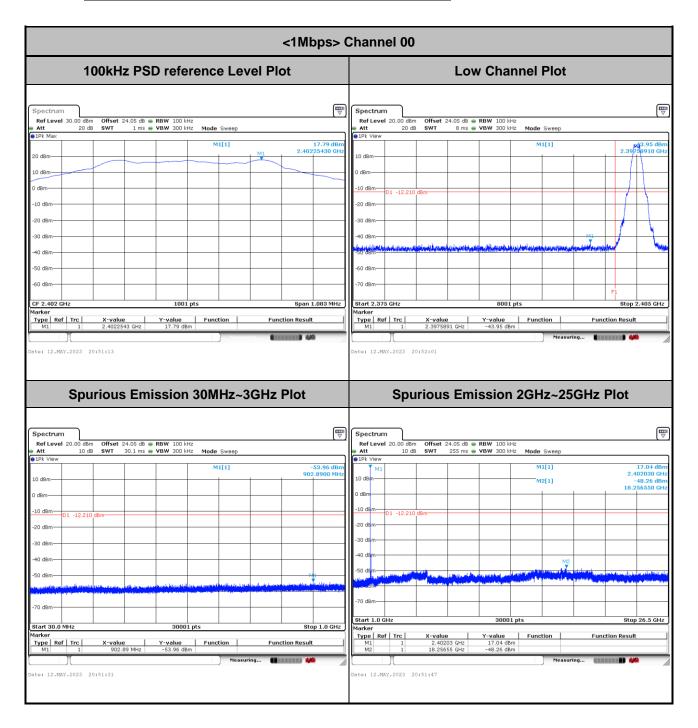


99% Occupied Bandwidth

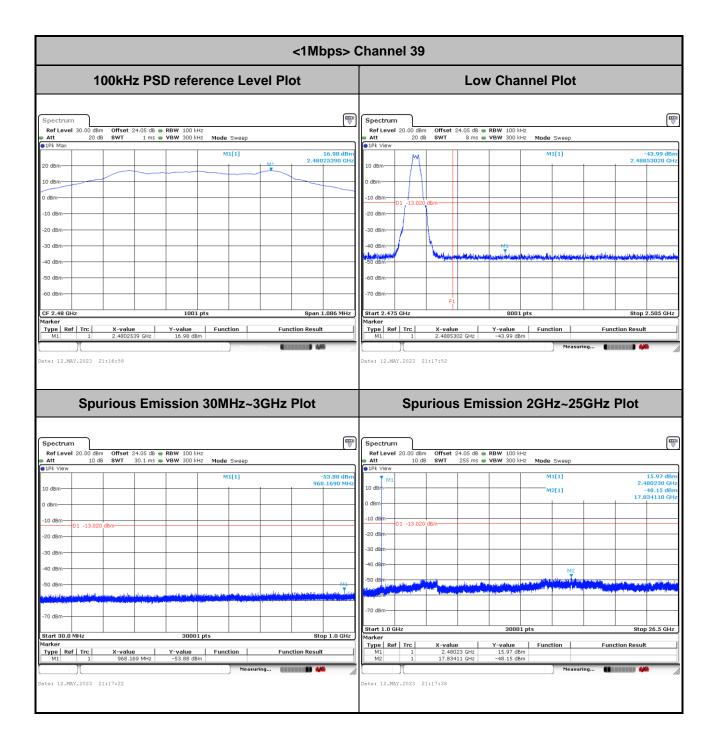
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

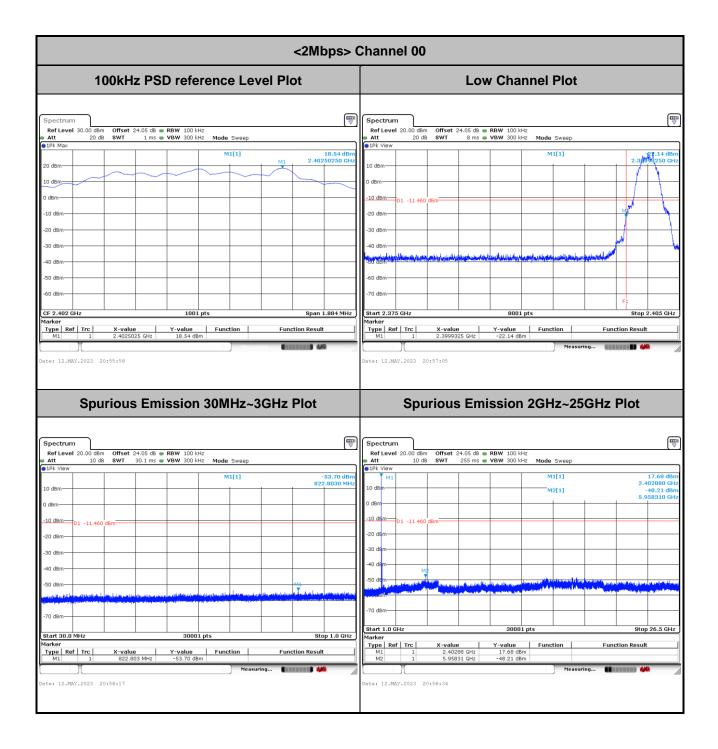
Power Spectral Density (dBm/3kHz)

<1M	bps>
Power Density (dBm/3kHz) Plot Channel 00	Power Density (dBm/3kHz) Plot Channel 19
	Spectrum Image: Spectrum Year 20 m SWY 22 m Year Mode Sweep Image: Spectrum Image: Spectrum <td< td=""></td<>

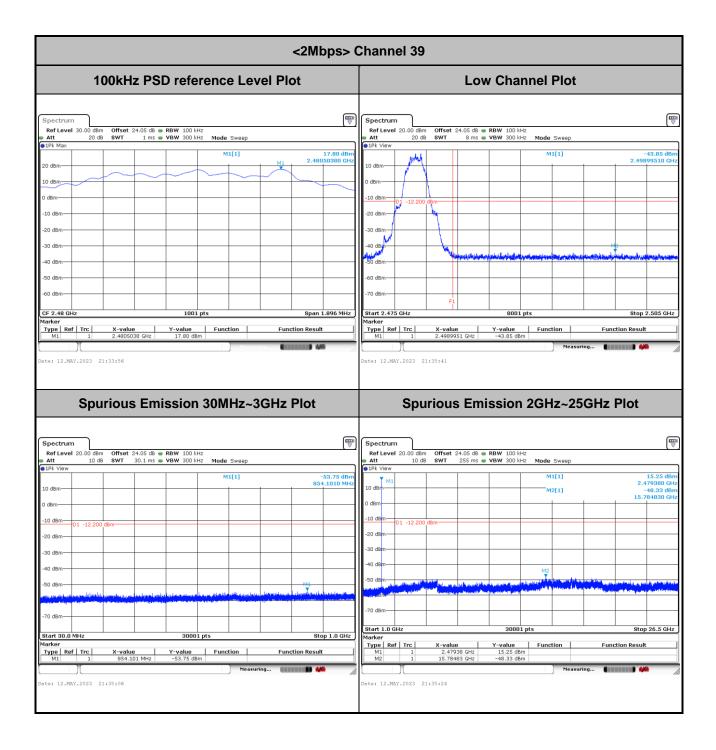


Band Edge and Spurious Emission

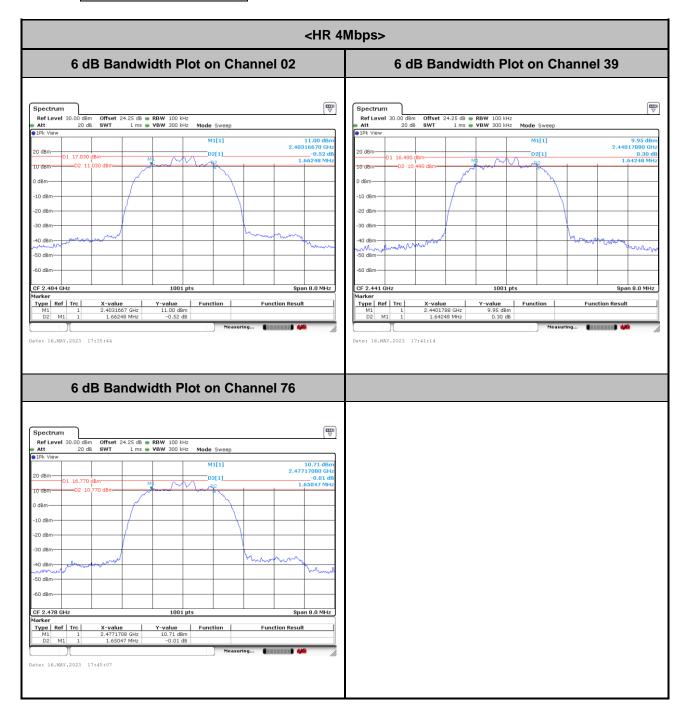


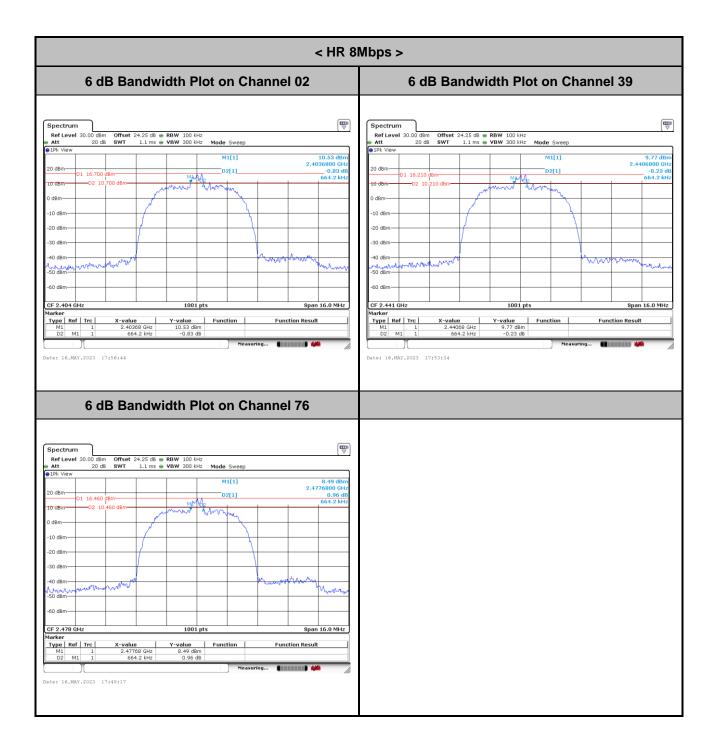


<1Mbps> Channel 19							
100kHz PSD reference Level Plot	Low Channel Plot						
IDOKTIZ TOD TCICICICICE LEVELTION Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan=							
Date: 12.HAY.2023 21:00:53 Spurious Emission 30MHz~3GHz Plot Spectrum	Spurious Emission 2GHz~25GHz Plot						
Ref Level 20.00 dBm Offset 24.05 dB RBW 100 kHz Att 10 dB SWT 30.1 ms VBW 300 kHz Mode Sweep IPK New IPK New IPK New IPK New IPK New	RefLevel 20:00 dBm Offset 24:05 dB RBW 100 kHz Att 10 dB SWT 255 ms VBW 300 kHz Mode Sweep Intv inv Intv inv Intv inv Intv inv Intv inv Intv inv						
M1[1] -54.13 dBm 10 dBm 930.5020 MHz 0 dBm 0 -10 dBm 01 -11.260 dBm	M1 M1[1] 17.41 dBm 10 dBm 2.440290 GHz 2.440290 GHz 0 dBm M2[1] -47.31 dBm 0.1 -11.260 dBm 01 -11.260 dBm 01 -11.260 dBm						
-20 dBm	-20 dBm						
-70 dBm	Stort 1.0 GHz 30001 pts Stop 26.5 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44028 GHz 17.41 dBm Function Function						
MI I 930.502 MHz -54.13 dBm Measuring Measuring Measuring Date: 12.MAY.2023 21:01:34 Measuring Measuring	M2 1 17.85111 GHz -47.31 dBm Neasuring Massaring						



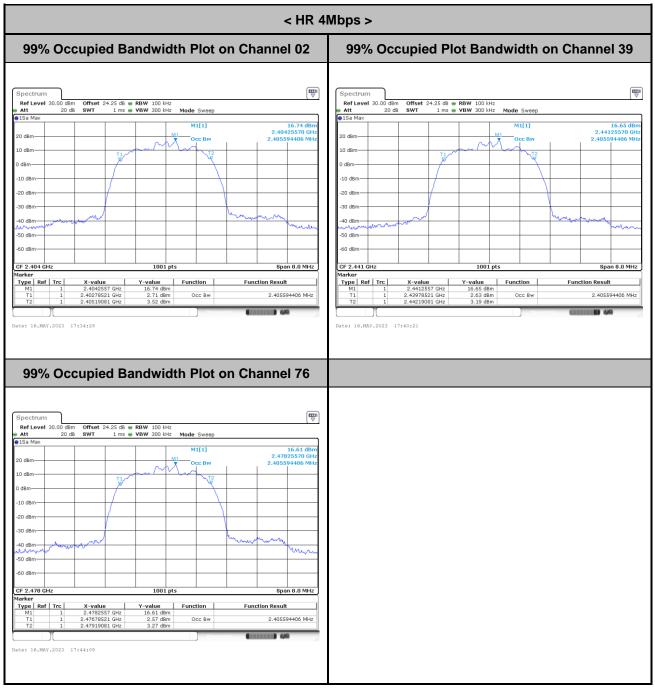
<2Mbps> Channel 19							
100kHz PSD reference Level Plot	Low Channel Plot						
Spectrum Image: Constraint of the second secon							
Spectrum Ref Level 20.00 dBm Offset 24.05 dB • RBW 100 kHz	Spectrum Ref Level 20.00 dBm Offset 24.05 dB • RBW 100 kHz						
Att 10 dB SWT 30.1 ms VBW 300 kHz Mode Sweep Pk View	● Att 10 dB SWT 255 ms ● VBW 300 kHz Mode Sweep ● 1Pk View						
M1[1] -53.99 dBm 10 dBm 900.8850 MHz 0 dBm 0	M1 M1[1] 15.87 dBm 10 dBm 2.440200 GHz						
-10 dBm 01 -11.340 dBm	-10.dBm 01 -11.340 dBm 01 -11.340 dBm0 01 -11.3						
-30 dam	-40 d8m M2						
-70 dBm	Artestablisher and a stable						
Start 30.0 MHz 30001 pts Stop 1.0 GHz Marker Trpe Ref Trc X-value Function Function Result M1 1 900.885 MHz -53.99 dBm Mesuring Mesuring Mesuring	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44028 GHz 15.07 dBm M2 1 17.85536 GHz -47.56 dBm						
Date: 12.MAY.2023 21:06:41	Measunng Mar.2023 21:07:00						

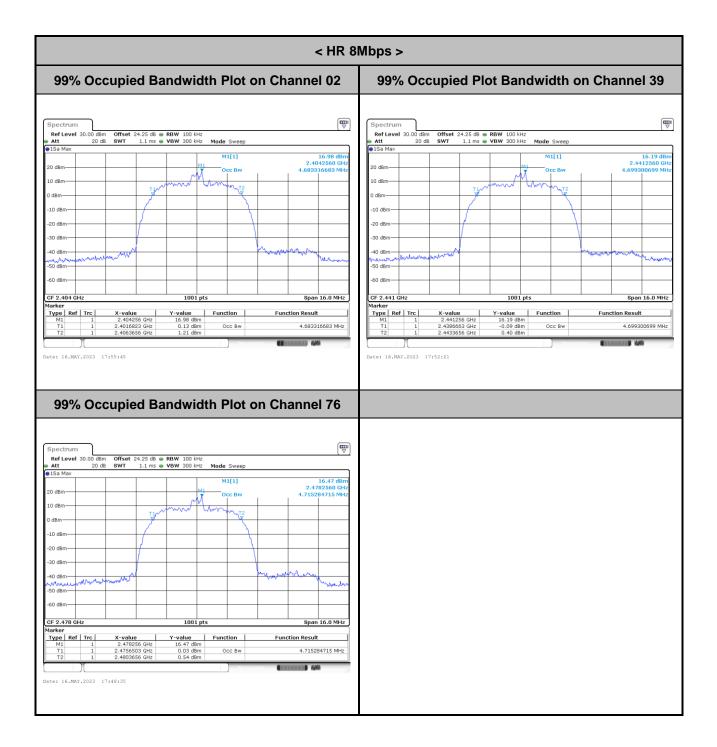




<HR Ant. 3>

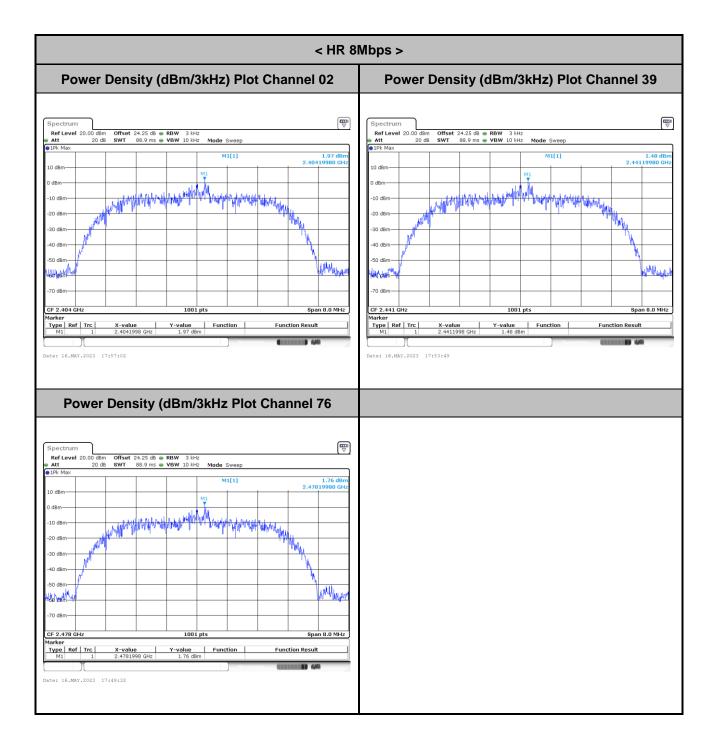
6dB Bandwidth





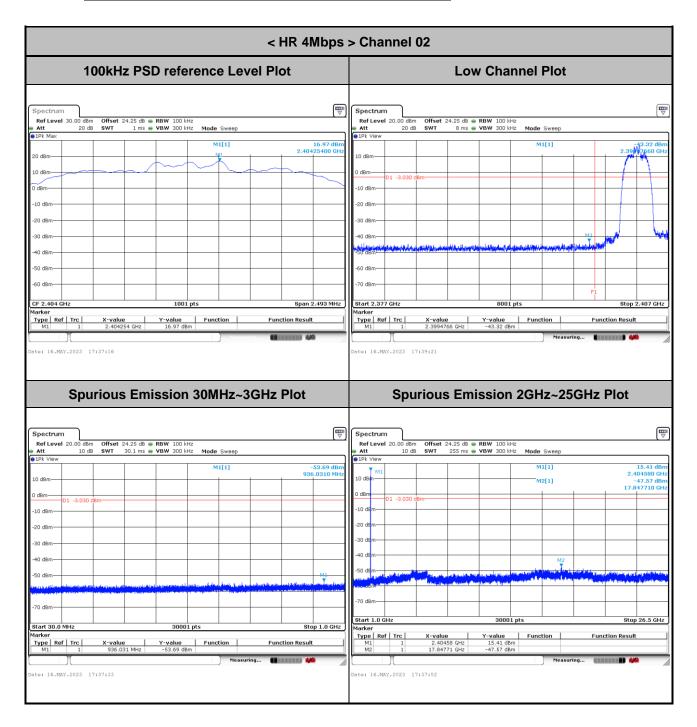
99% Occupied Bandwidth

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



Power Spectral Density (dBm/3kHz)

< HR 4	Mbps >
Power Density (dBm/3kHz) Plot Channel 02	Power Density (dBm/3kHz) Plot Channel 39
Spectrum Off With 2425 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Spertrum Image: Construction of the C24.55 mm RDW 31812 Medical C24.55 mm RDW 31812 Medic Supplicit Data SWY 27.4mm RDW 31812 Medical C24.55 mm RDW 31812 Medic Supplicit Data Gata <



Band Edge and Spurious Emission

